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Abstract: Diatoms have delicate and complex shells showing different lightweight design principles
that have already been applied to technical products improving the mechanical properties. In
addition, diatom inspired structures are expected to significantly affect the vibration characteristics,
i.e., the eigenfrequencies. Directed eigenfrequency shifts are of great interest for many technical
applications to prevent undesired high vibration amplitudes. Therefore, numerous complex diatom
inspired dome structures primarily based on combs, ribs, and bulging patterns were constructed
and their eigenfrequencies were numerically studied. Different structural patterns were identified to
significantly affect eigenfrequencies. The results were compared to dome structures equipped with
rib patterns in combination with a common structural optimization tool. The study indicates that a
combination of (1) selecting diatom inspired structural patterns that strongly affect eigenfrequencies,
and (2) adapting them to the boundary conditions of the technical problem is an efficient method to
design diatom inspired lightweight solutions with high eigenfrequencies.

Keywords: biomimetics; bulging; combs; eigenfrequency maximization; lightweight design; ribs;
voronoi; thickness optimization

1. Introduction

In the large field of biomimetics and bio-inspiration in connection with innovative
structural design and structural optimization, biomimetic and bio-inspired structures have
already been a very effective source of inspiration for innovative lightweight structures,
e.g., [1–4]. Structural patterns in nature are often complex and irregular, as material is only
placed in area where it is needed. Natural structures are the result of different load cases
affecting the system. Thus, structural adaptation has been necessary to ensure the survival
of the organism.

In regard to the numerous published studies that dealt with optimized lightweight
structures inspired by nature, static load cases are very common, e.g., [1,5]. However, a
very delicate and important field in structural engineering is how to deal with vibration
problems. Structures get excited by external vibrations and start to vibrate in such a way
that the functionality is impaired and it can even result in structural damage. Especially
lightweight structures are often susceptible towards vibrations due to the reduced weight
and the delicateness of the structures. Typically, constructions are employed with dampers
or structures are designed in a more massive way to avoid unwanted vibration amplitudes.
However, these traditional methods are not suitable for the lightweight technology as they
increase the mass and thus contradict the overall goal of using lightweight structures.

Generally, each structure capable of vibrating can be described by its eigenfrequencies
(natural frequencies) and its eigenmodes. If a structure gets excited, e.g., due to external
vibrations, it vibrates in the shape of one of its characteristic eigenmodes at a characteristic
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frequency, i.e., the eigenfrequency connected to that specific eigenmode. A coincidence
of the frequency of the external vibration with one of the structure’s eigenfrequencies is
called ‘resonance’, It can lead to very high vibration amplitudes and therefore to structural
damage. Thus, it is very crucial to avoid these resonance phenomena. A promising method
to reduce vibration amplitudes in lightweight structures is to adapt the structural design.
Changes in geometry ‘detune’ the system and thus alter the eigenfrequencies as illustrated
in Figure 1. As a consequence, the structural eigenfrequencies do not match anymore the
frequencies of external vibrations and resonance can be avoided.

Figure 1. Schematic view of the vibration amplitude depending on the frequency. If the eigen-
frequency of the system f0 lies within the frequency range of excitation (orange), large vibration
amplitudes occur that can be decreasing with damping devices. Shifting f0 to the value f0,shi f t de-
tunes the system in a way that the system’s eigenfrequency does no longer match with the excitation
frequencies and high vibration amplitudes are prevented.

Lightweight structures inspired by planktonic organisms (diatoms, radiolarians) seem
to strongly increase structural eigenfrequencies. Studies showed that especially irregular
combs and lattice structures present in diatoms can lead to high eigenfrequencies [6–8].
Diatoms are unicellular aquatic algae that possess delicate and complex shells primarily
made of silicate. Figure 2 illustrates the general composition of a diatom characterized
by an epivale and an hypovalve both connected via girdle bands. The about 20,000 [9] to
200,000 [10] estimated recent diatom species show very diverse shell structures. Diatoms
need to float in the sunlight flooded (euphotic) upper water column since sinking into the
deep water would lead to death. Therefore, their silicate shells are very light, although silica
is far heavier than water. At the same time, the shells have to resist attacks by predators
like copepods which take the algae into their feeding tools and try to crack them. Thus, the
combination of low weight and high mechanical resilience results in lightweight design
principles visible in diatom shells, which are a valuable source of inspiration for designing
optimized and innovative lightweight structures across different engineering sectors.

Aside from the lightweight design principles, diatom shells seem also to be a very
interesting inspiration for vibration optimized structures. Copepods feeding on diatoms
do not only try to crack their prey, but also handle them like a jackhammer [11]. Thus,
there are vibrational load cases affecting the algae that have to be survived. While there
have been several experimental studies on diatom shells focusing on static load cases
(e.g., [12–14]) or crushing tests [15], it is very difficult to experimentally investigate the
vibrational characteristics of diatoms. Hence, construction and simulation tools common
in engineering have been utilized to further study diatoms. Numerous numerical studies
focused on the mechanical properties of diatom frustules, e.g., [14–17]. However, the
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vibrational characteristics of diatoms have been less often investigated. First experimental
studies on the vibrational eigenmodes of diatoms using atomic force microscopy have been
carried out [18]. The 1st eigenfrequencies of the diatom shells were between 1–8 MHz. In
addition, the effect of diatom frustule density, stiffness, dimensions, pore size, and wall
thickness on the eigenfrequencies and mode shapes was analyzed [19]. They simulated
very simplified centric and pennate diatoms and obtained 1st eigenfrequencies of about
several MHz to tens of MHz. Another study simulated simple diatom shell models stating
that diatom shells are already pre-deformed according to eigenmodes indicating that
there seem to be vibrational load cases affecting the development of the complex structural
patterns present in diatom shells [20]. Further studies showed that pre-deforming structures
according to eigenmodes strongly increases the corresponding eigenfrequencies [21]. Thus,
this diatom-inspired method to adapt the geometry without increasing the mass appears
already to be an efficient method to shift eigenfrequency and to consequently prevent
resonance phenomena.

