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Abstract: This paper presents a novel approach based on the ant system algorithm for solving discrete
optimization problems. The proposed method is based on path construction, path improvement
techniques, and the footprint mechanism. Some information about the optimization problem and
collective intelligence is used in order to create solutions in the path construction phase. In the path
improvement phase, neighborhood operations are applied to the solution, which is the best of the
population and is obtained from the path construction phase. The collective intelligence in the path
construction phase is based on a footprint mechanism, and more footprints on the arc improve the
selection chance of this arc. A selection probability is also balanced by using information about the
problem (e.g., the distance between nodes for a traveling salesman problem). The performance of
the proposed method has been investigated on 25 traveling salesman problems and compared with
state-of-the-art algorithms. The experimental comparisons show that the proposed method produced
comparable results for the problems dealt with in this study.

Keywords: ant system algorithm; collective intelligence; footprint mechanism; path construction;
path improvement; traveling salesman problem

1. Introduction

The solution of optimization problems with different characteristics, such as single-
objective and multi-objective discrete problems [1,2] or continuous problems [3,4], with
meta-heuristic algorithms, is becoming increasingly common. Recently, swarm intelligence-
based intelligent optimization algorithms have been proposed and successfully used.
Swarm-based intelligent optimization algorithms are often the product of collective intelli-
gence and populational behaviors. The ant system (AS) algorithm, which is a prominent
type of swarm intelligence algorithm, was introduced by Dorigo, inspired by behaviors
demonstrated by real ants between their nest and food source [5,6]. The particle swarm
optimization (PSO) algorithm was investigated by Eberhart and Kennedy in 1995, who
were inspired by bird flocking and fish schooling [7,8]. In 2005, Karaboga [9] introduced an
artificial bee colony (ABC) algorithm that simulates the foraging and dancing behaviors
of real honey bee colonies [10] for solving continuous optimization problems. In 2015, a
tree-seed algorithm inspired by relationships between trees and their seeds was proposed
for solving continuous optimization problems [11]. A common feature of these algorithms
is information sharing about solutions among individuals in the swarm while optimization
problems are solved. For instance, artificial agents in AS leave pheromones for other fol-
lowing ants to track, and bees in ABC perform a peculiar dance in order to share position
information about good-quality solutions. Potential solutions, called particles in PSO, are
affected by the global best solution of the population for producing new solutions. While
seeds are produced by trees, the relation between trees is used in the production procedure.
Thus, the collective intelligence in these algorithms consists of sharing information and
some peculiar behaviors.
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The traveling salesman problem (TSP) is a well-known NP-hard problem in the op-
erations research field which requires exponential time due to its solution depending on
the number of nodes in the graph, and it can be simply described as follows: there is one
salesman who visits n cities, and their aim to find out the shortest Hamilton cycle through
which they can visit all the cities once and only once and finally return to the start [12].
xi,j is the arc between the ith and jth node, and the mathematical model of the problem is
as follows:

obj.(min) ∑n
i=1 ∑n

j ci,jxi,j (1)

subject to
∑n

j=1 xi,j = 1, i = 0, 1, ..., n − 1 (2)

∑n
i=1 xi,j = 1, j = 0, 1, ..., n − 1 (3)

∑n
i=1 ∑n

j=1 xi,j ≤ |S| − 1, S ⊂ V, 2 ≤ |S| ≤ n − 2 (4)

xi,j ∈ {0, 1} and ∀i, j ∈ E (5)

where Equation (1) is the objective function, which is the minimization of the total distance
for the problem, Equation (2) provides only one incoming edge to a node, Equation (3)
provides only one outgoing edge to a node, Equation (4) prevents the occurrence of the
subtours in the solution, and Equation (5) shows the integer variables.

