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Abstract: Teleoperated robots have attracted significant interest in recent years, and data gloves are
one of the commonly used devices for their operation. However, existing solutions still encounter two
challenges: the ways in which data gloves capture human operational intentions and achieve accurate
mapping. In order to address these challenges, we propose a novel teleoperation method using data
gloves based on fuzzy logic controller. Firstly, the data are collected and normalized from the flex
sensors on data gloves to identify human manipulation intentions. Then, a fuzzy logic controller is
designed to convert finger flexion information into motion control commands for robot arms. Finally,
experiments are conducted to demonstrate the effectiveness and precision of the proposed method.

Keywords: teleoperation; data gloves; fuzzy logic; robot control

1. Introduction

Recently, with human expansion into outer space and the deep sea, teleoperated
robots capable of substituting humans in dangerous and harmful environments have
become a popular technology [1–3]. Teleoperation is a human–robot collaboration system.
Operators control distant robots through devices like joysticks and the robots leverage
human cognition, creativity, and experience to complete tasks in complex environments.
Human intervention in the system can compensate for deficiencies in robot control, sensing,
and artificial intelligence, among others [4–6]. As of today, many scholars have researched
teleoperation technology. Teleoperation robots are usually implemented using vision
cameras and force feedback devices such as Geomagic Touch [7].

The vision-based teleoperation method uses visual cameras to capture real-time im-
ages of the operator’s gestures. These gesture images are then mapped into command
information for the robot arm [8–11]. Du et al. [12] proposed a markerless hand tracking
algorithm for real-time teleoperation of robot arms. They used depth images from Kinect
to estimate the position and posture of the index finger and thumb in three-dimensional
space. The calculated gestures controlled the posture of end effectors in real time. This
method has been validated effectively through pick-and-place object experiments. Handa
et al. [13] developed a depth camera-based teleoperation system called DexPilot, where
two depth cameras visually enable experimenters to control the movements of robot arms
and fingers barehandedly.

However, the vision-based teleoperation method needs to combine camera images to
calculate the position and movement of human hands. This method needs to be conducted
in a well-lit, obstacle-free environment. Thus, it has high requirements for the experimental
environment and is limited by distance.

Robot teleoperation based on force feedback devices utilizes devices like Geomagic
Touch to provide haptic feedback [14–16]. Operators transmit commands to the robot
through the handle and simultaneously receive the interaction information from the robot’s
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interaction with the external environment. Zhu et al. [17] designed a dual manipulator
robotic teleoperation system structure equipped with modular hybrid grippers. Its master
end was composed of two Geomagic Touches and one leap motion controller, while the
slave end encompassed two mechanical arms fitted with two grippers. The leap motion
controller was tasked with tracking human hand movements. Asad et al. [18] presented a
novel state convergence control algorithm for bilateral tele-operation of robotic systems,
emphasizing a model in state space and a design procedure to compute control gains. In
2022, Asad et al. [19] proposed an extended composite state convergence scheme for multi-
primary, multi-secondary teleoperation systems, incorporating a disturbance observer-
based architecture to handle uncertainties. Yang et al. [20] introduced a synchronization
control algorithm for a networked nonlinear master-slave teleoperation system, addressing
operator fatigue in continuous operations.

However, force-feedback teleoperation based on Geomagic Touch requires professional
equipment and operating skills. This makes it inconvenient to use, especially in scenarios
such as assisting the elderly and disabled.

To overcome these issues, researchers began to focus on more natural, intuitive, and
precise teleoperation methods. Data glove technology emerged, which uses built-in sensors
to detect hand movement and posture information [21–24] and transmits these data to the
robot arm system. By wearing a data glove, operators can manipulate mechanical arms in
real time by changing hand movements. This offers higher operation precision and freedom
of freedom, particularly during tasks such as grasping or placement, demonstrating the
immense potential of data gloves [25–28].

