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Abstract: Soft continuum robots, inspired by the adaptability and agility of natural soft-bodied
organisms like octopuses and elephant trunks, present a frontier in robotics research. However,
exploiting their full potential necessitates precise modeling and control for specific motion and
manipulation tasks. This study introduces an innovative approach using Deep Convolutional Neural
Networks (CNN) for the inverse quasi-static modeling of these robots within the Absolute Nodal
Coordinate Formulation (ANCF) framework. The ANCF effectively represents the complex non-linear
behavior of soft continuum robots, while the CNN-based models are optimized for computational
efficiency and precision. This combination is crucial for addressing the complex inverse statics
problems associated with ANCF-modeled robots. Extensive numerical experiments were conducted
to assess the performance of these Deep CNN-based models, demonstrating their suitability for
real-time simulation and control in statics modeling. Additionally, this study includes a detailed
cross-validation experiment to identify the most effective model architecture, taking into account
factors such as the number of layers, activation functions, and unit configurations. The results
highlight the significant benefits of integrating Deep CNN with ANCF models, paving the way for
advanced statics modeling in soft continuum robotics.

Keywords: soft robots; continuum robots; statics modeling; deep learning; CNN

1. Introduction

Recently, continuum robots have gained significant interest, as shown by the expand-
ing research [1,2]. These robots have flexible backbones that allow for constant bending
due to their elastic design, giving them notable dexterity, agility, and adaptability. Their
capabilities make them ideal for tasks in tight spaces where flexibility, manevarability,
and safe human interactions are crucial, as emphasized in newer research [3–5]. Unlike
traditional rigid robots, continuum robots can change their forms dynamically, which
makes them adept at moving through both tight and unpredictable spaces. This versatility
makes them fitting for a range of uses, from inspecting industrial pipelines [6] and aircraft
engine upkeep [7] to medical procedures [3,8].

Continuum robots are a specific subset of soft robots that are composed of a continuous,
flexible structure that can bend and twist in any direction. They have a wide range
of applications, including medical interventions [9,10], deep-sea explorations [11], and
agricultural tasks [12,13].

Continuum robots utilize various actuation techniques, such as mechanical, fluidic,
and magnetic methods. Mechanical actuation methods involve technologies like concentric
tubes and backbone-driven actuators. Meanwhile, fluidic actuation covers designs like
pleated, corrugated, belloscope tip-driven, and endoscope systems [14]. To unlock the full
capabilities of continuum robots, accurate modeling and control are essential to performing
specific movement and manipulation tasks [15]. However, their naturally flexible and
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malleable nature makes modeling their dynamics a complex task [16]. Unlike robots with
rigid components, continuum robots present both distinct challenges and potentials in the
creation of controllers [17,18]. One of the key challenges in controlling continuum robots is
achieving precise tip control, which is necessary for performing delicate tasks in complex
environments [19,20].

Various modeling techniques have been adopted, each varying in their base assump-
tions and scope of application. A thorough examination of these modeling strategies,
their numerical methods, and an in-depth assessment of their practicality is presented in
Armanini’s research [21]. One significant approach is the lumped mass model [22], where
a flexible link is visualized as segments of point masses linked by springs and dampers.
In this model, every mass is affected by gravitational forces and the movements of its
neighboring masses, with some potentially facing external forces or actuator-induced in-
teractions. The piecewise constant curvature model is another approach that has gained
traction [23–27], simplifying robot kinematics by segmenting them into parameters that
reflect constant-curvature segments. However, this method’s limitation lies in its strict
adherence to constant curvature motions, occasionally neglecting crucial real-world influ-
encers like gravity or friction.

Another model worth noting is the discrete elastic rod (DER) model introduced by
Naughton et al. [28]. It is a computational approach used to simulate the behavior of
thin, flexible rods in various applications, ranging from computer graphics to the study of
biological fibers and soft robotics. Thus, a flexible rod is modeled using a series of lines
connected at specific points and uses discrete differential geometry to capture bending and
twisting. But, while advantageous in offering a balance between computational efficiency
and physical accuracy, the DER model may not encapsulate the intricate designs seen in
specific continuum robots. The simulation of the dynamics in soft material systems requires
an intricate analysis of kinematics, mechanics, and tribology. These complexities might
not be fully encompassed by the Discrete Elastic Rod (DER) model, which is generally
employed for modeling slender structures such as rods, ribbons, and viscous threads [29].

Lately, finite-element-based models (FEM) have gained popularity in soft robotics [30–32].
These divide the robot’s structure into one, two, or three-dimensional elements, resembling
the classification in conventional robotics. Beams and rods like the Euler–Bernoulli beam,
Timoshenko beam, and the Cosserat rod provide the material deformation understanding
of the robot [33]. However, despite their suitability for minor deformation challenges [34],
FEMs come with their set of drawbacks such as computational overheads, potential for
numerical instabilities, inaccuracies emerging from mesh alterations, and failing in the
modeling of large deformations.