The TSP is widespread in many applications, especially in engineering and operations
research such as machine scheduling, cellular manufacturing, and frequency assignment
problems [13]. The literature on the TSP and its variants is extensive, and the reader is
referred to the surveys in [14–20] and to the book [21]. In order to solve TSPs, two different
strategies in swarm intelligence or evolutionary computation algorithms have been used:
path construction (PC) and path improvement (PI) strategies. PC-based methods, such
as the greedy algorithm and Christofides algorithm, create solutions step by step. PI-
based methods improve randomly generated initial solutions step by step such as k-opt,
v-opt, and genetic algorithms [22,23]. While the ant system uses a PC-based strategy for
finding the optimum tour of the traveling salesman problem, ABC [24] and PSO [25] try to
improve solutions with a PI-based strategy. In recent years, some other swarm intelligence
algorithms have also been proposed for solving traveling salesman problems. Some of these
algorithms are as follows: chicken swarm optimization [26], grey wolf optimizer [27], Jaya
algorithm [2], bat algorithm [28], social spider algorithm [29], sparrow search algorithm [30],
earthworm optimization algorithm [31], and Komodo algorithm [32]. These studies show
that traveling discrete optimization algorithms based on swarm intelligence still attract the
attention of researchers.

Akhand et al. [33] proposed the discrete spider monkey optimization (DSMO) algo-
rithm to solve the TSP in their study. They compared the results of their proposed DSMO
method with the results of other methods in the literature. They stated that the experimen-
tal results show the effectiveness of the proposed DSMO method on TSP and that it is a
suitable method for solving this problem. Mzili et al. [34] proposed the discrete rat swarm
optimization (DRSO) algorithm for solving the TSP in their study. They compared the per-
formance of the proposed DRSO method with the results of some meta-heuristic algorithms.
As a result of the comparisons, they stated that the proposed DRSO method has a better
performance. Zhang et al. [35] proposed an opposition-based ant colony optimization
algorithm for solving the TSP in their study. They compared the results of their proposed
method with the original ant colony (ACO). According to the results of the comparison,
they stated that the ant colony optimization algorithm performed better. Gharehchopogh
and Abdullahzadeh [36] proposed three new discrete crow-inspired algorithms to improve
the performance of the original crow search algorithm for solving TSP. They compared
the performance of the three proposed algorithms with the results of other algorithms
in the literature. According to the results of the comparison, the proposed algorithms
have significantly better performance. Al-Gafari et al. [37] proposed three new discrete
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crow-inspired algorithms to improve the performance of the basic crow search algorithm
for solving TSP. They compared the performance of the three proposed algorithms with the
results of other algorithms in the literature. According to the results of the comparison, the
proposed algorithms have a significantly better performance. Liu et al. [26] proposed the
discrete chicken swarm optimization (DCSO) algorithm for solving the TSP in their study.
They compared the results of the proposed method with the results of basic ant colony
optimization (ACO) and genetic algorithm (GA). According to the comparison results, they
confirmed the applicability and effectiveness of their proposed method. Krishna et al. [38]
proposed a spotted hyena optimizer (MH-SHO) algorithm hybridized with MapReduce for
TSP. They compared the results of the proposed method with the results of the basic spotted
hyena optimization (SHO), particle swarm optimization (PSO), ant colony optimization
(ACO) and black hole (BH) algorithms. As a result, they concluded that the proposed
method is a suitable alternative for solving the TSP. Gündüz and Aslan [2] used a nearest
neighbor and random permutation approach on the Jaya algorithm. They also transformed
it into a form suitable for solving discrete problems. They applied the proposed Jaya algo-
rithm to fourteen different traveling salesman problems frequently used in the literature.
The experimental results show that the proposed method is a competitive and robust solver
for TSP. Zhang and Yang [39] proposed the random walk discrete cuckoo search (RW-DCS)
algorithm for TSP. They compared the proposed method with state-of-the-art algorithms.
They stated that the experimental results show that the proposed method is stable and
superior to the compared algorithms. Almazini et al. [40] solved the TSP using the plant
propagation algorithm (PPA) due to the inadequacy of traditional algorithms. However,
they stated that the basic version of this method was insufficient in solution quality and
proposed PPGA by making improvements such as crossover and mutation on the algorithm.
They stated that PPGA has a good performance compared to its basic form. They also stated
that they obtained good solutions by comparing the same method with other algorithms in
the literature. Jati et al. [32] proposed the discrete Komodo algorithm (DKA) for solving the
TSP. They compared the performance of the proposed DKA method with some state-of-the-
art algorithms and classical algorithms. As a result of the comparison, they concluded that
the proposed DKA performs better. Zheng et al. [41] proposed a hybrid genetic algorithm
(RHGA) for solving TSP by hybridizing the edge-assembly crossover genetic algorithm
(EAX-GA) with the Lin–Kernighan–Helsgaun (LKH) local search approach. According to
the experimental results, the proposed RHGA algorithm shows a superior performance
compared to the compared algorithms for TSP. Zhang and Han [30] proposed the discrete
sparrow search algorithm (DSSA) for solving the TSP. In order to balance the exploration
and exploitation capabilities of the proposed DSSA, they integrated various strategies such
as mutation and swap operators into the algorithm. They compared the performance of
the proposed method with state-of-the-art algorithms. As a result, they concluded that the
proposed DSSA method is a competitive and robust method. Nayyef et al. [42] proposed
the HJSPSO algorithm by hybridizing jellyfish search (JSO) and particle swarm optimiza-
tion (PSO) for solving TSPs. They compared the performance of their proposed hybrid
method with other algorithms, as well as their baseline, by solving 20 different TSPs. They
stated that HJSPSO is a robust technique that can produce promising solutions. In the
work presented by Goel et al. [43], the ACO was modified using pheromone mutations.
The modified ACO was named M-ACO. They used M-ACO to solve TSP, which is a well-
known NP-hard problem. They also examined it in two groups as evaporation-based ACO
(E-ACO) and population-based ACO (P-ACO). When they compared all these proposed
methods with the basic ACO, they said that M-ACO and P-ACO obtained better results.

