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Abstract: The brain storm optimization (BSO) algorithm has received increased attention in the field
of evolutionary computation. While BSO has been applied in numerous industrial scenarios due to
its effectiveness and accessibility, there are few theoretical analysis results about its running time.
Running-time analysis can be conducted through the estimation of the upper bounds of the expected
first hitting time to evaluate the efficiency of BSO. This study estimates the upper bounds of the
expected first hitting time on six single individual BSO variants (BSOs with one individual) based
on the average gain model. The theoretical analysis indicates the following results. (1) The time
complexity of the six BSO variants is O(

√
n) in equal coefficient linear functions regardless of the

presence or absence of the disrupting operator, where n is the number of the dimensions. Moreover,
the coefficient of the upper bounds on the expected first hitting time shows that the single individual
BSOs with the disrupting operator require fewer iterations to obtain the target solution than the
single individual BSOs without the disrupting operator. (2) The upper bounds on the expected first
hitting time of single individual BSOs with the standard normally distributed mutation operator are
lower than those of BSOs with the uniformly distributed mutation operator. (3) The upper bounds
on the expected first hitting time of single individual BSOs with the U

(
− 1

2 , 1
2

)
mutation operator

are approximately twice those of BSOs with the U(−1, 1) mutation operator. The corresponding
numerical results are also consistent with the theoretical analysis results.

Keywords: brain storm optimization (BSO); running time; average gain model; mutation operator;
linear function

1. Introduction

The swarm intelligence algorithm is one of the nature-inspired optimization algorithms
that simulates the behavior of biological groups in nature [1–3]. Over the past two decades,
many different types of swarm intelligence algorithms have been proposed, such as particle
swarm optimization (PSO) [4,5], ant colony optimization (ACO) [6,7], artificial bee colony
(ABC) [8,9], and brain storm optimization (BSO) [10–12]. Different from traditional methods,
these algorithms solve problems by simulating the behavior of animal or human groups,
with higher flexibility and adaptability.

BSO, a novel swarm intelligence algorithm, is inspired by the human brainstorming
process. It is a continuous evolutionary algorithm that simulates the collective behavior
of human beings. In recent years, BSOs have seen various practical applications in power
systems [13–16], aviation design [17–19], mobile robot path planning [20,21], antenna
design [22], financial optimization [23–25], and many other fields [26–30].

In addition, the theoretical analysis of BSO is also very important, especially for the
practical application of BSO. The theoretical analysis benefits researchers in enabling them
to understand the mechanism of the algorithm in guiding its design, improvement, and
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application in practice. The theoretical analysis can be divided into convergence analysis
and running-time analysis. Zhou et al. [31], Qiao et al. [32], and Zhang et al. [33] have
performed corresponding convergence analyses on BSO. The BSO–CAPSO algorithm,
proposed by Alkmini [1], effectively enhances the computational efficiency of BSO through
hybridization with chaotic accelerated particle swarm optimization. However, there are
few works on the running-time analysis of BSO.

Some theoretical methods have been proposed as general analysis tools to investigate
the running time of random heuristic algorithms, including the fitness level method [34],
drift analysis method [35], switch analysis method [36], wave model [37], etc. These
methods are mainly used to analyze discrete random heuristic algorithms. In contrast,
fewer theoretical analysis results have been obtained for continuous random heuristic algo-
rithms [38–40]. However, a large number of practical application problems are continuous.
Therefore, the running time of continuous random heuristic algorithms has important re-
search significance. To analyze the running time of continuous random heuristic algorithms,
Huang et al. [41] proposed the average gain model.

Huang et al. [41,42] and Zhang et al. [43] used an average gain model to evaluate
the expected first hit time of the (1 + 1)-evolutionary algorithm ((1 + 1) EA), evolutionary
strategy (ES), and covariance matrix adaptation evolution strategy (CMA-ES). The concept
of the first hit time refers to the minimum number of iterations required before the algorithm
finds an optimal solution [35]. The expected first hit time represents the average number
of iterations needed to find the optimal solution, which actually reflects the average time
complexity of the algorithm [44]. Wang [45] employed the average gain model to analyze
the computational efficiency of the proposed swarm intelligence algorithm and provided
theoretical evidence for its effectiveness. Therefore, the expected first hit time is a core
metric in runtime analysis. Based on the average gain model, the expected first hit time of
BSO is deeply analyzed in this paper.

The core of BSO consists of three key components: clustering, interruption, and update.
The mutation operator plays an important role in BSO and is included in the interrupt
operation and update operation. Specifically, the mutation operator helps the algorithm
to jump out of the local optimal solution and further explore a broader search space by
introducing random factors in the search process. For example, Zhan et al. [46] proposed an
improved BSO (MBSO) in which the mutation operator employs a novel thought difference
strategy (IDS). This strategy takes advantage of the thought differences among individuals
in the group and increases the diversity of the group by introducing random factors,
thus increasing the probability of the algorithm finding the global optimal solution. In
addition, El-Abd [47] improved the step equation of the mutation operator and improved
the performance of BSO by adjusting the step size and distribution. This improvement
helps the algorithm to balance the local search and the global search better, so that the
algorithm can find the global optimal solution more effectively when solving complex
optimization problems.

The time complexity of the single individual BSO is analyzed in this paper based on the
research process from simple to complex. The single individual BSO without the disrupting
operation is the same as the (1+1) ES [41]. However, the corresponding results can explain
the influence of the mutation operator and disrupting operator on the time complexity of
BSO. In this paper, we choose the three most classic and representative distributions, N(0, 1),
U
(
− 1

2 , 1
2

)
, and U(−1, 1), as the analysis objects for the mutation operator. Therefore, six

BSO variants are obtained as the analyzed algorithms based on the combination of three
mutation operators and the presence or absence of a disrupting operator.

The remainder of this paper is organized as follows. Section 2 introduces the process
of BSO and the mathematical model of running-time analysis for BSO. Section 3 provides
the theoretical analysis results for the running-time analysis of three different BSO variants.
Section 4 presents the corresponding experimental results to evaluate the theoretical results.
Finally, Section 5 concludes the paper.
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2. Mathematical Model for Running-Time Analysis of BSO
2.1. Brain Storm Optimization

BSO was proposed by Shi [48,49] in 2011, and it is simple in concept and easy to
implement. BSO can be simplified as follows.

In Steps 4 and 5, the new solution is generated by x̃ = x + ∆, where x is the original
individual, x̃ is the newly generated individual, and ∆ is a vector generated according to the
mutation operator. In this paper, we focus on the running time of BSO with three different
mutation operators. The same mutation operators are used to generate new individuals in
both Steps 4 and 5. The superposition of different mutation operators is not considered in
this work.

