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Abstract: The growing intricacies in engineering, energy, and geology pose substantial challenges for
decision makers, demanding efficient solutions for real-world production. The water flow optimizer
(WFO) is an advanced metaheuristic algorithm proposed in 2021, but it still faces the challenge of
falling into local optima. In order to adapt WFO more effectively to specific domains and address
optimization problems more efficiently, this paper introduces an enhanced water flow optimizer
(CCWFO) designed to enhance the convergence speed and accuracy of the algorithm by integrating a
cross-search strategy. Comparative experiments, conducted on the CEC2017 benchmarks, illustrate
the superior global optimization capability of CCWFO compared to other metaheuristic algorithms.
The application of CCWFO to the production optimization of a three-channel reservoir model is
explored, with a specific focus on a comparative analysis against several classical evolutionary
algorithms. The experimental findings reveal that CCWFO achieves a higher net present value (NPV)
within the same limited number of evaluations, establishing itself as a compelling alternative for
reservoir production optimization.

Keywords: water flow optimizer; production optimization; global optimization; crisscross mechanism;
metaheuristic algorithms; bionic algorithm

1. Introduction

In the fields of engineering, energy production, and various industries, decision
makers face increasingly complex challenges [1–3]. The need for optimization strategies
has grown alongside the increasing complexity of these problems. Optimized solutions
are essential due to the intricate interplay of factors such as resource scarcity, economic
constraints, and technological advancements [4]. Whether in the intricate task of global
optimization [5] or the nuanced field of oil reservoir production [6], the imperative for
streamlined and efficient solutions becomes paramount.

In order to tackle these challenges, optimization methods play a crucial role in problem-
solving approaches. These methods can be broadly divided into deterministic method-
ologies and metaheuristic algorithms [7]. Deterministic methods, characterized by their
structured and precise approach, offer advantages in terms of convergence and reliability;
examples include conjugate gradient methods [8], linear programming [9], interior point
methods [10], simplex methods [11], etc. However, they usually require the problem to be
convex, differentiable, continuous, etc., and it is difficult to solve complex high-dimensional
problems. On the other hand, metaheuristic algorithms have almost no requirements on the
properties of the problem and bring a new perspective to optimization due to their adaptive
and stochastic properties. Nevertheless, their extensive computational requirements and a
lack of guaranteed convergence remain notable challenges.

Among metaheuristic algorithms, two prominent classifications are Swarm Intelli-
gence Algorithms (SIs) and evolutionary algorithms (EAs). SIs and EAs have a similar
structure, where a set of solutions is first randomly initialized, after which new offspring
are generated using a set update strategy, and finally the solutions of the new generation
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are selected using a specific selection strategy. This process is repeated until the maximum
number of iterations is reached. SIs are mainly inspired by the aggregation behaviors of
biological population intelligence, among which the classical ones include the Particle
Swarm Optimizer (PSO) [12], Ant Colony Optimizer (ACO) [13], and emerging algorithms
in recent years, including the Harris Hawk Optimizer (HHO) [14], Grey Wolf Optimizer
(GWO) [15], artificial bee colony (ABC) optimization algorithm [16], Hunger Games Search
(HGS) [17], Slime Mushroom Algorithm (SMA) [18], Lunger–Kuta Optimization Algorithm
(RUN) [19], Vector Weighted Average Algorithm (INFO) [20], etc. EAs mainly simulate
the evolutionary process of natural selection [12] and survival of the fittest. They typically
involve three operators: crossover, mutation, and selection. Classical EAs include a Ge-
netic Algorithm (GA) [21], Genetic Programming (GP) [22], Spherical Evolution (SE) [23],
differential evolutionary (DE) [24].

The intricacies of problem solving in diverse industrial landscapes are further un-
derscored by the No Free Lunch Theorem (NFL) [25], which postulates the absence of a
universally superior optimization algorithm. In essence, this theorem asserts that the perfor-
mance of any given algorithm is contingent upon the specific characteristics of the problem
at hand. Consequently, the adoption of tailored algorithms to address specific industrial
challenges becomes imperative. Recognizing the inherent limitations and idiosyncrasies
of existing algorithms, the impetus for algorithmic improvement gains prominence in
navigating the intricate terrain of optimization.

