
Citation: Dong, X.; Wan, G.; Zeng, P.;

Song, C.; Cui, S. Optimizing Robotic

Task Sequencing and Trajectory

Planning on the Basis of Deep

Reinforcement Learning. Biomimetics

2024, 9, 10. https://doi.org/10.3390/

biomimetics9010010

Academic Editors: Fei Tao, Yanhua

Long, Haoran Wei and Zhenghua

Huang

Received: 27 November 2023

Revised: 21 December 2023

Accepted: 24 December 2023

Published: 27 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Optimizing Robotic Task Sequencing and Trajectory Planning on
the Basis of Deep Reinforcement Learning
Xiaoting Dong 1,2,3,4 , Guangxi Wan 1,2,3,* , Peng Zeng 1,2,3,*, Chunhe Song 1,2,3 and Shijie Cui 1,2,3

1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, China; songchunhe@sia.cn (C.S.); cuishijie@sia.cn (S.C.)

2 Key Laboratory of Networked Control Systems, Shenyang Institute of Automation, Chinese Academy of
Sciences, Shenyang 110016, China

3 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
4 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: wanguangxi@sia.cn (G.W.); zp@sia.cn (P.Z.)

Abstract: The robot task sequencing problem and trajectory planning problem are two impor-
tant issues in the robotic optimization domain and are solved sequentially in two separate lev-
els in traditional studies. This paradigm disregards the potential synergistic impact between the
two problems, resulting in a local optimum solution. To address this problem, this paper formulates a
co-optimization model that integrates the task sequencing problem and trajectory planning problem
into a holistic problem, abbreviated as the robot TSTP problem. To solve the TSTP problem, we model
the optimization process as a Markov decision process and propose a deep reinforcement learning
(DRL)-based method to facilitate problem solving. To validate the proposed approach, multiple
test cases are used to verify the feasibility of the TSTP model and the solving capability of the DRL
method. The real-world experimental results demonstrate that the DRL method can achieve a 30.54%
energy savings compared to the traditional evolution algorithm, and the computational time required
by the proposed DRL method is much shorter than those of the evolutionary algorithms. In addition,
when adopting the TSTP model, a 18.22% energy reduction can be achieved compared to using the
sequential optimization model.

Keywords: robot task sequencing; trajectory planning; co-optimization; deep reinforcement learning;
robotic manufacturing

1. Introduction

An increasing number of robots are being deployed on production floors to achieve
intelligent manufacturing. This has motivated the development of production optimiza-
tion technology in robotics. Robot task sequencing [1] and trajectory planning [2] are
two traditionally separate optimization problems in robotics. The task sequencing problem
focuses on finding the optimal task execution sequence for the robot in order to achieve
certain objectives. It is analogous to the traveling salesman problem (TSP), but it is more
complex because of the robot’s kinematic redundancy (also known as the IK solution). The
robot trajectory planning problem involves determining the timing of the motion law that
the robot follows along a predefined geometric path while satisfying specific requirements,
such as trajectory smoothness and accuracy, and achieving desired objectives, such as those
related to the execution time, energy consumption, vibration, and their combinations; a
general overview is given in [3].

In the robotic work cell, there exists a unique group of application scenarios that
involve task sequencing and trajectory planning problems simultaneously, such as spot
welding, freeform surface inspection, or spray painting [4]. In these applications, the
robot is required to visit a set of task points with no predefined sequence to perform
corresponding tasks, and it must finally return to its initial state. Clearly, the visiting

Biomimetics 2024, 9, 10. https://doi.org/10.3390/biomimetics9010010 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9010010
https://doi.org/10.3390/biomimetics9010010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-4835-3713
https://orcid.org/0000-0003-4456-6236
https://orcid.org/0000-0001-8392-1777
https://doi.org/10.3390/biomimetics9010010
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9010010?type=check_update&version=1

Biomimetics 2024, 9, 10 2 of 19

sequence of the task points and the trajectories followed for the robot to reach each task
point have strong effects on the robot’s production efficiency. Additionally, different task-
point visiting sequences can lead to alterations in the robot’s moving path, consequently
impacting the robot’s movement trajectories. Therefore, it is necessary to address the task
sequencing and trajectory planning problems simultaneously.

However, the robot task sequencing and trajectory planning problems are traditionally
treated as two separate issues. The robot motion trajectories are often predefined at the
production control level, and then, the production scheduling level conducts the task
sequence planning. This sequential optimization model diminishes the optimization space
of the production problems and can improve productivity to a certain extent, but the
optimization solutions are often suboptimal because of the neglect of the underlying
synergies associated with the optimization objectives among the task sequencing and
trajectory planning problems. In addition, the solution space for the TSTP problem grows
exponentially with the number of manufacturing points. For an exhaustive search, the
computational complexity is O(m!gm), where m is the number of task points and g is
the number of IK solutions for each point. Traditional methods adopted to solve task
sequencing and trajectory planning problems, such as metaheuristics and dispatching
rules, face challenges in terms of time efficiency and ensuring high-quality solutions. These
methods either suffer from slow processing times or struggle to consistently achieve optimal
solutions that meet various objectives. Over the past few years, deep reinforcement learning
algorithms (DRL) [5] have enabled significant advancements; their excellent self-learning
and self-optimization qualities enable them to solve complex decision-making problems
quickly and accurately, which has resulted in their extensive utilization across various robot
work cell optimization problems [6].

Motivated by the aforementioned co-optimization requirements and DRL algorithms,
in this paper, we take the optimization problems in task sequencing and trajectory planning
as a monolithic problem and model it as a Markov decision process. Furthermore, a DRL-
based optimization method is developed to address the above co-optimization problem.
The major contributions are as follows.

• To the best of our knowledge, we are the first to combine the traditionally separate
optimization problems in task sequencing and trajectory planning into a monolithic
problem, called the robot TSTP problem, providing an integrated view in the discrete
manufacturing domain.

• To solve the above TSTP problem, we employ a DRL-based policy for decision
optimization. During the learning process, a specific state representation, action
space, and reward function are carefully designed. Typically, in the action space,
each action step considers the selection of task points, IK solutions, and trajectory
parameters concurrently.

• Given the absence of a benchmark test for scheduling and control co-optimization, the
feasibility of the proposed TSTP model and the effectiveness of the DRL are validated
through a demonstration abstracted from a specific real-world case: a spot-welding
task in an automation plant with a UR5 robot.

The rest of this article is organized as follows. Section 2 provides a summary of the
related work. Section 3 formulates the mathematical model of the robot TSTP problem
under study. Section 4 presents the methodology. Section 5 presents the experiments and
results. Section 6 concludes this study.

2. Related Work

This paper describes a comprehensive study that considers the combined optimization
of the robot task sequencing and trajectory planning problems. Because of the scarcity of
work in this field, this section discusses the research statuses of the task sequencing and
trajectory planning problems individually.