To accurately observe the effects of the disrupting and updating operations on the
running time of BSO, we select a single individual form of BSO as the analyzed object.
The single individual BSO framework simplifies the effect of the population size, which
helps to evaluate the effect of the disrupting and updating operations on the running time.
Furthermore, following the principle from simple to difficult, the single individual BSO is a
suitable starting point for the running-time analysis of BSO. Moreover, the randomness of
∆ and the design of the operations in Steps 4 and 5 are derived from the mutation operator
design of evolutionary programming [50,51]. Therefore, the conclusion of this analysis
will have positive implications for the study of similar mutation operators in evolutionary
programming algorithms.

2.2. Stochastic Process Model of BSO

BSO can be represented as a stochastic process. In this section, we introduce the
terminology for the analysis of the running time of BSO.

Definition 1 (Hill-climbing task). Given a search space S ⊆ Rn and a fitness function f : S → R,
the hill-climbing task is to find a solution x⃗∗ ∈ S, where the fitness of x⃗∗ reaches the target value H,
where f (x⃗∗) ≥ H.

In this paper, we focus on analyzing the BSO running time in the hill-climbing task of
a continuous search space.

Definition 2 (State of BSO). The state of BSO at the t-th (t = 0, 1, . . .) iteration is defined as
Pt =

{
ξ⃗t

1, ξ⃗t
2, . . . , ξ⃗t

λ

}
, where λ is the size of the population, and ξ⃗t

1, ξ⃗t
2, . . . , ξ⃗t

λ ∈ S.

Definition 3 (State space of BSO). The set of all possible BSO states is called the state space of
BSO, denoted as

Ω = Sλ =
{{

ξ⃗1, ξ⃗2, . . . , ξ⃗λ

}
|⃗ξk ∈ S, k = 1, . . . , λ

}
. (1)

An optimization problem is a mapping from a decision space to an objective space,
and the state space of BSO represents the corresponding decision space.

Definition 4 (Expected first hitting time). Let {Xt}∞
t=0 be a stochastic process, where, for any

t ≥ 0, Xt ≥ 0 holds. Suppose that Xt is the Euclidean distance value of the t-th iteration state
of BSO to the target solution, and the target threshold ε > 0, the first hitting time [35] of the
ε-approximation solution, can be defined by

Tε = min{t ≥ 0 : Xt ≤ ε}. (2)

Therefore, the expected first hitting time [44] of BSO can be denoted with E(Tε|X0).

The expected first hit time refers to the average number of iterations required for the
BSO algorithm to reach the target fitness value. This metric can more accurately measure
the performance of an algorithm because it takes into account the probability distribution
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of the algorithm over different iterations. Through this metric, we can evaluate the average
time complexity of the algorithm in finding the optimal solution, so as to better understand
the efficiency of the algorithm.

2.3. Running-Time Analysis of BSO Based on Average Gain Model

Inspired by drift analysis [52] and the idea of Riemann integrals [53], Huang et al. [41]
proposed the average gain model. Zhang et al. [43] separated this model by introducing
the concepts of the supermartingale and stopping time. Based on the former research
results [41,43] of the average gain model, Huang et al. [42] proposed an experimental
method to estimate the running time of the continuous evolution algorithms.

The expected one-step variation

δt = E(Xt − Xt+1|Ht), t ≥ 0 (3)

is called the average gain, where {Xt}∞
t=0 is a stochastic process, and Ht = σ(X0, X1, . . . , Xt).

The σ-algebra Ht contains all the events generated by X0, X1, . . . , Xt. All the information
observed from the original population to the t-th iteration is recorded in Ht.

Based on Definition 2, Pt = {ξ⃗t
1, ξ⃗t

2, . . . , ξ⃗t
λ} is the state of BSO at the t-th iteration. The

process of BSO in solving the hill-climbing task is considered as the gradual process of
the stochastic state from the initial population to the population that contains the optimal
solution. Let f (Pt) = max{ f (x⃗) : x⃗ ∈ Pt} be the highest fitness value of individuals in Pt.
Xt is used to measure the distance of the current population to the population of the target
value. Xt = f ∗ − f (Pt), where f ∗ is the fitness value of the optimal solution. Obviously,
{Xt}∞

t=0 is a non-negative stochastic process.
The state of BSO in the (t + 1)-th iteration Pt+1 only depends on Pt. In other words,

the stochastic process {Pt}∞
t=0 can be modeled by a Markov chain [42]. Similarly, {Xt}∞

t=0
can also be regarded as a Markov chain. In this case, the average gain δt = E(Xt − Xt+1|Ht)
can be simplified to δt = E(Xt − Xt+1|Xt). Based on Th. 2 of [43], the expectation of Tε of
BSO can be estimated as follows.

Theorem 1. Suppose that {Xt}∞
t=0 is a stochastic process associated with BSO, where Xt ≥ 0

for all t ≥ 0. Let h : [0, A] → R+ be a monotonically increasing and integrable function. If
E(Xt − Xt+1|Xt) ≥ h(Xt) and Xt > ε > 0, it holds for Tε that

E(Tε|X0) ≤ 1 +
∫ X0

ε

1
h(x)

x. (4)

Theorem 1 shows the upper bounds on the expected first hitting time of BSO based on
the average gain model. The average gain δt plays a key role in analyzing the first hitting
time Tε of the ε-approximation solution for BSO. The higher average gain indicates a more
efficient iteration of the optimization process.

3. Running-Time Analysis of BSO Instances for Equal Coefficient Linear Functions

In this section, we present the theoretical analysis results based on the average gain
model to analyze the expected first hitting time of BSO for equal coefficient linear functions.
The running time of BSO with three different mutation operators is analyzed from the
perspective of whether the disrupting operation exists. In this paper, we refer to the BSO
without a disrupting operation as BSO-I, and the BSO with a disrupting operation as BSO-II.

On this basis, the equal coefficient linear functions are selected as the research ob-
ject [54–56]. These functions are a form of basic continuous optimization problem whose
function expression is as follows:

f (x1, x2 . . . , xn) = k(x1 + x2 + . . . + xn) = k
n

∑
i=1

xi, (5)
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where (x1, x2, . . . , xn) ∈ S. It is assumed that the function starts from the origin and sets
the target fitness value to na, where a > 0. The objective of optimizing the equal coefficient
linear function is to find a solution x⃗∗ ∈ S, such that f (x⃗∗) ≥ na.

