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Abstract: Enabling a robot to learn skills from a human and adapt to different task scenarios will
enable the use of robots in manufacturing to improve efficiency. Movement Primitives (MPs) are
prominent tools for encoding skills. This paper investigates how to learn MPs from a small number
of human demonstrations and adapt to different task constraints, including waypoints, joint limits,
virtual walls, and obstacles. Probabilistic Movement Primitives (ProMPs) model movements with
distributions, thus providing the robot with additional freedom for task execution. We provide the
robot with three modes to move, with only one human demonstration required for each mode. We
propose an improved via-point generalization method to generalize smooth trajectories with encoded
ProMPs. In addition, we present an effective task-constrained optimization method that incorporates
all task constraints analytically into a probabilistic framework. We separate ProMPs as Gaussians
at each timestep and minimize Kullback-Leibler (KL) divergence, with a gradient ascent—descent
algorithm performed to obtain optimized ProMPs. Given optimized ProMPs, we outline a unified
robot movement adaptation method for extending from a single obstacle to multiple obstacles. We
validated our approach with a 7-DOF Xarm robot using a series of movement adaptation experiments.

Keywords: human-robot skill transfer; learning from demonstration; probabilistic movement

primitives; task-constrained optimization; movement adaptation

1. Introduction

With modern technological advancements, artificial intelligence (Al) is playing a
pivotal role in transforming various domains, including smart cities and industrial man-
ufacturing. In smart cities, Al, coupled with the Internet of Things (IoT) and blockchain,
enables data-driven decision-making, real-time monitoring, and secure data sharing. These
capabilities empower smart cities to optimize resource allocation, enhance public safety,
improve traffic management, and provide personalized services to residents [1,2]. By an-
alyzing vast amounts of data collected from sensors, IoT devices, and other sources, Al
facilitates intelligent automation, helping urban systems address complex challenges effi-
ciently [3,4].

Similarly, in industrial manufacturing, robotics is undergoing a parallel transforma-
tion driven by the need for adaptability and automation [5]. Traditionally, robotic tasks in
manufacturing have been performed in carefully structured environments with repetitive
trajectories. However, when the environment changes, robots often require extensive repro-
gramming to adapt. Addressing this limitation, Al-driven approaches, such as learning
from human demonstrations, provide robots with the ability to adapt to varying task sce-
narios, making them more versatile and resilient [6]. In this context, Movement Primitives
(MPs) emerge as a well-established method in robotics. MPs enable the generalization of
movements through temporal and spatial modulation, allowing robots to sequence and
combine different primitives to accomplish complex tasks efficiently [7].

Biomimetics 2024, 9, 738. https:/ /doi.org/10.3390 /biomimetics9120738

https://www.mdpi.com/journal /biomimetics


https://doi.org/10.3390/biomimetics9120738
https://doi.org/10.3390/biomimetics9120738
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-3400-3037
https://orcid.org/0000-0002-5124-3999
https://orcid.org/0000-0001-8138-2802
https://orcid.org/0000-0002-1960-6278
https://doi.org/10.3390/biomimetics9120738
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9120738?type=check_update&version=2

Biomimetics 2024, 9, 738

2 0f 23

The core challenge lies in how to learn and adapt MPs from finite human demonstra-
tions. Current methods can be categorized into two groups: (i) probabilistic approaches
and (ii) dynamical systems. Probabilistic approaches commonly involve methods such as
Hidden Markov Models-Gaussian Mixture Regression (HMM-GMR) [8] and Gaussian
Mixture Models—Gaussian Mixture Regression (GMM-GMR) [9], which model the joint
probability distributions of multiple demonstrations and derive the desired trajectories via
regression. Although these methods capture the statistical variability of demonstrations,
they struggle to adapt to new task scenarios. To address this, Task-Parameterized Gaus-
sian Mixture Models (TP-GMMs) [10] incorporate task parameters into GMMs, enabling
adaptation to novel conditions. However, TP-GMMs fail when the task parameters are
not included in the learning process. Probabilistic Movement Primitives (ProMPs) [11]
represent movements via hierarchical Bayesian models with probabilistic conditioning
to achieve via-point generalization, capturing correlations from different demonstrations.
However, ProMPs need a great number of demonstrations to obtain reliable distributions,
and the extrapolation capability is limited once via-points are out of the original range.

On the other hand, dynamical systems approaches, such as Dynamic Movement Primi-
tives (DMPs) [12,13], describe movements using nonlinear differential equations modulated
by external forcing terms. DMPs are well suited for generalizing start and end points from
a single demonstration but are unable to handle intermediate via-points effectively. To en-
hance their capabilities, some works have combined DMPs with reinforcement learning
(RL) to learn couplings across different control variables [14].

Recently, hybrid methods that combine DMPs and ProMPs have been proposed.
Probabilistic Dynamic Movement Primitives (ProDMPs) [15] convert DMPs’ numerical
integration into basis functions to denote trajectories with ProMPs. However, the number
of DMP trajectories required to learn ProMPs affects the performance. Via-point Move-
ment Primitives (VMPs) [16] denote movements with elementary and shape trajectories,
adapting to single or multiple demonstrations. A threshold is defined to distinguish DMP
extrapolation and ProMP interpolation. However, VMPs may result in high accelerations
at transition points with nonsmooth trajectories.

When adapting MPs to different task scenarios, via-point generalization is not suffi-
cient. Task constraints manifested as inequalities like position and velocity limits, obstacles,
and virtual walls are imposed on MPs. The objective is to generate trajectories in close
proximity to the original trajectories while satisfying task constraints. MP adaptation
methods are extensively researched; for instance, DMPs extend obstacle avoidance by
imposing repulsive forces in the acceleration domain [17]. Position limits are ensured by
transforming trajectories into exogenous states [18]. However, DMPs are prone to becoming
trapped in local minima when multiple forces act mutually. Moreover, DMPs are adapted
to a particular trajectory, losing additional freedom to execute tasks in different ways.

In contrast, ProMPs encode variations with a covariance matrix, and the variations
can be further exploited to satisfy task constraints. Ref. [19] combines multiple ProMPs to
achieve obstacle avoidance. However, it is impractical to foresee all situations by adding
primitives. Another way is to exclude specific regions from the original ProMPs via
optimization; for instance, ref. [20] formulates optimization as a policy search problem
with Kullback-Leibler (KL) divergence and reward functions defined to derive the policy,
while the work in [21] frames optimization by minimizing the Mahalanobis distance to
the original ProMPs in conjunction with obstacle distance computation. However, the
methods mentioned above only optimize ProMPs for the robot end-effector, with no regard
to possible collisions for other robot links. Moreover, they only handle obstacle constraints,
and other task constraints, like virtual walls and joint limits, are not considered. Ref. [22]
incorporates multiple task constraints into an integrated probabilistic framework; they
directly optimize ProMPs with gradient ascent-descent algorithms. However, ProMPs
will affect Gaussians in each timestep, and the timesteps satisfying task constraints will be
optimized, leading to a long optimization time.
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In this work, we propose an improved via-point generalization method that allows a
robot to acquire skills from only one demonstration. ProMPs are encoded by generalizing
trajectories with via-points rather than providing more demonstrations. Furthermore,
we propose an improved task-constrained ProMP adaptation method by separating each
timestep with Gaussians and only optimizing feature timesteps violating task constraints.

To summarize, our contributions are as follows:

(1) We propose an improved via-point generalization method that allows a robot to
acquire skills from only one human demonstration with smooth trajectories generalized to
learn ProMPs;

(2) We propose an effective task-constrained ProMP optimization method that incor-
porates all task constraints analytically into a probabilistic framework;

(3) Given optimized ProMPs, we propose a unified robot movement adaptation
method extending from a single obstacle to various obstacles.