Biomimetics 2024, 9, 10 3 of 19

2.1. Existing Works for Robot Task Sequencing Problem

The robot task sequencing problem is essentially a tour planning problem and can be
viewed as a variation of the traveling salesman problem or one of its extensions [7,8]. The
formulation of the robot task sequencing problem as a mixed-integer nonlinear program
problem is a common approach to its solution. However, searching for exact solutions via
the mixed-integer nonlinear program method can be computationally intensive, especially
for larger instances. To tackle the large-scale robot task sequencing problem, heuristics are
applied, such as GA [9], PSO [10], etc. The work presented in [11] was one of the first to
use GA to address the robot task sequencing problem; the authors designed an innovative
encoding method that contained both the task sequence and corresponding configurations’
information. In their experiments, the computational time for a 6-DoF robot with a prob-
lem size of 50 points was approximately 1800 s. Xidias et al. [12] and Zacharia et al. [13]
extended this study by considering obstacles in 2D and 3D environments; they used the
bump surface concept to capture obstacle information and employed a genetic algorithm
to attain global solutions. However, their experiments were limited to small problem sizes,
with only up to 15 target points being considered.

To reduce the computational time required for the large-scale robot task sequencing
problem, the clustering algorithm and its improvement are regarded as a promising solution.
Gueta et al. [14] and Wong C et al. [15] attempted to solve the robot task sequencing
problem via clustering. They addressed the robot task sequencing problem in the same
way, firstly dividing the task points into a predetermined number of clusters based on their
topological locations. Subsequently, the robot task sequencing problem was transformed
into the problem of finding a tour across clusters and determining the subsequent visiting
sequences for the navigation of points within each cluster. The difference was that the
former study was conducted in a joint space, while the latter was in a Cartesian space.
Encouragingly, for a 6-DoF robot with one thousand task points, the clustering algorithm
was able to find the solution within 200 s.

More recently, the RoboTSP algorithm [16] has emerged as another method that could
compete with clustering in terms of speed. It was able to produce a high-quality solution
in less than a minute for a complex drilling task involving 245 targets, with an average of
28.5 configurations per target. Hiu-Hung et al. [1] optimized the robot task sequencing
problem using a two-tier model that only required seconds to obtain solutions for hundreds
of points. To begin, they employed a real-coded twin-space crowding evolutionary algo-
rithm to establish the robot configuration. Then, they optimized the task point sequence of
the robot through a heuristic bidirectional reference mechanism. Despite the effectiveness
of these heuristics in dealing with the robot task sequencing problem, the authors separated
the optimization of task sequencing and trajectory planning. Consequently, this setup
caused the performance of the downstream sequential planning to be constantly restricted
by the trajectory planning results. Since robot task sequencing and trajectory planning are
closely intertwined, it is imperative to optimize them concurrently in order to meet the
requirements on both fronts.

2.2. Existing Works for Robot Trajectory Planning

Trajectory optimization is an important tool for the minimization of industrial robot
operation times and energy consumption, which is a relevant research issue for many scholars.

Trajectory optimization is an important tool for the minimization of industrial robot
operation times and energy consumption, which is a relevant research issue for many
scholars. Time optimality is the earliest and most commonly used trajectory optimization
index. Bobrow JE et al. [17] were the first to solve the minimum-time robot trajectory
planning problem using the conventional linear feedback control theory. Lee Y D et al. [18]
then attempted to use GA to solve the time-optimal trajectory planning for a two-link
manipulator. With the development of intelligent algorithms, some algorithms with good
performance have been introduced to address the robot trajectory planning problem, such
as the DE algorithm [19], the PSO algorithm [20,21], the ant colony algorithm [22], the whale

Biomimetics 2024, 9, 10 4 of 19

algorithm [23], and so on. However, focusing solely on minimizing time as the objective in
robot trajectory planning frequently results in significant vibrations of the robot, leading to
a loss of tracking and positioning accuracy and even exacerbating motor wear. Therefore,
the co-optimization of time optimality and trajectory smoothness becomes an important
research area. In the work [24], a teaching–learning-based optimization algorithm was
proposed to solve the optimal time–jerk trajectory planning for a 6-DoF welding robot.
Zhang T et al. [25] presented a practical time-optimal and smooth trajectory planning algo-
rithm and applied it to robot arm trajectory planning successfully. Works [26–28] adopted
the NSGA-II algorithm, new convex optimization approach, and triple nurbs curves with
bidirectional interpolation algorithm, respectively, to solve the optimal time–jerk trajec-
tory planning problems for 6-DoF industrial manipulators, which greatly enriched the
optimization algorithm library for robot trajectory planning.

In recent years, there has been growing concern regarding energy-efficient robot
trajectory planning and the simultaneous minimization of energy and time, driven by
the increasing costs of energy [29]. Various practical methods of optimizing energy along
specified paths in robotic systems have been developed, such as scaling the reference
trajectory, as shown in works [30,31]. Lennartson B. et al. [32] extended the time-scaling
process by introducing a dynamic scaling factor to save more energy. Zhou J et al. [2]
proposed a modified algorithm for B-spline feedrate curves with a callback mechanism,
resulting in energy and time savings of over 45% compared to the conservative feed in
the case of sculptured surface machining under complex constraints. Hou R et al. [33]
formulated a time–energy optimization model using a phase plane based on the Riemann
approximation method and utilized an iterative learning algorithm with neural networks to
achieve an optimal trajectory for the precise control of industrial robots. W Sang et al. [34]
utilized the particle swarm optimization algorithm to derive the best trajectory parameters
to achieve the minimization of time and energy. Shi Xiang Dong et al. [35] focused on the
dynamic optimal trajectory planning for a robot with a time–energy–jerk co-optimization
objective and employed a fast and elitist genetic algorithm and multi-objective particle
swarm optimization algorithm to address it.

3. Problem Formulation

The study described in this paper is regarding the simultaneous optimization of the
robot task sequencing problem and trajectory planning problem. To apply optimization
methods, the mathematical model of the robot TSTP problem is formulated. To enhance the
understanding of the TSTP model, the mathematical models of the robot task sequencing
and the trajectory planning problems are briefly introduced in advance.

3.1. The Mathematical Model of the Robot Task Sequencing Problem

For an n-DoF robot that is arranged to execute a manufacturing task with m task points
P = P1, P2, . . . , Pm, the moving cost of the robot from task point l to h is denoted as Cl,h,
and the robot task sequencing optimization objective can be expressed as

min
m

∑
l=1

m

∑
h=1,h ̸=l

Cl,hxl,h

subject to ∀l,
m

∑
l=1,l ̸=h

xl,h = 1,

∀h,
m

∑
h=1,h ̸=l

xl,h = 1

∀l, ∀h, yl − yh + mxl,h = m − 1

l ̸= 1, h ̸= 1, l ̸= h, xl,h ∈ 0, 1

And ∀l, yl = 0, yl ∈ I

(1)

Biomimetics 2024, 9, 10 5 of 19

where the binary variable xl,h is assigned a value of 1 when the path from point l to h is
chosen; otherwise, it is assigned a value of 0. In addition, the dummy variables yl and
yh are employed to ensure that all points are covered once within the selected sequence.
It should be noted that in the robot TSTP problem, Cl,h is not a constant. Rather, Cl,h is
a variable to be evaluated according to the trajectory curve after the lth and hth points
are configured.

