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Abstract: Since the mention of the Fourth Industrial Revolution in 2016, quantum computers and
quantum computing (QC) have emerged as key technologies. Many researchers are trying to realize
quantum computers and quantum computing. In particular, most of the development and application
of metaheuristics algorithms using quantum computing is focused on computer engineering fields.
Cases in which the developed algorithm is applied to the optimal design of a building or the optimal
design results presented by expanding the algorithm in various directions are very insufficient.
Therefore, in this paper, we proposed four methods of adopting qubits to perform pitch adjusting in
the optimization process of the QbHS (quantum-based harmony search) algorithm and applied it to
TTO (truss topology optimization) using four methods to compare the results. The four methods of
adopting qubits have the same or decreased number of qubits adopted as the number of iterations
changes. As a result of applying TTO using four methods, convergence performance differed
depending on the adoption method, and convergence performance was superior to conventional HS
(harmony search) algorithms in all methods. The optimal design of structural engineering using such
QC is expected to contribute to the revitalization of future technologies in the architectural field and
the field of computer information systems.

Keywords: quantum computing; qubit; meta-heuristics; QbHS algorithm; optimal design

1. Introduction

Quantum computing (QC) implies solving problems using quantum mechanical
characteristics such as entanglement and superposition of qubits [1]. A method that can
solve problems with existing computers using QC was first proposed by Feynman in
1982 [2], and it was proven by Deutsch that data processing is possible by applying qubit
states [3]. Existing computers and supercomputers require the development of smaller
semiconductors to perform more operations, and now it is no longer possible to miniaturize
semiconductors. Thus, the development of quantum computers and quantum computing
is essential for greater and faster computation [4].

The biggest difference between existing computers (supercomputers) and quantum
computers is the minimum information processing unit. Existing computers use Bit as
the minimum information processing unit, and it is determined and expressed as either
zero or one. Quantum computers use qubits as the minimum information processing
unit, and qubits are expressed by overlapping zero and one [5]. Figure 1 explains the
difference between bit and qubit systems. Both bits and qubits result in zero or one, but
qubits have the biggest difference in that they contain probability values for superposition
representations [6–8]. Quantum computers are characterized by being able to express
various information at the same time, so they have the expectation that the operation speed
is faster than existing computers (supercomputers) [9].
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(a) (b)

Figure 1. Bit vs. Qubit (a) Bit system. (b) Qubit system.

Metaheuristics algorithms, which are classified into four categories (Evolutionary,
Swarm, Physics, and Human behavior) for imitated natural phenomena, are creating new
fields that solve optimization problems by combining them with qubit characteristics [10–12].
The first case of combination with an evolutionary-based algorithm is the quantum-inspired
genetic algorithm (QGA), proposed by Han and Kim in 2000 [13]. Then, in 2002, Han and
Kim proposed the quantum-inspired evolutionary algorithm (QEA) [14] and began to
create a new field by combining qubit characteristics with metaheuristics algorithms. In
2004, Yang et al. proposed a quantum-inspired particle swarm optimization algorithm
(QPSO) in combination with qubit characteristics, the most representative particle swarm
algorithm (PSO) in a swarm based algorithm [15]. Among the physics-based algorithms, the
harmony search (HS) algorithm was first combined into QC by Layb in 2014 [16], and the
quantum-inspired gravitational search algorithm (QIGSA) was proposed by Nezamabadi
in 2015 [17]. Among human behavior-based algorithms, teaching–learning-based optimiza-
tion (TLBO) was combined with QC by Gao et al. in 2019 and was named quantum-inspired
teaching–learning-based optimization (QTLBO) [18].