This paper is organized as follows: Section 2 provides derivations of the theoretical
formulas and methods involved in this paper, with Section 2.1 presenting via-point tra-
jectory generalization and ProMP encoding, Section 2.2 formulating the task-constrained
optimization problem, and Section 2.3 introducing the optimization procedure; Section 3.2
outlines the complete robot movement adaptation procedure in principle. We validate and
compare our method through experiments in Section 4. Finally, we conclude this work and
outline future research directions. For clarity, all definitions and notations employed in this
paper are summarized in Table 1.

Table 1. Definitions and notations in this paper.

Dimensions Description
T Timesteps of a trajectory
n The window width of the Moving Average Filter (MAF)
N The demonstration number
D The DoF number of the robot
K The number of Gaussian basis functions
Feature Spaces Description
p=[xy7z,0= [qw, I 9y ‘72] Position p and orientation o sets of the human hand centroid
y(p),y(o) Combined 3D and orientation trajectories
h(p),h(o) Elementary 3D and orientation trajectories
f(p), f(o) 3D and orientation shape modulation
P Pend The start and end 3D points
r The 3D scale factor denoting the proportion of projective points
tyvias Pyia The timestep and 3D positions of a via-point
The 3D shape modulation coefficient
{q t}zli 1 All joint sets of the robot with the inverse kinematics (IK) algorithm
et der The minimum and maximum joint positions for k-th joint’s freedom
X The expected waypoint positions
My, byy The hyperplane normal and bias vectors
Amin The minimum distance between the robot and repellers
Rgafe The repeller safety radius
Distributions Description
Y(t) Gaussian basis functions
w; The weight vector of the i-th Gaussian kernel
& Zero-mean Gaussian noise
{# Zw} The mean and covariance of the weight vector
p The Gaussian noise covariance
po(w) = N (w; 1o, x%) Initial Gaussian distributions of ProMPs

pr(w) = N (w; pl, L%,) Optimized Gaussian distributions of ProMPs
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Table 1. Cont.

Distributions Description

0o = (), 0?) The initial mean and standard deviation of each timestep

0" = (u;,of) The optimized mean and standard deviation of each timestep
ckr = Cpy, 0t) The k-th task constraint function related to (g, 0't)

FCk,r (l’lt' 0'1)

The cumulative distribution function (CDF) of the k-th task constraints

H(ckr) One-sided or two-sided inequality constraints
Py, (H(cky)) Task constraint probability
Distributions Description
Xyt The confidence level to represent the task constraint probability
At The distance threshold to represent the task constraint probability

S ={ckt(q1, 92, 4qp), 9k € {pr — 201, ;. +20,}}  The estimation set for nonlinear task constraints

E Ck,t) , A\ (Ck,t)

I'(a,B)
Dx[6]]60]
Akt
L(6, {Aks})

Mk

The estimated mean and variance of nonlinear task constraints

A Gamma distribution with shape a and rate

The KL divergence between two univariate Gaussian distributions
The Lagrange multiplier

The Lagrangian function

The convergence speed parameter

2. Theoretical Formulation and Methodology
2.1. Generating Trajectories and Encoding Distributions
2.1.1. Via-Point Trajectory Generalization

Via-point trajectory generalization enables robots to quickly generate a diverse set of
feasible motions for a given skill while retaining key features from human demonstrations.
This process includes generalizing both positions and orientations, allowing the robot to
efficiently generate task-specific trajectories while maintaining task diversity by teaching
the robot new skills. We provide three modes, namely, moving above, left, and right around
the obstacle, as shown in Figure 1. Only one demonstration is required for each mode, and
it is obtained by tracking human hand movements with the Kinect FORTH system [23]. We
select the human hand centroid as the tracking point, with position and orientation sets

{x, Y, 2,05 9y 9y, qw} recorded in T timesteps. To ensure trajectory smoothness, we apply

a Moving Average Filter (MAF) with a window width n and transform the trajectory into
the robot base frame. To learn and generalize human demonstration features, we express
the trajectory as a combination of the elementary trajectory / and shape modulation f.

\QX" - //—‘(e,’ J .
O,Qi agle 0}\)0" “p<—start point

— — <« -
r «——obstacle

end point

N——"

Figure 1. Three skills for a robot to move around an obstacle based on human demonstration.

(1) Position Generalization

Regarding 3D positions, we denote position sets p by y(p) = h(p) + f(p). The ele-
mentary trajectory /(p) is a line directly connecting the start point p; and the end point
Pongs With the shape modulation defined as f(p) = p — (py + P1Pena), Where r is the
scale factor denoting the proportion of projective points on the line h(p). If no inter-
mediate via-points are required, we directly generate new projective points between a

new start point pi*" and end point p Y according to r, with the learned shape mod-
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ulation f(p) added to generalize new trajectory sets p"*" = p7V + rpﬁ‘ewpgfld;% + f(p)-

Once a via-point (tyia, pyi,) is needed, we scale the shape modulation with the coefficient

k= ‘pvia - ( pi +rpie pgﬁé") ‘ |f(p)|". Subsequently, new trajectory sets are general-

= PR+ rplV Pl +KF(p).

new

ized to p

(2) Orientation Generalization

Considering that orientation dimensions are affected by each other, we define the
trajectory as y(o) = h(o) x f(0), where 0 = {qw, Iy 9y qz] represents quaternion sets,
and X denotes quaternion multiplication. Spherical linear interpolation (SLERP) provides
an efficient way to interpolate between two quaternions while preserving their spherical
geometry. It ensures a constant angular velocity along the shortest path on the unit sphere,
which results in smooth and natural transitions between orientations. We thus derive the
elementary trajectory i(o0) by SLERP with the ratio set uniformly from 0 to 1 to learn f(o).
Once new start and end quaternion sets are required during generalization, we compute a
new elementary trajectory /(0)"" with the learned shape modulation f(0) superimposed
to generate a new orientation trajectory y(0)"*". Note that there is no need to generalize
orientation via-points, as we can generalize 3D positions with via-points while keeping the
original orientations.

2.1.2. Modeling Joint Distributions with Probabilistic Movement Primitives

Probabilistic Movement Primitives (ProMPs) [24] are probabilistic methods for en-
coding variances in joint or Cartesian space. To integrate all task constraints analytically,
we encode ProMPs in joint space. Given the position and orientation sets generalized in
Section 2.1.1, we obtain all joint sets {q, } f\i ; via the Jacobian inverse kinematics (IK) algo-
rithm, where g, € RP,t e [0, T], N is the demonstration number, and D is the DoF number.
ProMPs model joint positions as a linear combination of Gaussian basis functions ¥ () and
a weight vector w; in the presence of zero-mean Gaussian noise as &, g,(t) = ‘I’(t)Twl- + &y.
Joint positions in one demonstration are expressed with the weight vector w; via linear
ridge regression [25]. Using the parameters 8 = {y_,, L, } to estimate the weight vector w
with Gaussian distributions, the probability of observing a trajectory T given 8 becomes

p(7;0) = p(t|w)p(w; 0)dw
= HN(q(f)|‘I’(t)Tyw,‘I’(t)T>:w‘If(t) + zn) (1)
t

where p,, and L, denote the mean and covariance of the weight vector, which are derived
by maximum likelihood estimation, and X, is the Gaussian noise covariance. To model
joint distributions with ProMPs, we first transform the human hand trajectory into the
robot base frame and derive the corresponding joint values. These joint values are then
represented as a combination of K Gaussian basis functions and their associated weights.
We compute the mean and covariance of the weights. The weight distributions capture
the variability in human demonstrations and enable the robot to execute tasks flexibly.
During task execution, the robot samples trajectories from the joint distribution at each
timestep, ensuring adaptability while preserving the demonstrated variability.

