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Abstract: Poly(styrene-methyl methacrylate-acrylic acid) photonic crystals (PCs), with five different
sizes (170, 190, 210, 230 and 250 nm), were applied onto three plain fabrics, namely polyamide,
polyester and cotton. The PC-coated fabrics were analyzed using scanning electronic microscopy
and two UV/Vis reflectance spectrophotometric techniques (integrating sphere and scatterometry) to
evaluate the PCs’ self-assembly along with the obtained spectral and colors characteristics. Results
showed that surface roughness of the fabrics had a major influence on the color produced by PCs.
Polyamide-coated fabrics were the only samples having an iridescent effect, producing more vivid
and brilliant colors than polyester and cotton samples. It was observed that as the angle of incident
light increases, a hypsochromic shift in the reflection peak occurs along with the formation of new
reflection peaks. Furthermore, color behavior simulations were performed with an illuminant A light
source on polyamide samples. The illuminant A simulation showed greener and yellower structural
colors than those illuminated with D50. The polyester and cotton samples were analyzed using
scatterometry to check for iridescence, which was unseen upon ocular inspection and then proven to
be present in these samples. This work allowed a better comprehension of how structural colors and
their iridescence are affected by the textile substrate morphology and fiber type.

Keywords: photonic crystals; structural coloration; iridescent effect; textiles; UV/Vis reflectance;
IP-BRDF

1. Introduction

Human beings have been trying to imitate Nature characteristics in laboratory since
the early stages of modern science. Some optical characteristics can be achieved through
structural coloration and photonic crystals (PCs). PCs are innovative materials inspired by
nature, particularly the iridescent colors of butterfly bird feathers, and beetle exoskeletons
having color generating structures in one, two, or three dimensions [1–3]. These artificial
structures mimic the intricate patterns found in biological organisms to manipulate and
control light. By emulating nature’s designs, photonic crystals exhibit unique optical
properties that can bend, reflect, or trap light of specific wavelengths.

PCs are periodic structures that exhibit a bandgap for certain wavelengths of the
electromagnetic radiation, similar to how semiconductors have electronic bandgaps for
electron energy levels [4,5]. The photonic bandgap (PBG) arises from the periodic variation
in refractive index within the structure, where light is forbidden to propagate within
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the PCs, thus being determined by the crystal lattice and periodicity. Depending on
material choices for the PCs synthesis (polystyrene (PS) or silica (SiO2) particles) and the
substrate (glass, metallic, or fabric), structural colors with iridescent effects can occur due
to angular resolved Bragg diffraction from the lattice planes [6]. PCs can be applied in
ink-jet printing [7,8], 3D printing [9,10], lithography [11,12] and sensors [13,14], among
others [15,16], to produce structural colors. They can also be applied in textiles, an area
of research that had demonstrated great interest in the last decade [6,17–20]. Being one
of the most pollutant industries in the world, there is a constant demand that the textile
industry searches for more ecological methods of coloration, using less chemicals and
water. One promising approach to a more ecological production of colored fabrics is the
application of structurally coloring PCs where, compared to traditional dyeing processes,
the consumption of water is dramatically reduced. The reason is that there is no need for
water to rinse the fabrics after coloring, thus effluents can be severely reduced. However, a
fabric surface is very irregular when compared to glass or metallic surfaces, so applying
PCs on fabrics can be challenging since, the fiber (natural or synthetic, shape, cross-section
area), yarn properties (number of cables, torsion, linear density) and fabric construction
(number of yarns at warp and weft, type of structure) will influence its surface roughness.
Li et al. [21] studied the influence of weave, yarn diameter and yarn density of polyester
and silk fabrics on obtaining SiO2-based structural colors. It was observed that both
physical and chemical properties of the fabric influence structural color. Li et al. observed
that, physically, more compact and flat substrates would promote better PC self-assembly,
meaning that plain fabrics were better substrates than twill fabrics due to the small gaps
between fibers, for both polyester and silk. Chemically, fabrics that possess less polar and
water-soluble groups in their composition will be preferred to achieve better structural
colors, which in this study were exemplified with polyester fabrics. Zhou et al. [21] also
performed structural coloration studies on polyester fabrics, with variations on the PC’s
mass fraction utilized for the coating, humidity percentage and temperature [22]. It was
noted that using a mass fraction of 1.5% of SiO2 PCs led to better arranged structures versus
mass fractions of 0.5, 1.0 and 2.5%. Furthermore, higher relative humidity percentages
(60%) and lower temperatures (25 ◦C) also led to better organized structures meaning the
evaporation rate of the PCs colloidal solution, liquid retention and stability of the fabrics
(shrinkage) are determinant factors to obtain good structural colors.