Colasanto et al. [29] proposed a method using data gloves to capture finger motion
information, mapping human hand movements onto robotic bionic hands. They developed
a hybrid mapping combining joint space mapping and fuzzy-based posture mapping,
which can achieve both joint mapping based on human hand movements and posture
mapping for grasping tasks. Tyagi et al. [30] proposed using a fuzzy inference system to
control the movement of an intelligent wheelchair. By wearing gloves equipped with flex
sensors, they used their fingers to control wheelchair movement.

However, the above-mentioned data glove-based method faces the following prob-
lems: (1) The data glove-based teleoperation control system involves multi-joint motion
control. Owing to the kinematic differences between human hands and robot arm systems,
teleoperation cannot be simply mapped. (2) Due to varying human skeletal structures and
different operator behavior habits, determining ways to process the sensor information
from data gloves to accurately capture the manipulation intentions of different operators
is key.

Inspired by the above literature review, a teleoperation method using data gloves
based on fuzzy logic controller is proposed. Firstly, the human hand’s skeletal structure
and movements are analyzed to obtain finger flexion information through flex sensor data
from the data gloves. Subsequently, a fuzzy logic controller is designed to implement
teleoperation control. The fuzzy logic controller captures human manipulation intentions
from finger flexion information and sends motion control commands to the robot arm
through fuzzy logic rules. Through wireless communication, real-time data transmission
and operation are realized. Finally, experiments verify the effectiveness of teleoperation
based on data gloves. The main contributions of this paper are summarized as follows:

• We propose a teleoperation method using data gloves and normalize the flex sensor
data to identify human manipulation intentions.

• To achieve control of teleoperation, a fuzzy logic controller is designed. The control
commands for the joint velocity of the robot arm are obtained through fuzzy logic
rules based on finger flexion information.

• The experimental results indicated that compared to the joint velocity output of the
PID controller, the ability of the data gloves to use a fuzzy logic algorithm has better
non-linearity and enhances the stability of teleoperated robot arm control.
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The remainder of this paper is organized as follows: Section 2 offers an overview of
the system and the details of the proposed method. Section 3 presents the experimental
evaluation results. Section 4 concludes the paper.

2. Method
2.1. System Overview

As shown in Figure 1, the framework of the teleoperation system based on data
gloves consists of two parts: Transmitter and Receiver. The operator wears data gloves
and controls the movement of the robot arm in real time by flexing their fingers. The
flex sensors and inertial sensors on the data gloves detect the degree of finger flexion.
The Transmitter filters and standardizes information about finger flexion; the fuzzy logic
controller processes input standard values of finger flexion degrees and outputs control
commands for robot arms. The Receiver receives command information for controlling
joint velocity on robot arms to control its motion state in real time. Data from flex sensors
and robot control commands are transmitted wirelessly. The desired joint velocities given
by the fuzzy controller are transmitted to the bottom controller for each joint embedded in
the robot arm, which can track the desired commands based on the PID control law.

Biomimetics 2024, 9, 116 3 of 17 
 

 

• The experimental results indicated that compared to the joint velocity output of the 
PID controller, the ability of the data gloves to use a fuzzy logic algorithm has better 
non-linearity and enhances the stability of teleoperated robot arm control. 
The remainder of this paper is organized as follows: Section 2 offers an overview of 

the system and the details of the proposed method. Section 3 presents the experimental 
evaluation results. Section 4 concludes the paper. 

2. Method 
2.1. System Overview 

As shown in Figure 1, the framework of the teleoperation system based on data 
gloves consists of two parts: Transmitter and Receiver. The operator wears data gloves 
and controls the movement of the robot arm in real time by flexing their fingers. The flex 
sensors and inertial sensors on the data gloves detect the degree of finger flexion. The 
Transmitter filters and standardizes information about finger flexion; the fuzzy logic con-
troller processes input standard values of finger flexion degrees and outputs control com-
mands for robot arms. The Receiver receives command information for controlling joint 
velocity on robot arms to control its motion state in real time. Data from flex sensors and 
robot control commands are transmitted wirelessly. The desired joint velocities given by 
the fuzzy controller are transmitted to the bottom controller for each joint embedded in 
the robot arm, which can track the desired commands based on the PID control law. 