2.2. Optimizing Distributions with Task Constraints
2.2.1. Problem Formulation

Given the initial ProMPs po(w) = N (w;uY, ZY,), the main objective is to obtain
optimized ProMPs that are as close as possible to the original ProMPs while satisfying task
constraints. Achieving this trade-off requires a method to quantify the similarity between
distributions while effectively encoding task constraints. In this context, KL divergence is
particularly suitable due to its closed-form solution for Gaussian distributions, ensuring
computational efficiency. Additionally, the cumulative distribution function (CDF) offers a
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probabilistic framework that incorporates variability and uncertainty into the constraints,
considering the stochastic nature of ProMPs. As a result, we use KL divergence to denote
the similarity and formulate task constraints with a cumulative distribution function (CDF).
Since ProMPs model each timestep as a Gaussian distribution, we separate each timestep
with Gaussian distributions by converting the initial ProMPs to the mean and standard
deviation (u), ) of each timestep ¢, with the new mean and standard deviation (y}, o})
optimized under task constraints separately. Let ¢,; = C(p;, o) denote the kth task
constraint function related to (y;, 0+), and let F.,, (p;, 0+) denote the CDF of ¢y ;. We can
rewrite the optimization problem as a Lagrangian function:

L(m o1, {Aes}) =Dicw [N (g, o) IV (a8, 07 ) |

+ Z /\k,t |:ak,t - Fck,t (,ut/ U't):|
k,t

()

where ay ; is the confidence level to represent the task constraint probability Py, o, (H(ck;)) >
oy, H represents one-sided or two-sided inequality constraints, and the optimized (], o}) are

derived by gradient ascent-descent methods: (y;*, ot {)\;(‘ . }) = max min L(p,, o, { A })-
’ k=0 B Ot

Subsequently, given (y;, o} ), we implement another optimization step to obtain the op-
timized ProMPs as p}, = min (¥} p,, — p;), L, = rgin(‘l’tTZw‘I’t — of). In the next sec-
HPw w

tion, we formulate every task constraint by defining the function ¢ ; = C(p,, 0'+) related
to (p,, 0t), expressing the inequality constraint function H and approximating the CDF

FCk/t (.ut' o'f)'

2.2.2. Constraint Definitions in Joint and Cartesian Space
(1) Joint Range Limit

In this paper, we focus on retaining the original joint ranges learned from ProMPs.
We formulate the constraint function ¢ ; = g,(p;, 0+) and denote two-sided constraints by

P (750 < 4, () < g
confidence level, and qkmti“ and g7 are the minimum and maximum joint positions. We

approximate joint positions as Gaussians and calculate the difference in the CDF to obtain
Fckt(l’lt’ o).

) > &y, where k denotes the kth joint’s freedom, &y ; is the

(2) Waypoints

Waypoints that we expect the robot to reach at timestep ¢ are defined in the Cartesian
space with the FK function T. Based on the distance square between expected and actual
points, we denote the waypoint constraint function by c; = |T(q,(p;, o)) — X;|? and ex-
press the one-sided constraint as Py, ¢, <|T(qt(yt, o)) — Xe|* < d2 t) > ay;, where dy ; is

the distance threshold, and ay ; is the confidence level. Because of the nonlinear nature of
Ck, we estimate the distribution as follows:

$ = {cxt(q1, 92, ap) 4k € {1 — 20k, pye + 204} }
E(ck ) ~Mean]S] 3)
V(cks) ~Var[S]

where D is the DOF number, and we utilize 2x the standard deviation to constitute the set
S and compute the mean and variance with moment matching. The random variable cy ;
distribution is a generalized x?, and we approximate it with a simpler Gamma distribution
with shape « and rate § to represent the CDF analytically. The CDF is then computed with
Fe,, = F(dg; T(a, B)) to denote the waypoint constraint probability.
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(3) Hyperplane
Hyperplane constraints, known as virtual walls, are defined in Cartesian space to

restrict the robot to specific planes. We formulate the hyperplane constraint function as
ot = 1l (T(q,(uy, 0+)) — bis), where ny ; and by ; are the hyperplane normal and bias vectors,

with a one-sided inequality constraint expressed as Py, o, ("1{ (T(q,(py,01)) = byy) < 0) >
ay ¢ The ¢y distribution is a linear transformation of Cartesian 3D positions T(q,(#;, 0+));

however, T is nonlinear in (y,, 0'+). We thus use our moment-matching method (Equation (3))
to obtain the estimated mean E[T] and variance V[T], so the overall distribution becomes

Chp ~ N( n{t(E[T]) — by ,n,{rtV[T]nk,t ), with the CDF computed with Gaussians to
denote the probability.

(4) Repellers

Repeller constraints between the robot and obstacles are imposed on the robot end-
effector or other links. We define the danger distance considering only dangerous situations
where the robot is prone to collide. We compute the shortest distance between the robot
link and obstacles with the minimum distance dpin found. If dp,, is greater than the
obstacle safety radius Rg,f, the danger distance is 0; otherwise, the danger distance is
ddanger = Rsafe — dmin. We formulate the constraint function and express the one-sided

inequality to show the probability of dmin > Rsafe as Py, 0, (ddanggr < 0) > gt The ¢y,

distribution is nonlinear in (y,, o+); we thus utilize Equation (3) to estimate and compute
the CDF with Gaussians to denote the probability.

2.3. Optimization Procedure

Based on the Lagrangian function and constraint function defined in Section 2.2.2, we
concretize the procedure to obtain optimized parameters. For notational brevity, we use
the notations 8y = (p?, ¢?) and 8 = (p,, 0'+) to denote the initial parameters and optimized
parameters. We rewrite the Lagrangian function in Equation (2):

L(0, {Aes}) = Dic[01180) + X" et (wes — For, (0)) @
k.t

The term Dk [6]|6)] denotes the KL divergence between two univariate Gaussian distri-

butions, with the optimized parameters derived as (9*, {A;t}) = max mein L(6,{Axi})-
k,t=

We employ a double-loop gradient ascent-descent algorithm because it is well suited for
solving optimization problems involving both maximization and minimization objectives.
In this context, the outer loop optimizes the Lagrange multipliers Ay ;, which enforce the
task constraints, while the inner loop minimizes the parameters 0 to achieve the best fit to
the desired ProMPs. This approach ensures efficient convergence by decoupling the updates
of the dual and primal variables, enabling the algorithm to effectively handle the inherent
coupling between task constraints and distribution similarity. The double-loop structure
also provides a systematic way to balance the trade-off between satisfying the constraints
and minimizing the KL divergence. To be specific, for the outer loop, we optimize A; ; with
gradient quasi-ascent steps. We use the Exponential Method of Multipliers (EMM) [26] to
solve inequality constraints via exponential factors by expressing the optimized Ay ; after

each iteration as )\]({st+ D= )\](cst) . exp{iyka )\k,tL}’ where 773 decides the convergence speed,

and the gradient of {)\k,t} is obtained by 0 A L= e — Fep, (6). For the inner loop, we
optimize 0 with the gradient descent method. We adopt the LBEGS [27] method to conduct
nonlinear optimization with low memory cost. We perform several LBFGS steps, with the
gradient dgL computed using the Tensorflow automatic differentiation framework [28].
The convergence conditions are checked after each iteration to speed up the process. Given
the optimized (p}, o} ), we perform several LBFGS steps to obtain (p;, L, ). For parameter
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selection, we start by choosing initial values for the parameters 6, {Ag/t}, 7k and then
iteratively update them through inner- and outer-loop optimizations until convergence.
To integrate the methods presented in this section, the overall optimization procedure is
summarized in Algorithm 1.

Algorithm 1 Task-constrained optimization algorithm of ProMPs.

Input: (9,29 o> Original ProMPs
Output: (u),XZ;) > Optimized ProMPs
Initialization:

e Compute (i), o).
e Derive ¢y, H, and F,, (p;, 0+) (see Section 2.2.2) to construct Equation (2).

0 00— 6, {Ag,t} defined in Equation (4).

