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Abstract: Achieving omnidirectional walking for bipedal robots is considered one of the most
challenging tasks in robotics technology. Reinforcement learning (RL) methods have proved effective
in bipedal walking tasks. However, most existing methods use state machines to switch between
multiple policies and achieve omnidirectional gait, which results in shaking during the policy
switching process for bipedal robots. To achieve a seamless transition between omnidirectional
gait and transient motion for full-size bipedal robots, we propose a novel multi-agent RL method.
Firstly, a multi-agent RL algorithm based on the actor–critic framework is designed, and policy
entropy is introduced to improve exploration efficiency. By learning agents with parallel initial state
distributions, we minimize reliance on gait planner effectiveness in the Robot Operating System
(ROS). Additionally, we design a novel heterogeneous policy experience replay mechanism based on
Euclidean distance. Secondly, considering the periodicity of bipedal robot walking, we develop a
new periodic gait function. Including periodic objectives in the policy can accelerate the convergence
speed of training periodic gait functions. Finally, to enhance the robustness of the policy, we construct
a novel curriculum learning method by discretizing Gaussian distribution and incorporate it into the
robot’s training task. Our method is validated in a simulation environment, and the results show
that our method can achieve multiple gaits through a policy network and achieve smooth transitions
between different gaits.

Keywords: omnidirectional walking; bipedal robot; multi-agent reinforcement learning; experience
replay mechanism; curriculum learning

1. Introduction

As fundamental research in robotics continually advances, service robots are increas-
ingly permeating our daily lives [1]. In specific application scenarios, bipedal robots
demonstrate greater flexibility and efficiency than their wheeled counterparts, making
them a significant subject within the field of robotics research. Gait optimization is founda-
tional to the normal operation of bipedal robots, chiefly referring to the robots’ ability to
achieve rapid, stable locomotion through self-balancing [2,3]. To enable balanced motion
in bipedal robots, gait optimization needs to circumvent leg–foot collisions during robot
movement. Traditional gait control methods, such as human walking parameters [4,5], zero
moment point (ZMP) [6,7], passive walking [8], fuzzy logic control [9], and optimization
algorithms [10,11], have been consistently employed in bipedal robot gait control for many
years. However, these traditional methods present problems. Specifically, human walking
parameter methods require time-intensive manual parameter tuning, often resulting in
less than optimal values. ZMP methods, on the other hand, present several drawbacks,
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such as insufficient energy, restricted walking speed, and limited resistance to external
disturbances [6]. These traditional techniques exhibit high computational complexity, low
robustness, and poor generality. While Model Predictive Control (MPC) is not classified as
a traditional gait control method, its wide application in bipedal robot gait control is notice-
able [12]. Reference [13] proposes a holistic MPC scheme based on differential dynamic
programming to tackle the challenges of physical constraints and model discrepancies in
bipedal robots.

RL methods are widely utilized for bipedal robot control due to their aptitude for
model-free learning [14,15]. RL techniques offer benefits such as reduced hardware require-
ments for robots and significant time savings in the debugging process [16]. However,
choosing an appropriate learning rate for RL-based methods poses a practical challenge.
A small learning rate may result in protracted training progress, whereas a large one could
trigger oscillations or even algorithm divergence, compromising training performance [17].
Integrating RL with neural networks has provided some solutions for this issue [18,19].
The robot interacts with the environment and learns through continuous trial and error
to obtain a reward function to judge whether the skill is good or bad, and eventually
learns the skill. This learning approach circumvents inaccuracies induced by mathemati-
cal models and bolsters the robustness of the training process [20]. The Proximal Policy
Optimization (PPO) algorithm, a popular actor–critic algorithm, is frequently used for
training bipedal walking [21,22]. It facilitates direct control through end-to-end learning,
broadening the applicability of RL. PPO-based model-free learning for bipedal walking
gravitates around multi-action policy learning algorithms based on Markov Decision Pro-
cesses (MDPs) [18,23]. Presently, the PPO algorithm has emerged as the standard method
for training bipedal robot gaits. However, it faces challenges concerning slow training
speed and low sample utilization in gait optimization. To resolve these issues, an experience
replay mechanism has been introduced, which increases past data replay frequency and
curbs resource wastage, thereby enhancing the convergence speed and efficiency of RL
algorithms [24]. Nonetheless, the experience replay mechanism also has its limitations,
including high storage space requirements, substantial computational load, and demanding
hardware prerequisites. Consequently, employing a heterogeneous strategy can mitigate
the computational overhead associated with RL algorithms. Although leveraging heteroge-
neous RL algorithms significantly accelerates the training process through multi-threading
techniques, a considerable amount of training time is still required [25]. Moreover, existing
off-policy RL algorithms do not fully take advantage of good and general experiences since
they depend on replaying individual experiences. Model-based RL methods can improve
exploration efficiency by leveraging partial knowledge of the environment, thereby min-
imizing ineffective exploration. The amalgamation of MPC and RL can effectively carry
out safe exploration [26]. However, these methods might not entirely utilize the robot’s
capabilities, potentially resulting in suboptimal policies.