Swarm intelligence-based algorithms have some disadvantages such as stagnation
and running time while solving TSPs. Due to the fact that all artificial agents in AS
follow the same path due to pheromone intensification and the short distance among some
nodes, AS shows stagnation behavior after a while. The stagnation behavior originates
from the pheromone mechanism and the evaporation of the pheromone. Generally, the
pheromone evaporation is much greater than the pheromone addition by the ants to the
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arcs. Thus, the heuristic factor or visibility term in the transfer rule of the AS causes the
selection of the shorter arcs. If the nodes of the problem are very close to each other, the
AS constructs paths by using only collective intelligence. The ABC algorithm and PSO
start to work with random initial solutions and use an improvement-based strategy during
the iterations. The PI techniques used in these methods are quite important and it also
takes a long time to achieve an optimal or near-optimal solution due to starting with
random solutions and they do not use the information in the problem. For eliminating
the disadvantages of ABC, PSO, and AS, a new approach is proposed in this study by
considering collective intelligence having a footprint mechanism in the path construction
phase and path improvement technique to solve TSPs. The new approach consists of two
phases named PC and PI. In the first phase, while solution space is explored by artificial
constructor agents, the collective intelligence consists of footprints left on the paths. In the
second phase, the artificial improver agents select and try to improve the global best solution
in the population obtained by the constructors by using the neighborhood operators. By
using these strategies and information sharing between the phases, a new approach has
been studied in the present work.

The rest of the paper is organized as follows: Section 2 presents the proposed method
for solving TSPs, and the experimental results and comparisons on TSPs are given in
Section 3. The obtained results are discussed in Section 4, and the conclusion and future
works are given in Section 5.

2. Material and Methods

The proposed method in this paper has two types of agents. The first type of the
agents is in the path construction phase, and the other type of the agents is in the path
improvement phase of the algorithm. It is assumed that the number of agents in the two
phases is equal, and the method also tries to achieve the optimal or near-optimal solution
for the optimization problem iteratively.