In the field of oil reservoir development, creating an effective production scheme is
essential for efficient recovery and sustained production. Optimizing the injection and
production processes in oil reservoirs involves considering various dynamic factors, such
as reservoir heterogeneity, fluid properties, and operational constraints. Striking an optimal
balance in injection rates and production strategies is vital for maximizing hydrocarbon
recovery and minimizing operational costs [26]. The inherent complexities of this domain
call for innovative approaches to address the multifaceted challenges posed by the dynamic
nature of oil reservoirs.

Numerous scholars have made efforts to improve the optimization of petroleum in-
jection and production. Foroud et al. [27] applied eight different optimization algorithms
to the optimization of oil and gas production in the Bruges field. The results show that
the Guided Pattern Search (GPS) is the most effective and gives the most NPV in the least
number of evaluations. Ying et al. [28] proposed a multi-fidelity migrated differential
evolutionary algorithm (MTDE), which utilizes the results of different fidelity levels to
exchange and migrate information, accelerating the convergence of the algorithm and
improving the quality of the optimal knots. The proposed method is validated on an egg
model and two real field case models for production optimization, and the results show
that the MTDE has a faster convergence rate and a higher quality well control strategy
than the single-fidelity and greedy multi-fidelity methods. Zhang et al. [29] proposed a
two-model differential evolutionary algorithm (CSDE) for constrained water drive opti-
mization by constructing the boundaries of the feasible domain shown by a support vector
machine, after which the objective function is approximated using a Radial Basis Func-
tion (RBF). The proposed algorithm is applied to a case study, and the results show that
CSDE can effectively handle the constraints, and higher NPV can be obtained compared
to other single-model algorithms. Desbordes et al. [30] proposed a migration learning-
based optimization framework for solving dynamic production optimization problems.
The developed framework is integrated into three well-known evolutionary algorithms,
the Non-dominated Sequential Genetic Algorithm (NSGA-II), the Multi-Objective Particle
Swarm (MOPSO) and the Decomposition-based Multi-Objective Evolutionary Algorithm
(MODE), and PSO. The proposed method was tested on 12 benchmark functions and a real
amenity, and in comparison, with their original method, the method effectively reduces
the number of calls to the numerical simulator and achieves better NPV. There are many
similar studies, but they usually focus on the construction of the agent model and neglect
the choice of the optimization framework (DE or PSO is always chosen as the optimization
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framework). However, an optimizer adapted to a specific task is crucial for achieving better
optimization results.

The water flow optimizer (WFO) is a nature-inspired evolutionary algorithm that
was introduced in a prestigious journal in 2021 [31]. Its convergence has been rigorously
established through limit theory, and it has demonstrated successful applications in the
optimization of spacecraft trajectories. Chen et al. [32] proposed an enhanced water flow
optimizer and a refined maximally similar path localization algorithm (IWFO-IMSP) for
precise localization of wireless sensor networks. These advancements significantly en-
hance the convergence speed and capability of WFO by integrating strategies like Halton
sequences and Cauchy variants. Notably, the proposed IWFO-IMSP algorithm showcases
considerably superior localization accuracy when compared to four traditional methods.
Furthermore, Xue et al. [33] proposed an enhanced WFO that adaptively tunes hyper-
parameters of a theory-guided neural network. The quality of the initial population is
enhanced through the application of an adversarial learning technique during the initial
stage of WFO, while the diversity of the population is improved by introducing a non-
linear convergence factor to the laminar flow operator. This framework exhibits superior
performance in solving stochastic partial differential equations. In another study, Fagner
et al. [34] proposed a binary variation of WFO that exhibits superior results compared
to other classical dimensionality reduction methods. These studies collectively indicate
that, despite the superior optimization performance of WFO, further enhancements are
necessary to tailor it to specific problem domains.

In this paper, an enhanced WFO algorithm called CCWFO is proposed. It is used to
significantly enhance the global optimization capability of the original algorithm and makes
it effectively applicable to oil production optimization, by introducing the CC mechanism
to enhance the information interaction among the individuals in the population, to enrich
the diversity of the population.

The main contributions of this paper are as follows:

• An enhanced WFO algorithm is proposed by introducing the CC mechanism.
• The performance of the CCWFO algorithm is verified in detail, through comparison

experiments with 10 other conventional and state-of-the-art optimization algorithms
on the CEC2017 benchmark function, and the experimental results obtained are addi-
tionally subjected to W and F tests.