3.2. Joint Configuration Selection for the Task Points

The multiplicity of the IK solutions is one of the typical characteristics of the robot
kinematics model, which means that the robot can reach the same task point in many
different joint configurations; see Figure 1a. This type of multiplicity makes the robot task
sequencing problem more complex but also increases the optimization potential of the
robotic work cell. If a specific joint configuration is selected for the robot to reach a task
point, then the task point is configured; see Figure 1b.

Figure 1. Joint configuration selection for task points. (a). The blue and green directed lines represent
two different task points execution sequences, while the dot of the same color represent the joint
configuration of the corresponding task point. (b). Example of an optimal task points execution
sequence and corresponding joint configurations.

Assume that the robot needs to move from task point P1(x1, y1, z1, Rx1, Ry1, Rz1) to
P2(x2, y2, z2, Rx2, Ry2, Rz2). According to the robot inverse kinematics model q = Γ−1(P),
two sets of IK solutions, Sol1 = {q1, q2, . . . , qg}, Sol2 = {q′

1, q′
2, . . . , q′

g}, can be obtained,
where g is the number of IK solutions and qi = {θ1, θ2, . . . , θn} is a group of joint configura-
tions of the robot that can reach the task point Pi, i ∈ 1, 2. The robot transformation cost
from joint configuration k to r is denoted as tk,r, and the selection of the joint configurations
for the task points can be described as follows: select a joint configuration qk from the IK
solution set Sol1 and select another joint configuration qr from the IK solution set Sol2 to
ensure that the tk,r is minimum.

3.3. The Mathematical Model of the Robot Trajectory Planning Problem

The primary objective of optimal trajectory planning in this study is to minimize the
value of the robot’s moving time and energy consumption simultaneously. Assume that
the robot needs to move from pose q1 = {θ1, θ2, . . . , θn} to pose q2 = {θ′1, θ′2, . . . , θ′n}, with
the constraints of q̇1 = 0, and q̈1 = 0, q̇2 = 0 and q̈2 = 0. According to the robot dynamics
model, the joint torque can be calculated by

τ = M(q)q̈ + C(q, q̇)q̇ + F(q̇) + G(q) (2)

where q, q̇, and q̈ are the vectors of the joint angles, joint velocities, and joint accelerations,
respectively. M(q) is the mass matrix, C(q, q̇) is the Coriolis and centripetal coupling
matrix, F(q̇) is the friction force vector (comprising both viscous friction and Coulomb

Biomimetics 2024, 9, 10 6 of 19

friction), G(q) is the gravity vector, and τ is the joint torque vector. Thus, the energy
consumption can be articulated as

E =
∫ T

0
|τ · q̇|dt

subject to τmin
j ≤ |τj| ≤ τmax

j

q̇min
j ≤ |q̇j| ≤ q̇max

j

(3)

where τmin
j and τmax

j and q̇min
j and q̇max

j are the lower and upper bounds of the torque and
velocity of the jth joint, respectively. Then, a model for optimal time–energy trajectory
planning is developed within the joint space, described as

min α1T + α2E (4)

where T is the moving time for the robot from pose q1 to q2. {α1, α2} ∈ R+ ensures that
T and E are in the same order of magnitude. Note that, in the robot TSTP problem, the
moving time T is a variable that is determined by the IK solution selection and trajectory
curve quality.

3.4. The Mathematical Model of the Robot TSTP Problem

The above analysis shows that the robot moving cost is closely related to the moving
trajectories, which are further influenced by the task point execution sequence and joint
configuration selection when a specific task is executed. Traditionally, the robot trajectory
planning problem is addressed at the production control level, while the robot task sequenc-
ing problem is addressed at the scheduling level. This type of sequential optimization
model ignores the underlying synergies associated with the optimization objectives among
the task sequencing and trajectory planning problems and cannot obtain truly global op-
timal solutions. To cope with this problem, we construct a co-optimization model that
integrates the robot task sequencing and trajectory planning problems as a holistic problem,
called the robot TSTP model.

The robot TSTP problem can be described as follows. An n-DoF robot manipulator is
arranged to execute a manufacturing task with m task points P = {P1, P2, . . . , Pm} with no
predefined order. Each task point has six attributes Pi = (xi, yi, zi, Rxi, Ryi, Rzi) to define
its position and orientation. The robot TSTP problem seeks to simultaneously plan a set
of trajectories trajopt = (traj0, traj1, . . . , trajm−1) and find a task point execute sequence
Popt = {Px, Py, . . . , Pm, . . . , Pk} to achieve time and energy consumption minimization; see
Figure 2. This can be formulated as

min CP0,Px + CPx ,Py + . . . + CPi ,Pi+1 + . . . + CPk ,P0 (5)

CPi ,Pi+1 = α1Ti + α2Ei (6)

where CPi ,Pi+1 represents the moving cost of the robot from task point Pi to Pi+1 and Ti and
Ei are the time and energy consumption correspondingly. P0 is the robot’s initial state. {α1,
α2} ∈ R+ ensure that Ti and Ei are in the same order of magnitude. It should be noted that
Ti and Ei are variables evaluated according to the trajectory traji between task points Pi
and Pi+1. Assuming that the robot moves from Pi using the lth configuration to Pi+1 using
the rth configuration, the smallest moving time Ti,min can be calculated by the following:

Ti,min = max(
|θi+1,r

j − θi,l
j |

θ̇jmax
), j = 0, 1, . . . , n (7)

In Equation (7), the robot is always required to move at its maximum speed. Although
this can reduce the robot’s moving time significantly, it can also lead to increased wear and
tear on the robot’s components and higher energy consumption. To balance the robot’s

Biomimetics 2024, 9, 10 7 of 19

moving speed and energy consumption, a set of time factors ω = {1.0, 1.05, 1.1, 1.15, 1.2} is
designed to make the robot moving time Ti variable and controllable. In this case, the robot
moving time Ti can be calculated by the following:

Ti = Ti,min ∗ ωi (8)

where ωi ∈ ω, which is also the control parameter of the trajectory planning that should be
optimized together with the robot task points sequence in our Co-RTSATP problem.

τi = M(qi)q̈i + C(qi, q̇i)q̇i + F(q̇i) + G(qi) (9)

Ei =
∫ Ti

T0

|τi · q̇i|dt

subject to τmin
j ≤ |τi,j| ≤ τmax

j

q̇min
j ≤ |q̇i,j| ≤ q̇max

j

(10)

τi is a vector of the joint torque; it is a variable that varies from τPi to τPi+1 along with time.
τi,j and qi,j are the torque and velocity, respectively, of the jth joint when moving from task
point Pi to Pi+1.

Figure 2. Illustration of the robot TSTP problem. The red directed curves and dots represent
the optimal task points execution sequence and corresponding robot moving trajectories between
task points.