2.1. Path Construction Phase

The path construction strategy used in the proposed method is based on the footprint
mechanism and distance between nodes. Agents in this phase are called “constructors”. Ini-
tially, all the constructor agents are located at the nodes of the TSP. The selection probability
of other nodes to be visited, which is the same transition rule of the ACO, is calculated
as follows:

Pi,j =
Fa

ij ×
[(

1
Dij

)]b

∑N
k=1 Fa

ij×
[(

1
Dij

)]b (6)

where, while artificial agent is on ith node, Pij is the selection probability of jth node, Fij is
the number of footprints leaved on the arc, Dij is the distance between ith and jth, N is the
number of unvisited nodes, and a and b are significant parameters. Equation (1) is known
as the transition rule in the ant colony optimization technique [5]. At a certain time, the
selection of the next node is performed by using the roulette wheel and Equation (1). After
all nodes of a TSP are visited, the artificial agent comes back to the first position. When
Equation (1) is analyzed, the selection mechanism for the path construction uses both the
collective intelligence (number of footprints) and the information of the problem (distance
between nodes). Differently from the basic ant system, the collective intelligence in the
algorithm does not consist of any evaporation.

The footprint mechanism is an important factor for collective intelligence occurring. At
the beginning of the search, some footprints are left on all arcs. After the constructor agents
have completed self TSP tours, the number of footprints on the visited arcs is increased by
1. In other words, the artificial agents left a footprint to the arc visited. But all constructors
do not leave footprints on the arcs, and agents, those solutions of these agents are better
than the mean solution quality of the population, leave footprints on self-paths. Therefore,
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when we compare the proposed algorithm and the basic ant system, the occurrence of the
collective intelligence in the algorithm is different from the basic ant system algorithm
because there is no evaporation in the proposed algorithm, and the solutions better than
the mean of the population leave footprint on the arcs.

2.2. Path Improvement Phase

The best solution obtained in the path construction phase in the iteration is compared
with the best solution obtained thus far. One of them is selected and given to “improver”
agents in this phase and artificial agents use neighborhood operators to improve this
solution. According to Kıran et al. [44], three neighborhood operators are used for making a
better tour than the best tour obtained thus far and these operators are randomly applied to
the solution. If the new one obtained from the operation is better than the old one, solutions
are replaced. In brief, the product of collective intelligence is used in order to obtain better
solutions in this phase. The neighborhood operators used in the proposed method are
random insertion of a point (RI) in Figure 1, random insertion of subsequences (RIS) in
Figure 2, and reverse random insertion of subsequences (RRIS) given in Figure 3. These
operators are applied to the best solution with an equal probability by each improver agent.

The RI operator adds a randomly chosen element to a randomly chosen position and
shifts the rest of the sequence. If a randomly chosen point is i = 2 and a randomly chosen
element is j = 5 (i ̸= j), the operation is as follows:
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The RIS operator adds a subsequence randomly chosen from the subsequence to
a point randomly chosen and shifts the rest of the sequence. The operation is shown
as follows:
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In the RRIS operator, the subsequence randomly chosen from the sequence is added
to the randomly chosen point and the rest of the sequence is shifted to the right until the
size of the subsequence. Before the addition, the subsequence may be inverted with a
probability 50%. The function of this operator is given in Figure 3.
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Based on the aforementioned explanations, the steps of the proposed algorithm are
given in Figure 4.
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In the initialization of the algorithm, half of the population are constructor agents, and
the rest of the population are improvers. While the algorithm is run, a potential solution is
created for each constructor by using the transfer rule and the best solution obtained by the
constructors have been improved in the second phase of the algorithm by the improver
agents. The relation between the constructors and the improver agents is provided by the
best solution in the population and footprint mechanism. The proposed algorithm can
be seen like ACO, and the same transfer rule of ACO is used to create solutions in the
constructor phase of the proposed algorithm. However, the evaporation mechanism is not
used in our study because while the problem size is increased, the artificial agents tend to
select the shortest distance among the nodes. Thus, the evaporation mechanism does not
work in the transfer rule because it is too low. To overcome this issue, we used the footprint
mechanism without evaporation. The second novelty is to use constructors and improvers
in an algorithmic framework. As we know, all the agents in the ACO are constructors, and
the best solution is only used to report at the end of algorithm.

3. Experimental Results

For experiments, an IBM compatible PC with a Pentium 3.4 GHz microprocessor
and 2 GB of RAM was used. The algorithms we are run 30 times with random seeds for
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each problem, and the obtained results were reported as the best, worst, and mean. The
test problems [45] used in experiments, except Oliver30 [46], and their optimum costs are
displayed in Table 1, the parameters of the methods are given in Table 2, and the obtained
results for these problems are given in Table 3.