In this work, we highlight the importance of truly understanding the color behav-
ior of PCs structures, especially when applied in different types of fabrics with different
surfaces roughness. In this context, we investigate 3 plain fabrics of different fibers (cot-
ton, polyamide, polyester) structurally colored with five different sizes of poly(styrene-
methylmethacrylate-acrilic acid) (P(St-MMA-AA)) PCs (170, 190, 210, 230 and 250 nm).
In all cases we evaluated the final structural color and how the coloring was influenced
by the properties of the fabric. To the best of our knowledge, there are very few research
papers that use polyamide fabrics in structural coloration studies, and even less studies
comparing the differences of (P(St-MMA-AA)) PCs applied onto polyamide, polyester and
cotton fabrics. Furthermore, there are no studies about structural color behavior in textiles
under other illuminants, hence the importance of the performed research. The future of
textile coloring will certainly depend on photonic crystals and their structural color, so that
we have a color that, in addition to being more ecological and sustainable, is also capable
of mimicking optical effects produced by nature.

2. Materials and Methods
2.1. Materials

Commercial black polyamide (PA) plain fabric (61.50 g/m2), white polyester (PES)
plain fabric (Lemar–Leandro Magalhães de Araújo (Filhos), Lda, Guimarães, Portugal,
100 g/m2) and white cotton (CO) plain fabric (Lameirinho Indústria Têxtil SA, Guimarães,
Portugal, 140 g/m2) were used for dyeing processes and PC coating. Polyester and cotton
dyeing (with black dye) were carried out in an Ibelus C-720 (Pregitzer&Ca, LDA, Guimarães,
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Portugal) dyeing machine equipped with infrared heating. P(St-MMA-AA) microspheres
were previously synthetized accordingly [18] and used for the PC coating without any
purification.

2.2. Fabrics Characterization

Polyamide, polyester and cotton fabrics were characterized according to the Interna-
tional Organization of Standardization (ISO) as follows (n = 3).

• ISO 7211-2:1984–Textiles–Woven fabrics–Construction–Methods of analysis–Part 2:
Determination of number of threads per unit length [23].

• ISO 7211-3:1984–Textiles–Woven fabrics–Construction–Methods of analysis–Part 3:
Determination of crimp of yarn in fabric [24].

• ISO 7211-5:2020–Textiles–Methods for analysis of woven fabrics construction–Part 5:
Determination of linear density of yarn removed from fabric [25].

Thickness measurements were performed with an electronic digital micrometer (Mitu-
toyo) in 5 different points of the fabric, for all fabrics (n = 3).

2.3. Cotton Dyeing

Cotton plain fabric was dyed with Novacron Black NS (Huntsman Performance, Leça
da Palmeira, Portugal) at 6% over fiber weight (ofw). The dyeing bath was composed by
100 g/L of NaCl, 5 g/L of Na2CO3, 3 mL/L of NaOH 50%, with a liquor ratio of 1:20. The
dyeing program (Figure 1) started at room temperature (~20 ◦C) and then was raised to
60 ◦C, which was maintained for 90 min. After cooling to 50 ◦C, cotton fabric was rinsed
in cold water to remove hydrolyzed dye from the fabric’s surface, washed at 100 ◦C for
20 min with detergent Diadavin UN (Tanatex Chemicals, Santo Tirso, Portugal) 1 g/L to
remove the remaining hydrolyzed dye in the fabric’s interior, rinsed again with cold water
and then dried in an oven at 40 ◦C.
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Figure 1. Dyeing process used for CO at 60 ◦C.

2.4. Polyester Dyeing

Polyester plain fabric was dyed with Coralene Black MD (IMPOCOLOR, Grijó, Portu-
gal) at 3% ofw, with a liquor ratio of 1:30. The dyeing process (Figure 2) started at room
temperature (~20 ◦C), with a subsequent raise of the temperature in several steps: to 60 ◦C
with a rate of 3 ◦C/min and kept at 60 ◦C for 10 min; to 90 ◦C with a rate of 2 ◦C/min and
kept at 90 ◦C for 30 min; to 130 ◦C with a rate of 1.5 ◦C/min and kept at 130◦C for 45 min.
The cooling was performed in two steps, from 130 ◦C to 80 ◦C with a rate of 2 ◦C/min and
then from 80 ◦C to 50 ◦C with a rate of 2.5 ◦C/min. Finally, the PES fabrics were rinsed
with hot water followed by rinsing with cold water and dried in an oven at 40 ◦C.
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2.5. PCs Deposition by Dip-Drawing Method

A piece of fabric, 3 × 3 cm2, was dipped in the P(St-MMA-AA) disperse solution (15%
wt) for 10 s, slowly removed and dried in a petri dish at 40◦ C for 15–25 min. Fabrics were
used without any further modifications for UV/Vis reflectance measurements.