Figure 2. General structure of a diatom shell composed of an epivalve, girdle bands, and a hypovalve.

However, as already mentioned, there are numerous different diatom shells varying
in their complex structural patterns. Little is known about how these different structural
patterns influence the eigenfrequencies. Though, discovering innovative bio-inspired
structures that have a strong impact on eigenfrequencies is of great interest for many
technical applications, especially in the lightweight design sector.

Therefore, different diatom-inspired dome structures were studied with respect to their
eigenfrequencies and eigenmodes. While published studies dealt only with very simplified
diatom shells [19,20], more complex structures were designed here. It was focused on di-
atoms showing different comb structures, rib patterns, and bulging (embossing) structures,
as published studies indicated those structural elements to strongly alter eigenfrequencies,
e.g., [8,22–24]. The resulting complex structures were then compared to optimized struc-
tures equipped with diatom-inspired combs. The conducted thickness optimizations aimed
at finding the optimal thickness distribution of the dome structure [25].

In total, the presented work is divided into two parts. In the first part, different dome
structures inspired by diatoms were designed and numerically studied regarding their
eigenfrequencies and eigenmodes. The second part contained the optimization of dome
structures equipped with different rib structures inspired by diatom combs. The dome
structures resulting from both study parts were then compared among each other. The
overall objective was to find structural patterns or design principles that strongly affect
eigenfrequencies.
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2. Materials and Methods

In the following, the design and simulation processes as well as the subsequent
optimizations are described. All studies were conducted using the software Rhinoceros
(version 6 SR9, Robert McNeel & Associates, Seattle, WA 98103, USA) in combination with
the Plug-In Grasshopper (version 1.0.0007, Robert McNeel & Associates, Seattle, WA 98103,
USA) and ELISE (version 1.0.38, Synera GmbH, Bremen, Germany) as well as the software
Synera (version 23.05, Synera GmbH, Bremen, Germany). Numerical results were obtained
using the solver OptiStruct (Altair® HyperWorks® Version 2019, Altair Engineering, Inc.,
Troy, MI, USA).

2.1. Diatom-Inspired Dome Structures

Different dome structures inspired by diatoms were first constructed, before they were
analyzed regarding their eigenfrequencies and mode shapes.

2.1.1. Construction

Different CAD (computer-Aided Design) shell models of dome structures were con-
structed within this study. All models were based on a general model layout similar to a
diatom shell half. As shown in Figure 3, this basic model includes an upper convex surface
(i.e., design space) and a lower cylindrical belt-like structure that was open (i.e., non-design
space). The convex surface was created by the rotation of an interpolated curve and a ruled
surface based on these leading curves. The following vertical extrusion of the surface edge
created the lower cylinder.

Figure 3. Basic dome structure model, i.e., ‘reference model’, in a 3D view (a) and a side view (b).

The basic (reference) model was scaled in comparison to the approximate diameter of
real diatoms

∅diatom = 13 µm (1)

∅model = η ∅diatom (2)

The scale factor η was set to 10,000. However, since the focus of the study lied on
the effect of structural patterns present in diatoms on eigenfrequencies and mode shapes,
and studies show that eigenfrequencies scale with the factor 1/η [26,27], the difference in
dimension is acceptable. In addition, the chosen model size permits a future manufacturing
of the designed structures using 3D printing technologies for experimental studies.

The design of the in total 48 dome structures was primarily inspired by microscopic
images of different diatom species, whose frustules varied in shape and structural patterns.
Aside from information provided by [28], microscopic images from the Alfred Wegener
Institute Helmholtz Centre of Polar and Marine Research were taken as design inspiration.
It was focused on regular and irregular comb patterns (e.g., Thalassiosira sp., Actinoptychus
sp., Coscinodiscus sp.), stiffening rib structures (e.g., Arachnoidiscus sp., Asteromphalus sp.,
Cyclotella sp.), and (undulating) bulging segments (e.g., Actinoptychus sp.) (Figure 4a–f). In
addition, various CAD models were designed by merging structural patterns of different
diatom species (e.g., oval structures inspired by Surirella sp., Figure 4g) or considering
other structural features visible in nature (e.g., branch-like hierarchical structures inspired
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by radiolarian, Figure 4h). The used software provided algorithms like ‘irregular point
distribution’ or ‘Voronoi tessellation’, which allowed a systematic design of the complex
diatom-inspired structures.

Figure 4. Scanning electron microscopic images from different diatoms showing comb patterns
[(a) Thalassiosira sp., (b) Actinoptychus sp., (c) Coscinodiscus wailesii—a section from the epivalve with
fractale combs), and stiffening rib structures, (d) Arachnoidiscus sp., (e) Asteromphalos sp., (f) Cyclotella
sp., (g) Surirella sp.]. (h) shows a radiolarian. The images were made by L. Friedrichs/AWI (a–f), F.
Hinz/AWI (g), and N. Niebuhr/AWI (h).