In the results tables, the relative errors (RE) calculated by using the means of results
are as follows:

REk =
Bk − Ok

Ok
× 100 (7)

where Ok is the optimum tour length of the kth problem and Bk is the mean tour length
obtained by 30 runs of the algorithm for the kth problem.

Under these conditions, the obtained results by the proposed method and ant system
are reported in Table 3, and the better solutions according to RE are written in boldface font
type. Based on Table 3, the proposed method is better than the AS algorithm in terms of
solution quality on 20 of 25 TSPs. Because half of the population in the proposed method
are improvers, all of the solutions are not re-constructed in the improvement stage and
the method consumes less time than the AS algorithm. In addition, the stagnation has
been prevented by the improvers and the higher-quality solution has been obtained by
a new approach. Moreover, to show the search behavior of the proposed algorithm, the
convergence to the global optimum of the proposed algorithm is given in Figure 5. The
convergence of the algorithm to the global optimum is at an acceptable level due to using
both the footprint mechanism and information about the problem. The evolution graphics
of the population are shown in Figure 5 during the iterations. According to the evolution
graphics on some test problems, the search space of the problem is continuously searched
by the population of the proposed method effectively. In addition, the convergence graphics
of the method to the optimum or near-optimum of the problems are shown in this figure.

Table 1. The TSP instances used in the experiments.

Problem Optimum Problem Optimum

Oliver30 423.74 Eil51 428.87
Berlin52 7544.37 St70 677.11
Pr76 108,159.44 Eil76 545.39
Rat99 1211 Rd100 7910
KroA100 21,285.44 KroB100 22,141
KroC100 20,749 KroD100 21,294
KroE100 22,068 Bier127 118,282
Lin105 14,379 Eil101 642.31
Pr124 59,030 Pr107 44,307
Pr136 96,772 Ch130 6110
Ch150 6532.28 Pr144 58,537
KroA150 26,524 TSP225 3859
KroB150 26,130

Table 2. Parameter setting of ACO and the proposed method.

Parameter Ant System Proposed Method

Population Size (P) D * D *
Maximum Cycle Number 500 500
Alpha (α) 1.0 N/A
Beta (β) 5.0 N/A
a N/A 1.0
b N/A 5.0
Rho (ρ) 0.65 N/A
Q 100 10

* D is the number of nodes in the traveling salesman problem.
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Table 3. The comparison of the ant system algorithm and the proposed method on the 25 TSPs.

Problem Ant System Algorithm Proposed Method

Name Optimum Best Worst Average Std. Dev. RE (%) Best Worst Average Std. Dev. RE (%)