Unfortunately, the majority of current gait research tends to focus predominantly
on straight-line gaits or turning gaits. Turning gaits are often achieved by integrating
the PPO algorithm with curriculum learning methods. Existing research suggests that
training strategies incorporating curriculum learning can present advantages in generating
complex actions. A common approach for training bipedal robots for omnidirectional
walking is to commence with straight-line movement training, and then progressively
introduce larger turning angles. This gradual progression method has been demonstrated
to effectively bolster the training success rate of complex strategies. However, curricu-
lum learning methods are prone to catastrophic forgetting, wherein the difficulty of early
training stages is lost, posing challenges in achieving multiple gait patterns using a sin-
gle policy network. Unlike previously mentioned RL gait control methods that require
switching between multiple policy networks, our approach allows for omnidirectional gait
using a single policy network. This mitigates the constraints of controller switching and
facilitates more fluid transitions between different gaits. Specifically, this paper offers the
following advancements:
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(1) A novel approach to multi-agent RL is constructed which is based on the actor–
critic framework. A combinatorial optimization approach is employed to maximize
the cumulative reward and policy entropy. Additionally, a new experience replay
mechanism is designed specifically for multi-agent RL methods.

(2) A new periodic gait function is designed and incorporated as an objective into our
RL policy. Our periodic gait function enables bipedal gaits to exhibit symmetry
and periodicity.

(3) A curriculum learning method based on Gaussian distribution discretization is pro-
posed. During the training process, the turning angle is dynamically adjusted,
and a single strategy is used to achieve omnidirectional walking with different
turning angles.

2. Related Work

Traditional gait optimization typically involves planning joint trajectories based on
walking requirements, followed by the calculation of joint angles using an inverse kinematic
model. The goal is to ensure stability, avert falls, and enhance aesthetic appeal. To tackle
the complexities associated with multi-link structured bipedal robots, researchers have
conceived simplified models, such as the three-mass inverted pendulum model. This
model takes into account the influence of the support leg on motion stability, reducing
the robot to three crucial components: the center of mass (COM) of the torso, the COM of
the support leg, and the COM of the swing leg during the single-leg support phase [27].
This streamlined framework aids in studying motion stability and control strategies in
bipedal locomotion.

In [28], a contemporary online optimization technique is presented, enabling hu-
manoid robots to execute vertical jumps effectively by controlling the centroidal angular
momentum and mitigating the impact upon landing. Nevertheless, manual parameter
adjustment is not only time-consuming but also does not guarantee the generation of
optimal values. Consequently, numerous scholars have suggested optimization algorithms
for robot training. At present, bio-inspired optimization algorithms are extensively applied
to bipedal robot gait optimization. However, owing to the abundance of robot parameters,
bio-inspired optimization algorithms are prone to becoming ensnared in local optimiza-
tion during the optimization process, thus making it challenging to achieve the robot’s
maximum walking speed.

RL methods have demonstrated significant potential and the capacity to supplant
traditional model-based controllers in various studies. Remarkably, significant progress
has been achieved using RL methods for tasks such as walking and jumping on the Cassie
robot [29,30]. In a study of Cassie walking gaits by Jonah Siekmann et al. [31], a clock
signal-based reward function was employed to attain periodic walking gaits with swing
and stance phases for each leg. The study in reference [32] utilizes domain randomization
techniques to facilitate policy learning adaptation to variations in system dynamics, thereby
achieving robust behaviors. In [33], a formulation to counteract the limitations of RL con-
trollers for bipedal robots is proposed by integrating footstep constraints. This formulation
allows the learned controllers to maintain robust and dynamic gaits while adhering to
external environmental constraints. The study in reference [23] leverages model-free RL
techniques to fine-tune the base policy, adapting it to an imperfect extrinsics estimator,
and demonstrates successful transference to a physical robot. RL has also been used to
learn diverse motion skills and achieve seamless transitions between them. Yu et al. utilize
precomputed trajectory data and terminal rewards to learn specific turning gaits for bipedal
robots, enabling seamless transitions in the turning process [34]. In reference [35], a policy
learning method based on footprint planning is designed to accomplish omnidirectional
walking on 2D and 3D terrains by following a learning strategy for a given sequence of
steps in the ROS framework. Rodriguez et al. propose a novel approach for achieving om-
nidirectional gaits for bipedal robots [36]. They amalgamate RL with a curriculum learning
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approach, progressively increasing the difficulty of gait training tasks. This integration
enables the learning of robust and versatile gaits in various directions.