Data Filtering

Finger Bending 
Normalization

Fuzzy Logic 
Controller

Wireless 
Commu-
nication

Flex Sensor
（Finger movement）

Robot
Controller

Five Joint 
Velocity

Transmitter Receiver

Windows Linux

θ jvel jvel

ˆ
jθ
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movement patterns. Each finger has four DOFs: the Meta-Carpophalangeal (MCP) joint 
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terphalangeals (DIP) joint has one DOF. 

There are four methods for mapping human hand movements: fingertip mapping, 
joint mapping, key point mapping, and object-based mapping. Compared with direct ma-
nipulation in the end-effector space, joint angle mapping can not only regulate the config-
uration of the robot arm to ensure its safety, but also effectively complete the given tasks 
in the complex environments. We employ joint angle mapping. To streamline motion 
analysis, we simplify the human hand skeletal structure into a linkage structure, as de-
picted in Figure 3. 
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Figure 1. System overview.

2.2. The Data Glove
2.2.1. Hand Modeling

Informed by anatomical analysis [31,32], the human hand skeletal model typically
exhibits over 20 degrees of freedom, as shown in Figure 2. Fingers are composed of
phalanges and finger joints, and they have flexion, extension, adduction, and abduction
movement patterns. Each finger has four DOFs: the Meta-Carpophalangeal (MCP) joint
has two DOFs, the Proximal–Interphalangeal (PIP) joint has one DOF, and the Distal
Interphalangeals (DIP) joint has one DOF.
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There are four methods for mapping human hand movements: fingertip mapping,
joint mapping, key point mapping, and object-based mapping. Compared with direct
manipulation in the end-effector space, joint angle mapping can not only regulate the
configuration of the robot arm to ensure its safety, but also effectively complete the given
tasks in the complex environments. We employ joint angle mapping. To streamline motion
analysis, we simplify the human hand skeletal structure into a linkage structure, as depicted
in Figure 3.
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In the figure, l1 represents the length of the metacarpal bone, l2 represents the length of
the proximal phalanx, l3 represents the length of the distal phalanx, θMCP represents the flexion
angle of the Meta-Carpophalangeal joint, θPIP represents the flexion angle of the Proximal-
Inter-phalangeal joint, θDIP represents the flexion angle of the Distal Inter-phalangeal joint
and β indicates abduction and adduction angles at the Meta-Carpophalangeal joint.

2.2.2. Data Filtering

Due to environmental noise and uncertainty, instability and fluctuations of sensor
measurements may occur. To eliminate interference from environmental noise, obtain more
accurate and reliable hand bending angles, and enhance control stability, it is necessary to
filter the data from the data glove. Figure 4 illustrates the raw data and filtered data of the
index finger flexion angle. In this paper, a digital Butterworth low-pass filter is employed
to eliminate high-frequency noise from the raw data, smoothing the data and reducing
instability. The sensor sample rate of the data glove used in this paper is 90 Hz, with a
cutoff frequency set at 5 Hz.
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2.2.3. Normalization

In the process of hand modeling, the flexion angle of each finger joint represents its
current posture. Flex sensors on data gloves measure the degree of finger flexion. However,
due to variations in human skeletal structures, finger sizes, and user habits, individuals
might exhibit different physical ranges of finger flexion. To ensure the robustness of gesture
mapping across diverse operators, this paper normalizes the degree of finger flexion within
a specific range. This standardization facilitates the comparison of finger data across
individuals and simplifies data complexity for more direct comparison and analysis.

θ̂j =
2θc

θj
− 1, j ∈ [MCP, PIP, DIP], (1)

where θc represents the current human finger joint flexion angle outputted by the flex
sensor in the data glove, and θj represents the limit value of finger joint constraints. To
eliminate unnatural gestures caused by sensor noise, upper and lower limits of finger joint
motion are defined through joint constraints.