U Learnable parameters 1: (y?‘, o AL t)
Optimization 1:

repeat > Double-loop optimization
repeat > Descent
601« LBFGS (L,d0L, 01, {A{]})

until inner-loop condition
1

AI((V;“ ) /\](:t) exp{iyk (zxk’t — F, (6)) } > Ascent
until converged
O Learnable parameters 2: (y;,, Z7,)
Optimization 2:
repeat

wa ™ 2e) o LBEGS () 2 py, o)

until converged

3. Adapting Movement with ProMPs
3.1. Movement Adaptation with a Single Obstacle

Given a single obstacle, we provide three modes to move around the obstacle. We gen-
eralize trajectories to the same start and end points without via-points (see Section 2.1.1) and
normalize them to the same timestep T, treated as the new template trajectory. To generate
feasible trajectory sets that will not collide, we establish feature via-points at equal intervals
within the appropriate range. We compute the distance between the robot end-effector
and the obstacle and fine-tune the trajectory to ensure safety if necessary. To facilitate
the distance calculation and trajectory generalization, we model the robot end-effector
as a sphere. If the robot end-effector minimum Z is above the obstacle’s upper surface,
the trajectory is safe, and if the minimum Z is below it, the trajectory is safe when the
axial distance is greater than the total safety radius. We adapt feature via-points in ways
determined by different modes to generalize a safe trajectory when the trajectory is prone
to collide.

For each mode, N safe robot end-effector trajectories are generalized. We use Jacobian
IK to obtain all feasible joint sets {q}f\il and encode ProMPs pg(w) = N (w;ud, £%).
To speed up optimization, we first find feature timesteps tfe,ture actually violating task
constraints and optimize distributions using Algorithm 1. The optimized ProMPs are
treated as the safe joint distributions.

During task execution, the robot first determines start and end points and then se-
lects the mode k ~ {above,left,right} and samples via-points with Gaussians p,;,, =

N (yxyz, 0'xy2>. The mean p,, . and standard deviation ¢y, are computed from the ini-

tial via-point range. We generalize and fine-tune the trajectory to ensure safety with
sampled via-points. The optimized y; and ¢} represent the joint limit range as g5 €
(i —20%,p; +207), and the initial joint value is denoted by g? = ¥[ w*. The joint limited
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range and initial value are passed to the Jacobian IK algorithm to test whether the solution
is calculated successfully. The success number of all feature timesteps decides whether
the robot can perform the task successfully: that is, if the success number is more than a
threshold, the robot directly runs the generalized trajectory; otherwise, the robot continues
sampling until success. To obtain the threshold, we perform equally spaced sampling from
the initial via-point range, record the success result and corresponding success number,
and then determine the threshold from success to failure.

3.2. Movement Adaptation with Various Obstacles

Based on the assumption that we are trying to actively avoid every obstacle in the
environment, we define M obstacles” adaptation as a sequential combination of obstacle
pairs. Consequently, we segment the trajectory with M segments learned with ProMPs,
which are separately optimized via Algorithm 1. For each segment, we first determine the
start and end points according to the two obstacles’ relative positions. When axial distances
are able to accommodate the end-effector, we take the middle point between two obstacles;
if not, we take the middle point above. The robot first generalizes safe trajectory sets from
different modes and encodes ProMPs, then optimizes ProMPs under task constraints, and
finally samples from different modes for each segment and connects all segments together
for task execution. The unified movement adaptation method is presented in Algorithm 2.

Algorithm 2 Robotic task-constrained movement adaptation algorithm.

Input:

e Obstacle information {obsm}%:1
3
e Mode template trajectory {x, Y245 9y 92 qw}

e Global task start point and end point {p;, ponq}

k=1

Output: Task execution trajectory {x, Y29 9y, 9z qw}
[] Generalize and Optimize with ProMPs
form =1to M do
o Determine the local start point and end point (see Section 3.2) and generate N safe
trajectories.
e Obtain feasible joint sets {g}1; and encode ProMPs (12, 2%).
o Find feature timesteps {#feature } that violate task constraints.
e Optimize ProMP distribution (p},, Z;,) using Algorithm 1.
e Obtain the optimized joint limit range and the initial joint value g3 €
() — 207, 1} +207),q) = ¥lw".
e Determine the success threshold (see Section 3.1).
repeat
e Sample modes k ~ {above, left,right}.
e Sample via-points p,;, = N (]lxyz, crxyz).
e Generalize and fine-tune the trajectory.
o Test the success number of {#feature } Via Jacobian IK
until success.
end for
[ Task Execution
e Connect each segment trajectory and execute the task.

4. Experimental Validation

In this section, we evaluate the proposed method in an industrial scenario where the
robot attempts to grasp the emergency stop while satisfying task constraints. We extended
the scenario from a single obstacle to multiple obstacles and conducted comparative
experiments with other methods to verify the proposed approach. After learning different
skills from human demonstration, the robot was required to autonomously perform the
task of grasping the emergency stop under varying task constraints.
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4.1. Experiments with a Single Obstacle

For this study, we selected the Ufactory Xarm 7-DoF robotic arm as the experimental
platform. The Kinect V2 camera is strategically positioned on the side to track human
hand movements, capturing continuous centroid poses. This setup ensures that the human
demonstrations are recorded accurately, even in dynamic conditions. Additionally, a Zed2i
stereo camera is mounted overhead, enabling the precise acquisition of object poses, which
are essential for understanding the spatial context and interaction requirements within the
workspace. This dual-camera configuration offers a complementary perspective, enhancing
the overall robustness of the system.

Given a single obstacle in the workspace, we provide three modes to move around
the obstacle. Each mode involves the continuous tracking of human hand centroid poses,
facilitated by the Kinect FORTH system, ensuring smooth and real-time trajectory acqui-
sition. To refine the raw trajectories obtained from human demonstrations, we apply a
Moving Average Filter (MAF) with n = 5 to eliminate noise and ensure smooth transitions
between timesteps. Subsequently, these trajectories are normalized to a uniform length
of 30 timesteps, enabling consistent execution across all modes. The trajectories are then
transformed into the robot base frame and further converted to the table frame defined
at the tabletop surface. To guarantee executable trajectories for the robot, we offset the
trajectories at the minimum point of the gripper center.

During task execution, the start point is fixed to ensure repeatability, while the end
point is determined dynamically based on emergency stop poses detected by YOLO [29].
This integration of real-time object detection enhances the system’s safety and adaptability,
allowing for robust performance in unpredictable scenarios. The trajectory acquisition
process and corresponding template trajectories are shown in Figure 2a,b.

Move Above]
~=Move Left
—Move Right

-200
X(mm)

(b)

200

Figure 2. Trajectory acquisition process. (a) Snapshots of tracking human hand movements. The first,
middle, and last rows denote moving above, left, and right modes. (b) Template trajectories for three
modes at the same start point (symbol ‘+’) and end point (symbol ‘0’). The elementary trajectory is
denoted by the black dashed line.

As illustrated in Figure 2a, the Kinect FORTH system demonstrates the capability to
track human hand movements in real time, providing a stable and accurate estimation of
the hand centroid. A colorful fingertip can quickly match the human hand’s demonstration
and achieve accurate pose estimation. This stability ensures that the robot effectively
acquires human skills from only one demonstration. After preprocessing, we generalize
the template trajectories for three modes with the same start and end points, as shown
in Figure 2b. There are no intermediate via-points for template trajectory generalization.
The robot adapts to practical task conditions by dynamically adjusting to different start
and end points. The generalized trajectories retain smoothness and preserve the key
features of the human demonstration, resulting in robot movements that closely mimic the
demonstrated skills.
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After generating template trajectories for each mode, we proceed to generalize collision-
free Cartesian trajectory sets for the minimum point of the gripper center. We first determine
the timestep and the corresponding point on the template trajectory exhibiting the maxi-
mum deviations for each mode. The point is selected as the via-point. Subsequently, we
determine the XYZ range for the via-point and adjust the range by discretizing it with
equal spacing.