• The proposed algorithm is used to solve production optimization problems based on
three-channel reservoirs.

The structure of the paper is as follows: Section 1 introduces the background of this
research and motivation, briefly performs a literature review, and concludes with a sum-
mary of the main contributions of this paper. Section 2 briefly describes the original WFO
algorithm. Section 3 describes the CC mechanism and presents the proposed CCWFO algo-
rithm in detail. Section 4 describes the flow, results, and analysis of the global optimization
experiments. Section 5 presents an example of the application of CCWFO in a three-channel
reservoir. Section 6 summarizes the whole paper.

2. Overview of the Original WFO

WFO, a Swarm Intelligence (SI) Algorithm proposed by Prof. Kaiping Luo in 2021 [31],
draws inspiration from the two distinctive types of water flows found in nature: laminar
and turbulent. In nature, water flows from high to low, which is similar to the process
of searching for a solution in an optimization problem. In the WFO algorithm, the water
particles are considered as the solution, the positions of the water particles are considered
as the values of the solution, and the potential energy of the water is considered as the
fitness value of the objective function. The algorithm simulates the behavior of laminar and
turbulent flows in the water flow process through mathematical modelling and finds the
optimal solution through continuous iteration. The mathematical description of laminar
and turbulent flow is as follows:
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1. Laminar Operator: In laminar flow, all particles move parallel to each other in
the same direction, but their speed varies due to the surroundings. The rule of motion is
denoted using Equation (1).

yi(t) = xi(t) + s ∗ d ∀i ∈ {1, 2, . . . , m} (1)

where t is the current iteration number, m is the population size, xi(t) is the position of the
ith particles at the tth iteration, yi(t) is the possible movement position of the tth individual
at the tth iteration, s is a random number between 0 to 1, and the d vector represents the
common direction of movement of all the individuals at the current iteration; d is defined
as shown in Equation (2).

d = xbest − xk(t), xbest ̸= xk(t) (2)

where xbest represents the optimal solution obtained by the current iteration of the popula-
tion and xk(t) represents a randomly selected particle in the population.

In the laminar flow operator, individuals in the population use a regular parallel unidi-
rectional search, where the same direction vector d ensures that the search is unidirectional,
and the randomness of s ensures that different individuals have different move steps.

2. Turbulen Operator: In turbulence, water particles are affected by other obstacles
and show irregular rotational movements. The possible moving position yi is generated by
the random dimension of the ith individual through Equation (3).

yi =

xj1
i (t) +

∣∣∣xj1
i (t)− xj1

k (t)
∣∣∣ ∗ θ ∗ cos(θ), i f r < pe(

ubj1 − lbj1) ∗ xj2
k (t)−lbj2

ubj2−lbj2 + lbj1, otherwise
(3)

The upper part of Equation (3) denotes the vortex transformation of water particles in
the same layer and the lower part of Equation (3) denotes general cross-layer movement of
particles. Where j1 denotes a dimension randomly selected from the particle, j2 denotes
a dimension different from j1 randomly selected from the particle, and xj1

k (t) denotes the
value of the j1th dimension of the kth particle at the tth iteration. θ is a random number
in the range −π to π, ubj1 and lbj1 denote the upper and lower bounds of the selected
dimension, respectively, r is a random number in the range 0 to 1, and pe ∈ (0, 1) is a
control parameter called the vortex probability.

During the iterations of the algorithm run, the algorithm performs a stochastic simula-
tion of the two behaviors, laminar and turbulent, and their respective run probabilities are
controlled by the parameter pl . All generated solutions are evaluated and the new particles
generated by each iteration update are compared with the old particles and the particles
with better fitness values are retained. The iteration is repeated until the termination
condition is met; the flowchart of the algorithm for WFO is shown in Figure 1.
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3. Proposed CCWFO
3.1. Crisscross Strategy

The crossover mechanism draws inspiration from Meng’s crossover optimizer (CSO) [35],
which was proposed in 2014. It incorporates two operations, namely a horizontal crossover
search (HCS) and vertical crossover search (VCS), representing the exchange of horizontal
and vertical information between particles, respectively. Essentially, the core concept of the
crossover strategy involves generating new particles by exchanging information between
randomly selected particles or dimensions. The fittest particles are retained and added
to the population. This crossover mechanism exhibits a strong global search capability.
Shan et al. [36] enhanced the CSA by integrating the crossover strategy and the combined
mutation strategy, where the crossover strategy effectively facilitated the population in
escaping local optima. Hu et al. [37] introduced the crossover strategy into the SCA
algorithm and experimentally demonstrated that it accelerated the global convergence of
the population, improved population diversity, and aided particles in escaping local optima.