Recently, the amount of research on metaheuristics algorithms has been increasing
due to the advantage of being able to solve the NP-hard problem in a short time [19]. In
particular, as the number of variables to be processed increases as it begins to be applied to
real-life problems, the computational time using existing computers begins to lengthen [20].
Therefore, many studies are being conducted that are creating new fields by combining
them with quantum computing with the expectation that design variables can quickly solve
many problems. As mentioned above, QC has been combined with various metaheuristics
algorithms from the early 2000s to the present to create new fields [21]. However, most
metaheuristics algorithms based on QC are only verified for convergence performance
through a benchmark function and are mainly applied to binary problems such as switch
on/off problems or knapsack problems [16,22–24]. Metaheuristics algorithms have solved
various engineering problems such as optimal design of architectural structures, robotics,
scheduling, and electronic engineering [25–27]. Therefore, QC-based metaheuristics al-
gorithms also require efforts to solve various engineering problems, but these attempts
are insufficient, especially in the case of applied structural engineering problems. In 2023,
Lee et al. performed weight optimization of 20-bar, 24-bar, and 72-bar truss structures
with continuous cross-sectional areas using the QbHS (quantum-based harmony search)
algorithm [28], and Lee et al. of the same year performed weight optimization of truss
structures with discrete cross-sectional areas using the QbHS algorithm [29]. In line with
the development of metaheuristics algorithms using QC, it needs to be applied to opti-
mization problems in various architectural engineering fields, and the development and
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improvement of metaheuristics algorithms using QC to solve architectural engineering
problems is required.

Therefore, in this paper, we intend to perform the optimal design of the truss structure
using the QbHS algorithm that combines QC and HS algorithms. In particular, we propose
four methods in which qubits are adopted in the process of the QbHS algorithm, and we
compare the results derived when each of the four methods is applied to truss topology
optimization (TTO). Section 2 describes the structure of the QbHS algorithm, and Section 3
describes four methods in which qubits are adopted. Section 4 defines TTO problems and
compares and analyzes TTO results using the four methods. Finally, Section 5 concludes
this paper.

2. QbHS Algorithm

The QbHS algorithm combines QC and HS algorithms, and it was proposed by Lee
et al. to solve the real problem [28]. The QbHS algorithm consists of five steps, like the
HS algorithm proposed by Geem et al. in 2001 [30]. Figure 2 is a flowchart of the QbHS
algorithm, implemented using Matlab.

Figure 2. Flowchart of the QbHS algorithm.

In Step 1, the problem of the optimization target is defined and the parameters used in
the algorithm are defined.

In Step 2, Equation (1) is constructed by creating a QHM (quantum harmony memory)
and initializing the initial state of the qubit. Here, N is the dimension of the problem, and
QHMS (quantum harmony memory size) is the size of the QHM.

QHM =

 x1
1 · · · x1

N
...

...
...

xQHMS
1 · · · xQHMS

N

. (1)

The design variables that constitute HM (harmony memory) of the HS algorithm
are composed of decimal variables. However, the design variables of QHM represent the
measured values of qubits in binary. In other words, each design variable can be defined as
Equation (2), and m means the number of qubits. Each qm contains zero or one information,
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such as in Equation (3), and is expressed as zero or one through the measurement of qubits.
|α|2 and |β|2 mean the probability that zero or one is chosen and must always satisfy
Equation (4). Also, Lee et al. classified two algorithms according to the qubit initialization
method, and in this paper, the initial probability of zero and one is initialized to 50% [28].

xi
j = {q1, q2, ..., qm}, (2)

qm =

[
αm
βm

]
, (3)

|αi|2 + |βi|2 = 1. (4)

In Step 3, if r (random variable from zero to one) has a value smaller than QHMCR
(quantum harmony memory considering rate) and QPAR (quantum pitch adjusting rate),
pitch adjusting is performed by adopting a qubit. Pitch adjusting is performed using the
amplitude of the qubit (|α|) adopted in the current iteration (t) and can be expressed as
Equations (5) and (6). {

αt+1 =
∣∣αt
∣∣2 + r × Qbw r < 0.5

αt+1 =
∣∣αt
∣∣2 − r × Qbw else

, (5)

Qbw = 0.7 ×
(

0.9 × qbwmax × exp
(

log(qbwmin/qbwmax)

0.7

)
× t

tmax

)
. (6)

Lee et al. proposed using the probability average of qubits as a method of adopting
qubits for pitch adjusting [28,29]. However, in this paper, we propose a new qubit adoption
method using a new equation and compare the results derived by applying each adoption
method to the optimal design of the truss structure.