For the above mode, X and Y are within +36.23 mm (the safe obstacle radius) around
the obstacle, with Z at 100 mm around; for the left and right modes, we fix X with Y and
Z at £100 mm around. We apply a union of the ranges with the limits Y and Z for task
execution. We traverse from the X, Y, and Z ranges with equal spacing to obtain feature
via-point sets and generalize initial trajectory sets. We further fine-tune the trajectory
based on the distance between the robot and the obstacle. The fine-tuning process involves
finding the most dangerous point, which is the point closest to the obstacle, and adjusting
the trajectory to ensure that this point does not enter the danger zone. For the above
mode, this typically involves setting the Z-coordinate to a safe value. In the left and right
modes, where the Y-coordinate plays a more crucial role in avoiding obstacles, we adjust
the Y-coordinate to maintain a safe distance. These fine-tuned points are then treated as
new feature via-points to refine and generalize collision-free trajectory sets for each mode
shown in Figure 3a.

500
w0
100

X(mm)

Y(mm) g0~ "0 0

300

400
Y(mm)*® 600 200

11 Move Abovel
~—Move Left
—Move Right

300

400
500 2
Y(mm)*® 00 200

it

(a) (©

Figure 3. An experiment with a single obstacle. (a) Generalized collision-free trajectory sets. I, II,
and III correspond to above, left, and right modes with blue feature via-points. (b) Task execution
snapshots. The first, middle, and last rows show the above, left, and right modes. (c) Task execution
trajectories with orange, purple, and green lines (points) denote trajectories (feature via-points).

We further compute corresponding collision-free joint sets via Jacobian IK and encode
ProMPs. We set 35 basis functions to learn the original 7-DoF ProMPs and formulate task
constraints to find feature timesteps violating task constraints. The task constraints include
several key factors:

(1) The joint range limit ensures that each joint remains within its specified range
throughout the task, which is essential for preventing mechanical damage or errors dur-
ing movement.
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(2) Waypoint constraints are used to ensure the start and end points. These waypoints
are defined in the task space and are crucial for ensuring that the robot reaches the desired
locations accurately. The forward kinematics (FK) function T calculates the end-effector po-
sitions based on the joint configurations, and we set a precision requirement of dj ; = 1 mm
to ensure that the task is completed with high accuracy.

(3) Hyperplane constraints define the spatial limits within which the robot’s move-
ments are confined. For example, the maximum Z-plane is constrained to a hyperplane
defined by nz,t = (0,0, —1), bz, t = (0,0,575), ensuring that the robot’s end-effector stays
below the table in the Z-direction. We define the hyperplane constraints for Y and Z as
100 <Y < 700,10 < Z < 575 in the experiment.

(4) Repeller constraints account for potential collisions between the robot’s links.
For instance, we define repeller constraints for robot link 6 to link 1, ensuring that the robot
avoids colliding with the obstacle during its motion. The obstacle in this task is a water
bottle, which has a safe obstacle radius of Ry, = 36.23 mm.

For all task constraints, we set a confidence parameter a;; = 0.95 to account for
the 2x standard deviations of uncertainty, and we use our moment-matching method to
estimate nonlinear task constraints, such as waypoints, hyperplanes, and repellers. This
method allows for estimating task constraints based on probabilistic models, as discussed
in Section 2.2.2.

We perform Algorithm 1 with Ag,t = 100, #; = 1 to obtain the optimized ProMPs and
perform Algorithm 2 for task execution. In each experiment, we randomly selected from
three different modes, with via-points sampled using Gaussian distributions to ensure
diversity in the task execution. We repeated the experiment 100 times to evaluate the
performance for three modes; we ran the movement optimization and adaptation algorithm
in parallel, with a total running time of 1.79664 s with a 100% success rate. The results are
shown in Figure 3b,c.

The results demonstrate that we can efficiently generate feasible collision-free trajec-
tory sets from only one human demonstration with via-point trajectory generalization.
In addition, by encoding the joint positions with ProMPs, the discrete via-points can gen-
erate continuous distributions representing various skills for task execution as well as
flexibility in performing the same skill. By applying different task constraints, new distri-
butions tailored to specific tasks are derived. These distributions can be utilized directly for
robotic task execution, allowing the robot to preserve the characteristics of human demon-
strations while employing diverse skills to complete tasks effectively. In this experiment,
we found that there were no feature timesteps violating task constraints. The reason is that
waypoint constraints and hyperplane constraints are ensured by trajectory generalization,
with the probability of satisfying constraints always becoming 1. For repeller constraints,
the water bottle height is not high, so robot link 6 to link 1 will not collide if link 7 is safe.
Meanwhile, for the above and left modes, if robot link 7 is safe, robot link 6 to link 1 will not
collide, considering the robot configuration. As a result, to further evaluate the proposed
method, we increase the task difficulty by elevating the obstacle’s height, restricting the
robot to move right around the obstacle and extending the scenario to multiple obstacles.

4.2. Experiments with Various Obstacles

To test the performance of the proposed task-constrained movement adaptation algo-
rithm in critical scenarios involving task constraint violation and multiple obstacles, we set
a dangerous scene where three high obstacles exist, and the robot was limited to moving
right around the obstacle. We set proper local start and end points with feature via-points
so that partial collision-free trajectory sets of link 7 would evidently collide at other links.
To explore and validate the robot’s ability to adapt movements under these conditions,
the entire trajectory was segmented into three segments. For each segment, we fixed the
X- and Y-coordinates of the feature via-points and decreased the Z-coordinate, ensuring
that other robot links would collide with the obstacle, as shown in the ROS Rviz simulation
(Figure 4a). We defined the same task constraints as in the single-obstacle scenario in
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Section 4.1 for three segments, with the distinction that certain timesteps would violate
task constraints and potentially cause collisions with robot links 4, 5, and 6.

—Segment |
—Segment I1
Segment I11]

-600
-400

(a)

Joint 4 Joint 4 Joint 1

Degree

Timestep Timestep Timestep

(b)

Succeed Number
Succeed Number

Succeed Number

6
100140 180 220 260 300 340 100 140 180 220 260 300 340 380 420 196 236 27
Z(mm) Z(mm) Z(mm)

(©)

Figure 4. Experiments in a dangerous scene. I, II, and III denote three trajectory segments. (a) Danger-
ous cases shown in the ROS rviz, with blue cylinders denoting obstacles. (b) Typical original (blue)
and optimized (green) ProMPs under task constraints. Joint mean values (2x standard deviation) are
denoted by thick lines (shaded areas). (c) Threshold determination results. Blue and red lines are
Z-positions leading to success and failure, with red points denoting the threshold. (d) Task execution
trajectories for three segments, with red, green, and yellow lines (points) denoting generalized trajec-
tories (feature via-points). (e) Robot task execution snapshots. The first, middle, and last rows denote
I, II, and III trajectory segments.

For the three segments, after via-point trajectory generalization for the template trajec-
tory, we obtain feasible collision-free trajectory sets of robot link 7 and encode the initial
7-DoF joint ProMP distribution. This distribution is then converted into Gaussian means
and standard deviations for each timestep. Utilizing the moment-matching method, we
determine the feature timesteps at which robot links 4, 5, and 6 will potentially collide with
obstacles. We estimate the task constraint probability for these timesteps and incorporate
task constraints, including joint constraints, hyperplane constraints, waypoint constraints,
and repeller constraints, into the unified probabilistic framework. Utilizing double-loop
LBFGS and EMM optimization in Algorithm 1, we obtain the optimized ProMPs satisfying
task constraints, as shown in Figure 4b. The optimized joint distributions represent the
feasible joint range for the robot to execute the task, which can be used as a reference for
the Jacobian inverse kinematics solver.

However, considering the probabilistic nature of ProMPs, some distributions satisfy-
ing task constraints may be excluded during optimization. To refine this, we further set
a threshold for the feasible joint range. Specifically, we allow the robot to generate initial
collision-free trajectories from via-point trajectory generalization, obtaining the correspond-
ing joint inverse kinematics solutions for each timestep. We then determine how many of
these timesteps’ values fall within the optimized joint range. A threshold is set such that if
the number of valid timesteps exceeds this threshold, the robot proceeds with executing
the trajectory; otherwise, the robot stops.