3.5. Assumptions

In developing the methodology to optimize the robot TSTP problem, the following
requirements must be satisfied:

• The robot needs to pass through each task point only once and return to its initial pose
after completing all task points;

• No obstacles should exist between the task points;
• After reaching a task point, the robot should move directly to the next task point; the

time taken to finish the task is not considered when calculating the cycle time because
the time required to finish a task depends only on a specific process;

• The robot kinematics and dynamics should be known.

4. Methodology

In this section, the robot trajectories between task points are planned using the quintic
polynomial interpolation (QPI) algorithm, and the global optimization process of the robot
TSTP problem is implemented via the DRL algorithm.

Biomimetics 2024, 9, 10 8 of 19

4.1. The QPI Algorithm

The QPI algorithm is widely used in the realm of robot trajectory planning because
of the smoothness and lack of acceleration jumps. In the robot TSTP problem, the general
mathematical expression of the QPI algorithm is

q(t) = a1 + a1t + a2t2 + a3t3 + a4t4 + a5t5

q̇(t) = a1 + 2a2t + 3a3t2 + 4a4t3 + 5a5t4

q̈(t) = 2a2 + 6a3t + 12a4t2 + 20a5t3
(11)

where a0, a1, a2, a3, a4, a5 satisfy:

a0
a1
a2
a3
a4
a5

 =

1 t0 t2
0 t3

0 t4
0 t5

0
0 1 2t0 3t2

0 4t3
0 5t4

0
0 0 2 6t0 12t2

0 20t3
0

1 t f t2
f t3

f t4
f t5

f
0 1 2t f 3t2

f 4t3
f 5t4

f
0 0 2 6t f 12t2

f 20t3
f

−1

q(0)
q̇(0)
q̈(0)
q(f)
q̇(f)
q̈(f)

 (12)

According to Equation (11), the quintic polynomial coefficient matrix A = [a0, . . . , a5]
T

can be calculated when the joints’ angle positions, velocities, and accelerations are deter-
mined and the time t is given. In the robot TSTP problem, the joints’ angles, velocities, and
accelerations at the start and end points are known, as shown in Formula (12), and Ti is
obtained by the DQN. Thus, A can be solved.

t0 = 0, t f = Ti
q(t0) = qi, q(t f) = qi+1
q̇(t0) = 0, q̇(t f) = 0
q̈(t0) = 0, q̈(t f) = 0

(13)

An example of using QPI to plan the robot moving trajectories is shown in Figure 3,
where qj(0) = 1.81 rad, qj(2.3) = 4.62 rad, q̇j(0) = 0 rad/s, q̇j(2.3) = 0 rad/s, q̈j(0) =

0 rad/s2, and q̈j(2.3) = 0 rad/s2. The curves of the joint angle, angular velocity, and angular
acceleration are smooth, with no mechanical vibration, which is beneficial for the robot’s
service life.

Figure 3. An example of robot trajectory planning by the QPI algorithm.

Biomimetics 2024, 9, 10 9 of 19

4.2. DRL Algorithm

The deep Q-learning neural network algorithm (DQN) is a type of DRL algorithm that
integrates the RL techniques and supervised learning [36]. The proposed DQN framework
for the robot TSTP problem is illustrated in Figure 4.

The DQN algorithm utilizes two deep neural networks: the evaluation network Q and
the target network Q̂. First, the agent observes the initial state s0 of the robot TSTP problem
environment and computes the state features’ values. Then, the agent takes an action to
interact with the environment using the ϵ−Greedy policy. Next, the agent receives a reward
from the environment, and the Q-network is trained through gradient descent based on
the calculated error. Finally, a new state s′ and its corresponding state features’ values are
computed before the next decision point. In this way, the agent constantly interacts with
the environment and records its experiences (s, a, r, s′) within the environment. The reward
(r) received for the action (a) in a given state (s) and the resulting new state (s′) after the
action are stored in the experience replay memory. When a sufficient number of experiences
has been accumulated, an amount equal to the size of the mini-batch is randomly selected
from the experience replay memory to train the Q-network. As the learning progresses,
the experience is constantly updated. By reusing and learning from past experiences, the
agent can learn from a more diverse and robust set of experiences, which, in turn, helps
to decorrelate the data samples and break the temporal correlations in the sequence of
experiences. This is important to prevent the learning process from falling into local optima
and to make the learning process more stable and data-efficient.

Figure 4. Algorithm framework for the robot TSTP problem.

4.2.1. Solution Representation

In the DQN algorithm, the solution of the robot TSTP problem can be expressed by
the task points sequence vector, joint configuration number vector, and time factor vec-
tor; each vector contains m elements. In the task points sequence vector {λ1, λ2, . . . , λm},
element λi ∈ [1, m] is described by a task point number. In the joint configuration vector
{c1, c2, . . . , cm}, element ci ∈ [1, g] is represented by an IK solution number. In the time
factor vector {ω1, ω2, . . . , ωm}, element ωi ∈ {1.00, 1.05, 1.10, 1.15, 1.20}. A solution rep-
resentation is illustrated in Figure 5, where the red parts connected by the green arrows
indicate that the robot reaches task point 9 with the 7th joint configuration, the moving
time from the last task point 5 to point 9 is equal to T5,min × 1.05, and the same applies for
other task points. Note that the last element marked in blue represents the time factor taken
by the robot to move from the initial pose to the first task point 3, as well as the time factor
from the last task point 6 back to the initial pose.

Biomimetics 2024, 9, 10 10 of 19

Figure 5. Solution representation in the DQN algorithm.

4.2.2. Decoding

The fitness of the robot TSTP problem can be calculated when a corresponding solution
is provided. An example of the encoding process for the solution from Figure 5 is explained
as follows. The robot first selects task point 3 for processing. According to the pose
information P3 = (x3, y3, z3, Rx3, Ry3, Rz3) and the inverse kinematic model q = Γ−1(P), a
set of IK solutions Sol = {q1, q2, . . . , qg} is formed. Each IK solution qi represents a type of
joint configuration used to reach task point 3, and the 6th joint configuration s6 is chosen for
the robot to reach task point 3 according to the joint configuration number vector. Because
this is the first task point, the robot needs to move from the initial pose q0 to q6

3 by the

time max(
|θ9,7

j −θ5,7
j |

θ̇jmax
)× 1.05 according to the time factor vector. Next, we plan the moving

trajectory traj0−→3 using the QPI algorithm between the initial pose q0 and pose q6
3. Once

the trajectory expression is known, the moving time T0→3 and energy consumption E0→3
can be calculated. By analogy, after all the task points in the solution are calculated, the
total time and energy consumption of the robot in executing the manufacturing task can be
obtained by summation.

4.2.3. State Features

Good state features should strike a balance between capturing environmental in-
formation accurately and avoiding unnecessary computational overhead. Based on the
manufacturing task characteristics and optimization objective, four state features are de-
signed as follows.

(1) Task state TS(t)

TS(t) = (I1(t), I2(t), . . . , Im(t) (14)

TS(t) is a binary vector whose length is equal to the task points number m, and
Ii(t) = 1 indicates that task point pi has been executed at decision point t; otherwise, it
has not.