The mutation operator that obeys the Gaussian distribution and the uniform dis-
tribution is selected for the evaluation of BSO. The Gaussian distribution and uniform
distribution are common tools for the design of mutation operators [50,51,57], so it is
representative to select these two distributions as research cases.

3.1. Case Study of BSO without Disrupting Operator

Since the single individual BSO is analyzed in this paper, λ is equal to 1 in the state
Pt = {ξt

1, ξt
2, . . . , ξt

λ} of BSO. The BSO of a single individual has only one individual,
so ξt

1 represents both the optimized individual and the random state of the algorithm.
The procedure of single individual BSO can be described as follows when the disrupting
operation does not exist (i.e., Step 4 in Algorithm 1 is ignored).

Algorithm 1 Brain Storm Optimization (BSO)

1: Initialization: Randomly generate λ individuals (potential solutions) to form the initial
population P = {ξ1, ξ2, . . . , ξλ} and evaluate the λ individuals;

2: while fail to achieve the predetermined maximum number of iterations do
3: Clustering: Use clustering algorithms to divide λ individuals into m clusters;
4: Disrupting: The mutation occurs with a certain probability, and a randomly selected

cluster’s central individual is replaced by a randomly generated new individual;
5: Updating: Randomly choose one or two clusters to create a new individual;

Compare the newly generated individual and the original individual with the same
individual index. The better one will be saved as the new individual;
Update the whole population; the offspring population is recorded as
P′ = {ξ ′1, ξ ′2, . . . , ξ ′λ}. Evaluate the individuals in P′;

6: end while
7: Output the most optimal solution discovered.

x⃗t = (xt
1, xt

2, . . . , xt
n) ∈ S, t = 0, 1, . . . is the t-th generation of the algorithm.

Xt = an − f (x⃗t) = an − k(xt
1 + xt

2, . . . + xt
n), (6)

is defined as the Euclidean distance of the t-th iteration to the optimal solution. The gain at
t-th is given by

ηt = Xt − Xt+1
= k(xt+1

1 + xt+1
2 + . . . + xt+1

n )− k(xt
1 + xt

2 + . . . + xt
n).

(7)

3.1.1. When zi ∼ N(0, 1)

If the mutation operator obeys the standard normal distribution N(0, 1), the distribu-
tion function of ηt is as presented by Lemma 1.

Lemma 1. For BSO-I, if its mutation operator z⃗ obeys N(0, 1), the distribution function F(u) =
P(ηt ≤ u) of the gain ηt is

F(u) =


0, u < 0
1
2 , u = 0

1√
2πnk

∫ u
−∞ e−

t2

2nk2 t, u > 0

. (8)
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Proof. According to Step 4 and Step 5 of Algorithm 2, the (t + 1)-th individual is

x⃗t+1 =

{
x⃗t, f (⃗yt) ≤ f (x⃗t)

y⃗t, f (⃗yt) > f (x⃗t)
. (9)

Algorithm 2 BSO-I

1: Initialization: Randomly generate an individual x⃗ = (x1, x2, . . . , xn) ∈ Rn based on
uniform distribution;

2: while stopping criterion is not satisfied do
3: y⃗ = x⃗ + z⃗, where z⃗ is the mutation operator;
4: if y⃗ adapts better than x⃗ then
5: x⃗ is substituted for y⃗
6: end if
7: end while

Output: x⃗

According to the definition of ηt, where t = 0, 1, . . .,

(1) If f (⃗yt) ≤ f (x⃗t),

ηt = k(xt+1
1 + xt+1

2 + . . . + xt+1
n )− k(xt

1 + xt
2 + . . . + xt

n)
= k(xt

1 + xt
2 + . . . + xt

n)− k(xt
1 + xt

2 + . . . + xt
n) = 0

(10)

(2) If f (⃗yt) > f (x⃗t),

ηt = k(xt+1
1 + xt+1

2 + . . . + xt+1
n )− k(xt

1 + xt
2 + . . . + xt

n)
= k(yt

1 + yt
2 + . . . + yt

n)− k(xt
1 + xt

2 + . . . + xt
n)

= k[(yt
1 − xt

1) + (yt
2 − xt

2) + . . . + (yt
n − xt

n)]
= k(zt

1 + zt
2 + . . . + zt

n) = f (⃗zt)

(11)

Since zi ∼ N(0, 1), z1, . . . , zn are independent of each other. All of the zi satisfy the additivity
of the normal distribution, so f (⃗zt) obeys the distribution of N(0, nk2).

Hence, the distribution function of ηt is shown as F(u) = P(ηt ≤ u).

(1) If u < 0, according to the definition of ηt where ηt ≥ 0, it has F(u) = 0.
(2) If u = 0, the probability density function of N(0, n) is symmetric in the y axis, so

F(u) = P(ηt ≤ u) = P(ηt = 0) = 1
2 .

(3) If u > 0, F(u) = P(ηt ≤ u) = 1√
2πnk

∫ u
−∞ e−

t2

2nk2 t.

Lemma 1 holds.

Theorem 2 is presented based on the above proof.

Theorem 2. If the mutation operator z⃗ of BSO-I obeys N(0, 1), the upper bound on the expected
first hitting time to reach the target fitness value na is derived as follows.

E(Tε|X0) ≤ 1 +
√

2πn
a
k
−
√

2π

n
ε

k
. (12)

Proof.
E(Xt − Xt+1|Xt) = E(ηt|Xt) =

∫ +∞
−∞ uF(u)

=
∫ +∞

0 u
(

1√
2πnk

∫ u
−∞ e−

t2

2nk2 t
)
= k

√
n√

2π

(13)
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It is assumed that the algorithm starts from the origin at initialization, where x⃗0 =
(0, 0, . . . , 0), i.e.,

X0 = na − f (x⃗0) = na − k(0 + 0 . . . + 0) = na (14)

According to Theorem 1, the upper bound on the expected first hitting time is derived as

E(Tε|X0) ≤ 1 +
∫ na

ε

√
2π

k
√

n
x = 1 +

√
2πn

a
k
−
√

2π

n
ε

k
. (15)

Theorem 2 holds.

Theorem 2 indicates that for BSO-I, if its mutation operator z⃗ obeys N(0, 1), the com-
putational time complexity of BSO-I for the equal coefficient linear function is E(Tε|X0) =
O(

√
n).

3.1.2. When zi ∼ U
(
− 1

2 , 1
2

)
The uniform distribution function does not satisfy additivity like the normal distribu-

tion function. The Lindeberg–Levy center limit theorem [58] can provide an idea to find
the distribution of ηt. The Lindeberg–Levy center limit theorem is introduced below.