For threshold determination, the robot automatically selects the same via-point range
as in the initial generalization process and records the number of valid timesteps within
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the joint range and the corresponding obstacle avoidance results. A threshold is then
established, where the robot executing the tasks is considered successful if the number
of valid timesteps exceeds the threshold and is considered to have failed if it falls below.
The threshold determination results are shown in Figure 4c, and the robot task execution
results are shown in Figure 4d,e.

There are a total of 10, 15, and 3 feature timesteps violating repeller constraints, with
the thresholds determined to be 3, 12, and 2 in the three trajectory segments. Running
Algorithm 2 on segments I, II, and III in parallel results in a total time of 315.07 s. There are
71, 54, and 58 trajectories executed from 100 feature via-points in the three segments, and
all executed trajectories satisfy task constraints with a 100% success rate.

The results illustrate that the robot can utilize sparse and discrete feature via-points to
encode the initial ProMPs and optimize the ProMPs by integrating all task constraints into a
probabilistic framework analytically. Due to the probabilistic nature of the approach, some
distributions that satisfy task constraints may be excluded during optimization. Therefore,
it is essential to further refine the feasible joint range by determining a threshold. This
process is automated and leverages the same discrete and sparse via-point range used
during trajectory generalization. By adding an additional threshold for the optimized joint
range, the robot can derive feasible joint trajectories for task execution across a continuous
range using only a discrete set of via-points. Specifically, the robot generates generalized
trajectories, computes the corresponding joint values, and determines how many timesteps’
joint values fall within the optimized range given the threshold. These results are then
applied directly to task execution, allowing the robot to effectively distinguish between
success and failure scenarios. In a word, the threshold and optimized ProMPs are directly
used for task execution by sampling from continuous Gaussian distributions. We thus
provide the robot with the ability to perform tasks in a generic way; that is, there is no
need for the robot to determine whether task constraints are satisfied every time during
task execution.

Furthermore, we set different relative obstacle positions and set the obstacle height to
be nearly infinite. We chose three spray paint cans with different colors in two cases, where
the gripper is between and above two adjacent obstacles, and set the water bottle height to
1000 mm. We repeated 100 experiments and recorded the total time as 3.25874 s, 2.45945 s,
and 0.87882 s, with the results shown in Figure 5. For different relative obstacle positions,
there are no timesteps violating task constraints with the trajectory directly utilized for
task execution sampling from three modes. For nearly infinitely high obstacles, robot links
6, 5, and 4 will always collide at some timesteps, and the probability of satisfying task
constraints always becomes 0. We thus exclude those modes, retaining only the remaining
mode, and all experiments exhibit a 100% success rate.

Y(mm) 600

400

(b)

Figure 5. Experiments with different relative positions and nearly infinitely high obstacles. The grip-
per is (a) between and (b) above two obstacles. (c) Case with nearly infinitely high obstacles. The first
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rows denote local start and end points, and the second rows show typical trajectories colored in red,
yellow, and green.

The results show that the robot can autonomously select local generalization points
facing different relative obstacle positions and exclude those modes that cannot satisfy task
constraints, thereby achieving flexible movement adaptation. The robot’s diverse task exe-
cution skills play a critical role in this process. When a single skill is insufficient to complete
the task, the robot can leverage alternative skills to optimize and adapt. Furthermore, if all
available skills fail to meet the task constraints, human demonstrations are introduced to
offer additional guidance, facilitating iterative demonstration and optimization to tackle
these challenges.

4.3. Comparison Experiments
4.3.1. Via-Point Trajectory Generalization Performance

Aiming to evaluate the via-point trajectory generalization performance, we compared
two processes: template trajectory generation from human demonstrations with no via-
points (see Figure 2) and initial collision-free trajectory set generalization with feature
via-points (see Figure 3). We compared our method to DMPs [12] without via-points and
VMPs [16] with via-points. For template trajectory generation, considering there are no
via-points, the trajectories generalized with VMPs are the same as in our method; we thus
selected DMPs for the comparison. For initial collision-free set generalization, considering
that DMPs cannot handle intermediate via-points, we selected VMPs for the comparison.

For template trajectory generation, we selected the single-obstacle task scenario in
Section 4.1 and generated template trajectories utilizing both our method and DMPs,
with visualized trajectories shown in Figure 6a. The results illustrate that our method
preserves the human demonstration characteristics even when the task start and end points
change. However, DMPs will lose demonstration information; the trajectories attached to
the above and left modes will be generalized to the right mode. The reason is that DMPs
are sensitive to the relative positions of the start and end points, leading to trajectories that
deviate significantly from the demonstration.

\

Move Above (VMPs)
Move Above (Our Method)
Move Above (DMPs) 6004 :mOVC‘ IEC}I (X)M[l)\jl) hod
500 Move Above (Our Method) _Mg:’: R?;lé(\;:/m:)‘ od)
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Figure 6. Via-point trajectory generalization comparison. (a) Comparison between DMPs and our
method for template trajectory generation. Trajectory pairs in the same mode are depicted with lines
with different widths. (b) Comparison between VMPs and our method for collision-free trajectory
generalization. Trajectories and via-points in the same mode are depicted with different widths.

Further, we designed experiments with five task conditions by varying the start and
end points, making their relative distances progressively larger. For each task condition, we
varied the start and end points across 20 distinct configurations. To quantitatively evaluate
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the similarity between generated trajectories and demonstrations, we adopted the cosine
similarity measure by computing between each trajectory segment as

X1 — ). (X744 — %)

xXe1 — Xelllxf 4 — ¥

1 T-1 (
M_similarity = 5
~ V=71 t; H (5)
where M_similarity denotes the calculated trajectory similarity, x; and xj denote the gen-
eralized and demonstration trajectory vectors, and T is the total timesteps. This metric
approximates the cosine similarity between two vectors, where values closer to 1 indicate
higher similarity. Table 2 shows the trajectory similarity measure results.

Table 2. Trajectory similarity measurement results for DMPs and our method (the relative distance r
represents the normalized relative distances observed during the experiment). For each task condition,
we varied the start and end points across 20 distinct configurations.

Trajectory Similarity

Task 1 (r = 0-0.2) Task 2 (r=0.2-0.4) Task 3 (r=0.4-0.6) Task 4 (r=0.6-0.8) Task 5 (r = 0.8-1)

DMPs
Our method

0.9563 £+ 0.1064 0.8973 £ 0.1564 0.7654 £ 0.1318 0.6424 £+ 0.1389 0.5575 £+ 0.2289
0.9845 £ 0.0184 0.9732 £ 0.0264 0.9667 £ 0.0187 0.9674 £ 0.0204 0.9574 £ 0.0584

From Table 2, we observe that when the positional offset between the start and end
points from the demonstration is small, the trajectory similarity metrics for DMPs and
our method are comparable. In such cases, DMPs retain most features of the human
demonstration. However, as the positional offset increases, the trajectory similarity metric
for our method remains consistently high, while that for DMPs declines rapidly. This
demonstrates that our method is less affected by changes in the task’s initial and terminal
conditions, adapting to varying task conditions.

For initial collision-free trajectory generalization with via-points, given the template
trajectory, we evaluated the performance across different task scenarios, including a single
obstacle (See Figure 3) and various obstacles in three segments: I, II, and III (see Figure 4).
We selected representative trajectories for visualization, with the results shown in Figure 6b.
We observe that VMPs produce unnatural transitions at via-points, generating discontin-
uous trajectories and causing significant interruptions at the via-points, which deviate
from the characteristics of human demonstrations. To quantitatively measure trajectory
smoothness, we calculate the derivation of the acceleration as follows:

1 T-3
i _
M_smoothness T_3 ;:1 H xt|| (6)

where M_smoothness denotes the calculated trajectory smoothness, and x'; is the acceler-
ation derivation. A trajectory smoothness closer to 0 indicates smoother trajectories. We
evaluated the smoothness in four task scenarios, with the results summarized in Table 3.
The results indicate that our method consistently achieves similar smoothness across differ-
ent scenarios. In contrast, the smoothness for VMPs is relatively low in the single-obstacle
case but increases significantly in the multi-obstacle scenarios. Compared to our method,
VMPs exhibit less smooth transitions.