(2) Robot joint state JS(t)

JS(t) = (θ1(t), θ2(t), . . . , θn(t)) (15)

JS(t) is an angle vector whose length is equal to the robot joint number n, and θi(t) is
the current angle of the ith joint. For example, θ2(t) = 2.5 rad indicates that the angle of
the 2nd joint is 2.5 rad at decision point t.

(3) Current total moving time CT(t)

CT(t) = Σκ
i=1Ti (16)

CT(t) is a cumulative variable that is equal to the sum of the moving time spent by the
robot at decision point t. κ represents the last completed task point Pκ at decision point t.

Biomimetics 2024, 9, 10 11 of 19

(4) Current total energy consumption CE(t)

CE(t) = Σκ
i=1Ei (17)

CE(t) is a cumulative variable that is equal to the sum of energy consumed by the
robot at decision point t. κ represents the last executed task point Pκ at decision point t.

4.2.4. Actions

Practically, the agent has three decision variables at each decision point t. They are
as follows:

• The task point number λi to be executed next;
• The joints configuration number ci for the robot to reach the task point pλi ;
• The time factor ωi for the robot to move from the current pose to task point pλi .

Thus, an action can be expressed by a decision vector a(t) = (λi, ci, ωi), where
λi ∈ [1, m], ci ∈ [1, g] and ωi ∈ {1.00, 1.05, 1.10, 1.15, 1.20}. Algorithm 1 illustrates the
procedure for the implementation of actions at each decision point.

Algorithm 1 Action implementation

1: input : probability ϵ, all output nodes Q − values ∈ DQN
2: output : an action a = (λi, ci, ωi)
3: generate a random number ξ
4: i f ξ ≤ ϵ, then
5: select the action whose Q − value is the largest
6: else
7: select an action randomly
8: end

4.2.5. Reward Function

After action at+1 = (λ′
i, c′i, ω′

i) is implemented, the agent can observe at least one of
the following three types of environment state features and obtain a corresponding reward.
The specific reward calculation procedure is illustrated in Algorithm 2.

• The task point pλ′
i

has been completed, and the agent receives a substantial negative
reward.

• The agent completes its target, TSt+1 = TSend, and the agent receives a substantial
positive reward.

• The agent completes the task point pλ′
i

and obtains a normal reward that relates to the
time and energy increment.

Algorithm 2 Reward definition

1: input : CT and CE at decision point t and t + 1
2: TS(t) = (I1(t), I2(t), . . . , Im(t)) at decision point t
3: TS(t + 1) = (I′1(t + 1), I′2(t + 1), . . . , I′m(t + 1))at decision point t + 1
4: action at+1 = (λ′

i, c′i, ω′
i)at decision point t + 1

5: output : rewardr+1
6: i f I(t + 1)λ′

i
= 1

7: rewardr+1 = −300
8: else i f TS(t + 1) = TSend
9: rewardr+1 = 10

10: else
11: ∆CT = CT(t + 1)− CT(t)
12: ∆CE = CE(t + 1)− CE(t)
13: rewardr+1 = −(w1∆CT + w2∆CE)
14: end

Biomimetics 2024, 9, 10 12 of 19

4.2.6. DQN Topology and Training

The DQN algorithm proposed in this study consists of one input layer, three fully
connected hidden layers, and one output layer. The number of nodes in the input and
output layers matches the state feature and action numbers. Rectified linear unit (ReLU)
activation functions are used in the hidden layers. The online network Qe is trained through
the stochastic gradient method RMSprop according to the error Error = 1

|A| ∑
|A|
i=1(Q̂i − Qi)2,

while the target network Q̂ is updated by Q̂ = Q every five steps.

5. Experiments and Results

Robots can be programmed to perform repetitive and time-consuming tasks; when
the number of task points is large, even small improvements in the production system can
yield substantial benefits. Therefore, solving the robot TSTP problem for actual robotic
work cells is very valuable.

The proposed approach was tested with four sets of experiments. The experimental
data were randomly generated based on a spot-welding task in a real automation plant
with a UR5 robot. Actually, any six-axis articulated robot is suitable for this research. All
experiments were implemented in Python 3.7 on an Intel Core i7 3.0-GHz computer with
10 GB RAM and Windows 10 OS.

5.1. Robot Model

The UR5, which is the specific robot used for the experiments, is a 6-DoF robot
that only has rotational joints. The standard D-H parameters derived from the Python
robotics toolbox are presented in Table 1. Since the UR5 is manipulated by intersecting
its last three axes at a point, only eight IK solutions are available for each task point, i.e.,
Sol = {q1, q2, . . . , q8}.

Table 1. Denavit–Hartenberg (DH) parameters of the UR5.

qi qi ai αi

q1 0.08946 0 π

q2 0 −0.425 0
q3 0 −0.3922 0
q4 0.1091 0 π

q5 0.09465 0 −π

q6 0.0823 0 0

5.2. Parameter Setting

In the DQN algorithm, three key parameters, ϵ in ϵ-greedy policy, reward decayγ, and
learning rate l, are calibrated. The levels of the three parameters are ϵ ∈ {0.80, 0.85, 0.90, 0.95},
γ ∈ {0.5, 0.7, 0.9}, and l ∈ {0.001, 0.005, 0.01, 0.015, 0.02}.The three parameters have
4 ∗ 3 ∗ 5 = 60 combinations. Calibration experiments are conducted on the instance
of 10 task points with all combinations. The result in each combination is the average
fitness in 10 repeats. Figure 6 illustrates the factors’ level trends of the above three param-
eters. According to Figure 6, we set ε = 0.9, γ = 0.9, l = 0.005, and the other parameters
are as follows: episode number L = 2000, memory size M = 300, and mini batch size
minbatch = 64. In addition, parameters α1 and α2 in optimization objective Equation (6) are
set to 0.2 and 0.01, respectively, based on the calibration experiment results.

Biomimetics 2024, 9, 10 13 of 19

Figure 6. Factors’ level trends of parameters in the DQN algorithm.

5.3. DQN Performance Testing

With the above parameter settings, we test the global optimization performance
and convergence of the DQN algorithm based on the instance of 10 task points. In this
case, the comprehensive time–energy consumption cost is 118.43, in which the cycle time
and energy consumption are 18.38 s and 351.87 J, respectively. When solving the robot
TSTP problem, the DQN algorithm shows an excellent global optimization ability; it is
always able to continue learning during the decision process. As shown in Figure 7a, in
the first 50 episodes, the agent constantly interacts with the environment to accumulate
experience and optimize its decisions, and its decision-making improves rapidly. Then, the
accumulated experience of interacting with the environment gradually becomes saturated,
the decision-making ability improves steadily, and it finally finds the optimal solution
at 1209 episodes. With the progression of the learning process, the loss function value
gradually decreases to zero; see Figure 7b. This shows that the DQN algorithm has good
convergence when solving the robot TSTP problem.

Figure 7. Decision-making process of the DQN algorithm when solving the Co-RTSATP problem.