While the previously mentioned methodologies offer valuable insights into modeling
continuum robots, there is a noticeable gap in exhaustive data-driven statics modeling
and control techniques. This gap hinders the full exploitation of these robots across varied
domains. Addressing this issue requires embracing data-driven modeling approaches,
especially capitalizing on machine learning as underscored in a recent review by Wang
et al. [35]. Given the swift progress in artificial intelligence areas, including machine
learning, robotics, neural networks, transformers, and generative networks, incorporating
data-driven statics modeling and control methods for soft continuum robots is promising.
Such advancements can lead to significant benefits, such as improved accuracy, enhanced
safety, and better operational efficiency in robotic applications [36].

In this study, we utilize a deep convolutional neural network (Deep CNN) for the
data-driven statics modeling and control of soft continuum robots. Once trained, the CNN
model establishes a nonlinear function to handle input data, providing solutions across
diverse inputs. The training and validation datasets are rooted in the Absolute Nodal
Coordinate Formulation (ANCF) framework, as detailed in the research by Nada et al. [37],
Shabana [38–40], and Taylor [41]. This formulation takes into account both geometric and
material non-linearities within the multi-body dynamic system, thus presenting a closer-to-
reality portrayal. Significantly, the beam element informed by ANCF moves beyond the
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assumption of a rigid cross-section, factoring in distortional cross-sectional deformations.
This results in a holistic model for robotic structures, as showcased by Wang et al. [42].

The contribution of this research is leveraging the strength of CNN-based models in
computational efficiency and precision, thus addressing a critical limitation of using ANCF
alone. This integration allows for finding solutions to the inverse statics problem, which
was previously challenging to resolve analytically by the ANCF. By integrating Deep CNN
with ANCF, our approach represents a significant advancement over existing methods,
providing a more robust and efficient tool for statics modeling in soft continuum robotics,
while allowing for the solving of the inverse statics for soft robots modeled via ANCF. In
this setup, the model receives a target end-effector position and endeavors to calculate the
necessary external moments at the robot’s tip to reach the given position. Relying solely on
ANCF modeling makes addressing the inverse statics issue quite complex. However, by
incorporating data-driven, model-free control methods, there is an opportunity to tap into
the complete capabilities of continuum robots across various applications. To assess and
oversee the effectiveness of the updated CNN model, we employ a k-fold cross-validation
method to gauge the performance of various models.

This paper is organized as follows: Section 2 delves into the derivation of the Absolute
Nodal Coordinate Formulation (ANCF), showing its significance in multibody system
modeling concerning continuum robots. Section 3 elaborates on the CNN quasi inverse
static modeling of the continuum robot within the ANCF framework, discussing data
gathering and model architectures. Subsequently, Section 4 showcases the results from
our data-driven statics modeling and control techniques, evaluating their efficacy and
considering potential future research directions. Finally, Section 5 recapitulates the main
findings of the paper, emphasizing the importance of data-driven statics modeling and
control in the context of soft continuum robots.

2. Absolute Nodal Coordinate Formulation (ANCF)

In this section, we detail the steps of deriving the forward static modeling of the con-
tinuum robots based on the Absolute Nodal Coordinate Formulation (ANCF). The ANCF
is a fundamental methodology in the realms of multi-body dynamics and finite element
analysis, particularly adept at modeling structures undergoing significant deformations
and complex geometries. This formulation is instrumental in characterizing the kinematics
of intricate structures, such as flexible bodies, cables, and continuous systems, marking a
departure from the conventional assumption of rigid cross-sections. This shift is crucial
for accurately depicting the deformations experienced by continuum robots’ cross-sections
during dynamic analyses. For instance, as depicted in Figure 1, a soft beam element with
a circular cross-section connecting nodes 1 and 2 demonstrates complex deformations
including spatial bending, twisting, and stretching. Leveraging this, the current research
endeavors to develop an ANCF-based model for continuum robots, which is further refined
through approximation using Deep Convolutional Neural Network (CNN) models. This
approach ensures the incorporation of all relevant deformations, thus enhancing the fidelity
and applicability of the model in dynamic scenarios.

2.1. Problem Definition

In the ANCF framework, absolute coordinates are employed to describe the defor-
mation and motion of individual nodes within a structure, in contrast to local or relative
coordinates. This use of absolute coordinates establishes a global reference frame, ensuring
a more precise representation of node positions and orientations. This global reference sys-
tem is referred to as the Structure Coordinate System {SCS: (XYZ)}, as introduced in [43].

For a two-noded beam element, as illustrated in Figure 1, the absolute nodal coordi-
nates of a node k, where k = (1, 2), situated in element j on body i, can be described by the
following expression:

ēijk =

[
r̄ijkT ∂r̄ijk

∂xi

T
∂r̄ijk

∂yi

T
∂r̄ijk

∂zi

T
]T

12×1
(1)
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Figure 1. Diverse deformations exhibited by a 3D beam as represented by the ANCF.