Suppose that Xn is a sequence of independent and identically distributed random
variables with E(Xi) = µ and (Xi) = σ2 > 0; let

Y∗
n =

X1 + X2 + . . . + Xn − nµ

σ
√

n
, (16)

then

lim
n→∞

P(Y∗
n ≤ y) = Φ(y) =

1√
2π

∫ y

−∞
e−

t2
2 t (17)

is satisfied for any real number y.
The Lindeberg–Levy center limit theorem [58] shows that if n is sufficiently large,

Y∗
n ∼ N(0, 1), it has ∑n

i=1 Xi ∼ N(nµ, nσ2). Generally, the case of higher dimensions
requires more attention in the study of the computational time complexity of algorithms. If
the mutation operator obeys U

(
− 1

2 , 1
2

)
, the distribution function of ηt can be represented

by Lemma 2.

Lemma 2. For BSO-I, if its mutation operator z⃗ obeys U
(
− 1

2 , 1
2

)
, the distribution function

F(u) = P(ηt ≤ u) of the gain ηt is

F(u) =


0, u < 0
1
2 , u = 0
√

6√
πnk

∫ u
−∞ e−

6t2

nk2 t, u > 0

. (18)

Proof. According to the definition of ηt, where t = 0, 1, . . ..

(1) If f (⃗yt) ≤ f (x⃗t), ηt = 0.

(2) If f (⃗yt) > f (x⃗t), ηt = k(zt
1 + zt

2 + . . . + zt
n), where zi ∼ U

(
− 1

2 , 1
2

)
, and z1, . . . , zn are

independent of each other. According to the Lindeberg–Levy center limit theorem, ηt

obeys N
(

0, 1
12 nk2

)
.

Hence, the distribution function of ηt is F(u) = P(ηt ≤ u).

(1) If u < 0, F(u) = 0.



Biomimetics 2024, 9, 117 8 of 19

(2) If u = 0, F(u) = P(ηt = 0) = 1
2 .

(3) If u > 0, F(u) =
√

6√
πnk

∫ u
−∞ e−

6t2

nk2 t.

Lemma 2 holds.

Theorem 3 is presented based on the above proof.

Theorem 3. For BSO-I, if its mutation operator z⃗ obeys U
(
− 1

2 , 1
2

)
, the upper bound on the

expected first hitting time to reach the target fitness value na is derived as follows.

E(Tε|X0) ≤ 1 + 2
√

6πn
a
k
− 2

√
6π√
n

ε

k
. (19)

The proof of this theorem is based on the same principle as Theorem 2. The detailed
derivation is given as follows.

Proof. According to Lemma 2, we have

E(Xt − Xt+1|Xt) = E(ηt|Xt) =
∫ +∞
−∞ uF(u)

=
∫ +∞

0 u
( √

6√
πnk

∫ u
−∞ e−

6t2

nk2 t
)
= k

√
n

2
√

6π
,

(20)

and the algorithm starts from the origin at initialization, x⃗0 = (0, 0, . . . , 0), i.e., Xt = na.
According to Theorem 1, the upper bound on the expected first hitting time is derived as

E(Tε|X0) ≤ 1 +
∫ na

ε

2
√

6π

k
√

n
x = 1 + 2

√
6πn

a
k
− 2

√
6π√
n

ε

k
. (21)

Theorem 3 indicates that if the mutation operator z⃗ of BSO-I obeys U
(
− 1

2 , 1
2

)
, its com-

putational time complexity is E(Tε|X0) = O(
√

n) for the equal coefficient linear function.

3.1.3. When zi ∼ U(−1, 1)

If the mutation operator obeys U(−1, 1), the distribution function of ηt can be repre-
sented by Lemma 3.

Lemma 3. For BSO-I, if its mutation operator z⃗ obeys U(−1, 1), the distribution function F(u) =
P(ηt ≤ u) of the gain ηt is

F(u) =


0, u < 0
1
2 , u = 0
√

3√
2πnk

∫ u
−∞ e−

3t2

2nk2 t, u > 0

. (22)

The proof of this lemma is based on the same principle as Lemma 2.

Proof. According to the definition of ηt, t = 0, 1, . . .,

(1) If f (⃗yt) ≤ f (x⃗t), ηt = 0.
(2) If f (⃗yt) > f (x⃗t), ηt = f (⃗zt).

Since zi ∼ U(−1, 1), z1, . . . , zn are independent of each other, according to the Lindeberg–
Levy center limit theorem, f (⃗zt) obeys N(0, 1

3 nk2).
Hence, the ηt distribution function F(u) = P(ηt ≤ u) is

(1) If u < 0, F(u) = 0.
(2) If u = 0, F(u) = P(ηt = 0) = 1

2 .

(3) If u > 0, F(u) =
√

3√
2πnk

∫ u
−∞ e−

3t2

2nk2 t.
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According to Lemma 3 and Theorem 1, Theorem 4 can be inferred.

Theorem 4. For BSO-I, if its mutation operator z⃗ obeys U(−1, 1), the upper bound on the expected
first hitting time to reach the target fitness value na is derived as

E(Tε|X0) ≤ 1 +
√

6πn
a
k
−
√

6π

n
ε

k
. (23)

The proof of this theorem is based on the same principle as Theorem 2. The proof is
given as follows.

Proof. According to Lemma 3, we have

E(Xt − Xt+1|Xt) = E(ηt|Xt) =
∫ +∞
−∞ uF(u)

=
∫ +∞

0 u
( √

3√
2πnk

∫ u
−∞ e−

3t2

2nk2 t
)
= k

√
n√

6π
,

(24)

and the algorithm starts from the origin at initialization, x⃗0 = (0, 0, . . . , 0), i.e., Xt = na.
According to Theorem 1, the upper bound on the expected first hitting time is derived as

E(Tε|X0) ≤ 1 +
∫ na

ε

√
6π

k
√

n
x = 1 +

√
6πn

a
k
−
√

6π

n
ε

k
. (25)

Theorem 4 indicates that if the mutation operator z⃗ of BSO-I obeys U(−1, 1), its
computational time complexity for the equal coefficient linear function is E(Tε|X0) =
O(

√
n).
The time complexity of BSO-I with three different mutation operators is O(

√
n). In the

next section, we will discuss the running time of BSO considering the case with a disrupting
operation.