The qubit on which the pitch adjusting is performed rotates using Equation (7) and
accumulates information. θ is determined by Table 1, Equations (8) and (9).{

αt+1

βt+1

}
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]{
αt

βt

}
. (7)

Table 1. Look-up table for qubit rotation.

xi bi f (x) < f (b) ∆θ
sign(αiβi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 True 0 0 0 0 0
0 0 False 0 0 0 0 0
0 1 True θP 1 −1 0 ±1
0 1 False 0 0 0 0 0
1 0 True −θP 1 −1 ±1 0
1 0 False 0 0 0 0 0
1 1 True 0 0 0 0 0
1 1 False 0 0 0 0 0

θP = θr × π, (8)

θ = ∆θ × sign(αiβi). (9)

The rotated qubit passes through the Hϵ gate. It is difficult to escape by itself when the
probability of qubit falls into local minima with full convergence to zero or one. Therefore,
the Hϵ gate is used for the purpose of preventing complete convergence of qubits using the
initially determined values [31]. Figure 3 is the concept of the Hϵ gate.
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Figure 3. Concept of the Hϵ gate.

In Step 4, the qubits of the existing QHM and QHM changed by Step 3 are measured
to determine whether to update. Using the measured result, the qubit passes through
the rotation gate, and the probability information of the qubit is updated again. Qubit
probability information is calculated by Equations (10) and (11). Therefore, the probability
information of qubits converges to zero or one as the number of iterations increases.

Cav =

(
1
n

n

∑
j=1

Cb(qj)

)
, (10)

Cb(q) =
1
m

m

∑
i=1

|1 − 2|αi|2| or Cb(q) =
1
m

m

∑
i=1

|1 − 2|βi|2|. (11)

In Step 5, if the termination condition is met, it is terminated. If the termination
condition is not met, return to Step 3 and realized and it is repeated until the termination
condition is met.

3. Qubit Adaption Method
3.1. Method I

In the case of HS algorithms, pitch adjusting is performed by adopting one of the
design variables, but QbHS algorithms perform pitch adjusting by adopting one of the
qubits constituting the design variable. Figure 4 is a graph representing the qubits adopted
by the 1000 iterations when the QbHS algorithm uses Method I. The pink area is the
total number of qubits initially set and is assumed to be 20 qubits. In the graph, circles
represent qubits adopted for each iteration number, and blue or red lines are the maximum
or minimum number of qubits that can be adopted. If the QbHS algorithm uses Method I,
there is a total of 20 qubits that can be adopted in each iteration, and they have the same
range in all iterations. Therefore, using Method I, the number of qubits that can be pitch
adjusted in all iterations does not change, and no other parameters are required except for
the number of qubits initially set.
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Figure 4. Adaption Method I according to iteration.

3.2. Method II

Figure 5 is a graph representing the qubits adopted by the 1000 iterations when the
QbHS algorithm uses Method II. As shown in Figure 4, the total number of qubits is the
same, but the number of qubits adopted for pitch adjusting is from 10 to 20. The minimum
number of qubits that can be adopted is determined as Equation (12). Here, QubitT is the
total number of qubits initially determined, and BWQ is a value determined initially from
zero to one. Depending on the size of BWQ the maximum and minimum number of qubits
that can be adopted for pitch adjusting vary. If BWQ has a size of 0.5, the minimum number
of qubit is 10, expressed as Figure 5. Therefore, Method II is similar to Method I, but BWQ
can be used to adjust the minimum number of qubits performing pitch adjusting.

Qubitmin = round(QubitT × (1 − BWQ)) (12)

Figure 5. Adaption Method II according to iteration (BWQ = 0.5).

3.3. Method III

Figure 6 is a graph representing the qubits adopted by the 1000 iterations when the
QbHS algorithm uses Method III. A total of 20 qubits are assumed, and the range of
qubits that can be adopted for pitch adjusting decreases nonlinearly as the number of
iterations progresses. The minimum number of qubits that can be adopted changes using
Equation (13), and τ is calculated by Equation (14). Here, BWQmax and BWQmin have
values from zero to one and are initially determined. t is the current number of iterations,
tmax is the maximum number of iterations. If BWQmax and BWQmin have 1.0 and 0.07, the
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adoption of qubits that change with iteration change is expressed in Figure 6. Therefore,
in Method III, as the number of iterations progresses, the qubits that may be adopted
decrease nonlinearly.