2.6. Reflectance Measurements
2.6.1. Spectrophotometry with Integrating Sphere

The PC coated fabrics were analyzed with a spectrophotometer (Cary 5000, Agilent,
Santa Clara, CA, USA) equipped with an integrating sphere (DRA 2500, Agilent, Santa
Clara, CA, USA), within the wavelength range from 250 to 2500 nm (NUV-VIS-NIR).
However, only the wavelength region 350–750 nm (VIS) was analyzed in this work. Direc-
tional Hemispheric Reflectance (DHR) was both measured at a fixed angle of incidence of
8 degrees (total DHR, without polarizer) and at different angles of incidence (αi), from 12
to 80 degrees, for both s- and p-polarized light.

2.6.2. Scatterometry

For color characterization of the fabric samples, scatterometry measurements were
first performed giving the In-Plane Bidirectional Reflectance Distribution Function (IP-
BRDF). These measurements were performed using a modified set up, based on an RC2
ellipsometer (J.A. Woollam Co., Inc., Lincoln, NE, USA), comprised of a spectrometer, light
source, and goniometer. The measurements were made at incident angles 30◦ ≤ αi ≤ 70◦

in steps of 10◦. For each incident angle the angle of observation was varied according to
0◦ ≤ αo ≤ 70◦ with varying steps. That is, each sample was measured with 20 settings
of the incident and observation angles. Measured reflectance values were interpolated to
cover the whole range of observation directions with 1◦ resolution. The light source used
for these measurements was D50 illuminant. A schematic of the experimental setup with
angle notation is shown in Figure 3.
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2.7. Conversion of Data to 3D Color Coordinates and IP-BRDF Imaging

Since the experimental set up is using a spectrometer with unknown spectral sen-
sitivity, a simple procedure of conversion to color coordinates was performed. The
angularly varying spectral intensity of the white reference (99% Spectralon) was first
recorded using the spectrometer. Then spectral reflectance values for the white reference
were measured, and its reflectance was calculated as the ratio between two signals (Sig-
nal_white/Signal_lamp), with exposure time factor included. After collecting reflectance
in arbitrary units for the measured samples, a normalization was made by dividing with
the white reference signal (IP-BRDF_sample = Signal_sample/Signal_white). Finally, the
obtained reflectance values were converted to the color coordinates under the assumption
of illuminant (D50 or illuminant A), CIEL*a*b* or RGB color [26].

2.8. Scanning Electron Microscopy (SEM)

Morphological analyses of the PC-coated fabrics were carried out by scanning elec-
tron microscopy with an ultra-high resolution field emission gun (FEI NOVA 200 Nano
SEM). Before all measurements, the PC-coated fabric samples were covered with a thin
film of gold/palladium (80:20) in a 208HR high-resolution sputter coater (Cressington,
Watford, UK) coupled to an MTM-20 high-resolution thickness controller (Cressington,
Watford, UK).

2.9. Surface Roughness

Surface roughness was measured with a HANDYSURF+ 35/40/45 (ACCRETECH)
rugosimeter. Calibrations parameters and calculations were defined according to standard
ISO 21920-2:2021 [27], using a Gaussian filter. Roughness average (Ra) measurements were
performed at a speed of 0.6 mm/s for a length of 10 mm. Each Ra value is an average of
12 points measured along the 10 mm of fabric. Measurements were performed in triplicate
for each sample.

2.10. Photographs

Digital photographs of uncoated and coated fabrics with PCs were taken with a Canon
EOS M50 (Canon Portugal S.A, Porto Salvo, Portugal) digital camera. The images were
acquired in a light chamber under a D65 light source, maintaining the same distance for
all samples. No adjustments of pixels, color, brightness or contrast were applied to the
images. The photographs produced were parts of larger images that were selected without
obscuring, eliminating or misrepresenting any information that was present in the originals.

3. Results and Discussion

To understand if any type of textile substrate is suitable (without any pretreatment) to
mimic the structural colors found in nature, all three fabrics were characterized, in terms
of thickness, linear density of the yarns (measured in Tex, where 1 Tex = 1 g per 1 km) at
warp and weft, and number of yarns per centimeter at warp and weft (Table 1), before any
procedure was performed on the fabrics.