3.2. Case Study of BSO with Disrupting Operator

Based on the average gain model, this section analyzes the upper bounds of the
expected first hit time in three BSO cases. When interference operations are added to the
single individual BSO, the algorithm process can be simplified as follows.

In Algorithm 3, the disrupting operations, which are executed with a small probability,
are shown in Steps 3 to 6. Let A = {Pb′|Pb′ < Pb} indicate that replacement occurs, while
Ā = {Pb′|Pb′ ≥ Pb} indicates that no replacement occurs.

To highlight the effect of each mutation operator on the algorithm, we choose the same
mutation operators of BSO-I in Steps 5 and 8 to generate new individuals. As a result,
bi = xi + ∆xi, where mutation operator parameter ∆xi and zi follow the same distribution.

Here, x⃗t = (xt
1, xt

2, . . . , xt
n) ∈ S is still the t-th individual of the algorithm. We have

Xt = an − f (x⃗t) = an − k(xt
1 + xt

2, . . . + xt
n), and the corresponding gain at t is given by

ηt = Xt − Xt+1 = k(xt+1
1 + xt+1

2 + . . . + xt+1
n )− k(xt

1 + xt
2 + . . . + xt

n).

3.2.1. When zi ∼ N(0, 1)

(1) If Pb′ ≥ Pb, it is the same as the result of the case with no disrupting operation in
Section 3.1, and the average gain is

E(Xt − Xt+1|Xt, Ā) = E(ηt|Xt, Ā) =
k
√

n√
2π

. (26)

(2) If Pb′ < Pb and the mutation operator obeys N(0, 1), the distribution function of ηt is
represented by Lemma 4.
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Algorithm 3 BSO-II

1: Initialization: Randomly generate an individual x⃗ = (x1, x2, . . . , xn) ∈ Rn based on
uniform distribution;

2: while stopping criterion is not satisfied do
3: Randomly generate a value Pb′ from 0 to 1 based on uniform distribution;
4: if Pb′ is smaller than a pre-determined probability Pb then
5: replace x⃗ with a randomly generated individual b⃗ = (b1, b2, . . . , bn) based on

uniform distribution;
6: end if
7: if Pb′ < Pb then
8: y⃗ = b⃗ + z⃗, where z⃗ is a mutation operator;
9: else

10: y⃗ = x⃗ + z⃗;
11: end if
12: if y⃗ has better fitness than x⃗ then
13: replace x⃗ with y⃗
14: end if
15: end while
Output: x⃗

Lemma 4. For BSO-II, if its mutation operator z⃗ obeys N(0, 1) and Pb′ < Pb, the distribution
function of the gain ηt is F(u) = P(ηt ≤ u).

F(u) =


0, u < 0
1
2 , u = 0

1
2k
√

πn

∫ u
−∞ e−

t2

4nk2 t, u > 0

. (27)

Proof. According to Step 12 and Step 13 of Algorithm 3, the (t + 1)-th individual is x⃗t+1 ={
x⃗t, f (⃗yt) ≤ f (x⃗t)

y⃗t, f (⃗yt) > f (x⃗t)
.

According to the definition of ηt, t = 0, 1, . . .,

(1) If f (⃗yt) ≤ f (x⃗t), ηt = 0.
(2) If f (⃗yt) > f (x⃗t),

ηt = k(xt+1
1 + xt+1

2 + . . . + xt+1
n )− k(xt

1 + xt
2 + . . . + xt

n)
= k[(bt

1 + bt
2 + . . . + bt

n) + (zt
1 + zt

2 + . . . + zt
n)]− k(xt

1 + xt
2 + . . . + xt

n)
= k[(xt

1 + xt
2 + . . . + xt

n) + (∆xt
1 + ∆xt

2 + . . . + ∆xt
n)]

+k(zt
1 + zt

2 + . . . + zt
n)− k(xt

1 + xt
2 + . . . + xt

n)
= k[(∆xt

1 + ∆xt
2 + . . . + ∆xt

n) + (zt
1 + zt

2 + . . . + zt
n)]

(28)

Since zi ∼ N(0, 1), ∆xi ∼ N(0, 1), and z1, . . . , zn are independent of each other,
∆x1, ∆x2, . . . , ∆xn are also independent of each other. All of zi and ∆xi satisfy the additivity
of the normal distribution. As a result, ηt obeys N(0, 2nk2).

Hence, the distribution function of ηt is F(u) = P(ηt ≤ u).

(1) If u < 0, F(u) = 0.
(2) If u = 0, F(u) = P(ηt ≤ u) = P(ηt = 0) = 1

2 .

(3) If u > 0, F(u) = P(ηt ≤ u) = 1
2k
√

πn

∫ u
−∞ e−

t2

4nk2 t.

Lemma 4 holds.
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Based on the above proofs, we can conclude that

E(Xt − Xt+1|Xt, A) = E(ηt|Xt, A) =
∫ +∞

0
u
(

1
2k
√

πn

∫ u

−∞
e−

t2

4nk2 t
)
=

k
√

n√
π

(29)

Assume that the probability Pb is equal to 0.2 [59]; Theorem 5 can be obtained accord-
ing to Theorem 1.

Theorem 5. For BSO-II, if its mutation operator z⃗ obeys N(0, 1), the upper bound on the expected
first hitting time to reach the target fitness value na is derived as follows.

E(Tε|X0) ≤ 1 +
5
√

2πn
4 +

√
2

a
k
− 5

√
2π

4
√

n +
√

2n
ε

k
. (30)

Proof.

E(Xt − Xt+1|Xt) = P(Ā)E(Xt − Xt+1|Xt, Ā) + P(A)E(Xt − Xt+1|Xt, A)
(full expectation formula)
= (1 − 0.2)× E(Xt − Xt+1|Xt, Ā) + 0.2 × E(Xt − Xt+1|Xt, A)

= 0.8 × k
√

n√
2π

+ 0.2 × k
√

n√
π

= 4k
√

n+k
√

2n
5
√

2π

(31)

The algorithm starts from the origin at initialization, x⃗0 = (0, 0, . . . , 0), i.e., Xt = na.
According to Theorem 1, the upper bound on the expected first hitting time is derived as

E(Tε|X0) ≤ 1 +
∫ na

ε
5
√

2π
4k
√

n+k
√

2n
x

= 1 + 5
√

2πn
4+

√
2

a
k −

5
√

2π
4
√

n+
√

2n
ε
k

(32)

Theorem 5 holds.

According to the proof of Theorem 5, if the mutation operator z⃗ of BSO-II obeys
N(0, 1), its computational time complexity for the equal coefficient linear function is
E(Tε|X0) = O(

√
n).