2.1.2. Modal Analyses

Numerical finite element (FE) analyses were conducted to obtain the natural frequen-
cies of the modeled dome structures. FE analysis involves a discretization of the geometry
to be analyzed into smaller regions, i.e., finite elements. Each element is defined by a
specific number of points (i.e., nodes). For each node, a polynomial function has to be
differentiated to obtain a displacement result. The displacement within an element is
approximated based on a linear combination of the nodal results. The solution of the finite
number of differential equations of motion can be approximated using the virtual work
principle. For more information it is referred to [29].
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The present work deals with structural vibrations. Based on [30,31], the following
equations of motion are used for an undamped free vibration system with multi-degrees of
freedom (DOF):

MMMẍxx(t) +KKKxxx(t) = 0 (3)

where MMM and KKK are n × n (with n symbolizing the number of degrees of freedom of the
entire structure) mass and stiffness matrices of the system and xxx and ẍxx are n × 1 vectors of
the displacement and acceleration, respectively. The exact solution, in which x̂xx symbolizes
the vibration amplitude vector and ωn the n-th angular eigenfrequency, is:

xxx(t) = x̂xx sin(ωnt) ; n = 1, 2, 3, . . . (4)

Inserting Equation (4) in Equation (3) accompanied by additional simplifications leads
to the eigenvalue problem:

(−ωn
2MMM +KKK)x̂xx = 0 ; n = 1, 2, 3, . . . (5)

The roots of Equation (5) are the eigenvalues. In order to determine those eigenvalues,
the determinant of the equations of motion is set equal to 0 (i.e., non-trivial solutions):

det(−ωn
2MMM +KKK) = 0 ; n = 1, 2, 3, . . . (6)

Equation (6) leads to the following n-th degree polynomial with the roots ω1, ω2, . . . ,
ωn as the angular eigenfrequencies:

an(ωn
2)

n
+ an−1(ωn−1

2)
n−1

+ . . . + a1(ω1
2) + a0 = 0 ; n = 1, 2, 3, . . . (7)

The eigenvectors (i.e., mode shapes) can be determined by substituting the eigenvalues
back into the eigenvalue problem. Each mode shape of a structure is associated with a
specific eigenfrequency. Eigenfrequencies and mode shapes of complex structures can be
determined using numerical modal analyses. Within the modal analysis results, the mode
shapes are ordered by ascending frequency values. Thus, if eigenfrequencies are increased
due to structural adaptation, the mode shapes can switch order (‘mode switching’).

In the present study, the eigenfrequencies (and mode shapes) of each dome structure
were calculated by modal analyses using the FE method. The dome models were meshed
with three-node shell elements (TRIAs) with six degrees of freedom per node to reproduce
the complex shapes. A general element size of 1.0 mm was specified. Within a mesh study,
the average element size was varied from 2.0 mm to 0.7 mm to demonstrate that an element
size of 1.0 mm was adequate to obtain reliable numerical results. The mesh study was
exemplarily applied to two dome structures.

For the conducted modal analyses, the translations of the lower nodes (i.e., the lower
edge of each dome) were constrained (x = y = z = 0). In order to study the impact of the
structural patterns on the eigenfrequencies, constant material properties were defined for
all simulated structures. It was decided to assign the material properties listed in Table 1,
i.e., AlSi10Mg, to each model, as the models might be manufactured out of aluminum in
future experimental studies. In addition, the model mass was set to a constant value of 87 g
to compare the impact of the different structural patterns on the eigenfrequencies. Thus,
the shell thickness varied for each model.

Table 1. Material properties of the aluminum alloy AlSi10Mg assigned to the models studied.

Property Value

Young’s modulus, E (MPa) 75,000
Shear modulus, G (MPa) 28,195

Poisson’s ratio, ν (−) 0.33
Density, ρ (kg m3) 2700
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The shell thickness, the model mass, the 1st eigenfrequency, and the 1st mode shape
of each model were recorded.

Aside from the different dome structures, a model analysis of a simple base model
visible in Figure 3 was conducted considered as the reference model. The mesh properties,
the model assembly, and the boundary conditions corresponded to those defined for the
complex dome structures. A shell thickness of 1.813 mm was set for the reference structure
to obtain the specified model mass of 87 g.

The eigenfrequency deviation ∆ f comparing the eigenfrequency values from model 1,
f1, and model 2, f2, were calculated as follows:

∆ f =
f2 − f1

f1
(8)

2.2. Thickness Optimization of Dome Structures

In the previous chapter, different dome structures showing structural patterns vis-
ible in diatoms were studied regarding their eigenfrequencies and mode shapes. In the
following studies, dome structures equipped with different rib patterns were optimized
to maximize the 1st eigenfrequency and compared to the results of the previous chapter.
The base structure as well as the mesh properties, the boundary conditions, and the ma-
terial properties were equal to those defined for the previous study to obtain comparable
structures. The structural mass was accordingly kept as a constant value of 87 g. Thick-
ness optimizations were conducted with the objective to maximize the 1st eigenfrequency
considering (a) regularly, and (b) irregularly distributed ribs on the top of the upper dome
structure surface (i.e., the epivalve in Figure 3).

2.2.1. Regularly Distributed Ribs

Both the epivalve and the lower cylinder of the base structure were divided into three
surfaces as visible in Figure 5a. For each of the resulting six dome surfaces, a constant shell
thickness value was defined that was varied within the thickness optimization.

Figure 5. Subdivisions of the epivalve and the lower cylinder of the basic dome structure for the
regularly distributed ribs (a). For the irregularly distributed ribs, the epivalve subdivisions are
shown in (b).