Table 1. Fabrics characterization according to the ISO standards.

Property Measured Polyamide Polyester Cotton

Thickness (mm) 0.11 0.25 0.30

Yarn linear density (Tex) 3 at weft 8 at weft
and warp

20 at weft
and warp5 at warp

Number of yarns/cm 45 at weft 32 at weft
and warp

30 at weft
70 at warp 40 at warp

To enhance the chroma (color intensity, saturation, or purity) from the structural colors,
cotton and polyester fabrics were dyed black, as described above, whereas black polyamide
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fabric was commercially available [6,17,21,28,29]. Then, P(St-MMA-AA) photonic crystals
with five different sizes (170, 190, 210, 230 and 250 nm) were applied by dip coating onto
polyamide, polyester, and cotton fabrics, to produce violet, blue, green, green-red and red
structural colors (Figure 4), respectively.
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Figure 4. Digital photographs of uncoated polyamide (PA, L* = 21.11, a* = 0.52, b* = −1.13), polyester
(PES, L* = 20.36, a* = −0.34, b* = −3.13) and cotton (CO, L* = 21.19, a* = 0.80, b* = −3.97) fabrics, and
PA, PES and CO fabrics coated with 170, 190, 210, 230 and 250 nm PCs. Note: the uncoated PA and
CO appear grey in photographs but are black.

As seen in Figure 4, the polyamide samples exhibit brighter colors than polyester and
cotton samples. Upon ocular inspection of all three fabric samples, PA samples are the only
ones to have a visible iridescent effect. Furthermore, cotton samples exhibit a milky aspect
at the fabric’s surface. Since all three fabrics have the same plain structure, differences in
the sample’s chromaticity are probably due to the fiber’s type and linear density (g/m2). As
both polyamide and polyester are synthetic fibers, the difference in color must be related to
the linear density of the fabrics and consequently, surface roughness. Fabrics composed of
natural fibers, such as cotton, usually have a rougher surface than synthetic ones. To assess
these assumptions, SEM and surface roughness measurements were performed on all three
fabrics, for both coated and uncoated samples. Figure 5 shows SEM micrographs of the
fabrics utilized for PC deposition at different magnifications, whereas Figure 6 denotes the
same fabrics coated with 190 nm PCs.

1 

 

 
   
Figure 5. SEM micrographs of polyamide (row a), polyester (row b) and cotton (row c) uncoated
fabrics at 150× (a1,b1,c1), 1000× (a2,b2,c2) and 10,000× (a3,b3,c3) magnifications.
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Figure 6. SEM micrographs of polyamide (row a), polyester (row b) and cotton (row c) coated fabrics
with 190 nm PCs at 150× (a1,b1,c1), 1000× (a2,b2,c2), 10,000× (a3,b3,c3) and 100,000× (a4,b4,c4)
magnifications.

When analyzing the SEM micrographs, uncoated fabrics seems to show an increase of
surface roughness, with polyamide being the smoothest, followed by polyester and cotton.
To confirm these visual assumptions, the surface roughness average (Ra) of uncoated fabrics
was measured with a HANDYSURF+ rugosimeter. The results are presented in Table 2,
along with the surface roughness of PC coated fabrics. Surface roughness values are in
agreement with SEM micrographs, where polyamide is in fact the smoothest fabric with
an Ra of 6.33 ± 1.99 µm, followed by polyester with an Ra of 16.43 ± 5.51 µm and cotton,
the roughest fabric with an Ra of 17.43 ± 6.27 µm. Polyamide SEM analysis also showed
that, the levelling agent used in the dyeing process may created a coating, but due to its
dimension, was assumed to not affect surface roughness, taking in account the relative
dimension of the PCs. After PC coating, polyamide and cotton fabrics maintained their
Ra values. Polyester Ra increased by 3 µm after the PC coating, which is less than one
third of the diameter of one individual thread (~10 µm) of the fabric’s yarn (~250 µm warp,
~200 µm weft), thus this increase may be disregarded.

Table 2. Surface roughness (Ra) measurements values of uncoated and PC coated fabrics (n = 3).