In this study, we introduce the crossover mechanism into WFO to enhance its single
search mode and enrich population diversity. This exchange of information between
particles accelerates the algorithm’s convergence and improves its ability to escape local
optima. HCS and VCS are described as follows.

3.1.1. Horizontal Crossover Search

HCS refers to the crossover operation of the dimensions of two randomly selected
particles, which can make more use of the population information, refine the search process,
and improve the algorithm’s global exploration capability. HCS operation is defined using
Equations (4) and (5).

HCSj
i = r1 × xj

i + (1− r1)× xj
k + c1 ×

(
xj

i − xj
k

)
(4)

HCSj
k = r2 × xj

k + (1− r2)× xj
i + c2 ×

(
xj

k − xj
i

)
(5)

where r1 and r2 are random numbers within the range [0, 1], c1 and c2 are random numbers
within the range [−1, 1], xj

i is the value of the jth dimension of the ith particle of population

X, and xj
k is the value of the jth dimension of the kth particle of population X. HCSj

i and

HCSj
k are the new offspring of the two particles generated by the HCS operation. After the

HCS operation, the new offspring will compete with the parental particles, retaining the
particles with better fitness. The pseudo-code for HCS is shown in Algorithm 1.
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Algorithm 1 Horizontal crossover search

Bhc = randperm (n)
For ii = 1:n/2

i = Bhc (2ii− 1)
k = Bhc (2ii)
For j = 1:dim

Generate four random number r1, r2 ∈(0,1), c1, c2 ∈(−1,1)

Generate HCSj
i and HCSj

k by Equations (4) and (5)

End For

End For
For i = 1:n

IF f itness (HCSi) < f itness (Xi)

X(i)← HCS(i)

End IF

End For
End

3.1.2. Vertical Crossover Search

The VCS operation is performed for each particle by randomly selecting a set of two
pairs of dimensions for crossover to obtain a new particle. Similarly, after the VCS operation,
the offspring particles will compete with the parental particles and ultimately retain the
better ones. VCS operation is defined using Equation (6).

VCSj
i = r3 × xj1

i + (1− r3)× xj2
i (6)

where r3 is a random number within the range [0, 1], xj1
i and xj2

i represent the values of the

two dimensions randomly selected by the ith individual, respectively, and VCSj
i represents

the value of the jth dimension generated from two random dimensions of the ith particle.
The pseudo-code for VCS is shown in Algorithm 2.

Algorithm 2 Vertical crossover search

Bvc = randperm (dim)
Generate a random number p ∈(0,1)
For j = 1:dim/2

IF p < 0.6
j1 = Bvc (2j− 1)

j2 = Bvc (2j)

For i = 1:n

Generate a random number r3 ∈(0,1)

Generate VCSj
i by Equation (6)

End For
End IF

End For
For i = 1:n

IF f itness (VCS(i)) < f itness (X(i))

X(i)← VCS(i)

End IF

End For
End
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3.2. The Proposed CCWFO

In this subsection, the specific workflow of CCWFO is described. Firstly, CCWFO
initializes the initial population of the algorithm and the required parameters, after which
the algorithm sequentially updates the particles in the population according to the laminar
and turbulent operations of the original WFO. At the end of the update strategy for laminar
and turbulent flow, the algorithm will execute the CC strategy to enhance the information
exchange between the population particles through HCS and VCS operations to explore
the search space in more detail. Finally, this process will be iterated until the termination
condition of the algorithm is reached and the current globally optimal particle is finally
returned. The flowchart of the algorithm is shown in Figure 2.

The pseudo-code of CCWFO is given in Algorithm 3.