3. Preliminaries
3.1. Actor–Critic Algorithm

Central to the concept of RL is an intelligent agent engaging with an environment while
executing a specific task. This interaction involves taking actions and receiving reward
signals from the environment, which indicate the success or failure of the agent’s actions.
As the agent continually interacts with the environment, it refines its action selection
strategy based on the received feedback, aiming to maximize cumulative rewards. Through
numerous iterations, the agent eventually unearths the optimal strategy to complete the
assigned task. During the actual interaction between the agent and the environment,
constraining the number of interactions could result in a significant discrepancy between
the presumed reward sequence and the actual values, thereby exacerbating the variance
of the reward signals. Moreover, traditional policy gradient algorithms often exhibit a
protracted convergence speed. One possible resolution to these issues is the utilization of
an actor–critic algorithm, merging the roles of an actor and a critic and leveraging joint
training to bolster stability and learning efficiency. In the actor–critic algorithm, the actor is
tasked with action selection, while the critic evaluates the value of these actions. The actor
generates actions at based on the current state and policy π(at|st, θ), where θ represents the
parameters of the policy network. The critic estimates the action value function Q(st, at, θq)
or the advantage function A(st, at, θa) based on the current state and action, where θq and
θa represent the parameters of the critic network. The goal of the actor is to maximize
the total return J(θ) = Eπ [R], where R represents the return value. To achieve this goal,
the actor utilizes policy gradient methods to update the parameters θ by maximizing the
expected value of the policy value function V(st, θ):

∇θ J(θ) ≈ 1
N

N

∑
t=1

∇θ log π(at|st, θ)A(st, at, θa), (1)

where N denotes the number of samples. By iteratively updating the parameters θ, the
actor optimizes the policy to choose actions that yield higher returns.

The critic estimates the action value function or advantage function based on the
chosen actions and the true returns. Specifically, the critic aims to minimize the difference
between the action value function or advantage function and the true return using the
following loss functions:

L(θq) =
1
2
Eπ

[
(Q(st, at, θq)− Rt)

2
]
, (2)

L(θa) =
1
2
Eπ

[
(A(st, at, θa)− Rt)

2
]
, (3)

where Rt represents the true return. Through gradient descent, the parameters θq and θa
of the critic network are updated to improve the accuracy of the estimation for the action
value function or advantage function.

By training and updating the actor and critic together, the actor–critic algorithm can
learn more stably and find better policies in complex environments. The key feature of this
algorithm is the simultaneous training of both the policy and the value function through
the estimation of action values.

3.2. Robotics Platform

To conduct bipedal locomotion studies, we construct our bipedal robot in a simulated
environment. The robot stands at a height of 133 cm and weighs 30 kg. It comprises a total
of 20 degrees of freedom, evenly split with 10 degrees of freedom allocated to the upper
body and an equivalent number to the lower body. To focus on the qualitative aspects of the
walking gait, the 10 degrees of freedom corresponding to the upper body, arms, and hands
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are immobilized, activating only the hip joints and the remaining 10 degrees of freedom
related to the legs. The joint parameters are outlined in Table 1.

Table 1. The joint information of the robot.

Joint Name Range of Motion Peak Torque Joint Velocity Stiffness Damping

Hip Yaw −90◦–90◦ 133 Nm 240◦/s 0.1 1000
Hip Pitch −60◦–90◦ 45.9 Nm 576◦/s 0.1 1000
Hip Roll −10◦–10◦ 5000 Nm 120◦/s 0.1 1500

Knee Pitch −140◦–0◦ 48.6 Nm 540◦/s 1 1500
Ankle Pitch −80◦–80◦ 28.8 Nm 918◦/s 0.01 100

We only introduce information about the joints used in the lower body.

Figure 1 presents the distribution of the lower body joints and actuators, encompassing
hip yaw, hip roll, hip pitch, knee pitch, and ankle pitch. To monitor the robot’s body posture,
an inertial measurement unit (IMU), the 3DM-GX5-25, is installed 5 cm above the hip yaw
degree of freedom. This IMU allows for the measurement of the robot’s center of mass roll,
pitch, and yaw angles, along with the estimation of the center of mass’s horizontal velocity,
angular velocity, and angular acceleration.

Figure 1. Appearance and structure diagram of humanoid robot. In the simulation, we locked the
joints of the upper body and only had 10 joints belonging to the lower body.

4. Method
4.1. Robot Operating System Footstep Planner

Developing an omnidirectional gait for bipedal robots is a highly challenging task
due to several inherent complexities. These complexities include the high-dimensional
dynamics of the robot, limitations in sensing and actuation capabilities, as well as compu-
tational constraints that require real-time processing. As a result, achieving an effective
and efficient omnidirectional gait involves overcoming numerous technical hurdles. We
propose a method of imitating target foot landing points to solve this challenging problem.
Firstly, the paper describes the footstep state information using the global position and
orientation of the bipedal robot’s supporting feet. Specifically, this information consists of
a two-dimensional coordinate point and a heading vector θ provided by a sensor on the
hip joint of one side. Next, the footstep planner in the ROS package is used to randomly
generate a curve and export a set of 2D trajectory points (x, y, θ) with heading information,
so that the bipedal robot’s foot landing points imitate those points, thereby achieving
omnidirectional gait for the robot. To use the footstep planner to generate curve trajectories,
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a 2D grid map and initial and target poses (x, y, θ) are required as inputs. The paper sets
the initial pose to the origin and generates 800 target foot landing points by randomly
sampling from the target range (0,−1,−π/2) to (0, 1, π/2) on an empty map.