Fabric Ra of Uncoated Fabrics (µm) Ra of PC Coated Fabrics (µm)

Polyamide 6.33 ± 1.99 6.77 ± 1.35
Polyester 16.43 ± 5.51 19.91 ± 3.73

Cotton 17.43 ± 6.27 17.17 ± 5.47

Since SEM micrographs of PES samples showed a very well-organized structure, it
was expected that these samples should present bright colors and iridescence. However
this was not the case, probably due to the roughness factor. Instead, the PA samples were
the brightest, with the most intense color and the only ones to present visible iridescence
from ocular inspection. Since all three fabrics have the same plain structure, the factors
that are influencing structural coloration are the thickness, yarn Tex and the tightness of
the weave. The combination of all these factors will affect the fabric surface roughness,
which should be as low as possible for a good and uniform photonic crystal deposition.
Thus, after analyzing these fabric properties it is concluded that a lower fabric thickness,
low yarn Tex and a tight weave will produce fabrics with lower surface roughness. If
fabric thickness is low, there will be less PC spheres needed to fill gaps between fibers,
thus more spheres are available to form a more uniform and flat coatings. Yarns with low
Tex values are thinner, smoother and with less fibrils on its surface, thus roughness can be
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minimized, to an extent, without compromising its physical and mechanical properties.
Furthermore, in tighter weaves the gaps between the fibers are smaller, leading to a higher
fabric cover, which will diminish surface roughness and increase the surface area for a better
PC deposition, without defaults/cracks in its structure. These conclusions are in agreement
with the studied performed by Li et al., where polyester and silk substrates with different
structures, plain and twill, were analyzed for PC deposition purposes and, consequently,
optimization of structural color [21]. It was observed that plain structures were preferred
over twill structures, for both polyester and silk, due to the higher covering factor of this
type of structure. Plain structures with tighter weaves lead to fabrics that are more compact,
flat, and dimensionally stable, which demonstrated to be better for the obtention of good
structural colors. Furthermore, yarn diameter and yarn density were determinant factors
to obtain the best structural color possible. Thus, it is of high importance to know what are
the characteristics of the textile substrate used for PC biomimicry [30,31].

After comprehending photonic physical behavior in different types of fibers, the
PC-coated polyamide, polyester and cotton fabrics were analyzed by UV/Vis reflectance
measurements for each color/particle size (Figure 7).
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Figure 7. Fixed angle of incidence (8◦) UV/Vis reflectance (DHR) spectra for (a) 170, (b) 190, (c) 210,
(d) 230 and (e) 250 nm PCs in polyamide, polyester and cotton fabrics.

The PA samples produced sharp reflection peaks in the visible wavelength region,
except for the red sample, where the peak is very weak for all three fabrics. In most cases,
the CO samples have higher reflectance as compared to PA and PES since the self-assemble
structures in these samples are not uniform, giving them a whiter appearance, due to higher
light scattering on the fabric surface. Also, in CO samples, the highest reflection peak has a
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small hypsochromic (blue) shift when compared to PA samples. For PES samples, intensity
reflectance is comparable to violet, green and red PA samples, always with a slight blue
shift in terms of maximum reflection peak, as in CO samples.

Interestingly, in the fabrics coated with 230 nm PCs (green-red sample), the reflection
peak appears in the green region for CO and PES, while in PA the peak appears in the red
region. Thus, it can be assumed that, since SEM and roughness analysis showed that PA is
the best substrate of all three fabrics for PC deposition, the main reflected color produced
by the photonic structure is red. This could be used as a preliminary indication whether
the self-assembly of PCs is good or not. By observing when the reflected color does not
match between fabrics with PCs of the same size, the use of more expensive techniques
such as SEM can be reduced.

Since only the coated PA fabrics presented iridescence (by ocular inspection), angle-
dependent UV/Vis reflectance measurements were done on only these samples. The
measurements were performed for all five different colors, with both s- and p-polarized
light. With this analysis it was possible to observe the reflection peak movement while
changing the angle of incidence of light. PA samples coated with 190 (blue) and 230 nm
(green-red) PCs presented the most interesting results, which will be discussed in more
detail below. For PA coated with 190 nm PCs, for s-polarized light measurements, the initial
reflection peak (αi = 12◦) appears at a wavelength of 475 nm (blue region), which moves
with a hypsochromic shift as the αi increases. At αi = 80◦, the reflection peak is located
at a wavelength of 400 nm (violet region) (Figure 8). This behavior occurs similarly for
p-polarized light, with the exception that above an αi of 70◦ the reflection peak is no longer
visible. Furthermore, in s-polarized light, a second reflection peak starts to appear at 610 nm
(red region), from αi of 50◦ to 80◦, indicating that, at higher αi, the final color observed is
the result of the addition of two separate colors (violet and red). This phenomenon is not
observed in the p-polarized light measurements.
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Figure 8. UV/Vis reflectance (s-polarized light) spectra analysis of PA coated with 190 nm PCs, with
αi ranging from 12◦ to 80◦.