Qubitmin = round(QubitT × (1 − τ)), (13)

τ = BWQmax × exp(log(
BWQmin
BWQmax

)× t
tmax

). (14)

Figure 6. Adaption Method III according to iteration.

3.4. Method IV

Figure 7 is a graph representing the qubits adopted by the 1000 iterations when the
QbHS algorithm uses Method IV. A total of 20 qubits are assumed, and the range of
qubits that can be adopted for pitch adjusting decreases sharply in the number of arbitrary
iterations. Method IV uses the probability average of qubits. The probability average of
qubits is calculated by Equation (10) and can be defined as Equation (15). Here, tolBW
is the initially set probability average. The probability average of qubits according to the
number of iterations was arbitrarily set, and the qubits that can be adopted when tolBW
and BWQmin have values of 0.95 and 0.07 are shown in Figure 7. Therefore, Method IV
adopts one of all qubits, as in Method I, when the probability average of qubits is less than
tolBW. In other cases, the number of qubits that can be adopted as in Method II is reduced.

Figure 7. Adaption Method IV according to iteration.
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Qubitmin =

{
1 i f Cav < tolBW
round(QubitT × (1 − BWQmin)) else

. (15)

4. Numerical Example

The effects of the four methods for the adoption of qubits on the convergence perfor-
mance of the TTO problem were analyzed. The truss structure is a structure in which the
member acts only on compression and tensile forces and is an efficient structure that can
make long spans without pillars inside. Due to these characteristics, it is widely applied
to space trusses, domes, bridges, etc. Therefore, this paper intends to compare the conver-
gence performance according to the qubit adoption method using a simple truss structure
example. The TTO problem used 20-bar, 24-bar, and 72-bar truss structures, and the initial
shape of the structure is shown in Figure 8. In addition, mass is lumped into the blue nodes
of each truss structure.

The mathematical modeling used to solve TTO problems using the QbHS algorithm
is the same as in Equation (16). Equation (16) aims to minimize the weight of the truss.
Here, ρ means the density of the member, Bi means the topology variable, A means the
cross-sectional area of member, L means the length of the member, and n means the number
of the member. A total of seven constraints are used, ranging from G1 to G7 and a penalty
is imposed if they do not meet the constraints [32,33].

Minimize Weight(x) = ρ
n

∑
i=1

Bi AiLi, (16)

Subject to Gk(x) ≤ 0, k = 1, 2, 3, 4, 5, 6, 7,

G1 = |Biσi| − σmax
i ≤ 0

G2 = |δ| − δmax ≤ 0

G3 = |Biσ
c
i | − σcr

i ≤ 0

G4 = fr − f max
r ≤ 0

G5 = Amin ≤ Ai ≤ Amax

G6 = Check validity o f structure

G7 = Check kinematic stability

. (17)

Table 2 is a parameter of the QbHS algorithm used to solve TTO problems in 20-bar,
24-bar, and 72-bar truss structures. The convergence performance according to the four
methods of the QbHS algorithm and the convergence performance of the existing HS
algorithm were also compared. Direct comparison between quantum computing-based
metaheuristics algorithms and conventional decimal-based metaheuristics algorithms is
difficult because the computational methods are different inside. However, the convergence
performance of the algorithm was simply compared with the same number of iterations
and parameters for the interpretation of existing HS algorithms were also included in
Table 2. In addition, each interpretation was repeated 50 times.

Table 2. Parameters for TTO.

Algorithm Parameters

QbHSA QHMS = 10, Mea. = 2, QHMCR = 0.9, QPAR = 0.1, Qubit = 20, ϵ = 0.01, θr = 0.06,
qbwmax = 1.0, qbwmin = 0.1, BWQ = 0.3, BWQmax = 1.0, BWQmin = 0.01, tolBW = 0.95

HSA HMS = 10, HMCR = 0.9, PAR = 0.1, bw = 0.03



Biomimetics 2024, 9, 11 9 of 18

(a) (b)

(c)

Figure 8. Numerical examples for truss topology optimization: (a) 20-bar; (b) 24-bar; (c) 72-bar.