4.2. Bipedal Periodic Objective Function

Bipedal gait typically exhibits a symmetrical character. During walking, leg movement
can be segmented into swing and stance phases, with the stance phase further subcatego-
rized into single-leg stance and double-leg stance periods. Thus, a gait cycle can be divided
into two single-leg stance phases and two double-leg stance phases. To implement symmet-
rical gait in bipedal robot motion, the concept of periodic reward synthesis is employed.
During the single-leg stance phase, one foot retains static contact with the ground while the
other swings through the air. In the succeeding phase, the feet roles are interchanged, with
the previously grounded foot now swinging and the previously swinging foot establishing
supportive contact with the ground. As such, employing symmetry as a learning structure
can improve learning efficiency. Symmetrical motion facilitates quicker convergence to
more effective solutions and results in a more visually appealing bipedal gait. The policy
objective needs to master walking ability in a simulated environment while also satisfying
the requirement of gait periodic symmetry.

To manifest periodic locomotion for the bipedal robot and endow it with various gait
styles, we designed a periodic symmetrical function based on expert experience. This
function enables the robot’s left and right feet to track the lifted foot height outputted by
the symmetrical function in real time. This function serves a dual purpose; it not only
accomplishes periodic gait movement but also accelerates the convergence speed of the
training process. Specifically, the mathematical expression of this function is shown in
Equations (4) and (5).

hr
t = {

0, 0 < t < Tstd or Th < t < T
ksh f oot

max(
t

Ts
− kt)2 + (hleg

f oot − h f oot
max), Tsd ≤ t ≤ Th

, (4)

hl
t = {

0, 0 < t < Tstd + Th

ksh f oot
max(

t
Ts

− kt)2 + (hleg
f oot − h f oot

max), Tsd + Th ≤ t,
. (5)

where h f oot
max represents the maximum height of the lifted foot, hleg

f oot represents the height
between the leg and ground at the initial pose, T is the period, Th is half of the period T,
Tswing is the period of the swing phase, and Tstd is the period of the stance phase. Moreover,
the expression needs to satisfy ks ∗ k2

t = 1. We introduce a periodic symmetric objective gt
to the policy. Finally, by mapping the given state st and target gt to actions, the policy is
modeled as π(at|st, gt).

4.3. Multi-Agent Systems and Policy Entropy

Reference [37] has shown that p(s0) has a strong effect on the training outcomes of RL.
An excellent distribution of p(s0) can effectively reduce unnecessary exploration during
the process of RL. Sampling the initial state from the data can enable the robot to execute
turning maneuvers smoothly when an imitation robot simulates the walking data of the
ROS footprint planner. Due to the differences in modeling between footstep data and
robots, directly sampling p(s0) from footstep data may not be appropriate for reproducing
omnidirectional walking of imitation robots. The dependence on the quality of footstep
data is significant for this trained strategy.

To mitigate the influence of data quality in ROS during the training phase, we propose
learning the initial state distribution. This approach transforms the problem into a multi-
agent RL problem, where all agents cooperate in fully cooperative tasks and share a common
reward function. The training framework of our multi-agent RL method is illustrated in
Figure 2.



Biomimetics 2023, 8, 616 7 of 19

Figure 2. Training framework. Multi-agent collaboration solves the problem of initial state distribu-
tion differences. Policy entropy and experience replay mechanisms to improve training speed and
quality. Course learning methods to implement multiple expressions of a single policy.

The joint strategy of all agents is denoted as π = {π1, π2, · · · , πN}. The primary
objective of the cooperative task is for all agents to collaborate and find an optimal joint
strategy π∗ that satisfies

π∗ = arg max
π

ζ(π), (6)

where, ζ(π) = E(st ,at)∼ρπ
[∑+∞

t=0 r(st, at)] is the expected discount reward.
In a multi-agent environment, the state transition is jointly determined by the actions

of all agents, and the reward obtained by each agent is interrelated with other agents. There-
fore, altering the policy of a single agent directly impacts the selection of optimal decisions
and the accuracy of value function estimation for other agents. To ensure convergence of
the multi-agent system algorithm, we employ a centralized training-distributed execution
architecture for training. Within this framework of centralized training and distributed
decision making, we adopt an optimization approach that simultaneously maximizes cu-
mulative reward and policy entropy to enhance exploration efficiency for each agent in an
unknown environment. A policy entropy term can be added as

π∗ = arg max
π

E(st ,at)∼ρπ
[

∞

∑
t=0

r(st, at) + ϑε(π(·|st))], (7)

where ε(π(·|st)) = − log(π(at|st)); ϑ is the entropy coefficient.
The term "policy entropy" refers to the entropy of the policy distribution, which quan-

tifies the level of randomness or exploration ability in an agent’s decision-making process.
A higher policy entropy indicates a stronger inclination towards exploring unknown envi-
ronments. This level of exploration is crucial to acquiring a comprehensive understanding
of the environment and circumventing the risk of being trapped in suboptimal solutions.
To strike a balance between exploration and exploitation, we introduce an optimization
objective function for the entropy coefficient ϱ. The value of ϱ is updated using gradient
descent, aiming to optimize the overall performance of the system. The objective function
for optimizing the entropy coefficient is