In order to present the color appearance of the fabrics, scatterometry (or angular
resolved reflectance spectroscopy) was recorded giving IP-BRDF data. With this technique
it was possible to observe color shifts as the angle of incidence αi, and angle of observation
αo changes. As seen in Figure 9 (top), the initial color at an αi = 30◦ is slightly green (at
a low αo) and gradually changes to blue and violet as αi and αo increase. At a maximum
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αi and αo, color sample is greyish, almost white, where the luminosity parameter L*
increases drastically at these angles. This was observed for every sample tested. The
IP-BRDF measurements are in alignment with the data observed in the UV/Vis spectra,
thus validating both techniques for iridescence characterization. Color coordinates in a
2D CIEL*a*b* space are presented in Figure 9 (bottom), where the arrows represent the
movement direction, from low to high αo. L* varied between 30 and 55, except at higher αi
and αo, which were above 80. This was also observed in the other PA samples.
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Figure 9. (top) IP-BRDF measurements of PA coated with 190 nm PCs, αi = 30◦ to 70◦ and αo = 0◦ to
70◦; (bottom) 2D representation of color coordinates movement in CIEL*a*b* space, where the arrows
represent the direction from low to high αo (0◦ to 70◦) for each αi (30◦ to 70◦).

The s-polarized light measurements of the PA sample coated with 230 nm PCs showed
a single reflection peak for αi = 12◦ at 610 nm (Figure 10). As the αi increases, this peak
stays unaltered at 610 nm and other reflection peaks start to appear. At αi = 50◦ a new
peak appears at 560 nm and, as the αi increases to 80◦, this peak is divided in two, where
the first peak maintains its wavelength at 560 nm and a second one is formed at 500 nm.
Similarly to the previous sample, this phenomenon is not noticeable in the p-polarized light
measurements, where the peak at 610 nm fades away above αi = 50◦ and the formation of
new reflection peaks is not observed.
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Figure 10. UV/Visible reflectance (s-polarized light) analysis of PA coated with 230 nm PCs, with αi

ranging from 12◦ to 80◦.

The IP-BRDF measurements of the same sample (Figure 11 (top)), show that for low αo
the color is mainly red, for every αi. From αi above 50◦, at mid to high αo, the color changes
to green. Once again, this is consistent with the angle-dependent UV/Vis data where a
new peak appears at 560 nm (green region) at the same αi. Furthermore, this confirm the
previous assumptions made in the fixed angle UV/Vis analysis, where the red color was
dominant. As for CIEL*a*b* coordinates (Figure 11 (bottom)), L* varied between 38 and 58,
and color is observed to be greener (lower a* values), yellower (higher b* values) at low αo
and bluer at high αo (lower b* values).

UV/Vis reflectance measurements for PA samples coated with 170, 210, and 250 nm
PCs were also performed. The UV/Vis data of these samples is briefly discussed along
with IP-BRDF measurements and color coordinates analysis present below (Figures 12–14).
A summary of the UV/Vis peaks changes according to αi is also presented in Table 3.

The PA sample coated with 170 nm PCs showed a small color change, the violet color
(UV/Vis reflection data showed a peak at 405 nm for αi = 20◦) becomes lighter with higher
αo and darker at higher αi (the peak at 405 nm shifted to 385 nm with increasing αi). Again,
at a maximum αi and αo the sample color is basically grey, with L* parameter much higher
than observed at other angles (L* ranged between 31 and 66). In the 2D color space, a
yellower and greener color is obtained.

The PA sample coated with 210 nm PCs showed a color change from green (UV/Vis
reflectance data showed a peak at 510 nm for αi = 20◦) to blue (the peak was slightly shifted
to 490 nm for higher αi and αo). This is consistent with the observed color coordinates,
showing sample color getting bluer and redder as αi increases. The luminosity varied
between 34 and 63.

Finally, the PA sample coated with 250 nm PCs showed a color change from brown-red
(UV/Vis reflectance data showed a peak at 640 nm for αi = 20◦) to green (a very weak peak
appeared at 520 nm for αi above 60◦ and the peak at 640 nm slightly shifted to 620 nm at
higher αi). Analyzing the color space coordinates, it can be observed that at low αi and αo,
sample color is getting redder and slightly yellower. Then, at αi above 50◦ and high αo, the
sample color gets greener and yellower, which is in accordance with UV/Vis reflectance
measurements. In terms of luminosity, this sample presented the highest values of all five
samples, with L* values ranging between 48 and 80.
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Figure 11. (top) IP-BRDF measurements of PA coated with 230 nm PCs, αi = 30◦ to 70◦ and αo = 0◦ to
70◦; (bottom) 2D representation of color coordinates movement in CIEL*a*b* space, where the arrows
represent the direction from low to high αo (0◦ to 70◦) for each αi (30◦ to 70◦).