3.2.2. When zi ∼ U
(
− 1

2 , 1
2

)
(1) If Pb′ ≥ Pb, the result is the same as the case in Section 3.1 with no disrupting

operation. The average gain is

E(Xt − Xt+1|Xt, Ā) = E(ηt|Xt, Ā) =
k
√

n
2
√

6π
. (33)

(2) If Pb′ < Pb and the mutation operator obeys U
(
− 1

2 , 1
2

)
, the distribution function of

ηt is represented by Lemma 5.

Lemma 5. If the mutation operator of BSO-II z⃗ obeys U
(
− 1

2 , 1
2

)
and Pb′ < Pb, the distribution

function of the gain ηt is F(u) = P(ηt ≤ u).

F(u) =


0, u < 0
1
2 , u = 0
√

3√
πnk

∫ u
−∞ e−

3t2

nk2 t, u > 0

. (34)

The proof of this lemma is based on the same principle as Lemma 4. The detailed
derivation is given as follows.
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Proof. According to the definition of ηt, t = 0, 1, . . .,

(1) If f (⃗yt) ≤ f (x⃗t), ηt = 0.
(2) If f (⃗yt) > f (x⃗t), ηt = k[(∆xt

1 + ∆xt
2 + . . . + ∆xt

n) + (zt
1 + zt

2 + . . . + zt
n)]

Since zi ∼ U
(
− 1

2 , 1
2

)
, ∆xi ∼ U

(
− 1

2 , 1
2

)
, and z1, . . . , zn are independent of each other,

∆x1, ∆x2, . . . , ∆xn are also independent of each other. f (⃗zt) obeys N
(

0, 1
6 nk2

)
according to

the Lindeberg–Levy center limit theorem.
Hence, the ηt distribution function F(u) = P(ηt ≤ u) is

(1) If u < 0, F(u) = 0.
(2) If u = 0, F(u) = P(ηt ≤ u) = P(ηt = 0) = 1

2 .

(3) If u > 0, F(u) = P(ηt ≤ u) =
√

3√
πnk

∫ u
−∞ e−

3t2

nk2 t.

Theorem 6 can be concluded based on Lemma 5 and Theorem 1.

Theorem 6. If the mutation operator of BSO-II z⃗ obeys U
(
− 1

2 , 1
2

)
, the upper bound on the

expected first hitting time to reach the target fitness value na is derived as follows.

E(Tε|X0) ≤ 1 +
10
√

6πn
4 +

√
2

a
k
− 10

√
6π

4
√

n +
√

2n
ε

k
. (35)

The proof of this theorem is based on the same principle as Theorem 5. The detailed
derivation is presented as follows.

Proof. According to Lemma 5, we have

E(Xt − Xt+1|Xt, A) = E(ηt|Xt, A) =
∫ +∞

0
u

( √
3√

πnk

∫ u

−∞
e−

3t2

nk2 t

)
=

k
√

n
2
√

3π
. (36)

Suppose that the probability Pb = 0.2; according to Theorem 1, the following conclu-
sions can be drawn:

E(Xt − Xt+1|Xt)
= P(Ā)E(Xt − Xt+1|Xt, Ā) + P(A)E(Xt − Xt+1|Xt, A)
= (1 − 0.2)× E(Xt − Xt+1|Xt, Ā) + 0.2 × E(Xt − Xt+1|Xt, A)

= 0.8 × k
√

n
2
√

6π
+ 0.2 × k

√
n

2
√

3π
= 4k

√
n+k

√
2n

10
√

6π

(37)

The algorithm starts from the origin at initialization, x⃗0 = (0, 0, . . . , 0), i.e., Xt = na.
According to Theorem 1, the upper bound on the expected first hitting time is derived as

E(Tε|X0) ≤ 1 +
∫ na

ε

10
√

6π

4
√

n +
√

2n
x = 1 +

10
√

6πn
4 +

√
2

a
k
− 10

√
6π

4
√

n +
√

2n
ε

k
. (38)

Theorem 6 indicates that for BSO-II, if its mutation operator z⃗ obeys U
(
− 1

2 , 1
2

)
,

the computational time complexity of BSO-II for the equal coefficient linear function is
E(Tε|X0) = O(

√
n).

3.2.3. When zi ∼ U(−1, 1)

(1) If Pb′ ≥ Pb, the result is the same as the case in Section 3.1 with no disrupting
operation. The average gain is

E(Xt − Xt+1|Xt, Ā) = E(ηt|Xt, Ā) =
k
√

n√
6π

. (39)
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(2) If Pb′ < Pb, and the mutation operator obeys U(−1, 1), the distribution function of ηt
is represented by Lemma 6.

Lemma 6. If the mutation operator of BSO-II z⃗ obeys U(−1, 1) and Pb′ < Pb, its distribution
function F(u) = P(ηt ≤ u) of the gain ηt is

F(u) =


0, u < 0
1
2 , u = 0
√

3√
4πnk

∫ u
−∞ e−

3t2

4nk2 t, u > 0

. (40)

The proof of Lemma 6 is based on the same principle as Lemma 4. The proof is given
as follows, which is used to support the proof of Theorem 7.

Proof. According to the definition of ηt, t = 0, 1, . . .,

(1) If f (⃗yt) ≤ f (x⃗t), ηt = 0.
(2) If f (⃗yt) > f (x⃗t), ηt = k[(∆xt

1 + ∆xt
2 + . . . + ∆xt

n) + (zt
1 + zt

2 + . . . + zt
n)]

Since zi ∼ U(−1, 1), ∆xi ∼ U(−1, 1), and z1, . . . , zn are independent of each other,
∆x1, ∆x2, . . . , ∆xn are also independent of each other. f (⃗zt) obeys N(0, 2

3 nk2) according to
the Lindeberg–Levy center limit theorem.

Hence, the ηt distribution function F(u) = P(ηt ≤ u) is

(1) If u < 0, F(u) = 0.
(2) If u = 0, F(u) = P(ηt ≤ u) = P(ηt = 0) = 1

2 .

(3) If u > 0, F(u) = P(ηt ≤ u) =
√

3√
4πnk

∫ u
−∞ e−

3t2

4nk2 t.

Theorem 7. If the mutation operator of BSO-II z⃗ obeys U(−1, 1), the upper bound on the expected
first hitting time to reach the target fitness value na is derived as

E(Tε|X0) ≤ 1 +
5
√

6πn
4 +

√
2

a
k
− 5

√
6π

4
√

n +
√

2n
ε

k
. (41)

The proof of this theorem is based on the same principle as Theorem 5. The proof is
given as follows.