Table 3. Trajectory smoothness results for VMPs and our method. Given the template trajectory, we
evaluated the performance across different task scenarios, including a single obstacle (see Figure 3)
and various obstacles in three segments: I, II, and III (see Figure 4).

Trajectory Smoothness

A Single Obstacle

Various Obstacles

Segment I Segment II Segment III
VMPs 0.1043 £ 0.0275 0.1843 £ 0.0395 0.2864 £ 0.0286 0.3365 £ 0.0489
Our method 0.0752 £ 0.0146 0.0864 £ 0.0123 0.0796 £ 0.0452 0.0852 £ 0.0204
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Comparative experiments demonstrate that our approach can generate template tra-
jectories adapted to varying task conditions from a single demonstration. It effectively
preserves the key characteristics of the human demonstration while utilizing via-point
generalization to produce smooth and collision-free initial trajectory sets. These trajecto-
ries enable smooth transitions across different task scenarios, offering high-quality initial
datasets for subsequent optimization processes.

4.3.2. Task-Constrained Movement Adaptation Performance

In this paper, we propose Algorithms 1 and 2 for robot task-constrained movement
adaptation. Algorithm 1 starts with an initial ProMP distribution, converts it into Gaussian
distributions for each timestep, and determines timesteps violating task constraints in
advance for optimization. The optimized Gaussian distributions for each timestep are then
optimized again to obtain the optimized ProMP distributions. Algorithm 2 introduces an
additional threshold as a reference for the optimized joint range of the ProMPs, enabling
the robot to execute tasks directly without the need for repeated task constraint verification.
This approach can also be extended to multi-obstacle scenarios, ensuring efficient task
execution in more complex environments. To further evaluate and compare the robustness
across different task scenarios, we conducted a comprehensive comparison with similar
approaches in diverse task scenarios, including a single obstacle (see Figure 3), multiple
hazardous obstacles (see Figure 4), infinitely high obstacles (see Figure 5c), and varying
relative positions for multiple obstacles (see Figure 5a,b).

(1) Validation in Single-Obstacle Scenarios

Focusing on Algorithm 1, a similar approach is proposed in [22], where multiple
skills are demonstrated through kinesthetic teaching and encoded as ProMP distributions.
However, unlike our method, their approach directly optimizes the ProMP parameters
by predefining all task constraints and estimating the distribution’s mean and covariance
using an unscented transformation. The optimized ProMP distributions are then directly
used by the robot to sample joint trajectories for task execution. In contrast, our method
generalizes discrete via-points to generate continuous ProMP distributions and employs a
threshold-based mechanism for task execution after optimizing the ProMP distribution.

To ensure a fair comparison, we used the same initial ProMP distribution for both
methods. We then optimized the ProMP distribution using our approach and the method
outlined in [22] and applied the resulting optimized distributions for task execution. In this
comparison, we prioritized optimization performance over addressing movement adapta-
tion in multi-obstacle environments. As a result, we first considered a single-obstacle case,
as multi-obstacle tasks can be decomposed into sequential single-obstacle phases. Specifi-
cally, we designed four task scenarios: a single obstacle (see Figure 3) and three sequential
segments (I, II, and IIT) with three high hazardous obstacles (see Figure 4). To assess the
algorithm’s robustness across different task scenarios, for each scenario, we extensively
varied obstacle positions and start and end points, resulting in a total of 30 test cases.

The robot’s task execution is evaluated using metrics such as the number of optimized
parameters, the optimization time, the task success rate, and the loss between the initial
and optimized distributions. Here, the loss between initial and optimized distributions
refers to the overall proportions of the joint range across all timesteps after optimization
compared to the original joint range. We record the metrics and summarize the results in
Table 4.

Table 4 illustrates that, although our method optimizes more parameters overall com-
pared to the approach in [22], it significantly reduces the optimization time. The reason
is that we only optimize those timesteps violating task constraints. In the scenario with a
single obstacle, at most timesteps, the Gaussian distributions already satisfy the task con-
straints, allowing our method to directly use the optimized distributions for task execution.
In contrast, ref. [22] optimizes all ProMP parameters across every timestep, which can alter
distributions that initially satisfied the task constraints. This over-optimization can lead
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to task failure, as the robotic arm may eliminate motions capable of completing the task.
While the robot may still execute some tasks, the range of motion demonstrated during
training is reduced.

Table 4. Comparisons with single-obstacle scenarios. We designed four task scenarios: one involving
a single obstacle (see Figure 3) and three sequential segments (I, II, and III) with three high hazardous
obstacles (see Figure 4). Each scenario involves 30 variations of task conditions.

Task Scenario Method Optimized Parameters =~ Optimized Time Success Rate Distribution Loss
A cinole obstacle Algorithm in [22] 665 20.4586 s + 4.2367 s 96.67% 85.46% + 3.24%
& Our method 679 + 14 1.7904 s + 0.1986 s 100% 98.74% + 0.16%
5 o Algorithm in [22] 665 1204.32 s 4 48.52 s 63.33% 64.72% + 5.79%
cgmen Our method 749 + 56 346.08 s + 86.34 s 93.33% 85.48% + 3.56%
Seoment II Algorithm in [22] 665 1365.38 s 4 49.37 s 73.33% 62.62% + 4.28%
cgme Our method 805 =+ 70 47928 s 4+ 65.28 5 90.00% 79.49% =+ 4.68%
Seomment 111 Algorithm in [22] 665 864.37s + 32.58s 80.00% 73.52% + 5.62%
& Our method 707 + 42 273585 + 57.42 s 96.67% 89.37% + 3.56%

To prevent the probabilistic optimization from excluding certain distributions, our
method introduces an additional threshold to the optimized joint distributions and serves
as a reference for the Jacobian inverse kinematics solver. When the number of inverse
kinematics solutions exceeds this threshold, the robot successfully executes the trajectory.
This threshold-based mechanism ensures that the robot retains useful information from the
optimization process, allowing for more flexible skills to select from. Consequently, our
method achieves reduced distribution loss with better utilization of demonstrated skills.

In segments I, II, and III for three high obstacles, ref. [22] tends to lose significant
information during optimization, leading to task failures, especially when moving obstacles
on the right side. Our method remains successful in task execution, even in high-risk
conditions, producing more feasible motions as the difficulty of the scenario increases.
Note that our method may fail in edge cases where the threshold intersects the boundary
of the continuous space. In other words, once the threshold is defined, trajectories near it
may initially be executed, and after the robot executes them, failures will occur. Increasing
the via-point number or sacrificing certain distributions may overcome this drawback and
improve task success rates.

(2) Validation in Multi-Obstacle Scenarios

We also evaluated our method in multi-obstacle scenarios, comparing it to off-the-shelf
robotic movement adaptation algorithms like the sampling-based RRT-Connect [30] and
probability-based STOMP [31]. Focusing on multiple hazardous obstacles (see Figure 4),
infinitely high obstacles (see Figure 5c), and varying relative positions for multiple obstacles
(see Figure 5a,b), we changed the relative positions of the obstacles across 30 configurations in
each scenario.

For visualization, a representative trajectory is shown in Figure 7, where the same
start and end points are used to compare the performance of our method with that of
STOMP and RRT-Connect. The generated trajectories are classified based on predefined
categories, with the results shown in Figure 7. The robot randomly selects from three
modes with our method, while the trajectories for RRT-Connect and STOMP are recorded
and categorized into three modes. If those trajectories do not belong to any of the three
modes, we record them separately and define them as ambiguous modes. We discover that
the RRT-Connect and STOMP trajectories are disorganized and unstable, and sometimes,
the robot takes a meandering trajectory (see Figure 7b), leading to large deviations between
adjacent timesteps.
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Figure 7. Movement adaptation comparison. (a) Snapshots of task execution poses. The first
row shows our method, and the second row shows STOMP and RRTConnect. (b) Different mode
trajectories. Trajectories generated by Algorithm 2, RRTConnect, and STOMP are denoted in red,
yellow, and green. Trajectories not belonging to any modes are treated as ambiguous modes.