Human finger joint movement constraints [33] can be expressed as
0◦ ≤ θMCP ≤ 90◦

0◦ ≤ θPIP ≤ 110◦

0◦ ≤ θDIP ≤ 90◦

−15◦ ≤ β ≤ 15◦
. (2)

The data gloves used in this study are equipped with five 2-DOF flex sensors and a
9-DOF IMU for each finger. The direction sensor has an accuracy of ±2.5 degrees, enabling
precise tracking of finger movements with a signal delay of less than 5 ms, thus offering
excellent real-time performance. The sensor frequency is 90 Hz, which is sufficient for
tracking human finger movements. When the fingers bend towards the back of the hand,
the standard value gradually changes from 0 to −1; when they bend towards the palm, it
changes from 0 to 1; when fingers are straightened, their standard value is set at 0. Using
the right index finger as an example, schematic diagrams of three states at standard values
−1, 0 and 1 are shown in Figure 5.
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The selection of gestures is guided by a thorough consideration of user intuitiveness.
We conducted an analysis of common hand movements and gestures to identify that
gestures were chosen to ensure users could easily associate them with the desired robot
movements. The mapping for gestures to robotic commands is explained in Table 1 below.
For the gesture depicted in Table 1, bending and straightening of the left ring finger controls
the forward and reverse rotation of each joint.



Biomimetics 2024, 9, 116 6 of 16

Table 1. The mapping for Gestures to Robotic.

Manipulator Action Gesture

Return to position No finger bend
Move robotic joint 1 Bend left ring finger (left_ring) and bend right thumb PIP joint (right_x)
Move robotic joint 2 Bend left ring finger (left_ring) and bend right index fin-ger (right_x)
Move robotic joint 3 Bend left ring finger (left_ring) and bend right middle fin-ger (right_x)
Move robotic joint 4 Bend left ring finger (left_ring) and bend right ring fin-ger (right_x)
Move robotic joint 5 Bend left ring finger (left_ring) and bend right little fin-ger (right_x)
Move robotic joint 6 Bend left ring finger (left_ring) and bend right thumb MCP joint (rt_mcp)

2.3. Fuzzy Logic Controller

The dynamic characteristics of the teleoperated robot arm system based on data gloves
are complex and difficult to represent with precise mathematical models. Fuzzy logic
control introduces fuzzy logic into the control system, allowing the use of fuzzy, imprecise
information to describe the behavior of teleoperated robot arm systems, thereby enhancing
their nonlinearity. Therefore, this paper proposes a method based on fuzzy logic control to
control remotely the robot arm.

In Figure 6, left_ring represents the standard value of the left hand’s ring finger flexion;
right_x represents the standard values of the right hand’s finger flexions, including the
right hand’s thumb PIP joint (right_thumb_PIP), right hand’s index finger (right_index),
right hand’s middle finger (right_middle), right hand’s ring finger (right_ring), and right
hand’s little finger (right_little); rt_mcp represents the right hand’s thumb MCP joint; velj
represents the joint velocity (rad/s) sent to Joint j of the robot arm, j ∈ [1,2,3,4,5].
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Figure 6. Design of fuzzy logic controller.

Fuzzy logic controller is an intelligent control method that simulates artificial behavior
based on human experience. Its process includes three steps: fuzzification, fuzzy inference,
and defuzzification. This paper uses the standard value of left ring finger flexion and right
finger flexion as two inputs for fuzzy logic controller. Joint velocities are considered as the
output of the fuzzy controller instead of joint position, because the motion space of the
fingers is relatively smaller compared to the motion space of the robot arm joints. Using
joint position as the output may result in lower precision due to this kind of mapping.

For data gloves, mapping with the end-effector position of the robot arm is a chal-
lenging task byits finger joints. Unlike systems with clear end effectors in series or parallel
structure of the general haptic devices, data gloves do not have a distinct end effector in the
task space, making direct mapping complicated. When using data gloves for teleoperation,
it becomes easier to conduct tasks by mapping the joint of the glove to the corresponding
joint of the robot arm. Meanwhile, teleoperating the robot arm in the joint space can well
optimize the joint configuration, contributing to safer and more complex movements.