Proof. According to Lemma 6, we have

E(Xt − Xt+1|Xt, A) = E(ηt|Xt, A) =
∫ +∞

0
u

( √
3√

4πnk

∫ u

−∞
e−

3t2

4nk2 t

)
=

k
√

n√
3π

. (42)

Suppose that the probability Pb = 0.2; according to Theorem 1, the following conclu-
sions can be drawn:

E(Xt − Xt+1|Xt)
= P(Ā)E(Xt − Xt+1|Xt, Ā) + P(A)E(Xt − Xt+1|Xt, A)
= (1 − 0.2)× E(Xt − Xt+1|Xt, Ā) + 0.2 × E(Xt − Xt+1|Xt, A)

= 0.8 × k
√

n√
6π

+ 0.2 × k
√

n√
3π

= 4k
√

n+k
√

2n
5
√

6π
,

(43)

The algorithm starts from the origin at initialization, x⃗0 = (0, 0, . . . , 0), i.e., Xt = na.
According to Theorem 1, the upper bound on the expected first hitting time is derived as

E(Tε|X0) ≤ 1 +
∫ na

ε

5
√

6π

4
√

n +
√

2n
x = 1 +

5
√

6πn
4 +

√
2

a
k
− 5

√
6π

4
√

n +
√

2n
ε

k
. (44)
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Theorem 7 indicates that if the mutation operator of BSO-II z⃗ obeys U(−1, 1), its
computational time complexity for the equal coefficient linear function is E(Tε|X0) =
O(

√
n).

3.3. Summary

Overall, we summarize the theoretical analysis results of the running-time analysis
of the single individual BSO in solving the n-dimensional equal coefficient linear function
in six different situations. The theoretical analysis results are shown in Table 1. The
time complexity of the single individual BSO in these six cases is O(

√
n). However, the

coefficients in the display expressions are different.

Table 1. Analysis of the running time of BSO in six different situations.

Algorithm Mutation Operator z⃗ Display Expression for E(Tε|X0) Time Complexity T(n)

BSO-I

N(0, 1) E(Tε|X0) ≤ 1 +
√

2πn a
k −

√
2π
n

ε
k O(

√
n)

U
(
− 1

2 , 1
2

)
E(Tε|X0) ≤ 1 + 2

√
6πn a

k − 2
√

6π√
n

ε
k O(

√
n)

U(−1, 1) E(Tε|X0) ≤ 1 +
√

6πn a
k −

√
6π
n

ε
k O(

√
n)

BSO-II

N(0, 1) E(Tε|X0) ≤ 1 + 5
√

2πn
4+

√
2

a
k − 5

√
2π

4
√

n+
√

2n
ε
k O(

√
n)

U
(
− 1

2 , 1
2

)
E(Tε|X0) ≤ 1 + 10

√
6πn

4+
√

2
a
k − 10

√
6π

4
√

n+
√

2n
ε
k O(

√
n)

U(−1, 1) E(Tε|X0) ≤ 1 + 5
√

6πn
4+

√
2

a
k − 5

√
6π

4
√

n+
√

2n
ε
k O(

√
n)

Table 1 shows the correlation between the expected first hitting time, the dimension n,
the slope k, and the parameter a. The upper bounds on the expected first hitting time of
BSO-II are lower than those of BSO-I. This means that the performance of BSO-II is better
than that of BSO-I in solving the equal coefficient linear function. The disrupting operation
in BSO helps to reduce the running time of the algorithm. Moreover, the upper bounds
on the expected first hitting time of the algorithm using the standard normal distribution
mutation operator are lower than those of the algorithms with the uniform distribution
mutation operator. In addition, the upper bounds on the expected first hitting time of the
algorithm using the U

(
− 1

2 , 1
2

)
mutation operator are approximately two times higher than

those of the algorithm using the U(−1, 1) mutation operator.

4. Experimental Results

In Section 3, we obtain the theoretical analysis results of the expected first hitting time
of single individual BSOs through the average gain model. To verify the correctness of the
analysis results, numerical experiments are presented in this section.

As the number of samples increases, the arithmetic mean will gradually approach true
mathematical expectations based on the Wiener–Khinchine theorem of large numbers [58].
The Wiener–Khinchine theorem of large numbers is introduced as follows.

Suppose that X1, X2, . . . is a sequence of independent and identically distributed
random variables with E(Xi) = µ; for any ε > 0, the following equation will hold.

lim
n→∞

P

(∣∣∣∣∣ 1n n

∑
i=1

Xi − µ

∣∣∣∣∣ < ε

)
= 1. (45)

The Wiener–Khinchine theorem of large numbers indicates that if the number of
samples is sufficiently large, the mathematical expectations are approximately equal to the
mean of samples X1, X2, . . . , Xn. Therefore, we use the arithmetic mean of the first hitting
time of multiple experiments to estimate the actual expected first hitting time.

In this section, the parameters of the proposed approach are set as follows. The fixing
error is ε = 1 × 10−8, the initial individual is x0 = (x0

1, x0
2, . . . , x0

n) = (0, 0, . . . , 0), the slope
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is k = 1, and the target fitness parameter is a = 10. The problem dimension n is set from
10 to 280. BSO-I and BSO-II are conducted on the n-dimensional equal coefficient linear
function for 300 runs for each dimension. The termination criterion for each experiment
is that the error of the optimal solution should be below a predefined threshold ε. Table 2

shows the numerical results of the practical expected first hitting time ̂E(Tε|X0) and the

theoretical time upper bound, where ̂E(Tε|X0) =
∑300

i=1 Tεi
300 , and Tεi is the first hitting time of

the ε-approximation solution at the i-th run.

Table 2. Comparison of the estimation of the expected first hitting time and the theoretical upper
bounds.