Regular honeycombs were distributed on the epivalve considering seven different
comb spacing values of 5, 8, 12, 16, 20, 25, and 30 mm. Note that a large spacing value led
to a low honeycomb density, i.e., large honeycombs.

Afterwards, 2D Voronoi tessellation based on a point distribution was used. Voronoi
combs are polygons based on the intersection of lines created midway between the
distributed points [32]. As a consequence, the Voronoi comb design is unique for a
given point distribution.

Here, the irregularly shaped Voronoi combs were distributed on the epivalve and
extruded in z direction by 4 mm (constant rib height) to form the ribs. Four different
models were optimized with constant Voronoi comb spacing values of 5, 10, 15, and 20 mm.
Both the thickness values of the six surfaces forming the basic dome structure and the rib
thickness values were altered during the optimization process. The defined parameter
ranges were 0.1 mm to 6.5 mm and 0.1 mm to 6.0 mm for the thickness values of the
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dome surfaces and the ribs, respectively. For all models, the optimization objective was to
maximize the 1st eigenfrequency at a constant mass of 87 g.

2.2.2. Irregularly Distributed Ribs

While the cylinder surface division into three surfaces was maintained (Figure 5)a,
the epivalve was divided into five surfaces (Figure 5b). A field function (Figure 6) was
used to define the point distribution on the top surface of the dome structure. The local
field value was valid in the center of the top surface of the dome structure. Thus, the point
distribution at the remaining surface area was defined by the global field value and the
transition distance value. Finally, the Voronoi combs were created based on the irregular
point distribution.

Figure 6. Illustration of the field function based on a local value and a global value, which are valid
in certain areas within the model.

The optimization objective and mass constraint, as well as the rib height, and the
definition of the parameter ranges for the thickness of the dome surfaces and the ribs
followed the specifications in Section 2.2.1. The field parameters were defined in such a
way that large combs appeared in the dome structure middle and small combs close to the
border, since a comb size gradient from larger combs in the middle towards smaller combs at
the border is present in many diatom frustules (e.g., Thalassiosira sp., Figure 4a). In addition,
a similar gradient has been the result from already published structural optimizations [8].
The parameter value ranges considered to design the different rib patterns were 8 to 18 mm
for the local field value, 10 to 30 mm for the transition distance, and 2 to 5 mm for the global
field value.

For the model with the highest 1st eigenfrequency, the constant rib height was altered.
Height values of 3.0 mm, 4.5 mm, and 5.0 mm were defined to check whether different rib
heights would lead to a higher 1st eigenfrequency. For this, thickness optimizations with
the above mentioned settings were again performed.

In total, 14 different dome models with irregularly distributed ribs were calculated.
The results were compared to those obtained for the regularly distributed ribs and to the
diatom-inspired dome models considering Equation (8) to compute the eigenfrequency
deviations.

3. Results

This section presents the results of the conducted studies.

3.1. Diatom-Inspired Dome Structures
3.1.1. Construction

48 frustule models with different structural patterns have been constructed as visible
in Figure 7. Generally, the models were characterized by (a) combs (e.g., models 1, 20,
and 33), (b) stiffening ribs (e.g., models 8, 11, and 25), (c) undulating bulging segments (e.g.,
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models 16, 30, and 46), and (d) models with varying structural patterns (e.g., models 9, 15,
and 38).

The comb models showed irregular (Voronoi) and regular (honey-)comb structures
in small and large cell sizes or with varying cell sizes due to the definition of cell size
gradients. Some comb structures were constructed as ribs on top of a simple shell structure,
others formed the dome structure itself. Aside from comb structures, different types
of stiffening structures in form of radially oriented ribs were designed. Some models
showed undulating bulges varying in geometry, size, and number of bulges. In addition,
structural hierarchies were present in some models, e.g., hierarchical rib layouts or fractale
honeycombs (i.e., ‘each comb cell was filled with smaller comb cells’). The majority of the
designed structural patterns were characterized by radial symmetry, but several domes
had different asymmetrical structures, which can also be found in diatoms.

Figure 7. CAD constructed dome structures inspired by diatoms.

3.1.2. Modal Analyses

The initially conducted mesh study showed that the 1st eigenfrequencies did almost
not change for models meshed with elements that were smaller than the chosen element
size of 1.0 mm (Figure 8). However, very small structural patterns were meshed with
smaller element sizes between 0.7 mm to 0.9 mm. The average number of element per
model was 89,000. Figure 9 exemplarily shows the fine FE meshes of four different models.
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Figure 8. 1st eigenfrequency depending on the element size for the dome models 1 and 2.

Figure 9. FE meshes of the studied dome structures (a) model 6; (b) model 15; (c) model 23, and
(d) model 45.

Regarding the reference model, the obtained 1st eigenfrequency f1,ref was 2799 Hz.
The first four mode shapes are displayed in Figure 10.

Figure 10. Top view of the 1st (a), 2nd (b), 3rd (c), and 4th (d) mode shape of the reference model.
The colouring represents the absolute normalized vibration amplitude.

Table 2 lists the minimum value, the maximum value, and the average value of the
shell thickness, the mass, and the 1st eigenfrequency among all 48 models. While the model
mass was constant as initially stated, the shell thickness varied from 0.92 mm to 5.51 mm.
The lowest 1st eigenfrequency was 660 Hz, while the highest value was 4139 Hz, i.e., more
than six times higher than the lowest eigenfrequency value.
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Table 2. Among all studied dome models, the minimum value, the maximum value, and the average
value of the shell thickness, the mass, and the 1st eigenfrequency are listed.