J(ϑ) = Eat∼π [−ϑ log π(at|st)− ϑϱ], (8)

where ϱ is the action dimension of the agent.
The policy gradient of pω(s0) is designed as
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J(θ, ω) = Eτ∼pθ,ω [∇ω log(pω)(s0)
T

∑
t=0

γtrt], (9)

where pω(s0) is the initial state distribution.
The motion control of the bipedal robot is governed by the actions of the first agent,

which are determined by the policy π(at|st, gt). On the other hand, the second agent is
responsible for proposing the initial state at the start of each round of RL training, as
defined by the likelihood function pω(s0). There is a cooperative relationship between the
two agents. To maximize the multi-agent objective, the cooperative interaction between the
two agents is expressed as

J(θ, ω) = Eτ∼pθ,ω [Σ
T
t=0γtrt]. (10)

4.4. Heterogeneous Policy Experience Replay Mechanism Based on Euclidean Distance

Traditional experience replay mechanisms suffer from an imbalance in the distribution
of experience data due to their reliance on a single experience buffer. This limitation often
leads to prolonged training times required to achieve convergence. In many existing studies,
the experience buffer is partitioned based on the quality of experiences, with a predominant
focus on sampling from the pool of excellent experiences. However, this approach can
lead to the model gradient overlooking the significance of ordinary experiences during the
updating process, thereby narrowing the algorithm’s exploration range. Additionally, this
division of experience may result in the disregard of valuable experience samples, thereby
limiting the overall learning potential of the algorithm.

To address the aforementioned issues, we propose a novel heterogeneous policy expe-
rience replay mechanism based on Euclidean distance. This method tackles the problems
by employing an experience filtering unit to store the generated experiences and con-
ducting experience replay through two distinct experience pools: the low pool and the
high pool. The former contains samples whose similarity is less than a preset threshold
ϕ, while the latter contains those whose similarity is greater than ϕ. Initially, experience
generated by training is stored in the experience filtering unit F = (φ1, φ2, · · · , φn), where
φi = (si, ai, ri, si+1) consists of states and actions resulting from biped robot training. We
establish an initial experience sample in F as a baseline experience sample. The similarity
between the new experience sample and the baseline experience sample is then calculated
using the Euclidean distance by:

simi = min(∥si − so∥2 + ∥ai − ao∥2). (11)

We also design a sample similarity distance threshold ϕ to differentiate between similar
samples, which is calculated as the average distance between new experience samples
and baseline experience samples. In order to distinguish similar samples, a method is
devised as:

ϕ = (sim1 + sim2 + · · ·+ simn)/n. (12)

The low pool stores experience samples with similarity less than ϕ, while the high pool
is used to store experience samples with similarity greater than ϕ. In each round, experience
samples are added to set F. At the end of each round, the experience filtering unit selects
and categorizes the stored experience samples into their respective pools. Simultaneously,
the benchmark experience samples are also updated. The sizes of the low pool and high
pool are fixed. The probability of sampling and updating parameters from the high pool
is α, while the probability from the low pool is 1 − α. Compared to existing research,
this heterogeneous strategy method not only maintains the role of the experience replay
mechanism and expands the exploration range, but also enhances the influence of excellent
samples on network gradients. Compared to [38], our dynamic baseline experience samples
and similarity measure can to some extent filter out low-quality samples, thereby improving
the model’s ability to learn from and generate high-quality samples. Additionally, the
distribution of samples may change over time during the training stages of bipedal robots.
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The policy network may encounter different types of samples with varying features and
importance. By continuously updating the baseline experience samples, we can better
reflect the characteristics of samples in the current training stage, enabling the model
to adapt to new data distributions and improve its generalization performance. Our
experience replay mechanism is shown in Figure 3.

Figure 3. Heterogeneous policy experience replay mechanism. We establish an experience cache unit,
baseline samples, and similarity thresholds.

4.5. Design of Curriculum Learning Framework for Omnidirectional Gait

In this paper, we divide the difficulty of the task into various levels, which are deter-
mined by the magnitude of the turning angle. We propose an approach for selecting the
appropriate difficulty level within the curriculum.

To generate new training tasks at the target difficulty level, we define the curriculum
parameter set Λ as a sequence of gait training tasks arranged in ascending order of difficulty.

Λ = {l|0 ≤ l ≤ lmax}, (13)

where lmax is the maximum level of difficulty in the curriculum.
In course strategy design, completion rate is used as a metric to gauge the current

progress of the course. Additionally, it is also an important measure in evaluating whether
one can advance to the next level of difficulty. We define the indicator function Sl , which
uses course parameters to flag the task completion status.

sl = { 1, Task completed
0, otherwise

. (14)

The completion rate of a course under the course parameter l is defined as

Pr(l) =
∑N

i=0 Sl(i)
N

. (15)

If a specific set of course parameter l satisfies Pr(l) > k, where k is a preset threshold
for triggering, then the robot can complete the training task smoothly under this difficulty
level. Afterwards, we elevate the task difficulty by increasing the angle of turning, and set
the starting difficulty level for the next training session when resetting the environment.