4.1. The 20-Bar Truss Structure

The initial shape of the 20-bar truss structure is shown in Figure 8a. The 20-bar truss
structure consists of nine nodes and 20 members, with a design variable (xi) of 20. In
addition, the physical properties of the structure are in Table 3. As for constraints, the stress
of the member, displacement of Node 4, and natural frequencies are 172.43 MPa, 10 mm,
f1 ≥ 60 Hz, and f2 ≥ 100 Hz.

Table 3. Conditions of 20-bar truss structures.

Lumped E ρ A Load

Mass Case 1 Case 2

200 kg 69,000 MPa 2740 kg/m3 −100 cm2 ≤ x ≤ 100 cm2 F1 = 500 kN, F2 = 0 kN F1 = 0 kN, F2 = 500 kN
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Figure 9 is the convergence graph of the 20-bar truss structure using the existing HS
algorithm and the four qubit adoption methods of the QbHS algorithm. The solid gray line
is interpreted 50 times each, the solid blue line is the best weight, the dotted blue line is the
mean weight, and the solid red line is the probability of the qubit. Since the existing HS
algorithms do not perform operations using qubits, probability is not expressed. The results
of the four qubit adoption methods of the QbHS algorithm and the results of the existing HS
algorithm all converge to one value, and the probability of qubit also converges to a value
close to one. As the minimum weight and mean weight, Method I derives 340.348 kg and
411.401 kg, and Method II derives 340.356 kg and 1018.08 kg. Method III derives 333.745 kg
and 917.523 kg, and Method IV derives 337.713 kg and 913.673 kg. When comparing the
minimum weight, it is confirmed that the convergence performance is the best when using
Method III and that there is a difference in convergence performance for each method. In
addition, the existing HS algorithm derives a value of 373.525 kg but increases by up to
11.9% over the results of the QbHS algorithm.

Table 4 is the size of the cross-sectional area of each member derived from the analysis
result, and the blank means that there is no element. Method I, Method III, and Method
IV adopt a total of 8 elements, and Method II adopts a total of 10 elements. A total of 11
elements of HSA are adopted. Similar topologies are derived from all results except those
from HSA. In addition, although there is a difference in the size of the cross-sectional area,
it can be confirmed that all of the cross-sectional constraints are satisfied.

Table 4. The 20-bar TTO results (Unit: cm2).

Design Variable Method I Method II Method III Method IV HSA

A1 31.259 50.001 51.575 68.115 39.252
A2 - - - - -
A3 - - - - -
A4 - - - - 5.017
A5 75.043 33.328 51.319 39.845 77.294
A6 - - - - 13.740
A7 - - - - -
A8 31.630 53.155 52.735 66.725 54.288
A9 - - - - -

A10 - 4.212 - - -
A11 53.137 65.924 33.804 42.621 90.668
A12 - - - - 2.100
A13 49.327 56.260 68.946 81.251 56.214
A14 - - - - -
A15 53.520 83.315 63.546 59.729 55.469
A16 - - - - -
A17 - 3.259 - - -
A18 87.500 51.661 50.025 42.311 72.267
A19 - - - - -
A20 75.002 53.415 75.468 60.104 53.204
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(a) (b)

(c) (d)

(e)

Figure 9. Convergence graph of 20-bar TTO results: (a) Method I; (b) Method II; (c) Method III;
(d) Method IV; (e) HSA.

4.2. The 24-Bar Truss Structure

The initial shape of the 24-bar truss structure is shown in Figure 8b. The 24-bar
truss structure consists of eight nodes and 24 members, with a design variable (xi) of
24. In addition, the physical properties of the structure are expressed in Table 5. As for
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constraints, the stress of the member, displacement of Nodes 5 or 6, and natural frequency
are 172.43 MPa, 10 mm, and f1 ≥ 30 Hz.