Shell Thickness
(mm) Mass (g) 1st Eigenfrequency

(Hz)

MIN 0.92 87.00 660
MAX 5.51 87.08 4139

AVERAGE 1.92 87.02 2291

In Figure 11, the 1st eigenfrequency and the shell thickness of all models are plotted.
The models are organized by the structural patterns (a) combs, (b) ribs, (c) bulging, and
(d) geometrical variations, and ordered by their 1st eigenfrequency values.

Regarding the shell thickness, the majority of the models show values around 1.0 mm
to 1.5 mm, while only some models had clearly higher shell thickness values up to more
than 5 mm. However, the mass always remained constant.

As for the 1st eigenfrequency, four models had comparably low 1st eigenfrequencies
of less than 700 Hz to slightly above 1000 Hz. The 1st eigenfrequencies of the majority
of the dome structures laid within a range of about 1800 Hz to 2500 Hz, which is below
the 1st eigenfrequency of the reference structure ( f1,ref = 2799 Hz). Despite one model, all
models of the geometrical groups combs, ribs, and variations had lower 1st eigenfrequencies
than the reference structure. On the other side, the majority of the bulging-models showed
very high 1st eigenfrequency values up to more than 4000 Hz.

Figure 11. 1st eigenfrequency and shell thickness of all dome models sorted by the structural patterns
(a) combs, (b) ribs, (c) bulging, and (d) variations, and organized by increasing 1st eigenfrequency.
The red, dotted line shows the 1st eigenfrequency of the reference structure. The six models showing
a 1st mode shape similar to the 2nd mode shape of the reference model, i.e., two bulges, are marked
with a star above the frequency bar.

In total, eight models had a higher 1st eigenfrequency than the reference structure.
Four of them (marked with a star in Figure 11) showed a mode shape switch compared
to the reference structure, i.e., the 1st mode shape was similar to the 2nd mode shape of
the reference structure. (cf., Figure 10). Thus, the frequency of the reference structure’s
1st mode shape was shifted to a higher frequency value. The remaining two models with
a mode switch were ‘geometrical variations’-models and had lower 1st eigenfrequencies
than the reference model. For the remaining dome models, the studied mode shapes were
similar to those of the reference structure and did also appear in the same order.

Figure 12 shows exemplarily the 1st mode shapes of five models. Models with com-
parably lower 1st eigenfrequency values (Figure 12a,b) tend to show a 1st mode shape
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similar to the reference model, i.e, one large bulge that covers (almost) the whole model
surface. However, many models with comparably high 1st eigenfrequencies showed either
a 1st mode shape similar to the 2nd mode shape of the reference model (i.e., mode shape
switch occurred, e.g., Figure 12d), or a deformed 1st mode shape (e.g., Figure 12c), or a
mode shape that covers only a part of the model surface (e.g., Figure 12e).

Figure 12. 1st mode shapes of diatom-inspired dome structures. Displayed are the models 10 (a),
15 (b), 31 (c), 46 (d), and 45 (e). The colouring represents the absolute normalized vibration amplitude.

The following statements can be concluded based on indications of the results:

(a) Combs (Figure 13a)

• For models showing a constant comb size (both honeycombs and Voronoi
combs): a larger comb size tends to increase the 1st eigenfrequency by about
27% (models 10 vs. 2, and 3 vs. 1)

• For models with regular and irregular combs (no fractale combs): the 1st eigen-
frequency seems to be significantly higher (>25%) if the comb pattern forms
the structure itself compared to comb patterns applied as ribs to a simple dome
structure (models 10 vs. 35, 3 vs. 32, 4 vs. 33, and 6 vs. 34). However, for models
with fractale honeycombs or Voronoi combs, applying the comb pattern as ribs
to a simple dome surface shows an increase of the 1st eigenfrequency by 11% to
14% (models 36 vs. 7, and 37 vs. 12)

• Generally, smaller combs close to the model’s border and larger combs in the
middle tends to increases the 1st eigenfrequency (increase of 21% for model 3
vs. 6)

• For models with a constant comb size, the comb unit geometry (regular hon-
eycomb, irregular Voronoi, or fractale combs) seems to almost not affect the
1st eigenfrequency (deviations < 5%; models 1 vs. 2, 3 vs. 10, and 32 vs. 35)

(b) Ribs (Figure 13b)

• A lower number of stiffening ribs tends to increase the 1st eigenfrequency by
more than 9% (models 27 vs. 26, and 27 vs. 28)

• Placing voids in the model’s centre, especially an irregular void pattern, in com-
bination with stiffening the model’s border apparently increases the 1st eigen-
frequency, here the increase was 20% (model 39 vs. 40)

• Small geometrical adaptations that almost do not affect the mass, or that are not
close to the model’s centre are likely to almost not alter the 1st eigenfrequency
(models 14 vs. 23, 11 vs. 25, and 11 vs. 8)

(c) Bulging (Figure 13c)

• Irregular or deformed undulating bulges seem to increase the 1st eigenfrequency
by about 20% (models 18 vs. 31, and 47 vs. 30)

• The results indicate that the smaller scaled the bulging pattern, the higher the
1st eigenfrequency (increases of more than 12% for models 47 vs. 18, and 18
vs. 22)

• Small-scaled bulges close to the border that increase the stiffness in combination
with an irregular embossing shape in the model’s centre tends to lead to a very
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high eigenfrequency, especially if the mass in the model’s centre can be reduced
(1st eigenfrequency increase of 23% for model 46 vs. 45)