To quantitatively evaluate the performance, we selected several metrics to test the
aforementioned task scenarios, where the relative positions of the obstacles varied randomly.
We define the normalized sum of pose errors AP between two adjacent timesteps as
AP = Y7 '|q;,; — q;| and the modulated path L as L = Y. ' |p, ., — p;|, with the
corresponding energy efficiency defined as 7 = %.%, where Lyin and AP, denote
the minimum path length and amplitude. The closer the energy efficiency to 1, the higher
the efficiency of the robot in performing the task. We also evaluated robustness across
different task scenarios, measured by the task success rate. Additionally, since our method
involves offline optimization, followed by online execution, we calculated both offline

optimization time and online execution time. The results are presented in Table 5.

Table 5. Comparisons in multi-obstacle scenarios. For multiple hazardous obstacles (see Figure 4),
infinitely high obstacles (see Figure 5c), and varying relative positions for multiple obstacles (see
Figure 5a,b), we changed the relative positions of the obstacles across 30 configurations in each scenario.

Task Scenario Method Pose Errors Path Length Energy Efficiency = Success Rate  Offline Time Online Time
STOMP 0.81+019 1037m=+152m  63.25% + 5.76% 96.67% 0 0.063s +0.023 s
Hazardous RRT-Connect  0.87 £0.13  11.36 m £2.34m 59.25% =+ 6.38% 100% 0 0.054 s & 0.068 s
Our method  0.15£0.05 0.82m +0.03m 84.62% =+ 2.34% 96.67% 3042s+424s 0.015s£0.004s
STOMP 075+014 672m £096m 68.64% =+ 3.28% 83.33% 0 0.123s 4+ 0.032's
Infinitely High ~ RRT-Connect  0.824+0.25 748m +231m 67.24% =+ 2.48% 80.00% 0 0.086 s + 0.029 s
Our method  022+£0.12 052m +0.04m 86.26% =+ 1.34% 93.33% 2.83s+0.65s 0.017s+0.006 s
STOMP 076 +0.13 952m+146m 56.72% =+ 4.38% 100% 0 0.076 s - 0.024 s
Varying RRT-Connect  0.68 +0.25 1028 m +£274m  53.47% +2.42% 100% 0 0.046 5 +0.013 s
Our method  0.09£0.02 042m+0.02m 93.25% £ 1.59% 100% 496s+035s 0.012s£0.003s

The results demonstrate that our method generates shorter modulated paths but
requires considerable offline planning time. This can be attributed to the fact that our
approach fully incorporates task constraints, thereby representing multiple feasible skills
to accomplish the task. After optimization, we directly execute the trajectories with shorter
online execution times. STOMP and RRT-Connect calculate and sample a single trajectory
for execution without considering multiple task execution skills. They exhibit significant
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randomness, sometimes taking unnecessarily long detours to complete the task when a
direct route will suffice. While imposing additional constraints could reduce such random-
ness, the robot’s behavior often lacks consistency and continuity. In contrast, our method
maintains trajectory continuity with smaller variations in posture, facilitating smoother
transitions and reduced energy consumption.

Meanwhile, our method exhibits a higher success rate in scenarios involving infinitely
high obstacles, the reason being that STOMP and RRT-Connect often struggle to find
successful trajectories due to the infinite height of the obstacles. In some instances, they
fail midway through the task or become trapped in local minima when approaching high
obstacles. In contrast, our method is capable of excluding infeasible skills and selecting
alternative skills to complete the task, allowing for more flexible and adaptive movements.
However, in critical situations where via-point generalization cannot generate effective
collision-free trajectories, our method is prone to failure.

5. Conclusions
5.1. Significance

This paper proposes a robot task-constrained optimization and adaptation method
with ProMPs. The method allows the robot to adapt its movements under various task
constraints and extend to multiple obstacles, focusing on task execution flexibility with dif-
ferent skills. We present a via-point trajectory generalization method that learns from only
one human demonstration for each skill category. This method effectively adapts to vary-
ing task conditions while preserving the key characteristics of the human demonstration.
The discrete via-points generate continuous distributions encoded with ProMPs, represent-
ing various skills for task execution as well as flexibility in performing the same skill.

Given initial ProMPs, we incorporate all task constraints into a unified probabilistic
framework, decouple ProMPs as Gaussian distributions at each timestep, and only opti-
mize those timesteps violating task constraints, significantly reducing the optimization
time. To prevent the probabilistic optimization from excluding certain distributions, our
method introduces an additional threshold to the optimized joint distributions, serving
as a reference for the Jacobian inverse kinematics solver. When the number of inverse
kinematics solutions exceeds this threshold, the robot successfully executes the trajectory.
This threshold-based mechanism ensures that the robot retains useful information from the
optimization process, allowing for more flexible skill selection.

Meanwhile, we propose a movement adaptation method for multiple obstacles, en-
abling the robot to autonomously select local generalization points based on different
relative obstacle positions and exclude modes that cannot satisfy task constraints. When a
single skill is insufficient to complete the task, the robot can leverage alternative skills for
optimization and adaptation. Furthermore, if all available skills fail to meet the task con-
straints, human demonstrations are introduced to provide additional guidance, facilitating
iterative demonstration and optimization to tackle these challenges.

5.2. Limitations

However, our approach has certain limitations and may fail in specific scenarios. It
relies on the quality of initial collision-free end-effector trajectory sets. In confined spaces
with multiple obstacles, it is challenging to generalize trajectories to generate a substantial
collection of collision-free trajectories. Consequently, the subsequent optimization lacks a
high-quality dataset, making it difficult for the robot to optimize the distribution capable of
completing the task with a limited dataset.

Additionally, we define thresholds using discrete via-points. If the selected via-points
are too sparse, it becomes difficult to represent the distribution in continuous space. At the
extreme threshold positions, the optimization results might suggest that the robotic arm
can perform the task, but the actual task execution often fails. Moreover, even if the robotic
arm generates a large initial set of collision-free trajectories, it may still fail to satisfy all task
constraints despite optimization. This is particularly evident when encountering obstacles



Biomimetics 2024, 9, 738

21 0f 23

References

of infinite height. While the end-effector may avoid collisions, the distributions of other
joints might violate task constraints, leading to failure in selecting appropriate skills to
complete the task.

Furthermore, our method is specifically tailored for simple pick-and-place tasks.
The limited number of demonstrations may impact generalizability in complex tasks
requiring diverse scenarios. As a result, for more complex tasks involving object manipula-
tion, a finer-grained via-point generalization method is necessary to generate high-quality
datasets for subsequent optimization. In cases with multiple obstacles, our approach de-
termines local start and end points based on relative positions. However, more complex
obstacle distributions demand a more heuristic motion pattern switching strategy to ensure
task success. Meanwhile, our method cannot handle multiple real-time dynamic obstacles.

5.3. Future Work

To address the aforementioned limitations, future work should focus on more complex
object manipulation tasks, exploring methods for generating high-quality initial feasible
motion sets from human demonstrations. This includes improving the via-point gener-
alization method and incorporating movement segmentation techniques to divide the
movement into multiple trajectory segments, each of which will be generalized and com-
bined to generate high-quality datasets. Additionally, further exploration is needed for
threshold determination processes, ensuring that the discrete via-points better align with
the distribution of continuous space. Moreover, future research should explore biologically
inspired motion-mode-switching techniques, such as the gradient-free control approach
derived from the natural behavior of beetles for simultaneous static and dynamic obstacle
avoidance, as outlined in [32]. Integrating this method with our task constraints could
enhance its suitability for real-time applications.
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