As shown in Figure 7, the 1~6 joints of the UR3e robot arm are remotely controlled,
respectively, through the PIP joint of the right thumb, right index finger, right middle finger,
right ring finger, right little finger and MCP joint of the right thumb. The magnitude of the
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standardized finger flexion value indicates the magnitude of the robot arm joint velocity,
and, according to left ring finger flexion standard value, changes the direction of rotation
for robot arm joints. Based on the above analysis, fuzzy control rule base designed in this
paper is shown in Table 2. The inputs are fuzzified into seven subsets: Very Small (VS),
Small (S), Moderately Small (MS), Moderate (M), Moderately Large (ML), Large (L), Very
Large (VL). The joint velocity of the mechanical arm is fuzzified into five subsets: NB, NS,
ZE, PS, PB.
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Figure 7. Gesture diagram of robot arm joint control: (a) Move joint 1 forward or reverse; (b) Move
joint 2 forward or reverse. (c) Move joint 3 forward or reverse; (d) Move joint 4 forward or reverse; (e)
Move joint 5 forward or reverse; (f) Move joint 6 forward or reverse.

Table 2. Fuzzy control rule table.

Joint Velocity (velj)
Left_Ring

VS S MS M ML L VL

right fingers’ flexion
standard value

VS Z Z Z Z Z Z Z
S Z Z Z Z Z Z Z

MS NS NS NS Z S S S
M NS NS NS Z S S S

ML NS NS NS Z S S S
L NB NB NS Z S PB PB

VL NB NB NB Z PB PB PB

A triangular membership function is used to implement the fuzzification of inputs
and outputs in the fuzzy control system. The fuzzy control input membership function
designed is shown in Figure 8, and the output membership function is shown in Figure 9.
The fuzzy control surface is shown in Figure 10.
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The above controller output value is defuzzified to derive an accurate inference result.
This paper employs centroid-based defuzzification on robot arm joint velocity to procure
precise output values [34].

vj =

∫
veljµvelj

(velj)dvelj∫
µvelj

(velj)dvelj
, (3)

where velj represents the fuzzy value of the joint velocity of the robot arm; µvelj represents
the membership function value of the joint velocity of the robot arm; vj represents the
precise value of joint velocity for robot arm.

3. Experiments

The experiments are conducted in two parts: the first experiment is carried out to
test the effect of the fuzzy controller on the control of the robot arm joints, and the second
experiment is conducted to observe the whole system’s performance in robot arm grasping.

3.1. Experimental Setup

As shown in Figure 11, the experimental platform consists of Prime X Haptic VR
data gloves from MANUS, a Lenovo Savior Y9000P laptop, Easy Gripper stepper motor
mechanical claw, and UR3e robot arm with a force/torque sensor from Universal Robots
company. The data glove is equipped with flex sensors and inertial sensors. The flex sensors
can detect the degree of finger flexion, as shown in Figure 12. The experiment communicates
between ROS and robot arm wirelessly, realizing cross-platform communication between
Windows and Linux based on the distributed operating system. It achieves real-time data
transmission between the data glove and the robot arm.
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In our experimental setup, we utilize the wireless LAN (Local Area Network) to
ensure the finger flexion data collected by the gloves could be transmitted to the controller
on Linux.