• The number of radial symmetric undulating segments appears to only alter the
1st eigenfrequency less than 6% (models 16 vs. 21, and 17 vs. 16)

• Small voids distributed over the whole model area seem to hardly affect the
1st eigenfrequency (model 30 vs. 48)

(d) Geometrical Variations (Figure 13d)

• The results indicate that stiff borders are at least equally important to increase
the freuency, so that models with stiff borders and without voids in the middle
can show higher eigenfrequencies (1st eigenfrequency increase of 41% and 33%
for the models 9 vs. 44 and 9 vs. 43, respectively)

Figure 13. Cont.
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Figure 13. Modelled dome structures sorted by (a) combs, (b) ribs, (c) bulging, and (d) geometrical
variations, and ordered by increasing 1st eigenfrequency.

3.2. Thickness Optimization of Dome Structures

25 dome structures with rib patterns were modeled. The defined geometrical character-
istics, and the 1st eigenfrequency and mode shapes obtained by the thickness optimizations
are listed in Table 3. In Figure 14, the models are grouped by their geometrical character-
istics and ordered by their 1st eigenfrequencies. All models had a constant model mass
of 87 g to be compared to the diatom-inspired dome structures analyzed in the previous
study part. The 1st eigenfrequency values were between 4708 Hz and 6165 Hz, and the
average 1st eigenfrequency values were 5286 Hz for the regular honeycombs, 5372 Hz for
the irregular Voronoi ribs with constant comb spacing, and 5822 Hz for the irregular ribs
defined by the field functions. Thus, the 1st eigenfrequency generally increased with rising
degree of structural irregularities.

Table 3. Geometrical characteristics and optimization results for the thickness optimization study of
dome structures. Based on the rib distribution type, the comb spacing/parameter values (GV: global
value, LV: local value, TD: transition distance), and the rib height the models were designed. The
listed 1st mode shapes are those of the reference model. ‘Mode X’ indicated that the mode shape was
not similar to one of the studied mode shapes of the reference model.

Model Number Rib Distribution
Comb Spacing

Value/Parameter
Values (mm)

Rib Height (mm) 1st Eigenfre-
quency (Hz) 1st Mode Shape

1 regular 5 4.0 5621 Mode 1
2 regular 8 4.0 5557 Mode 1
3 regular 12 4.0 5631 Mode 2
4 regular 16 4.0 5392 Mode 2
5 regular 20 4.0 5176 Mode 1
6 regular 25 4.0 4919 Mode 1
7 regular 30 4.0 4708 Mode 1
8 irregular 5 4.0 5599 Mode 1
9 irregular 10 4.0 5597 Mode 1

10 irregular 15 4.0 5188 Mode 1
11 irregular 20 4.0 5103 Mode X
12 irregular GV = 5; LV = 15; 4.0 5453 Mode 1

TD = 10
13 irregular GV = 5; LV = 18; 4.0 5438 Mode 1

TD = 20
14 irregular GV = 3; LV = 8; 4.0 5987 Mode 1

TD = 20
15 irregular GV = 3; LV = 10; 4.0 5927 Mode 1

TD = 20
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Table 3. Cont.

Model Number Rib Distribution
Comb Spacing

Value/Parameter
Values (mm)

Rib Height (mm) 1st Eigenfre-
quency (Hz) 1st Mode Shape

16 irregular GV = 3; LV = 12; 4.0 5846 Mode 1
TD = 20

17 irregular GV = 3; LV = 16; 4.0 5507 Mode 1
TD = 20

18 irregular GV = 3; LV = 8; 4.0 5944 Mode 1
TD = 25

19 irregular GV = 3; LV = 8; 4.0 6011 Mode 1
TD = 30

20 irregular GV = 3; LV = 15; 4.0 5706 Mode 1
TD = 25

21 irregular GV = 2; LV = 8; 4.0 5942 Mode 1
TD = 20

22 irregular GV = 4; LV = 8; 4.0 5857 Mode 2
TD = 20

23 irregular GV = 3; LV = 8; 3.0 5649 Mode 1
TD = 30

24 irregular GV = 3; LV = 8; 4.5 6165 Mode 1
TD = 30

25 irregular GV = 3; LV = 8; 5.0 6072 Mode 1
TD = 30

Figure 14. 1st eigenfrequency of the dome models equipped with ribs obtained by thickness opti-
mizations. For the three geometrical groups regular ribs, irregular ribs with constant comb spacing,
and irregular ribs defined by field functions, the models are ordered by increasing 1st eigenfrequency.
In addition, for each group, the red, dotted line shows the average 1st eigenfrequency value. The
four models showing a 1st mode shape similar to the 2nd mode shape of the reference model, i.e.,
two bulges, are marked with a star above the frequency bar.

Regarding the 1st mode shapes, all models aside from four models (marked with a star
in Figure 14) showed a 1st mode shape similar to that of the reference model (cf., Figure 10a),
i.e., one large bulge. Nevertheless, all 1st eigenfrequencies were significantly higher than
the 1st eigenfrequency of the reference structure ( f1,ref = 2799 Hz). Figure 15 exemplarily
displays the 1st mode shapes of five models. For the models 8 and 24 (Figure 15c,d), which
showed comparably high f1,ref eigenfrequencies, the f1,ref mode shape was similar to that
of the reference structure. However, the one large bulge did not cover the whole model, as
for the reference structure, but only a small part of the structure’s surface was deflected.
Three of the four models having a 1st mode shape that differed from that of the reference
model are visible in Figure 15a,d,e (models 4, 22, and 11). Although the f1,ref mode shapes
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varied strongly compared to the reference model, the f1,ref eigenfrequencies were not the
highest among the here studied models (model 24 showed a higher f1,ref eigenfrequency).
For the models 4 and 22, the f1,ref mode shapes were similar to the 2nd mode shape of
the reference model (cf., Figure 10b). Also here, the two bulges did not cover the whole
model surface, but were smaller or even deformed, i.e., non-symmetrical. The last model
(model 11) had a very different 1st mode shape (Figure 15e).