Algorithm 3 Pseudo-code of CCWFO

Set parameters: The maximum iteration number T, the problem dimension dim, and the
population size N
Initialize population X
t = 1
For i = 1:N

Evaluate the fitness value of xi
Find the global min xbest

End For
While (t ≤ T)

IF rand < pl

For i = 1:N /* Laminar flow */

For j = 1:dim

Generate yi by Equations (1) and (2)

End For

Evaluate the fitness value of yi
Update xi, Xbest
End For

Else

For i = 1:N /* Turbulent flow */

For j = 1:dim

Generate yi by Equation (3)

End For

Evaluate the fitness value of yi
Update xi, Xbest
End For

End IF
For i = 1:N /*CC*/

Perform Horizontal crossover search to update xi
Perform Vertical crossover search to update xi
Update Xbest

End For
t = t + 1;

End While
Return Xbest
End
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The time complexity of the CCWFO algorithm can be succinctly deconstructed into
a composite of four stages: population initialization, laminar and vortex operations, and
the CC strategy. The paramount parameters that exert a significant influence on the time
complexity encompass the dimensionality (dim), the total iterations (T), and the population
size (N). Consequently, the time complexity of CCWFO, denoted as O(CCWOF), may be
delineated as follows: O(CCWOF) = O(initialization) + O(WFO) + O(CC) ≈ O(n × dim) +
O(T × n × dim) + O(T × dim) ≈ O(T × dim × N).

4. Global Optimization Experimental Results and Analysis

This section presents a comprehensive and rigorous evaluation of the proposed
CCWFO from a global optimization perspective using different types of benchmark func-
tions. All the experiments were conducted fairly on benchmarks that comply with industry
accepted standards. The experiments were conducted on a computer equipped with Intel
Xeon Silver 4110 CPU and 128 GB RAM with Windows 10 as the operating system, and all
algorithms were coded on MATLAB 2020B. The same parameter settings for all algorithms
are as shown in Table 1.

Table 1. Main parameters of the test experiment.

Parameter Value

population size 30
problem dimension 30

number of runs 30
maximum number of evaluations 300,000

4.1. Benchmark Function

In this subsection, we succinctly introduce the 29 benchmark functions employed
in The IEEE Congress on Evolutionary Computation (CEC) [38]. It is worth noting that
function F2 has been officially expunged from consideration due to its inherent propensity
for inducing instability. These aforementioned 29 functions have been systematically cate-
gorized into four distinct types, namely unimodal, multimodal, hybrid, and composition.
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This meticulous categorization serves the noble purpose of guaranteeing a comprehensive
and equitable assessment of the test functions, thereby upholding the rigorous standards of
evaluation. A brief description of CEC 2017 is given in Table 2.

Table 2. CEC2017 benchmark functions.

Function Function Name Class Optimum

F1 Shifted and Rotated Bent Cigar Function Unimodal 100
F3 Shifted and Rotated Zakharov Function Unimodal 300
F4 Shifted and Rotated Rosenbrock’s Function Multimodal 400
F5 Shifted and Rotated Rastrigin’s Function Multimodal 500
F6 Shifted and Rotated Expanded Scaffer’s F6 Function Multimodal 600
F7 Shifted and Rotated Lunacek Bi-Rastrigin Function Multimodal 700
F8 Shifted and Rotated Non-Continuous Rastrigin’s Function Multimodal 800
F9 Shifted and Rotated Lévy Function Multimodal 900
F10 Shifted and Rotated Schwefel’s Function Multimodal 1000
F11 Hybrid Function 1 (N = 3) Hybrid 1100
F12 Hybrid Function 2 (N = 3) Hybrid 1200
F13 Hybrid Function 3 (N = 3) Hybrid 1300
F14 Hybrid Function 4 (N = 4) Hybrid 1400
F15 Hybrid Function 5 (N = 4) Hybrid 1500
F16 Hybrid Function 6 (N = 4) Hybrid 1600
F17 Hybrid Function 6 (N = 5) Hybrid 1700
F18 Hybrid Function 6 (N = 5) Hybrid 1800
F19 Hybrid Function 6 (N = 5) Hybrid 1900
F20 Hybrid Function 6 (N = 6) Hybrid 2000
F21 Composition Function 1 (N = 3) Composition 2100
F22 Composition Function 2 (N = 3) Composition 2200
F23 Composition Function 3 (N = 4) Composition 2300
F24 Composition Function 4 (N = 4) Composition 2400
F25 Composition Function 5 (N = 5) Composition 2500
F26 Composition Function 6 (N = 5) Composition 2600
F27 Composition Function 7 (N = 6) Composition 2700
F28 Composition Function 8 (N = 6) Composition 2800
F29 Composition Function 9 (N = 3) Composition 2900
F30 Composition Function 10 (N = 3) Composition 3000