Oliver30 423.74 423.91 433.07 425.81 2.03 0.49 423.74 424.46 423.84 0.20 0.02
Eil51 428.87 447.37 463.42 456.52 3.83 6.45 434.80 454.88 444.78 4.91 3.71
Berlin52 7544.37 7663.59 7872.49 7694.30 45.53 1.99 7544.37 7819.59 7596.93 70.62 0.70
St70 677.11 697.02 719.27 710.54 5.91 4.94 689.69 718.37 706.16 7.86 4.29
Pr76 108,159.44 114,674.63 118,727.64 116,898.74 977.97 8.08 113,406.81 119,641.27 116,964.07 1617.86 8.14
Eil76 545.39 559.17 570.36 565.36 3.35 3.66 553.53 581.84 566.18 5.78 3.81
Rat99 1211.00 1269.82 1307.81 1290.49 8.29 6.56 1242.59 1316.05 1285.80 18.29 6.18
Rd100 7910.00 8214.34 8468.61 8359.81 60.39 5.69 8070.45 8403.07 8217.68 79.46 3.89
KroA100 21,285.44 22,455.89 23,271.16 22,882.11 232.25 7.50 21,575.98 22,321.42 21,986.93 213.88 3.30
KroB100 22,141.00 22,693.38 23,043.60 22,929.66 72.19 3.56 22,486.55 23,138.72 22,763.13 171.27 2.81
KroC100 20,749.00 21,218.38 21,629.82 21,479.12 109.41 3.52 21,103.32 21,580.70 21,401.25 132.99 3.14
KroD100 21,294.00 22,681.23 23,034.26 22,857.46 92.72 7.34 22,057.57 22,784.83 22,408.96 176.76 5.24
KroE100 22,068.00 22,893.72 24,020.36 23,624.95 226.28 7.06 22,429.60 23,681.80 23,075.59 293.60 4.57
Bier127 118,282.00 122,170.98 124,011.82 123,173.65 487.68 4.14 120,608.54 124,215.06 122,415.63 974.55 3.49
Eil101 642.31 674.41 704.14 693.02 7.75 7.89 656.14 701.46 676.76 9.23 5.36
Lin105 14,379.00 14,706.08 14,930.62 14807.13 66.35 2.98 14,501.10 14,953.92 14,689.60 116.37 2.16
Pr107 44,307.00 46,034.75 46,838.57 46,368.35 180.75 4.65 44,781.22 46,053.97 45,364.00 301.81 2.39
Pr124 59,030.00 59,731.20 60,700.56 60,059.94 214.25 1.74 59,553.62 60,830.49 60,316.46 322.43 2.18
Ch130 6110.00 6419.15 6579.30 6482.77 43.58 6.10 6276.59 6414.22 6331.80 37.52 3.63
Pr136 96,772.00 104,670.51 108,272.22 106,807.35 734.25 10.37 102,771.33 108,650.39 105,825.77 1446.93 9.36
Pr144 58,537.00 58,816.80 58,868.72 58,820.60 10.01 0.48 58,820.96 59,617.26 59,138.08 188.42 1.03
KroA150 26,524.00 27,727.74 29,006.01 28,518.77 251.62 7.52 27,801.51 28,979.46 28,458.39 334.31 7.29
KroB150 26,130.00 27,309.28 28,314.81 27,948.45 178.94 6.96 27,133.53 28,211.93 27,724.68 256.21 6.10
Ch150 6532.28 6648.51 6726.27 6702.87 24.65 2.61 6611.95 6788.13 6704.08 37.29 2.63
TSP225 3859.00 4112.35 4236.84 4176.08 22.65 8.22 4066.95 4174.39 4130.64 26.49 7.04
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Figure 5. The evolution of population in the proposed approach on some test problems.

The proposed method has been also compared with the ABC, ACO, DTSA, and a
hierarchic approach, briefly HA, in Table 4, in which the results of the compared algorithms
(ACO, ABC, and HA) are directly taken from [47], and the results of DTSA are directly
taken from [48]. The results given in Table 4 show that the hierarchic approach is better
than the other algorithms in the small-sized TSP instances. The DTSA produced better
results on the PR76 and Kroa100 problems than the other algorithms, and the proposed
algorithm called PM in Table 4 is better than the compared algorithms in the Eil101 and
Tsp225 instances. In accordance with the mean rank comparisons of the algorithms given
in Figure 6, the HA is in the first rank, and the proposed algorithm is in the second rank in
the comparison.

Table 4. The comparison of ACO, ABC, HA, DTSA, and PM in some TSP instances.

Problem Algorithm Best Worst Mean Std. Dev. RE Rank

Oliver30

ACO 423.74 429.36 424 68 1.41 0.22 3
ABC 439.49 484.83 462.55 12.47 9.16 5
HA 423.74 423.74 423.74 0 0 1
DTSA N/A N/A 428.5 4.21 1.12 4
PM 423.74 424.46 423.84 0.2 0.02 2

Eil51

ACO 450.59 463.55 457.86 4.07 6.76 4
ABC 563.75 619.44 590.49 15.79 37.68 5
HA 431.74 454.97 443.39 5.25 3.39 1
DTSA N/A N/A 443.93 4.04 3.51 2
PM 434.8 454.88 444 78 4.91 3.71 3

Berlin52

ACO 7548.99 7681.75 7659.31 38.7 1.52 4
ABC 9479.11 11,021.99 10,390.26 439.69 37.72 5
HA 7544.37 7544.37 7544.37 0 0 1
DTSA N/A N/A 7545.83 21.00 0.02 2
PM 7544.37 7819.59 7596.93 70.62 0.7 3