Figure 15. 1st mode shapes of dome structures equipped with ribs. Displayed are the models 4 (a),
22 (b), 8 (c), 24 (d), and 11 (e). The colouring represents the absolute normalized vibration amplitude.

3.3. Comparison

All studied models coincided in their general dimensions, material properties, and
structural mass. In Figure 16, the models with the highest 1st eigenfrequencies among the
diatom-inspired models and the models with regular and irregular rib patterns are com-
pared to the reference model. While the diatom-inspired models showed 1st eigenfrequency
increases up to 48% compared to the reference model, the dome structures equipped with
rib patterns had far higher 1st eigenfrequency increases of up to 101% for the regular ribs
and up to 120% for the irregular ribs.

Figure 16. Comparison of the 1st eigenfrequency of the reference dome structure to the models with
the highest 1st eigenfrequency among the diatom-inspired dome structures, the dome structures
equipped with regular ribs, and the dome structures stiffened by applying irregular rib patterns. The
1st eigenfrequency increase compared to the reference model is given above each bar. All models had
the same general dimensions, the same material properties, and the same mass.

Exemplarily, three different models with comb patterns were compared among each
other (Figure 17). The diatom-inspired model 6 was characterized by a comb size gradient
with large combs in the middle and small combs close to the border. The model showed a
1st eigenfrequency increase of 21% compared to diatom-inspired model 3 which had only
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uniformly sized combs. Among the optimized models were also several models showing a
comb size gradient similar to that of the diatom-inspired model 6 like for example model 24.
Compared to diatom-inspired model 3, the 1st eigenfrequency was increased by 222% for
thickness optimization model 24. It has to be noted that the latter had different thickness
values assigned to each element, while diatom-inspired models 3 and 6 showed a constant
thickness value.

Figure 17. 1st eigenfrequency increase of the diatom-inspired model 6 and the thickness optimization
model 24 compared to the diatom-inspired model 3. While the latter shows uniformly sized combs,
the other two models are characterized by a comb size gradient from smaller combs at the border and
larger combs in the middle.

4. Discussion
4.1. Diatom-Inspired Dome Structures

Different diatom-inspired dome structures have been constructed. In contrast to
other published simulation studies on diatom shells, structural complexity in diatom
shells was considered here, resulting in different models based on regular and irregular
combs, stiffening patterns, and bulging designs. The models were scaled by 10,000 in
comparison to the approximate diameter of real diatoms (130 µm vs. 130 mm), so that
manufacturing using the 3D printing technology and vibration experiments could be
addressed in continuative studies.

The conducted modal analyses resulted in 1st eigenfrequency values and mode shapes
for all diatom-inspired models. The initial mesh study indicated that the chosen element
size was adequate, because the 1st eigenfrequency did hardly vary with further decreasing
element size, i.e., with refining the mesh. While the reference model had a 1st eigenfre-
quency of 2799 Hz, the 1st eigenfrequencies of the diatom-inspired models were between
660 Hz and 4139 Hz. The majority of the models had smaller 1st eigenfrequency values than
the reference model, although they showed structural patterns generally leading to high
stiffness at low mass [33]. As a high stiffness usually results in a high 1st eigenfrequency,
higher 1st eigenfrequency values have been expected. However, the study indicates that
structural patterns cannot simply be applied to a certain technical problem to improve the
mechanical properties. Instead, the structural patterns have to be adapted to the specific
design space and boundary conditions to efficiently maximize the eigenfrequencies, which
is why in the second part of this study, comb patterns were exemplarily optimized to
increase the 1st eigenfrequency.

For almost all models, the 1st mode shape were similar to that of the reference model,
despite the different structural patterns applied and the varying eigenfrequency values. Yet,
some models showed a mode switch. The results indicate that a mode switch is likely to
occur at comparably high eigenfrequency values. In addition, variations in the appearance
of a mode shape, e.g., decreasing the size of the single large bulge of the 1st mode shape,
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is likely to come along with increased 1st eigenfrequency, which has also been stated in
other studies, e.g., [24]. However, this does not generally apply for all models, because
also mode switch at a comparably low eigenfrequency value was recorded. In addition,
another model with a comparably high 1st eigenfrequency showed no mode switch. These
findings were not studied further, because the focus of the present study lied on how the
diatom-inspired structural patterns affect the eigenfrequencies.

Based on the different diatom-inspired models studied, general statements of how
structural patterns can significantly affect eigenfrequencies have been expressed. These
statements are expected to support the design process of structures with high eigenfre-
quencies. However, it has to be noted that the statements are based on a limited number of
models, which is why detailed studies on structural patterns strongly affecting the eigen-
frequencies are recommended. In addition, combining structural patterns with parameter
studies and structural optimizations, in which the boundary conditions and optimization
objectives are clearly defined, is expected to further increase the eigenfrequencies and to
lead to very promising results.