Table 5. Conditions of 24-bar truss structures.

Lumped
E ρ A

Load

Mass Case 1 Case 2

500 kg 69,000 MPa 2740 kg/m3 −40 cm2 ≤ x ≤ 40 cm2 F1 = 50 kN, F2 = 0 kN F1 = 0 kN, F2 = 50 kN

Figure 10 is the convergence graph of the 24-bar truss structure using the existing
HS algorithm and the four qubit adoption methods of the QbHS algorithm. The results
of the four qubit adoption methods of the QbHS algorithm and the results of the existing
HS algorithm all converge to one value, and the probability of qubit also converges to
a value close to one. As for the minimum weight and mean weight, Method I derives
131.958 kg and 186.718 kg, and Method II derives 134.250 kg and 187.267 kg. Method III
derives 130.298 kg and 181.797 kg, and Method IV derives 132.648 kg and 182.911 kg. When
comparing the minimum weight, it is confirmed that the convergence performance is the
best when using Method III and that there is a difference in convergence performance for
each method. In addition, the existing HS algorithm derives a value of 184.669 kg but
increass by up to 41.7% over the results of the QbHS algorithm.

Table 6 presents the size of the cross-sectional area of each member derived from the
analysis result. A total of 8 members are adopted in all methods, and HSA adopts a total of
10 members. Method II and Method III have the same topology derived, but the results of
Method I, Method IV, and HSA have different topology-derived structures. Finally, there
is a difference in the size of the cross-sectional area, but it can be confirmed that all of the
cross-sectional constraints are satisfied.

Table 6. The 24-bar TTO results (Unit: cm2).

Design Variable Method I Method II Method III Method IV HSA

A1 - - - - -
A2 - - - - 4.938
A3 - - - - 5.383
A4 - - - - -
A5 - - - - -
A6 - - - - 14.560
A7 20.039 22.523 20.625 20.080 26.305
A8 5.025 3.145 4.064 5.078 10.875
A9 - - - - 1.402

A10 - 0.113 0.060 - -
A11 - - - - -
A12 0.236 - - 0.0001 -
A13 20.001 20.642 20.081 20.002 20.380
A14 - - - - -
A15 5.000 5.159 3.798 5.522 10.767
A16 25.001 24.064 24.071 25.020 24.550
A17 - - - - -
A18 - - - - -
A19 - - - - -
A20 - - - - -
A21 - - - - -
A22 - 1.250 0.636 0.198 -
A23 0.626 - - 0.099 -
A24 0.061 0.674 0.1 - 8.947



Biomimetics 2024, 9, 11 13 of 18

(a) (b)

(c) (d)

(e)

Figure 10. Convergence graph of 24-bar TTO results: (a) Method I; (b) Method II; (c) Method III;
(d) Method IV; (e) HSA.

4.3. The 72-Bar Truss Structure

The initial shape of the 72-bar truss structure is shown in Figure 8c. The 72-bar truss
structure consists of 20 nodes and 72 members, with a design variable (xi) of 16. In addition,
the physical properties of the structure are presented in Table 7. As for constraints, the stress
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of the member, displacement of Nodes 1, 2, 3, 4, and natural frequencies are 172.375 MPa,
6.35 mm, f1 ≥ 4 Hz, and f3 ≥ 6 Hz.

Table 7. Conditions of 72-bar truss structures.

Lumped
E ρ A

Load

Mass Case 1 Case 2

2270 kg 68,950 MPa 2767.99 kg/m3 −30 cm2 ≤ x ≤ 30 cm2 F1x = F1y = 22.25 kN, F1z =
−22.25 kN

F1z = F2z = F3z = F4z =
−22.25 kN

Figure 11 is the convergence graph of the 72-bar truss structure using the existing
HS algorithm and the four qubit adoption methods of the QbHS algorithm. The results
of the four qubit adoption methods of the QbHS algorithm and the results of the existing
HS algorithm all converge to one value, and the probability of qubit also converges to a
value close to one. As the minimum and average weight, Method I derives 462.717 kg and
1186.25 kg, and Method II derives 451.215 kg and 545.837 kg. Method III derives 449.877 kg
and 533.587 kg, and Method IV derives 455.810 kg and 529.787 kg. When comparing the
minimum weight, it is confirmed that the convergence performance is the best when using
Method III and that there is a difference in convergence performance for each method. In
addition, the existing HS algorithm derives a value of 487.842 kg, but increases by up to
8.4% over the results of the QbHS algorithm.