4.2. Performance Comparison with Other Algorithms

In this subsection, the comparative results of CCWFO and 10 other algorithms on the
CEC 2017 benchmark are presented. These 10 algorithms encompass a mix of classical
metaheuristics and advanced algorithms that have emerged in recent years. Specifically, the
algorithms considered are WFO [31], SMA [18], WOA [39], PSO [12], GWO [15], MFO [40],
BMWOA [41], RCBA [42], SCADE [43], and OBSCA [44]. The hyperparameters associated
with each algorithm are presented in Table 3.

Table 3. Hyperparameters for correlation algorithms.

Name Parameters

CCWFO pl = 0.3; pe = 0.7
WFO pl = 0.3; pe = 0.7
SMA /
WOA a1 = [2, 0]; a2 = [−1, −2]; b = 1
PSO Vmax = 6; Wmax = 0.9, Wmin = 0.2; C1 = 2; C2 = 2

GWO a = [2, 0]
MFO b = 1; t = [−1, 1]; a = [−1, −2]

BMWOA a1 = [2, 0]; a2 = [−1, −2]; b = 1
RCBA Qmin = 0; Qmax = 2; r = 0.5

SCADE scaling f actor = [0.2, 0.8]; crossover probability = 0.8; a = 2
OBSCA a = 2
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The experimental results obtained by CCWFO and other algorithms on each bench-
mark function of CEC2017 are given in Table 4, where ‘Rank’ denotes the Friedman test
rank of the algorithm, ‘AVG’ denotes the average of the rankings obtained by the algorithm
on each function of CEC2017, and ‘/−/=’ denotes that CCWFO is better than, equal to, or
superior to other algorithms.

Table 4. Experimental results of CCWFO and other algorithms on CEC2017.

RANK +/=/− AVG

CCWFO 1 ~ 1.3793
WFO 2 14/11/4 1.8621
SMA 5 29/0/0 5.3793
WOA 9 29/0/0 7.7931
PSO 3 24/4/1 4.3793

GWO 4 29/0/0 4.8966
MFO 7 29/0/0 7.4138

BMWOA 8 29/0/0 7.4828
RCBA 6 27/2/0 7.2759

SCADE 11 29/0/0 9.4828
OBSCA 10 29/0/0 8.6552

Table 4 shows that the average ranking of CCWFO on the benchmark function is
1.3793, which is ranked first among all competitors, indicating that CCWFO has a significant
advantage over other algorithms. CCWFO obtained the global optimum in all 30 runs on
F3 and F6 and was close to the global optimum on F5, F7, F8, F9, F11, F14, F15, F18, F19,
and F20. This shows the stability of the algorithm’s optimization ability to obtain stable
optimization results. Among the compared algorithms, WFO performs closest to CCWFO,
but also performs worse than the proposed algorithm on 14 functions.

Table 5 reinforces the points obtained in Table 4. In the Wilcoxon signed-rank test,
a p < 0.05 means that the hypothesis can be rejected, meaning that the algorithm is sig-
nificantly different compared to the comparison algorithms. In Table 5, we can see that,
mostly, p < 0.05 on most of the functions, which provides strong evidence that CCWFO
significantly outperforms the other algorithms on the benchmarks.

Table 5. The p-values of CCWFO versus other algorithms on CEC2017.

WFO SMA WOA PSO GWO

F1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.39 × 10−1 1.73 × 10−6

F3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F4 4.07 × 10−5 1.73 × 10−6 1.73 × 10−6 8.61 × 10−1 1.73 × 10−6

F5 4.29 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6

F6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F7 5.79 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6

F8 1.49 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.18 × 10−6

F9 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F10 6.88 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.52 × 10−6

F11 2.41 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F12 8.92 × 10−5 1.73 × 10−6 1.73 × 10−6 3.32 × 10−4 1.73 × 10−6

F13 6.16 × 10−4 1.73 × 10−6 1.73 × 10−6 7.16 × 10−4 1.73 × 10−6

F14 5.04 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F15 7.81 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F16 6.42 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.22 × 10−4

F17 8.22 × 10−3 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6

F18 7.04 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F19 8.97 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F20 2.13 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6

F21 6.16 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.24 × 10−5
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Table 5. Cont.