With a course difficulty of c and a variance of σ2, the density function of course l is

ρσ,c(l) = exp(−π∥l − c∥/σ2), (16)

where c determines the location of the distribution and σ2 determines the magnitude of the
distribution. Under l ∈ Λ, all ρσ,c discrete integrals are

ρσ,c(Λ) = Σx∈Λρσ,c(l). (17)
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With a course difficulty of c and a variance of σ2, the distribution function of course
l is

DΛ,σ,c(l) =
ρσ,c(l)
ρσ,c(Λ)

. (18)

Each thread selects an appropriate task difficulty level at each environment reset
based on Equation (18). Our course learning steps are summarized in Algorithm 1. This
method ensures that robots are not all put at the same difficulty level under each course
difficulty level, but rather different environments with various difficulty levels are selected
by discretizing according to a Gaussian distribution.

Algorithm 1 Curriculum learning algorithm

1: Initial curriculum difficulty
2: The robot collects data and calculates whether the curriculum is completed or not by

using Equation (13)
3: Calculate the completion rate Pr(l) of the curriculum by using Equation (14)
4: If: Pr(l) > k:
5: If: the highest difficulty level is reached:
6: Randomize the difficulty of the curriculum
7: Else:
8: Increase the difficulty of the curriculum
9: Else:

10: Maintain the difficulty of the curriculum
11: Return to step 2

4.6. Markov Decision Process Modeling for Omnidirectional Gait

(1) Statespace

The input to the controller in this paper is a 41-dimensional state space st ∈ R41 includ-
ing the pelvis orientation (Rroll , Rpit, Ryaw) ∈ R3, the linear velocity vp = (vx, vy, vz) ∈ R3

of the pelvis, the angular velocity ωp of the pelvis, the target position of the pelvis
(ptarx, ptary, ptarz) ∈ R3 , the joint position q ∈ R10 and joint velocity q̇ ∈ R10 of each
drive joint, and the target control velocity vcmd = (vcmd

x , vcmd
y , ωcmd

z ) ∈ R3 of the robot. In
addition, we include the next two target steps of the robot and its heading information
(x, y, θ) ∈ R6. The phase vector is constructed as [sin((2 ∗ pi ∗ t)/T), cos((2 ∗ pi ∗ t)/T)].

(2) Action space

We use the PD control target as the action space and select the position of the movable
joint as the action. Due to the underdrive of the robot, directly using PD control to apply the
magnitude of the torque to track the reference angle will cause the robot to fall down easily.
Therefore, we change the method of PD control and use position incremental control to
solve the problem of robot underdrive. This method keeps the robot balanced by calculating
the position increment of the robot and adjusting its torque. Using this method not only
improves the stability of the robot, but also enables the robot to perform its tasks more
flexibly and finely.

Therefore, our RL strategy outputs the incremental joint position σqt, which is added
to the target joint position qt−1 at the previous moment. Then the target joint position at
the current moment is defined as

qt = qt−1 + σqt. (19)

To track these joint angles, the torque applied to the joint is calculated using a low-level
PD controller. The torque is calculated as

τ = kp(qtar − q) + kd(q̇tar − q̇), (20)
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where kp, kd are PD gains, which have been corrected in the actual simulation. qtar and
qtar−1 are the target position and target velocity of the joint, respectively. The linear velocity
of the target joint is set to 0 during the training process. q and q̇ are the current position
and linear velocity of the active joint, respectively.

(3) Reward Functions

The purpose of the reward function is to motivate the robot to follow specified
commands, keep its body smooth, and achieve stable motion. The reward function is
designed as

R = rvel + ro + rad + rτ + ralive + rper + rper + r f or, (21)

Table 2 shows the details of the reward function of Formula 21. h f oot
tar is the target

height output by the cycle symmetric foot lift height curve imitated by the left and right
feet; h f oot

rel is the actual height of the left and right feet. p f oot
tar is the target foothold; p f oot

rel is the
actual foothold. ptar is the target foothold; proot is the projection point of the actual position
of the floating base. rimi encourages humanoid robots to place their feet on the target point.
When the distance between one or both feet and the target point is within the target radius,
it will be considered as stepping on the target point. r f or keeps the distance between the
projection of the root node and the target foothold constantly close, thereby preventing the
robot from standing still, so that the floating base of the robot can continuously move to
the next target point.

Table 2. Reward functions.