As already mentioned, the diatom-inspired models were scaled with a factor of
η = 10,000. It has been proposed that eigenfrequencies scale with 1/η [26,27]. Thus,
the here simulated eigenfrequencies were scaled to obtain the eigenfrequencies for models
in the dimensions of real diatoms. As the performance of eigenfrequency scaling is a
common procedure for constant material properties and linear behaviour, it is expected
that the scaling does not particularly affect the structural patterns present in the studied
dome models.

In addition to the scale factor 1/η, a scale factor ϵ was defined to consider the different
material properties with the aim to compare the obtained results to already published
data on diatom eigenfrequencies. While in the present study, aluminum was specified as
material, the Young’s modulus, density, and Poisson’s ratio vary from the values obtained
for real diatom shells published by [18] (Table 4).

Table 4. Material properties of the aluminum alloy AlSi10Mg assigned to the models of the present
study compared to the material properties assigned to diatom models studied by Cvjetinovic et al. [18].

Property Present Study Cvjetinovic et al. [18]

Young’s modulus, E (MPa) Ep = 75,000 Ec = 15,000
Density, ρ (kg m3) ρp = 2700 ρc = 2300

Poisson’s ratio, ν (−) 0.33 0.17

Following the general definition of an eigenfrequency depending on stiffness and
mass, the scale factor ϵ was defined as:

ϵ =

√
Ep/Ec

ρp/ρc
(9)

with Ep and Ec representing the Young’s modulus of the present study and obtained by [18],
respectively, and ρp and ρc symbolizing the material densities, respectively.

Thus, each eigenfrequency of a diatom-inspired dome models fp was scaled to receive
an estimated 1st eigenfrequency value of a diatom shell fdiatom:

fdiatom =
1
η

1
ϵ

fp (10)

The eigenfrequency scaling led to 1st eigenfrequency values between 3 MHz and
20 MHz, which were within the range of diatom eigenfrequencies obtained in other stud-
ies [18,19]. Thus, the simulation models can be seen as resilient.
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4.2. Thickness Optimization of Dome Structures

After showing that diatom-inspired comb patterns tend to increase the 1st eigenfre-
quency, the efficiency of comb patterns in manipulating the eigenfrequencies was studied
in detail. The simple dome models were equipped with rib patterns based on regular and
irregular combs. Subsequent thickness optimizations aimed at maximizing the 1st eigen-
frequency while maintaining the model mass. As the boundary conditions, material
properties, simulation set-up, and model mass corresponded to that of the diatom-inspired
dome models, all resulting designs could be compared among each other.

The thickness optimizations resulted in different dome models with significantly
higher 1st eigenfrequencies than the reference model. Even the regular comb patterns led
to very high eigenfrequencies. This indicates the approach of optimizing the shell thickness
of both the rib pattern, and the base structure itself to be very efficient in increasing
eigenfrequencies. Regarding the mode shapes of the simulated models, mode switch
compared to the reference model occurred only in a few models. Similar to the diatom-
inspired dome structures, the models showing a mode switch did not have necessarily the
highest 1st eigenfrequency, which has already been discussed in the previous chapter.

Among the studied models, the highest 1st eigenfrequencies were obtained by using
irregular comb patterns and applying comb size gradients. The best models showed small
combs close to the border and large combs in the middle. This corresponds to the results
obtained by [8].

Thus, it can be concluded that the combination of (1) choosing structural patterns
inspired by diatoms that are expected to lead to high stiffness and high eigenfrequencies
and (2) conducting structural optimizations to discover an optimum shape of the pattern
considering the boundary conditions and design objectives is a promising procedure in
designing structures with high eigenfrequencies.

4.3. Comparison

The final comparison of the models showed that a significant manipulation of the
1st eigenfrequency values in comparison to the reference model was possible. While the
1st eigenfrequency increased up to 48% for the diatom-inspired models, it rose by up to
101% and 120% for the regular and irregular rib patterns, respectively.

The efficiency of the here proposed method to design diatom-inspired structures
with high eigenfrequency was exemplarily demonstrated for the application of comb
patterns. Among the diatom-inspired models, a significant eigenfrequency increase due to
implementing a comb size gradient in comparison to uniformly sized combs was recorded.
Thus, the structural feature of comb size gradients, which can be often observed in diatoms
(e.g., Thalassiosira sp., Figure 4a), has a strong impact on the eigenfrequencies. However, in a
first step, the structural pattern was solely applied to the simple dome structure. Boundary
conditions and design objectives were considered. In a second step, different comb size
gradients were tested in combination with a thickness optimization. Here, the boundary
conditions and design objectives were implemented into the design process. The resulting
1st eigenfrequency was much higher compared to the previous model, and also compared
to the reference structure. Thus, the studied two-step design process is an an efficient
method to design diatom-inspired lightweight solutions with high eigenfrequencies.

5. Conclusions

We have constructed numerous complex dome structures inspired by diatoms. The
implemented structural features were mostly based on regular and irregular combs, rib
patterns, and embossing patterns. The 1st eigenfrequencies and mode shapes of all mod-
els were numerically studied detecting several diatom-inspired structural features to be
efficient in manipulating eigenfrequencies. Comb patterns were afterwards studied in
detail and combined with thickness optimizations to further increase eigenfrequencies.
The design process of (1) selecting diatom-inspired structural patterns having a strong
impact on eigenfrequencies, and (2) adapting them considering the boundary conditions
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and design objectives in combination with thickness optimizations is an efficient method to
design diatom-inspired lightweight solutions with high eigenfrequencies.
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