WFO SMA WOA PSO GWO

F22 6.64 × 10−4 8.19 × 10−5 1.73 × 10−6 1.82 × 10−5 2.37 × 10−5

F23 1.13 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F24 2.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.05 × 10−4

F25 8.45 × 10−1 1.73 × 10−6 1.73 × 10−6 6.16 × 10−4 1.73 × 10−6

F26 1.11 × 10−1 1.13 × 10−5 1.73 × 10−6 8.69 × 10−5 2.22 × 10−4

F27 1.96 × 10−2 1.73 × 10−6 1.73 × 10−6 1.48 × 10−2 1.92 × 10−6

F28 1.95 × 10−1 1.73 × 10−6 1.73 × 10−6 8.73 × 10−1 1.73 × 10−6

F29 1.65 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F30 5.58 × 10−1 1.73 × 10−6 1.73 × 10−6 9.75 × 10−1 1.73 × 10−6

MFO BMWOA RCBA SCADE OBSCA

F1 1.73 × 10−6 1.73 × 10−6 2.60 × 10−6 1.73 × 10−6 1.73 × 10−6

F3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F4 1.73 × 10−6 1.73 × 10−6 1.15 × 10−4 1.73 × 10−6 1.73 × 10−6

F5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F7 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F8 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F9 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F10 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F11 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F12 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F13 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F14 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F15 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F16 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F17 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F18 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F19 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F20 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F21 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.07 × 10−5

F22 1.73 × 10−6 5.75 × 10−6 1.73 × 10−6 2.13 × 10−6 2.35 × 10−6

F23 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F24 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F25 1.92 × 10−6 1.73 × 10−6 8.77 × 10−1 1.73 × 10−6 1.73 × 10−6

F26 1.73 × 10−6 3.88 × 10−6 3.18 × 10−6 1.73 × 10−6 1.73 × 10−6

F27 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F28 1.73 × 10−6 1.73 × 10−6 7.19 × 10−1 1.73 × 10−6 1.73 × 10−6

F29 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

Figure 3 displays the convergence curves of all the algorithms on selected functions.
The horizontal axis represents the number of evaluations conducted by the algorithms,
while the vertical axis represents the current best fitness value achieved by the algorithms.
The legend, located at the bottom of Figure 3, provides information about the different
algorithms. Notably, the red lines consistently remain below the other colored lines across
all function types. This observation indicates that CCWFO successfully escapes local optima
and discovers superior solutions compared to the other algorithms. In conclusion, CC
effectively improves the search performance of WFO and has a significant advantage over
other algorithms on the benchmark.
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5. Application to Oilfield Production

The objective of reservoir production optimization is to identify the optimal solu-
tion for each well in order to maximize NPV, and a combinatorial explosion of solution
designations occurs due to the larger number of wells and production cycles leading to
larger dimensions of optimization variables. Therefore, the problem can be regarded as
a typical NP-hard problem, which creates conditions for the introduction of evolutionary
algorithms. In this section, based on the reservoir numerical simulation software Eclipse
2010.1, CCWFO is applied to a three-channel reservoir model, and the performance of the
method is compared with several classical evolutionary algorithms.

Disregard the nonlinear constraints in oilfield production and take the net present
value (NPV) as the objective function to be optimized, and the specific description of NPV
is shown in Equation (7).

NPV(x, z) =
n

∑
t=1

∆t
Qo,t · ro −Qw,t · rw −Qi,t · ri

(1 + b)pt
(7)

where x is the set of variables to be optimized; in this experiment, the variables are the
injection and recovery rates of each well. z is the state parameter of the model, which is
used to describe the construction of the numerical reservoir model, n denotes the total
simulation time, and Qo,t, Qw,t, and Qi,t are the oil production rate, water production rate,
and water injection rate, respectively, at time step t. ro is the oil revenue, rw and ri are the
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cost of treating and injecting the water, respectively, b is the average annual interest rate,
and pt is the number of years elapsed.

5.1. Three-Channel Model

The three-channel reservoir model is a typical non-homogeneous two-dimensional
reservoir that includes four injection wells and nine production wells arranged in a five-
point pattern. The model is modeled by 25 × 25 × 1 grid blocks with each grid length of
100 ft, each grid block is 20 ft thick, and the porosity of all grid blocks is 0.2. The physical
properties of the reservoir are summarized in Table 6. The specific distribution of the
modeled permeability is shown in Figure 4.