Effect Expression

command tracking rvel = exp((v − vcmd)/max(δ(Σ(vtar)
2), 0.01))

keep balance ro = exp(1− < q, q̂ >2)

smooth action
rad = exp(∑n

i=0(lai − ai)
2)

rτ = exp(∑n
i=0(lτi − τi)

2)

Sport termination ralive = { −1, i f stopconition
0, else

Periodic Gait rper = exp(∑2
i=0(h

f ooti
tar − h f ooti

rel )2)

Omnidirectional gait
rimi = exp(∑2

i=0(p f ooti
tar − p f ooti

rel )2)

r f or = exp(−∑2
i=0(ptar − proot)

2)

5. Results and Discussion
5.1. Experimental Environment and Settings

This experiment leverages the Ubuntu 20.04LTS operating system and the Pytorch
deep learning framework. Our model is built upon the AMD Ryzen ThreadRipper 3990X
CPU and the Nvidia GeForce RTX 3090 (24 GB) GPU. The MuJoCo platform serves as the
foundation for our physical simulations, offering support for parallel learning, closed-chain
or flexible robot simulation, and exceptional performance in various robot training tasks.
During the experiment, we set the MuJoCo simulator to operate at a frequency of 500 Hz,
the PD controller at 2000 Hz, and the neural network at 50 Hz. To expedite the training
process, we simultaneously employed 16 parallel environments, allowing us to complete
the training in approximately 6 h and collect a total of 40 million samples. Our novel
approach incorporates curriculum learning, enabling the generation of different velocity
commands with a single policy, without the need for policy retraining. Furthermore,
we compared our method against both the direct adoption of the PPO method and the
integration of traditional curriculum learning into the PPO method (CLPPO) in subsequent
experiments. In order to guarantee consistent imitation behavior among the three sets of
commands, we set the parameters T, Tstd, and Tswi to 30, 4, and 14, respectively. The kp and
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kd are set to 80 and 5, respectively. Our actor and critic networks both consist of two hidden
layers, with 256 neurons in each layer. We parallelized the environment across 64 instances.
The policy network is optimized every 512 steps, which corresponds to optimizing the
policy network every 32,768 samples. We use a learning rate of 0.0003 and a discount factor
of 0.98. Each round of training has 600 steps.

5.2. Straight Gait

Figure 4 presents the state diagrams of the bipedal robot’s straight walking achieved
by training its policy network with three different methods. In the performance comparison
of the forward gait, the PPO method employs velocity commands vcmd = [0.5, 0, 0]. Cur-
riculum learning is incorporated into both CLPPO and our method based on these instruc-
tions. Both CLPPO and our method have a velocity command range of vcmd

x ∈ [−0.5, 0.5],
vcmd

y ∈ [−0.5, 0.5], and ωcmd
z ∈ [−0.5, 0.5]. It is evident from Figure 4 that the bipedal

robot walking with the PPO method experiences noticeable sway. However, both our
method and the CLPPO method do not demonstrate noticeable sway. We also compare
the convergence of the three algorithms during the training process, as shown in Figure 5.
We also include the training convergence of the multi-agent approach (MPPO) that treats
the robot as an agent. The total reward of the MPPO method is the lowest among the four
methods. Furthermore, only our method has a total reward exceeding 400. Therefore, only
the two baseline algorithms PPO and CLPPO are compared below.

(a) PPO

(b) CLPPO

(c) Our method
Figure 4. Walking state diagram of bipedal robot under three algorithms. We used the same straight-
line speed command to conduct a comparison test of the robot’s walking using three algorithms.
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Figure 5. Training Process: A total of 40 million samples were collected to compare our algorithm with
three other algorithms. The reward metric represents the average total reward value per iteration.

Figure 6 illustrates the ZMP position and the positions of the left and right feet for
the three methods. Our proposed method maintains a consistent ZMP position between
the touchdown points of the left and right feet, ensuring stability during bipedal robot
locomotion. In contrast, the ZMP position under the PPO method displays significant
jumps, while the CLPPO method effectively keeps the ZMP positioned between the two
feet. The ZMP position under the PPO method is the least stable among the three methods,
which is consistent with the significant body sway observed in Figure 4 due to the PPO
policy control.

(a) PPO (b) CLPPO (c) Our method

Figure 6. Diagrams of ZMP and positions of left and right feet. Testing robot straight motion using
three algorithm-based training policies.

We conduct tests on the positions of the center of mass (COM) of the bipedal robot
along the x, y, and z axes during the walking process. Each algorithm is reset after 600 steps
during each execution, and a total of three rounds are tested, amounting to a total of
1800 steps. The results are presented in Figure 7. The change in the x-axis position under
our method is smooth, indicating a consistent walking speed with no variations for the
bipedal robot. Both the PPO and CLPPO methods show slight variations in the x-axis
velocity, which result in body swaying during the robot’s walking process.

From Figure 8a, it can be observed that PPO, which does not utilize the periodic reward
designed by us, exhibits significant variations in foot height and fails to meet the periodic
characteristics of bipedal walking. Our approach and CLPPO demonstrate consistent
periodic variations in left foot height, as illustrated in Figure 8b,c. Failure to meet the
periodic characteristics can lead to falls during the bipedal robot’s walking process. We also
conduct tests using the cyclic gait method described in reference [33], as shown in Figure 9.
However, due to the inability to specify foot lifting height, the periodic characteristics of
foot elevation in bipedal robots cannot be satisfied.
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(a) PPO (b) CLPPO (c) Our method

Figure 7. COM position diagram for the three methods. The position of COM in the three directions
(x, y, z) during the walking process of the bipedal robot.