3.2. Fuzzy Logic Control Testing

In order to validate the effectiveness of the proposed method, we designed two
teleoperation robot arm methods: one is based on a PID controller for remotely controlling
the robot arm, and the other is based on a fuzzy logic controller for remotely controlling the
robot arm. The UR3e robot arm’s Joints 1 to 6 are remotely manipulated through the PIP
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joint of the right thumb, right index finger, right middle finger, right ring finger, right little
finger and MCP joint of the right thumb. Using one-dimensional velocity as an example,
we conducted an experimental comparison between the two controllers.
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By combining the bending of the left ring finger and the right fingers, remote control
of Joints 1–5 of the robot arm was achieved. Specifically, the right thumb controlled the
movement speed of Joint 1, the right index finger controlled the movement speed of Joint 2,
the right middle finger controlled the movement speed of Joint 3, the right ring finger
controlled the movement speed of Joint 4, and the right little controlled the movement
speed of Joint 5. The bending and straightening of the left ring finger controlled the forward
and reverse motion of each joint, thereby completing the control of the robot arm based on
the data glove. The mapping of the standard values of bending in the fingers of the left and
right hands to the joint velocities of the robot arm using a PID controller is as follows:

velj =


right_x − 0.5, le f t_ring < 0.5 and 0.5 < right_x
−(right_x − 0.5), 0.5 < le f t_ring and 0.5 < right_x
0, else

(4)

where left_ring represents the standard value of left hand’s ring finger flexion; right_x
represents the standard values of right hand’s finger flexions, including right thumb
(right_thumb), right index finger (right_index), right middle finger (right_middle), right
ring finger (right_ring), and right little finger (right_little); velj represents the joint velocity
(rad/s) sent to Joint j of the robot arm, j ∈ [1,2,3,4,5].

The experimental results are shown in Figures 13 and 14. It can be seen that when left
hand’s ring finger flexion standard value is less than 0.5 and right hand’s thumb flexion
standard value gradually increases from a smaller value to approach 0, joint velocity of
Joint 1 of robot arm gradually increases when right hand’s thumb flexion standard value is
greater than 0.5 with movement direction towards left. When the right hand’s ring finger
flexion standard value is less than 0.5, the velocity of Joint 1 remains at zero, thus indicating
no movement. The movement of the robot arm matches the control expectations.

From Figure 14, it appears that compared to the joint velocity output of a PID controller,
the data glove’s ability to control the robot arm using a fuzzy logic algorithm leads to
better results than that of a PID controller. This is shown by its sensitivity to finger flexion
changes. Moreover, its higher non-linearity prevents abrupt changes in joint velocity due
to abnormal fluctuations in the data glove’s control values, enhancing the stability of
teleoperated robot arm control. According to the experimental results, the measured delay
time of the robot arm control system using a fuzzy controller is less than 0.05 s.
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Figure 14. Fuzzy Logic Controller Test Results.

In order to validate the teleoperation of the robot arm predicated on fuzzy logic
control, the left ring finger governs the robot arm’s rotational direction, while the right
hand independently controls the movement velocity of the robot arm’s joints. The standard
values of each finger’s flexion and the robot arm’s joint velocity are shown in Figure 15. It
can be seen from Figure 15 that the joint motion of the robot arms can follow the flexion
motion of the fingers.

3.3. Teleoperated Grasping Testing

Figure 16 shows an object grasping experiment designed to substantiate the com-
prehensive functionality of the remote operation system in this study. The experimental
procedure comprises the following steps: (1) Moving to the initial position. (2) Grasping
the object. (3) Shifting to the target position. (4) Releasing the object. (5) Reverting to the
initial position.

In the experiment of remotely operating a robot arm to grasp objects, the robot arm
first rotates left to above the object. During its descent, it makes fine adjustments based on
the relative position between the object and end effector of robot arm, ensuring that the
end effector can smoothly grab the object. After grasping the object, the end effector of the
robot arm rises to a certain height, then turns right until it reaches above the designated
location. Then, the end effector slowly descends until the object completely touches table
surface. Finally, the robot arm lifts up, completing the experiment of remotely operating
a robot arm to grab an object. The position of the end effector is shown in Figure 17. The
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green point in Figure 17 represents the starting position of robot arm’s endpoint and the
red point represents the final position.
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Figure 18 shows the information of the data gloves for both hands. During this process,
the MCP joints of right index finger, right little finger, and right thumb always maintain a
standard flexion value of zero. The movements of the robot arm mainly depend on Joint 1,
Joint 3, and Joint 4, while Joints 2, 5, and 6 remain relatively stationary.
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Figure 18. Glove data: (a) Finger curvature of the left ring; (b) Finger curvature of the right hand. 