Table 6. Properties of three-channel model.

Properties Value

Reservoir grid 25 × 25 × 1
Depth 4800 ft

Initial pressure 4000 psi
Porosity 0.2

Compressibility 6.9 × 10−5 psi−1

Initial water saturation 0.2
Viscosity 2.2 cP
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In this production optimization problem, the optimization variables consist of the
injection rate for each injection well and the fluid recovery rate for the production well.
The water injection rate ranges from 0 to 500 STB/DAY, while the water extraction rate for
the production wells ranges from 0 to 200 STB/DAY. The thermal storage is utilized for
a duration of 1800 days, and the decision time step is set at 360 days. Consequently, the
dimensionality of the decision variable is 65.

The fitness function for this optimization problem is the NPV, which is determined
by various factors. The oil price is set at 80.0 USD/STB, the cost of water injection is
5.0 USD/STB, and the cost of water treatment is also 5.0 USD/STB. To simplify the model,
the average interest rate per annum is assumed to be 0%.

5.2. Analysis and Discussion of Experimental Results

Compare the optimization results of the model using CCWFO and the several classical
evolutionary algorithms to showcase the effectiveness of the enhancements. These classical
evolutionary algorithms include WFO, GWO, MFO, SMA, WOA, and PSO in Table 3. To
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ensure fairness in the experiment, each optimization was conducted five times, and the
average of the last obtained NPV values was computed.

Figure 5 illustrates the optimal NPV values obtained using both methods as a function
of the number of iterations. The red line represents CCWFO. From the figure, it is evident
that CCWFO outperforms other algorithms significantly, consistently achieving higher
NPV values within the same number of iterations.
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Figure 6 shows the box plot comparison between CCWFO and other algorithms
for obtaining optimal NPV in five experiments; it can be seen that in five experiments
CCWFO obtains higher NPV as compared to other algorithms. From Figure 7, it can be
seen that the p-values of the other traditional algorithms are less than 0.05, which proves
that QCSCA has a significant advantage over the six other classical algorithms in terms of
statistical significance.
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For reasons of space, only the CCWFO and WFO well control schemes are given
here; Figures 8 and 9 illustrate the final optimization schemes of the water injection rate
and liquid production rate for both CCWFO and WFO. The horizontal axis represents the
practice step size, while the vertical axis represents the well number.
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Figure 9. The optimal liquid-production rate obtained by each algorithm for the three-channel model.

In Figure 8b, the regulation scheme for the injection wells obtained using WFO is dis-
played. It can be observed that the injection rates for the same wells in adjacent control step
values vary significantly, resulting in an unstable scheme. This instability is not conducive
to implementing the scheme in the field. Additionally, the fluctuating injection rates can
cause excessive changes in bottomhole pressure, potentially damaging the reservoir and
hindering sustainable development.
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On the other hand, CCWFO, as shown in Figure 8a, yields a smoother production
scheme compared to WFO. This smoother scheme is more favorable for implementation
in the field, as it minimizes abrupt changes in injection rates and reduces the potential for
negative impacts on the reservoir.

Overall, CCWFO demonstrates superior performance in generating more stable and
smoother production schemes compared to WFO.

6. Conclusions

In this study, the implementation of the CCWFO optimizer is proposed by combining
the CC mechanism with the WFO algorithm. The CC strategy enhances population diversity
by promoting information exchange among individuals, resulting in improved global
exploration capability. Comparative experiments conducted on benchmark functions
on CEC2017 demonstrate that CCWFO consistently outperforms 10 other metaheuristic
algorithms, yielding higher-quality solutions across different types of functions.

Furthermore, CCWFO is applied to solve the production optimization problem in
reservoirs with a three-channel model, using a numerical model as an evaluator. The
optimization results are compared with several classical evolutionary algorithms, and the
experimental findings indicate that CCWFO achieves higher NPV within the same number
of iterations. Additionally, CCWFO generates smoother production scenarios, which are
more conducive to field development implementation.

In future research, we plan to explore and develop improved optimization methods.
Additionally, we aim to closely integrate machine learning techniques with reservoir
production scenarios to discover effective agent model strategies for solving complex
large-scale production optimization problems.
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