Table 3. UV/Vis reflectance peaks of PA coated samples with 170, 210 and 250 nm PCs according to
changes in the angle of incident light (αi).

αi
170 nm PCs on PA
UV/Vis Peak (nm)

210 nm PCs on PA
UV/Vis Peak (nm)

250 nm PCs on PA
UV/Vis Peak (nm)

12◦ 406 510 641
20◦ 405 510 639
30◦ 397 506 639
40◦ 394 504 636
50◦ 393 503 633
60◦ 389 499 627
70◦ 387 495 622
80◦ 385 490 619

Overall, in all PA coated samples was observed a hypsochromic color shift as the αi
increased, in both UV/Vis and IP-BRDF analysis. PA samples showed a wide variety of
colors, able to emulate the iridescent effects observed in nature.
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Figure 12. (top) IP-BRDF measurements of PA coated with 170 nm PCs, αi = 30◦ to 70◦ and αo = 0◦ to
70◦; (bottom) 2D representation of color coordinates movement in CIEL*a*b* space, where the arrows
represent the direction from low to high αo (0◦ to 70◦) for each αi (30◦ to 70◦).

Since polyester and cotton fabrics did not present iridescence by ocular observation, the
highly time-consuming polarized UV/Vis reflectance measurements were not performed for
these samples (only 2 samples per day could be measured). In the contrast, the IP-BRDF
measurements using the presented methodology, allows around 20 measurements per day.
Thus, IP-BRDF was performed for the PES (Figure 15) and CO (Figure 16) samples, to confirm
if some iridescence still could be present in these samples. IP-BRDF of PES coated samples
showed major alterations in terms of color, as compared to the PA samples, especially for the
sample coated with 210 nm PCs, where color changed from green to blue. At high αi and
αo a more reddish color can be observed. Also, all PES samples present a lower luminosity
parameter L*. The lack of coating uniformity in the PES samples may be the reason for these
changes of color and luminosity, as the measured area probably had less photonic crystals,
thus the IP-BRDF measurement were affected by a higher percentage of fabric color rather than
PC color. This was observed in the samples with 190 and 230 nm PCs. As for samples with
170 and 250 nm PCs, they maintained their color but with darker hues, which is in agreement
with the photographs (Figure 4) taken of these samples. Thus, although the self-assembly on
PES samples is not as good as in the PA samples, it is possible to affirm that iridescence is
present, and being most pronounced in the sample coated with 210 nm PCs.

As for the coated CO samples, all presented a higher luminosity parameter due to
the milky aspect on their surfaces as seen in the photographs (Figure 4). Again, when
comparing with PA the CO sample with largest color change was the sample coated with
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210 nm PCs. In general, the color changed from blue to red at αi 50◦ and 70◦ at higher αo.
The CO sample coated with 230 nm PCs also has a major change when compared to the
respective 230 nm PA sample, where the color is mostly green in CO, whereas in PA was
mostly red. Overall, the color is changing as αo is increasing for all CO coated samples,
confirming an iridescent effect also in these samples. To optimize/improve the structural
color on PES and CO samples it will be necessary to do a pre-coating (with biopolymers or
conventional finishing agents) of the fabrics in order to smooth their surface [32–34]. This
will be addressed in future experiments of this research, which are expected to be another
step into a bio-ecological and sustainable future.

To further understand the structural color behavior in textiles, IP-BRDF simulations were
performed using a different light source. Human color perception varies with different light
sources, as their wavelengths are emitted in different regions of the visible spectra. As such,
when illuminated with different light sources, the wavelength of the light reflected by the
fabric’s surface will change and color perception is different for each illuminant. This is of
highest importance to further understand PC color behavior in textiles and, to the authors
knowledge, there are no such studies made for textiles. One of the few articles found in the
literature report the usage different light source illumination of PCs (He and Lv, [9]), where
polystyrene microspheres were 3D-printed onto a black cardboard substrate. The 240 nm
PS microspheres presented a green color under a D65 light source, a bluish color under cool
white fluorescent (CWF) illuminant, and a yellowish color under illuminant A (IA).
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Figure 13. (top) IP-BRDF measurements of PA coated with 210 nm PCs, αi = 30◦ to 70◦ and αo = 0◦ to
70◦; (bottom) 2D representation of color coordinates movement in CIEL*a*b* space, where the arrows
represent the direction from low to high αo (0◦ to 70◦) for each αi (30◦ to 70◦).
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Figure 14. (top) IP-BRDF measurements of PA coated with 250 nm PCs, αi = 30◦ to 70◦ and αo = 0◦ to
70◦; (bottom) 2D representation of color coordinates movement in CIEL*a*b* space, where the arrows
represent the direction from low to high αo (0◦ to 70◦) for each αi (30◦ to 70◦).