(a) PPO (b) CLPPO (c) Our method

Figure 8. Height diagram of left and right feet for the three methods. Our method is basically the
same height.

Figure 9. Height of left and right feet using the periodic gait method in reference [33]. The height of
the foot lift is different.

5.3. Steering Gait

Next, we evaluate the steering gait performance of the three methods. We administer
a steering velocity command vcmd = [0.5, 0.1, 0.1] to retrain the steering gait for the PPO
method. CLPPO and our method continue to employ the previously trained policies. The
PPO method displays convergence already in the early stages of training, as shown in
Figure 10. Since the PPO method fails to achieve a steering gait for the bipedal robot, we
exclusively compare the steering performance between CLPPO and our method.
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Figure 10. Training reward diagram of PPO method. Test our strategy by running in circles using
vcmd = [0.5, 0.1, 0.1].

The walking situation of our method in the simulation environment is shown in
Figure 11. Figure 12 shows the ZMP positions of two methods and the positions of the
left and right feet. Both methods can keep the ZMP position between the left and right
feet, indicating that the robots can maintain stable walking. The oscillation in Figure 12a is
caused by the inability of the robot to track the velocity command throughout the motion.
This results in bipedal robots being unable to maintain smooth and continuous turning
while walking, and the body of the robot also shakes when oscillating. However, our
method controls the robot in turning and walking on a smoother trajectory without the
oscillation observed in Figure 12b.

Figure 11. Walking state diagram of bipedal robot. The bipedal robot turns in circles at the same
turning speed and finally returns to near the original place.

(a) CLPPO (b) Our method
Figure 12. Diagrams of ZMP and positions of left and right feet.
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Figure 13 shows the COM position of two methods. Our method ensures smoother
variations in the robot’s position along the x-axis. This means that the robot can maintain a
stable walking speed to ensure stability.

(a) CLPPO (b) Our method
Figure 13. COM position diagram for the two methods.

From Figure 14a, it is evident that there are pronounced discontinuities in the foot
height of the bipedal robot when employing the CLPPO method. This does not guarantee
the stability of the robot during the walking process. The foot heights during the steering
process of our method are illustrated in Figure 14b. The foot heights of both feet continue
to display periodic characteristics without experiencing substantial discontinuities, thus
enabling a stable steering process.

(a) CLPPO (b) Our method
Figure 14. Height diagram of left and right feet for the two methods. Both methods executed the
same speed command.

Lastly, we test the performance of two methods in terms of omnidirectional gait.
Firstly, we initiate straight walking; then, a rotational velocity command is given to the
robot, transitioning it into straight walking after a certain duration. The CLPPO method
experiences instances of backward movement and falling during the transition between
the two gaits. In contrast, our method successfully executes the given velocity command
independently, as shown in Figure 15a. The ZMP position and the positions of both feet
in our method are illustrated in Figure 15b. Our method achieves smooth gait transitions
through a single policy. We further validate the effectiveness of our method through
additional velocity commands, as shown in Figure 16a,b. From the foot landing points
and ZMP locations, it can be observed that our method ensures stability and smoothness
during gait transitions.
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(a) (b)
Figure 15. Robot walking gait switching diagram. The robot first goes straight, then turns, and finally
continues going straight. (a) Scenario diagram of the robot in the simulation scene. (b) Diagrams of
ZMP and positions of left and right feet.

(a) CLPPO (b) Our method
Figure 16. Our method performs gait switching tests between straight walking and turning in two
steering modes.

6. Conclusions

In this work, we have proposed a novel RL framework for generating periodic symmet-
ric bipedal omnidirectional gaits. The design of our bipedal periodic symmetric functions
is crucial for achieving excellent gaits during the straight walking phase. Our approach
leverages learning from the ROS footprint planner and curriculum learning techniques,
enabling seamless transitions between omnidirectional gaits using a single policy network.
The introduction of multi-agent RL mitigates the impact of differences between the foot-
print planner and our robot, allowing for parallel learning of initial state distributions for
the agents. We have also incorporated policy entropy and heterogeneous experience replay
mechanisms to expedite gait training for bipedal robots. The results from comparative
experiments demonstrate that our method enables seamless transitions between differ-
ent gaits for full-sized bipedal robots, not just smooth turning motions. Our approach
achieves the smooth execution of omnidirectional gaits using a single policy, which is a
significant accomplishment. Future research can explore more effective and robust methods
for bipedal gait training. Robots need to walk on different terrains, such as stairs, slopes,
and uneven surfaces. These terrains have different characteristics and difficulties, so it is
necessary to design corresponding gait control strategies for different terrains. We will
explore how to use techniques such as deep learning to automatically learn and optimize
gait control strategies that adapt to different terrains. However, it is worth noting that
although this study achieved omnidirectional gait of a bipedal robot in a reinforcement
learning simulation environment, the ultimate goal of reinforcement learning is to simulate
and transfer to the real world. We will try to solve this problem from two directions, of
which one is to improve the robustness of the learned policies by changing the model
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parameters within a certain range in each iteration of the learning algorithm, and another
is to combine learning with a model-based control.
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