Algorithm z⃗ n 10 40 70 100 130 160 190 220 250 280

BSO-I

N(0, 1)
1 +

√
2πn a

k −
√

2π
n

ε
k

80.27 159.53 210.72 251.66 286.80 318.07 346.51 372.79 397.33 420.44

̂E(Tε |X0) 79.65 159.57 212.51 252.09 287.14 316.84 345.61 373.66 398.08 418.75

U
(
− 1

2 , 1
2

) 1 + 2
√

6πn a
k − 2

√
6π√
n

ε
k

275.59 550.17 727.49 869.32 991.04 1099.35 1197.90 1288.93 1373.94 1453.98

̂E(Tε |X0) 275.81 548.63 727.97 868.67 990.57 1102.96 1198.00 1288.83 1373.06 1455.95

U(−1, 1)
1 +

√
6πn a

k −
√

6π
n

ε
k

138.29 275.59 364.24 435.16 496.02 550.17 599.45 644.96 687.47 727.49

̂E(Tε |X0) 137.27 275.45 363.95 435.81 498.34 553.30 598.41 641.36 685.46 723.91

BSO-II

N(0, 1)
1 + 5

√
2πn

4+
√

2
a
k − 5

√
2π

4
√

n+
√

2n
ε
k

74.20 147.40 194.68 232.49 264.93 293.81 320.08 344.35 367.01 388.35

̂E(Tε |X0) 72.97 145.55 193.03 232.77 262.05 294.26 318.51 347.10 365.51 387.87

U
(
− 1

2 , 1
2

) 1 + 10
√

6πn
4+

√
2

a
k − 10

√
6π

4
√

n+
√

2n
ε
k

254.58 508.16 671.91 802.89 915.30 1015.32 1106.33 1190.40 1268.90 1342.82

̂E(Tε |X0) 251.80 505.49 674.53 804.58 915.61 1014.22 1103.21 1190.82 1271.88 1342.12

U(−1, 1)
1 + 5

√
6πn

4+
√

2
a
k − 5

√
6π

4
√

n+
√

2n
ε
k

127.79 254.58 336.45 401.95 458.15 508.16 553.67 595.70 634.95 671.91

̂E(Tε |X0) 128.10 253.61 334.30 400.20 458.07 507.69 554.34 594.77 634.45 669.75

The points larger than the theoretical upper bounds are highlighted in boldface.

As shown in Table 2, the experimental results strongly fit the theoretical upper bounds,
indicating that the error between the theoretical upper bounds and the actual value is
within ε. The points larger than the theoretical upper bounds are highlighted in boldface.
The arithmetic mean of multiple experiments is used to estimate the expected first hitting
time. In the real case, only the arithmetic mean of 300 experiments is used to estimate the
expected first hitting time, which allows a certain statistical error. According to the central
limit theorem, the results obtained from 300 independent experiments follow a normal
distribution. The null hypothesis H0 means that the mean value of the expected first hitting
time in 300 experiments is less than or equal to the corresponding theoretical upper bounds.
The corresponding significance level α is 0.05 with the T testing. Moreover, as shown in
Figure 1, the actual expected running time is followed with the estimated result based on
our proof. All the detailed results are shown in Table 3.

Table 3 provides the numerical results, where h represents the hypothetical result,
p represents the p-value of the test, and ci is the confidence interval. As shown in the T
testing of Table 3, h = 0 and p > α. The null hypothesis H0 is accepted at the significance
level α = 0.05. Therefore, the analytic expression of the running time of BSO obtained
based on the average gain model can characterize the actual upper bounds of the running
time of BSO in these six BSO variants.
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Figure 1. The curve of the expected and the actual running time. The six figures, arranged from
top to bottom and left to right, depict the three distributions corresponding to BSO-I and the three
distributions corresponding to BSO-II, respectively.

Table 3. Statistical results of hypothesis testing.

Algorithm z⃗ n 10 40 70 100 130 160 190 220 250 280

BSO-I

N(0, 1)

h 0 0 0 0 0 0 0 0 0 0

p 0.80 0.48 0.06 0.38 0.41 0.81 0.72 0.31 0.34 0.83

ci
78.41 157.86 210.57 249.84 284.76 314.52 343.03 370.82 395.13 415.87

Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

U
(
− 1

2 , 1
2

) h 0 0 0 0 0 0 0 0 0 0

p 0.44 0.79 0.42 0.60 0.57 0.10 0.49 0.51 0.61 0.27

ci
273.43 545.49 724.19 864.51 986.22 1098.22 1193.50 1283.96 1367.75 1450.62

Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

U(−1, 1)

h 0 0 0 0 0 0 0 0 0 0

p 0.85 0.54 0.57 0.36 0.10 0.07 0.69 0.95 0.81 0.94

ci
135.64 273.05 361.29 432.88 495.38 549.76 595.05 637.79 681.73 720.20

Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

BSO-II

N(0, 1)

h 0 0 0 0 0 0 0 0 0 0

p 0.95 0.96 0.93 0.42 0.99 0.38 0.83 0.06 0.81 0.61

ci
71.71 143.86 191.16 230.52 259.89 291.83 315.84 344.26 362.73 385.06

Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

U
(
− 1

2 , 1
2

) h 0 0 0 0 0 0 0 0 0 0

p 0.98 0.92 0.12 0.23 0.45 0.65 0.86 0.44 0.18 0.59

ci
249.47 502.38 670.91 800.79 911.60 1009.53 1098.54 1185.87 1266.44 1337.20

Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

U(−1, 1)

h 0 0 0 0 0 0 0 0 0 0

p 0.37 0.77 0.92 0.84 0.52 0.60 0.37 0.66 0.59 0.83

ci
126.53 251.47 331.78 397.34 455.24 504.80 551.07 591.02 630.94 665.97

Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
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5. Conclusions

The running time of six BSO variants for the equal coefficient linear function is an-
alyzed in this paper based on the average gain model. The additivity of the normal
distribution and the Lindeberg–Levy center limit theorem are applied to deal with the
superposition of the normal distribution mutation operator and the uniform distribution
mutation operator, respectively. Furthermore, the full expectation formula is utilized to
deal with the problem of individual replacement with a certain probability in the disrupting
operator. This paper also concludes the upper bounds on the expected first hitting time of
the single individual BSO in equal coefficient linear functions.

The analysis results show that the time complexity of BSO-I and BSO-II is O(
√

n)
in the equal coefficient linear function. However, their coefficients are different. In the
linear function with equal coefficients, the upper bound of the expected first hit time of
BSO-II is smaller than that of BSO-I. In addition, the single individual BSO using the
standard normally distributed mutation operator expects a lower upper bound on the
first hit time than the corresponding algorithm using the uniformly distributed mutation
operator. The upper bounds on the expected first hitting time of single individual BSOs
with the U(− 1

2 , 1
2 ) mutation operator are approximately twice those of BSOs with the

U(−1, 1) mutation operator.
In our future work, we will analyze the running time of the population-based BSO in

the equal coefficient linear function. The running time of population-based BSOs in practical
optimization problems is also an important topic. Moreover, it is crucial to extend our
research to practical optimization problems that are encountered in real-world applications
with complex constraints, non-linear relationships, or high-dimensional spaces.
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