5.4. DQN Algorithm Solves Large-Scale TSTP Problems

To test the DQN algorithm’s performance in solving large problems, we conducted
experiments with different problem sizes. Moreover, another two groups of experiments
whose optimization objectives are only time and only energy are conducted to verify
the rationality of taking time–energy consumption as an optimization objective in the
robot TSTP problem. Each experiment was conducted 10 times, and the average results
were collected, as shown in Figure 8. It is obvious that the DQN algorithm could solve
the robot TSTP problem with different sizes efficiently. When taking the time–energy
consumption as the optimization objective, the agents could always find a compromise
solution in which the cycle time and energy consumption were both slightly larger than
those considering cycle time or energy consumption optimization only, but they could save
time or energy significantly. For example, for 100 task points, the moving time obtained
by the time–energy cooperation model is 5% higher than the time-optimal model, but the
energy consumption is reduced by 35%. Likewise, compared with the energy-optimal
model, the energy consumption obtained by the time–energy cooperation model is 4.01%
higher, but the moving time is reduced by 25.47%. As is well known, production is a

Biomimetics 2024, 9, 10 14 of 19

complex process of multi-resource integration, and production efficiency can be affected by
many factors, which are always in conflict with each other, such as the robot moving time
and energy consumption. Therefore, this type of compromise solution of multi-objective
optimization is more closely aligned with the actual requirements of manufacturing.

Figure 8. Results comparison of using DQN algorithm performance under different problem sizes.

5.5. Comparison with Sequential Optimization Model

Comparing studies that address similar problems is challenging. This complexity
stems from variations in the approaches used to tackle the problem, as well as the con-
siderations of robotic constraints and the specific industrial environment. Additionally,
there is no universal reference for the robot TSTP problem (refer to [4] for benchmarks
and evaluation limitations). Despite these constraints, we conducted a comparison of our
TSTP model with [37] (abbreviated as Seq-opt model) by applying its principle to the same
problem, as they only considered the robot task sequencing problem under the condition
that the robot always moves at its maximum joint speed between all task points.

Figure 9a shows that the robot moving time obtained by the Seq-opt model is com-
parable to that of the TSTP model or even shorter. However, the corresponding energy
consumption is much higher than that of the TSTP model; see Figure 9b. For example, in
the experiment with 50 task points, the robot moving time obtained by the Seq-opt model
is only 3.58% shorter than that of the TSTP model, but the energy consumption increases
by 23.71%.

Figure 9. Comparison between the TSTP model and the sequential optimization model.

The relationship between a robot’s energy consumption and moving speed is complex
and cannot be expressed by a simple linear model. The results of the experiments confirm
that the TSTP model has the capability to effectively explore and strike a balance between

Biomimetics 2024, 9, 10 15 of 19

the moving speed of the robot and its energy consumption. This model is able to find
solutions that minimize both the moving time of the robot and its energy consumption.

5.6. Comparison with Other Algorithms

To investigate the performance of the DQN, we conducted comparisons with swarm
intelligence evolution algorithms. The comparison algorithms include GA (see [11]) and
the differential evolution (DE) algorithm (see [18]), with a population size of 100, and other
parameters match the reference. Each comparison is performed 10 times, and the average
results are recorded.

Figure 10a shows the time–energy cost for all experiments. Figure 10b reports the
computation time required by each algorithm. For small-scale problems, the algorithms
find solutions of comparable quality because of the relatively small solution space and low
computational complexity. As the problem scale increases, the proposed DQN algorithm
outperforms the others. In particular, when the task points m = 100, the DQN algorithm
can achieve an improvement of up to 28.80% compared to the GA algorithm. The DQN
algorithm demonstrates a notably quicker decision process in all experiments, especially as
the number of task points increases. For example, the computation time required by the
proposed DQN algorithm is only a fifth of that of the DE algorithm when the number of
task points m = 100. This is because the DQN algorithm employs a reinforcement learning
framework, which focuses on learning from past experiences and gradually improves its
performance. This framework enables the algorithm to make quicker and more informed
decisions, resulting in reduced computational time. On the other hand, the DE algorithm
typically requires a large number of iterations and evaluations of the objective function,
resulting in longer computation times.

Figure 10. Performance comparison between the DQN algorithm and the others.

5.7. Physical Experiments

To validate the robustness and practicality of the proposed TSTP model and DQN
approach, we carried out two sets of experiments on a real robot, where all parameter
settings matched those of the previous simulation experiment.

5.7.1. The Validation of the Robot TSTP Model

In this section, two types of experiments are presented. The first one adopted the robot
TSTP model, while the other one used the Seq-opt model; both took the DQN algorithm
as the global optimization method and used the QPI algorithm for trajectory planning.
To assess the effectiveness of the TSTP model across different complexities, tasks with
10 and 50 task points were included in the validation process; the experimental results are
presented as follows.

The voltage and current values of the motor, along with their change curves, were
documented during the robot’s operation. Subsequently, the power curve and energy

Biomimetics 2024, 9, 10 16 of 19

consumption were calculated based on these data and are presented in Figure 11. When
employing the TSTP model, the robot completed the task with 10 points in 12.179 s, resulting
in an energy consumption of 1929.127 J. In contrast, when utilizing the Seq-opt model, the
robot’s movement took 14.303 s, consuming 2110.864 J of energy. Through analysis of the
power curves, it is evident that the TSTP model guided the robot to execute tasks more
steadily despite a slightly longer overall time, enabling efficient energy conservation. The
superiority of the TSTP model was more obvious when the number of task points increased;
see Figure 12. When using the TSTP model, the robot completed the task with 50 points in
42.86 s, resulting in energy consumption of 7212.83 J. In contrast, when utilizing the Seq-opt
model, the robot’s movement took 39.51 s, consuming 8819.45 J of energy. Despite the
moving time being 8.47% longer than that of the Seq-opt model, the TSTP model resulted
in an energy consumption that is 18.22% lower than the Seq-opt model.

Figure 11. The power curves and energy consumption of the robot when executing the task involving
10 points using the TSTP model or Seq-opt model.

Figure 12. The power curves and energy consumption of the robot when executing the task of
50 points using the TSTP model or Seq-opt model.

5.7.2. The Performance Validation of the DQN Algorithm

In this section, we conducted three groups of experiments to test the performance of
the DQN algorithm in solving the robot TSTP problem. The first group of experiments
used the DQN algorithm, the second group used the DE algorithm, and the third group
used the GA algorithm. Each group of experiments encompassed 10 and 50 task points.
The TSTP model was employed in all experiments.

The voltage and current values of the motor, along with their change curves, were
documented during the robot’s operation. Subsequently, the power curve and energy
consumption were calculated based on these data and are presented in Figure 13. Upon

Biomimetics 2024, 9, 10 17 of 19

analyzing the data, it is evident that the DQN algorithm is capable of proficiently ad-
dressing the robot TSTP problem. However, when the dataset was small, its performance
was comparable to that of the traditional evolutionary algorithm. As the problem size
increased, the superiority of the DQN algorithm became increasingly evident. For instance,
in Figure 14, the optimal solution achieved by the DQN algorithm requires 17.83% less time
and 25.28% less energy consumption compared to the DE algorithm, as well as 21.63% less
time and 30.54% less energy consumption than the GA algorithm.