Table 8 presents the size of the cross-sectional area of each member derived from the
analysis result. In Method II and Method III, a total of 9 members are adopted to derive the
same topology, and Method I, Method IV, and HSA adopt a total of 10 members. Although
there is a difference in the size of the cross-sectional area, it can be confirmed that all of the
cross-sectional constraints are satisfied.

Table 8. The 72-bar TTO results (Unit: cm2).

Design Variable Method I Method II Method III Method IV HSA

G1 (A1–A4) 4.880 5.655 7.985 4.776 6.574
G2 (A5–A12) 9.500 11.257 11.451 11.303 9.052
G3 (A13–A16) 5.651 - - - -
G4 (A17–A18) - - - - 11.218
G5 (A19–A22) 15.002 7.500 6.573 9.264 18.603
G6 (A23–A30) 6.328 7.886 7.832 7.749 9.446
G7 (A31–A34) - - - 2.873 -
G8 (A35–A36) 7.563 3.956 3.867 7.503 -
G9 (A37–A40) 11.549 15.074 15.485 9.864 12.434

G10 (A41–A48) 8.061 8.320 8.438 7.512 8.264
G11 (A49–A52) - - - - -
G12 (A53–A54) - - - - -
G13 (A55–A58) 14.581 15.032 14.063 18.199 14.989
G14 (A59–A66) 8.969 8.154 7.559 7.515 9.325
G15 (A67–A70) - - - - -
G16 (A71–A72) - - - - -
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(a) (b)

(c) (d)

(e)

Figure 11. Convergence graph of 72-bar TTO results: (a) Method I; (b) Method II; (c) Method III;
(d) Method IV; (e) HSA.



Biomimetics 2024, 9, 11 16 of 18

5. Conclusions

Recently, as QC has begun to become an issue, many studies have been conducted on
the combining or application of QC in many ways. In this paper, an analysis was performed
using the QbHS algorithm that combines the HS algorithm, one of the QC and metaheuristics
algorithms. In Step 3, the most important step in the QbHS algorithm, four methods of adopting
qubits for pitch adjusting were proposed and compared to the results of the TTO problem.

Four methods were proposed so that the number of qubits adopted is the same or
changes according to the change in the number of iterations. Method I consists in the
number of qubits adopted being the same for all iterations, and Method II is adopted as
much as the initially determined variable (BWQ) in the total number of qubits. Method III
nonlinearly decreases the number of qubits that can be adopted for pitch adjusting as the
number of iterations progresses, and Method IV uses the probability average of qubits to
reduce the number of qubits that can be adopted when the probability average of qubits
becomes an initially determined variable (tolBW).

In addition, the results of the qubit adoption method were compared by applying it to
the TTO problem and compared with the results of the existing HS algorithm. Convergence
performance was different according to the adoption method, and adoption Method 3
derived values of 333.745 kg, 130.298 kg, and 449.877 kg, showing the best convergence
performance in all TTO examples. In addition, although it is difficult to accurately compare
with the existing HS algorithm using decimal variables, it showed better results than the
results of the existing HS algorithm. This characteristic is believed to be due to the fact that
the exploitation performance has a greater impact on the convergence performance than
the exploration performance as the number of later iterations increases.

QC has become an issue, and many researchers are conducting research, but cases
of solving problems in structural engineering still need improvement. It is necessary to
approach and solve problems in various structural engineering fields using QC for new
access to future technologies and convergence of technologies from various perspectives. It
is necessary to develop a quantum computing-based algorithm that can easily be applied
to architectural engineering and quickly converge. In addition, this paper compared and
analyzed the results using the Truss example, but it needs to be applied to optimize a
long-span dome structure with many design variables and a vast search space analyzed.
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