St70

ACO 696.05 725.26 709.16 8.27 4.73 4
ABC 1162.12 1339.24 1230.49 41.79 81.73 5
HA 687.24 716.52 700.58 7.51 3.47 1
DTSA N/A N/A 708.65 6.77 4.66 3
PM 689.69 718.37 706.16 7.86 4.29 2

Eil76

ACO 554.46 568.62 561.98 3.5 3.04 2
ABC 877.28 971.36 931.44 24.86 70.78 5
HA 551.07 565.51 557.98 4.1 2.31 1
DTSA N/A N/A 578.58 3.93 6.09 4
PM 553.53 581.84 566.18 5.78 3.81 3
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Table 4. Cont.

Problem Algorithm Best Worst Mean Std. Dev. RE Rank

Pr76

ACO 115,166.66 118,227.41 116,321.22 885.79 7.55 3
ABC 195,198.9 219,173.64 205,119.61 7379.16 89.65 5
HA 113,798.56 116,353.01 115,072.29 742.9 6.39 2
DTSA N/A N/A 114,930.03 1545.64 6.26 1
PM 113,406.81 119,641.27 116,964.07 1617.86 8.14 4

KroA100

ACO 22,455.89 23,365.46 22,880.12 235.18 7.49 4
ABC 49,519.51 57,566.05 53,840.03 2198.36 152.94 5
HA 22,122.75 23,050.81 22,435.31 231.34 5.4 3
DTSA N/A N/A 21,728.4 358.13 2.08 1
PM 21,575.98 22,321.42 21,986.93 213.88 3.3 2

Eil101

ACO 678.04 705.65 693.42 6.8 7.96 4
ABC 1237.31 1392.64 1315.95 35.28 104.88 5
HA 672.71 696.04 683.39 6.56 6.39 2
DTSA N/A N/A 689.91 4.47 7.41 3
PM 656.14 701.46 676.76 9.23 5.36 1

Ch150

ACO 6648.51 6726.27 6702.87 20.73 2.61 2
ABC 20,908.89 22,574.99 21,61748 453.71 230.93 5
HA 6641.69 6707.86 6677.12 19.3 2.21 1
DTSA N/A N/A 6748.99 32.63 3.32 4
PM 6611.95 6788.13 6704.08 37.29 2.63 3

Tsp225

ACO 4112.35 4236.85 4176.08 28.34 8.22 3
ABC 16,998.41 18,682.56 17,955.12 387.35 365.2792 5
HA 4090.54 4212.08 4157.85 26.27 7.74 2
DTSA N/A N/A 4230.45 58.76 9.63 4
PM 4066.95 4174.39 4130.64 26.49 7.04 1
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Figure 6. Comparison of mean ranks of the ACO, ABC, HA, DTSA, and PM in some TSP instances.

Another comparison has been conducted on the Kro series (KroA, KroB, KroC, KroD,
KroE) TSP instances. In this experiment, the proposed method has been compared with
simulated annealing (SA), DTSA, and discrete state transition algorithm (DSTA) and its
variants. The results of these algorithms are directly taken from the study of [48] and the
termination condition is the maximum number of function evaluations, and it was 90,000 in
the referenced study. In the run of the proposed method, it was adjusted according to
the number of TSPs, and because the number of nodes is 100 in Kro series problems, the
number of function evaluations is calculated as 50,000. The comparison results and mean
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ranks are given in Table 5 and Figure 7, respectively. At the same time, Table 6 shows the
comparison of the results obtained by the proposed method with the variants of ACO.

Table 5. The comparison of PM, SA, DTSA, and DSTA variants in Kro series TSP instances.