Using IA as light source we made simulations for the PA samples (since they had better
results than both the coated PES and CO samples) and compared with the experimental
data obtained for PA samples under D50 light source. Our simulations showed that, overall,
there were minor differences in terms of color, where the L* parameter was practically the
same (∆L* < 1, where ∆L* = |LD50 − LIA|) for most of the PA coated samples under both
D50 and IA light sources. The sample coated with 210 nm PCs showed ∆L* = 2. A brief
comparison of CIElab color coordinates (a* axle − green/red, b* axle − blue/yellow) for
both light sources is presented in Table 4.

The PA samples under IA light source illumination are generally greener and yellower,
with the exception of the sample coated with 210 nm PCs which is redder and bluer. In
terms of the a* axis, the 210 nm coated sample is redder at αi from 30◦ to 50◦ and greener at
αi above 60◦. Samples coated with 230 and 250 nm PCs are in general greener except at
high αo, where they are slightly redder. In terms of the b* axis, samples coated with 170
and 250 nm PCs are slightly yellower, and sample coated with 190 nm PCs is slightly bluer.
These results are in agreement with the study mentioned previously, where color under
IA is greener and yellower when compared with color under D50 light source [9]. These
color changes are almost imperceptible even by color coordinates analysis, where color
differences (∆a and ∆b) in most cases are lower than 5 measuring units, in a total range of
256 units for each axle.
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Table 4. Differences in CIEL*a*b* color coordinates of PA coated samples under D50 and IA light
sources illuminations. ∆aavg and ∆bavg are the overall averages of the modular difference for all αi

and αo between a* and b* under D50 and IA for each PA coated sample. ∆aavg = |aD50 − aIA|; ∆bavg

= |bD50 − bIA|.

Sample Overall Color
Changes under IA ∆aavg ∆bavg

PA with 170 nm PCs Greener 5–6 (low αo);
1–2 (high αo) <1 (low and high αo)

PA with 190 nm PCs Greener 1–3 (low αo);
4–6 (high αo) <1 (low and high αo)

PA with 210 nm PCs Redder and bluer 3–5 (low αo);
0–2 (high αo) 3–5 (low and high αo)

PA with 230 nm PCs Yellower <1 (low and high αo) 0–2 (low and high αo)
PA with 250 nm PCs Greener 0–2 (low and high αo) ~1 (low and high αo)

4. Conclusions

Optical characterization of P(St-MMA-AA) photonic crystals on polyamide, polyester
and cotton plain fabrics was performed for five different PC particle sizes. It was deter-
mined that the polyamide fabric was the best substrate among the three to mimic nature’s
iridescent effect. Polyamide’s tight weave and high surface area, combined with yarns of
low Tex, led to a smooth fabric surface with the lowest roughness values among the three
fabrics. Consequently, the PA fabric was the only one to present a visible iridescent effect
(by ocular inspection) and was further analyzed by angle-dependent UV/Vis reflectance
measurements using polarized light. With this analysis it was possible to observe reflection
peak shifts and the appearance of new reflection peaks when the angle of incidence was
changed. Angle-dependent UV/Vis reflectance and IP-BRDF measurements were proven
to be efficient methodologies to characterize iridescence in fabrics, which was also backed
up by CIEL*a*b* color coordinates. As for the PES and CO samples, those coated with
210 nm PCs exhibited the most color changes, for both substrates. Overall, PES samples
are darker and CO samples have a higher luminosity parameter. This change in luminosity
is due to the lack of uniformity in the PC self-assembly, which is a consequence of physical
and chemical properties of these fabrics. Simulations with illuminant A suggest that PC
color is greener and yellower under this type of light source but maintains the luminosity
values, when compared to the experimental data obtained under D50 light source.

The continuous study of photonic crystals in textiles as biomimetics is of major impor-
tance, so future generations can have more sustainable methods of coloring textiles. The
versatility of photonic crystal textiles in providing functional, sustainable, and aesthetically
appealing solutions is driving ongoing research and innovation in biomimicry. Applying
PCs to textiles will not only improve the quality and performance of the textiles but also
contribute to a more sustainable and technologically advanced future.
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