In the aforementioned movements, the joint velocity and joint position of the robot 
arm are shown in Figure 19. The change range of the joint position of robot arm is large, 
but the motion curve is relatively smooth, without abnormal jitter and jump, indicating 
that the fuzzy controller proposed in this paper is quite stable and reliable. The joint ve-
locity of robot arm can follow finger flexion movement, change rotation direction accord-
ing to changes in standard flexion value of left ring finger, and balance flexibility and 
stability at same time. According to the experimental results, using data gloves for tele-
operation based on fuzzy logic controller produces higher non-linearity, which is sensitive 
to the finger flexion changes. The measured delay time of the control system using a fuzzy 
controller is less than 0.05 s due to the communication delay. 

Figure 17. Robot arm end trajectory.
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In the aforementioned movements, the joint velocity and joint position of the robot 
arm are shown in Figure 19. The change range of the joint position of robot arm is large, 
but the motion curve is relatively smooth, without abnormal jitter and jump, indicating 
that the fuzzy controller proposed in this paper is quite stable and reliable. The joint ve-
locity of robot arm can follow finger flexion movement, change rotation direction accord-
ing to changes in standard flexion value of left ring finger, and balance flexibility and 
stability at same time. According to the experimental results, using data gloves for tele-
operation based on fuzzy logic controller produces higher non-linearity, which is sensitive 
to the finger flexion changes. The measured delay time of the control system using a fuzzy 
controller is less than 0.05 s due to the communication delay. 

Figure 18. Glove data: (a) Finger curvature of the left ring; (b) Finger curvature of the right hand.

In the aforementioned movements, the joint velocity and joint position of the robot
arm are shown in Figure 19. The change range of the joint position of robot arm is large, but
the motion curve is relatively smooth, without abnormal jitter and jump, indicating that
the fuzzy controller proposed in this paper is quite stable and reliable. The joint velocity
of robot arm can follow finger flexion movement, change rotation direction according to
changes in standard flexion value of left ring finger, and balance flexibility and stability at
same time. According to the experimental results, using data gloves for teleoperation based
on fuzzy logic controller produces higher non-linearity, which is sensitive to the finger
flexion changes. The measured delay time of the control system using a fuzzy controller is
less than 0.05 s due to the communication delay.
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In this paper, a data glove-based teleoperation using fuzzy logic controller method 
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ardized the data to interpret human operational intentions. A fuzzy logic controller was 
designed to achieve precise control of teleoperation. The experimental results indicated 
that compared to the joint velocity output of the PID controller, the ability of the data 
glove to use a fuzzy logic algorithm for mobile robot control leads to better results. This 
is shown by its sensitivity to finger flexion changes. Moreover, its higher non-linearity 
prevents abrupt changes in joint velocity due to abnormal fluctuations in the data glove’s 
control values, enhancing the stability of teleoperated robot arm control. 

To further improve the performance of the proposed teleoperation method, our fu-
ture work will develop a more complete teleoperation system and consider the case of a 
robot interacting with the external environment. 
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4. Conclusions

In this paper, a data glove-based teleoperation using fuzzy logic controller method was
proposed and validated. We collected hand posture through data gloves and standardized
the data to interpret human operational intentions. A fuzzy logic controller was designed to
achieve precise control of teleoperation. The experimental results indicated that compared
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to the joint velocity output of the PID controller, the ability of the data glove to use a
fuzzy logic algorithm for mobile robot control leads to better results. This is shown by its
sensitivity to finger flexion changes. Moreover, its higher non-linearity prevents abrupt
changes in joint velocity due to abnormal fluctuations in the data glove’s control values,
enhancing the stability of teleoperated robot arm control.

To further improve the performance of the proposed teleoperation method, our future
work will develop a more complete teleoperation system and consider the case of a robot
interacting with the external environment.
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