Figure 13. The power curves and energy consumption of the robot when executing the task of
10 points using the DQN algorithm, DE algorithm, and GA.

Figure 14. The power curves and energy consumption of the robot when executing the task of
50 points using the DQN algorithm, DE algorithm, and GA.

6. Conclusions

This work studied the simultaneous optimization of the robot task sequencing problem
and trajectory planning problem, briefly called the robot TSTP problem. The objective is
the simultaneous minimization of the robot’s moving time and energy consumption. The
robot TSTP problem is an NP-hard problem; it involves task point sequencing, IK solution
calculation and selection, trajectory parameter determination, and trajectory planning. The
solution space and computational complexity are much larger than those of any single
optimization problem. To solve the robot TSTP problem, a hybrid method that combines
the DQN algorithm and the QPI algorithm is proposed. First, the TSTP problem is modeled
as a Markov decision process; then, we use the DQN algorithm to select the task points,
IK solutions, and trajectory parameters at each decision step. Finally, the QPI algorithm is
used to plan the moving trajectories between task points.

Through detailed experiments, we evaluated the competitiveness of our proposed
DQN algorithm in solving the robot TSTP problem in terms of computation speed and

Biomimetics 2024, 9, 10 18 of 19

solution quality. In addition, the experimental results confirm the superiority of the TSTP
model. The TSTP model extends the optimization space and enhances the DQN algorithm,
enabling it to find more excellent solutions than any of the sequential optimization models.
Furthermore, the TSTP model also increases the production flexibility of the robotic cell
because it can easily adjust the scheduling and controlling parameters to respond to changes
in production targets or conditions. Finally, when solving the TSTP problem, setting the
time–energy optimization objective is more reasonable than setting a single objective, as it
can explore a solution that can improve production efficiency while maximizing energy
use. Currently, our research work only considers one robot’s production time–energy
optimization, which limits the application of the proposed approach. The future direction
is to apply these approaches to (a) multi-robot production environments, (b) stochastic
dynamic production environments, and (c) a combination of the above.

Author Contributions: Methodology, X.D.; software, G.W.; investigation, P.Z.; data curation, S.C.;
writing—original draft, X.D.; writing—review and editing, P.Z., C.S. and G.W.; project administration,
P.Z.; funding acquisition, P.Z. and S.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China [92267205,
U1908212, and 92067205], the State Key Laboratory of Robotics of China (2023-Z15), the National
Program for Funded Postdoctoral Researchers (GZB20230805).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare that they have no conflict of interest. The manuscript
was written through the contributions of all authors. All authors have approved the final version of
the manuscript.

References
1. Chen, C.H.; Chou, F.I.; Chou, J.H. Optimization of robotic task sequencing problems by crowding evolutionary algorithms. IEEE

Trans. Syst. Man, Cybern. Syst. 2022, 52, 6870–6885. [CrossRef]
2. Zhou, J.; Cao, H.; Jiang, P.; Li, C.; Yi, H.; Liu, M. Energy-saving trajectory planning for robotic high-speed milling of sculptured

surfaces. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2278–2294. [CrossRef]
3. Ratiu; Mariana; Prichici. Industrial robot trajectory optimization—A review. MATEC Web Conf. 2017, 126, 02005. [CrossRef]
4. Alatartsev, S.; Stellmacher, S.; Ortmeier, F. Robotic task sequencing problem: A survey. J. Intell. Robot. Syst. Theory Appl. 2015,

80, 279–298. [CrossRef]
5. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal

Process. Mag. 2017, 34, 26–38. [CrossRef]
6. Zhao, L.; Fan, J.; Zhang, C.; Shen, W.; Zhuang, J. A drl-based reactive scheduling policy for flexible job shops with random job

arrivals. IEEE Trans. Autom. Sci. Eng. 2023, 1–12. [CrossRef]
7. Kovács, A. Integrated task sequencing and path planning for robotic remote laser welding. Int. J. Prod. Res. 2015, 54, 1210–1224.

[CrossRef]
8. Kurtser, P.; Edan, Y. Planning the sequence of tasks for harvesting robots. Robot. Auton. Syst. 2020, 131, 103591. [CrossRef]
9. Baizid, K.; Yousnadj, A.; Meddahi, A.; Chellali, R.; Iqbal, J. Time scheduling and optimization ofindustrial robotized tasks basedon

genetic algorithms. Robot. Comput.-Integr. Manuf. 2015, 34, 140–150. [CrossRef]
10. FarzanehKaloorazi, M.; Bonev, I.A.; Birglen, L. Simultaneous task placement and sequence optimization in an inspection robotic

cell. Robotica 2021, 39, 2110–2130. [CrossRef]
11. Zacharia, P.; Aspragathos, N. Optimal robot task scheduling based on genetic algorithms. Robot. Comput.-Integr. Manuf. 2005,

21, 67–79. [CrossRef]
12. Xidias, E.K.; Zacharia, P.T.; Aspragathos, N.A. Time-optimal task scheduling for articulated manipulators in environments

cluttered with obstacles. Robotica 2009, 28, 427–440. [CrossRef]
13. Zacharia, P.; Xidias, E.; Aspragathos, N. Task scheduling and motion planning for an industrial manipulator. Robot. Comput.-Integr.

Manuf. 2013, 29, 449–462. [CrossRef]
14. Gueta, L.B.; Chiba, R.; Ota, J.; Ueyama, T.; Arai, T. Coordinated motion control of a robot arm and a positioning table with

arrangement of multiple goals. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena,
CA, USA, 19–23 May 2008; pp. 2252–2258.

15. Wong, C.; Mineo, C.; Yang, E.; Yan, X.-T.; Gu, D. A novel clustering-based algorithm for solving spatially-constrained robotic task
sequencing problems. IEEE/ASME Trans. Mechatronics 2020, 26, 2294–2305. [CrossRef]

http://doi.org/10.1109/TSMC.2021.3104862
http://dx.doi.org/10.1109/TASE.2021.3063186
http://dx.doi.org/10.1051/matecconf/201712602005
http://dx.doi.org/10.1007/s10846-015-0190-6
http://dx.doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1109/TASE.2023.3271666
http://dx.doi.org/10.1080/00207543.2015.1057626
http://dx.doi.org/10.1016/j.robot.2020.103591
http://dx.doi.org/10.1016/j.rcim.2014.12.003
http://dx.doi.org/10.1017/S0263574721000199
http://dx.doi.org/10.1016/j.rcim.2004.04.003
http://dx.doi.org/10.1017/S0263574709005748
http://dx.doi.org/10.1016/j.rcim.2013.05.002
http://dx.doi.org/10.1109/TMECH.2020.3037158

Biomimetics 2024, 9, 10 19 of 19

16. Zahorán, L.; Kovács, A. Proseqqo: A generic solver for process planning and sequencing in industrial robotics. Robot. Comput.-
Integr. Manuf. 2022, 78, 102387. [CrossRef]

17. Bobrow, J.E.; Dubowsky, S.; Gibson, J.S. Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res.
1985, 4, 3–17. [CrossRef]