Problem Algorithm Mean Std. Dev. RE (%) Rank

KroA100

PM 21,986.93 213.88 3.3 3
SA 22,635 778.72 6.36 4
DSTA0 23,213 906.11 9.07 6
DSTAI 22,835 715.85 7.3 5
DSTAII 21,767 221.64 2.28 2
DTSA 21,506.78 260.55 1.06 1

KroB100

PM 22,763.13 171.27 2.81 1
SA 23,657 445.78 6.85 4
DSTA0 23,794 517.05 7.47 6
DSTAI 23,734 507.38 7.19 5
DSTAII 22,880 302.14 3.34 2
DTSA 23,139.26 181.74 4.51 3

KroC100

PM 21,401.25 132.99 3.14 2
SA 22,223 522.2 7.1 5
DSTA0 22,877 709.87 10.26 6
DSTAI 21,891 536.88 5.5 4
DSTAII 21,378 246.34 3.03 1
DTSA 21,817.08 217.77 5.15 3

KroD100

PM 22,408.96 176.76 5.24 2
SA 22,911 483.01 7.59 4
DSTA0 23,043 565.8 8.21 6
DSTAI 22,665 592.53 6.44 3
DSTAII 21,991 315.32 3.27 1
DTSA 22,972.26 390.5 7.88 5

KroE100

PM 23,075.59 293.6 4.57 4
SA 23,125 389.42 4.44 3
DSTA0 23,738 450.82 7.21 6
DSTAI 23,371 678.69 5.56 5
DSTAII 22,637 166.82 2.24 2
DTSA 22,547 121.96 1.83 1
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Figure 7. Comparison of mean ranks of the PM, SA, DTSA, and DSTAs on KRO series problems.

When Table 6 is analyzed, it is seen that the proposed method obtains the best average
results in some TSPs according to the variants of ACO.
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Table 6. The comparison of the proposed method with ACO variants in TSP instances.

Problem PM M-ACO-SM
[43]

M-ACO-RM
[43]

E-ACO
[43]

E-M-ACO
[43]

E-SM-ACO
[43]

P-ACO
[43]

P-M-ACO
[43]

Eil51 444.78 456 452 - - - - -
Berlin52 7596.93 8093 8093 8417 8091 8054 8201 8291
St70 706.16 742 734 743 726 744 774 760
Pr76 119,641 122,436 122,331 - - - - -
Eil76 566.18 566 585 - - - - -
Rat99 1285.80 1369 1369 1380 1322 1369 1389 1368
Eil101 676.76 702 754 698 703 726 748 736
Lin105 14,689.60 15,662 15,650 16,499 15,470 15,358 16,998 16,255

4. Results and Discussion

The performance of the proposed method for solving discrete optimization problems
has been investigated on traveling salesman problems. The results obtained by the algo-
rithm show that the method has a reasonable performance on the problems solved in this
paper. The new approach was based on collective intelligence and path improvement. Some
of the agents construct self-solutions, and the best of them is used in the path improvement
phase. Therefore, the proposed method does not show stagnation behavior although there
are more footprints on some arcs because the improvement phase in the method provides a
way to discover the different tours from the best solution obtained thus far. Therefore, the
agents in this phase maintain the collective intelligence in the population. The convergence
characteristics of the proposed approach shown in Figure 5 are at an acceptable level since
the path construction phase uses both collective intelligence and distances between nodes.
Figure 5 also shows there is no stagnation in the population, and global and local searches
are effective in the search process of the proposed algorithm. Additionally, a reason for
obtaining good quality results was the use of information sharing over the global best
solution between the path improvement and path construction phases.

5. Conclusions and Future Works

In this paper, a novel approach based on the ant system algorithm has been proposed
and tested on the well-known traveling salesman problems. The proposed method has
been compared with ant system and state-of-art algorithms on the well-known TSPs, and
the proposed method has produced promising and comparable results on solving TSPs.
This is based on the search mechanism included in the novel approach. The investigation
into the performance of the proposed method for solving discrete optimization problems,
specifically on traveling salesman problems, has yielded promising and encouraging results.
The algorithm demonstrated a reasonable performance across the problems examined in
this study. The novel approach, rooted in collective intelligence and path improvement,
showcased a dynamic and effective strategy. The incorporation of agents constructing self-
solutions, with the best among them influencing the path improvement phase, has proven
instrumental in avoiding stagnation behaviors. Despite the presence of more footprints on
certain arcs, the improvement phase facilitates the discovery of diverse tours, maintaining
the collective intelligence within the population. Future work will focus on investigating
and analyzing the performance of the proposed method on the different types of discrete
optimization problems.
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