18. Lee, Y.D.; Lee, B.H.; Kim, H.G. An evolutionary approach for time optimal trajectory planning of a robotic manipulator. Inf. Sci.
1999, 113, 245–260. [CrossRef]

19. Saravanan, R.; Ramabalan, S.; Balamurugan, C. Evolutionary optimal trajectory planning for industrial robot with payload
constraints. Int. J. Adv. Manuf. Technol. 2007, 38, 1213–1226. [CrossRef]

20. Liu, C.; Cao, G.-H.; Qu, Y.-Y.; Cheng, Y.-M. An improved pso algorithm for time-optimal trajectory planning of delta robot in
intelligent packaging. Int. J. Adv. Manuf. Technol. 2019, 107, 1091–1099. [CrossRef]

21. Du, Y.; Chen, Y. Time optimal trajectory planning algorithm for robotic manipulator based on locally chaotic particle swarm
optimization. Chin. J. Electron. 2022, 311, 906–914. [CrossRef]

22. Xu, Z.; Wang, W.; Chi, Y.; Li, K.; He, L. Optimal trajectory planning for manipulators with efficiency and smoothness constraint.
Electronics 2023, 12, 2928. [CrossRef]

23. Zhao, J.; Zhu, X.; Song, T.; Meng, X. An improved whale optimization algorithm for robot time-jerk optimal trajectory planning. J.
Phys. Conf. Ser. 2023, 2170, 012008. [CrossRef]

24. Rout, A.; Dileep, M.; Mohanta, G.B.; Deepak, B.; Biswal, B. Optimal time-jerk trajectory planning of 6 axis welding robot using
tlbo method. Procedia Comput. Sci. 2018, 133, 537–544. [CrossRef]

25. Zhang, T.; Zhang, M.; Zou, Y. Time-optimal and smooth trajectory planning for robot manipulators. Int. J. Control Autom. Syst.
2015, 19, 521–531. [CrossRef]

26. Huang, Y.; Fei, M. Motion planning of robot manipulator based on improved nsga-ii. Int. J. Control Autom. Syst. 2018,
16, 1878–1886. [CrossRef]

27. Ma, J.; Gao, S.; Yan, H.; Lv, Q.; Hu, G. A new approach to time-optimal trajectory planning with torque and jerk limits for robot.
Robot. Auton. Syst. 2021, 140, 103744. [CrossRef]

28. Li, X.; Zhao, H.; He, X.; Ding, H. A novel cartesian trajectory planning method by using triple nurbs curves for industrial robots.
Robot. Comput.-Integr. Manuf. 2023, 83, 102576. [CrossRef]

29. Li, X.; Lan, Y.; Jiang, P.; Cao, H.; Zhou, J. An Efficient Computation for Energy Optimization of Robot Trajectory. IEEE Trans. Ind.
Electron. 2022, 69, 11436–11446. [CrossRef]

30. Vergnano, A.; Thorstensson, C.; Lennartson, B.; Falkman, P.; Pellicciari, M.; Yuan, C.; Biller, S.; Leali, F. Embedding detailed robot
energy optimization into high-level scheduling. In Proceedings of the 2010 IEEE International Conference on Automation Science
and Engineering, Toronto, ON, Canada, 21–24 August 2010; pp. 386–392.

31. Meike, D.; Pellicciari, M.; Berselli, G. Energy Efficient Use of Multirobot Production Lines in the Automotive Industry: Detailed
System Modeling and Optimization. IEEE Trans. Autom. Sci. Eng. 2014, 11, 798–809. [CrossRef]

32. Wigstrom, O.; Lennartson, B.; Vergnano, A.; Breitholtz, C. High-level scheduling of energy optimal trajectories. IEEE Trans.
Autom. Sci. Eng. 2013, 10, 57–64. [CrossRef]

33. Hou, R.; Niu, J.; Guo, Y.; Ren, T.; Yu, X.; Han, B.; Ma, Q. A novel resolution scheme of time-energy optimal trajectory for precise
acceleration controlled in dustrial robot using neural networks. Actuators 2022, 11, 130. [CrossRef]

34. Sang, W.; Sun, N.; Zhang, C.; Qiu, Z.; Fang, Y. Hybrid Time-Energy Optimal Trajectory Planning for Robot Manipulators with
Path and Uniform Velocity Constraints. In Proceedings of the 2022 13th Asian Control Conference (ASCC), Jeju, Republic of
Korea, 4–7 May 2022; pp. 334–340.

35. Shi, X.; Fang, H.; Pi, G.; Xu, X.; Chen, H. Time-Energy-Jerk Dynamic Optimal Trajectory Planning for Manipulators Based on
Quintic NURBS. In Proceedings of the 2018 3rd International Conference on Robotics and Automation Engineering (ICRAE),
Guangzhou, China, 17–19 November 2018; pp. 44–49.

36. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

37. Xidias, E.; Moulianitis, V.; Azariadis, P. Optimal robot task scheduling based on adaptive neuro-fuzzy system and genetic
algorithms. Int. J. Adv. Manuf. Technol. 2021, 115, 927–939. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.rcim.2022.102387
http://dx.doi.org/10.1177/027836498500400301
http://dx.doi.org/10.1016/S0020-0255(98)10052-X
http://dx.doi.org/10.1007/s00170-007-1169-7
http://dx.doi.org/10.1007/s00170-019-04421-7
http://dx.doi.org/10.1049/cje.2021.00.373
http://dx.doi.org/10.3390/electronics12132928
http://dx.doi.org/10.1088/1742-6596/2170/1/012008
http://dx.doi.org/10.1016/j.procs.2018.07.067
http://dx.doi.org/10.1007/s12555-019-0703-3
http://dx.doi.org/10.1007/s12555-016-0693-3
http://dx.doi.org/10.1016/j.robot.2021.103744
http://dx.doi.org/10.1016/j.rcim.2023.102576
http://dx.doi.org/10.1109/TIE.2021.3118367
http://dx.doi.org/10.1109/TASE.2013.2285813
http://dx.doi.org/10.1109/TASE.2012.2198816
http://dx.doi.org/10.3390/act11050130
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1007/s00170-020-06166-0

	Introduction
	Related Work
	Existing Works for Robot Task Sequencing Problem
	Existing Works for Robot Trajectory Planning

	Problem Formulation
	The Mathematical Model of the Robot Task Sequencing Problem
	Joint Configuration Selection for the Task Points
	The Mathematical Model of the Robot Trajectory Planning Problem
	The Mathematical Model of the Robot TSTP Problem
	Assumptions

	Methodology
	The QPI Algorithm
	DRL Algorithm
	Solution Representation
	Decoding
	State Features
	Actions
	Reward Function
	DQN Topology and Training

	Experiments and Results
	Robot Model
	Parameter Setting
	DQN Performance Testing
	DQN Algorithm Solves Large-Scale TSTP Problems
	Comparison with Sequential Optimization Model
	Comparison with Other Algorithms
	Physical Experiments
	The Validation of the Robot TSTP Model
	The Performance Validation of the DQN Algorithm

	Conclusions
	References