The spatial position of node k within the given framework is denoted by r̄ijk, while
the gradients at node k with respect to the body coordinate system {BCS:

(
xi yi zi)} are

given by ∂r̄ijk/∂xi, ∂r̄ijk/∂yi, and ∂r̄ijk/∂zi. The BCS is aligned with the x-axis of the first
element (j = 1) of the beam mesh, represented by

(
xi1). Hence, no rotation transformation

is needed between the BCS and the element coordinate system {ECS: (xij, yij, zij)} at the
first element of the beam mesh. The vector ∂r̄ij/∂xi defines the orientation of the beam’s
centerline to the BCS, while the vectors ∂r̄ij/∂yi and ∂r̄ij/∂zi define the orientation of the
height and width coordinates of the beam’s cross-section, respectively. These vectors may
not be orthogonal unit vectors, as discussed in [40].

The transformation between the BCS:
(
xiyizi) and the SCS:(XYZ) can be expressed

by a constant transformation matrix Ao, that is composed of the orthogonal unit vectors
along the body reference frame, such that

Ao =
∂X
∂xi (2)

For the beam represented in Figure 1, assuming no translation is carried out, Ao ∈ R3×3

can be expressed as a pure rotation matrix

Ao =

X · xi X · yi X · zi

Y · xi Y · yi Y · zi

Z · xi Z · yi Z · zi

 =

0 0 −1
0 1 0
1 0 0

 (3)

Thus, the absolute nodal coordinates of the node k with respect to the SCS could be obtained
with the transformation carried out, as eijk = Toēijk, such that

eijk =


rijk

∂rijk

∂X
∂rijk

∂Y
∂rijk

∂Z

 =


Ao 0 0 0
0 Ao 0 0
0 0 Ao 0
0 0 0 Ao




r̄ijk

∂r̄ijk

∂xi

∂r̄ijk

∂yi

∂r̄ijk

∂zi


In this context, ēijk and eijk denote the nodal coordinates defined within the (BCS)

and the (SCS), respectively. This choice of representation ensures the maintenance of
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inter-element continuity for global displacement gradients at these specific points. The
nodal coordinates for an element consisting of two nodes can be succinctly expressed as a
vector of

ēij =
[
ēij1T ēij2T]T

24×1.

Therefore, in the ANCF, the position of an arbitrary point on the body i, element j, r̄ij

with respect to BCS
(

xiyizi), and rij with respect to SCS (XYZ), can be defined as follows:

r̄ij
(

ūij, t
)

= Sij
(

ūij
)

ēij(t) (4)

rij
(

ūij, t
)

= Sij
(

ūij
)

TT
o eij(t) (5)

= Ao r̄ij
(

ūij, t
)

(6)

such that eijk = Toēijk, and Sij is the element shape function matrix, and

ūij =
[
xij yij zij]T

is the local position of the arbitrary point with respect to the ECS, where, xij, yij, and zij are
the coordinates along the element j. A straightforward procedure to construct the shape
function is demonstrated by [42]. Equation (5) is crucial when the nodal coordinates are
defined using the structural coordinates system, while Equation (6) is used in the simulation
of the output results on the global (structural) coordinate system.

The initial configuration is defined such that the time is equal to zero; thus, the absolute
position vector of an arbitrary point in the reference configuration can be described as

r̄ij
(

ūij, 0
)
= r̄ij

0 = Sij
(

ūij
)

ēij
0 (7)

where ēij
0 is the vector of nodal coordinates in the reference configuration with respect to

the body coordinate system (BCS).
The displacement field, r̄ij(ūij, t

)
, can be written as

r̄ij
(

ūij, t
)
= r̄ij

0 + uij
f = Sij

(
ūij

)(
ēij

0 + ēij
f

)
(8)

where ēij
f is the vector of nodal displacements with respect to the BCS. It can be shown

that a line element dxi in the straight configuration corresponds to a line element dr̄ij
0 in the

initial configuration and to a line element dr̄ij in the current configuration. One has the
following relationships:

dr̄ij = J̄ijdr̄ij
0 , dr̄ij = J̄ij

e dxi , dr̄ij
0 = J̄ij

0 dxi

The gradients of the displacement vector, matrix Jij, are defined as follows:

J̄ij =
∂r̄ij

∂r̄ij
0

=
∂r̄ij

∂xi
∂xi

∂r̄ij
0

= J̄ij
e J̄ij−1

0 (9)

If the element local coordinate system is parallel to the body coordinate system and
the element is not curved, matrix Jij

0 is an identity matrix. The relationship between the
volume of the curved structure Vo in the initial configuration, to the volume of the straight
configuration V is defined as

dVo = |J̄0|dV

dv = |J̄e|dV

Note that

J̄0 =
∂r̄ij

0
∂xi =

∂Sij(ūij)
∂xi ēij

0 =
∂Sij(ūij)

∂xi TT
o eij

0
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where |J̄0| is the determinant of the matrix of position vector gradients J̄0 , which is constant.
By defining pi as the unconstrained (free) vector of nodal coordinates over the flexible body
i with the dimension of DOFs × 1, DOFs are the total number of degrees of freedom. Thus,
Equation (4) can be rewritten as follows:

r̄ij = Sijēij = SijBij
1 Bi

2p̄i (10)

where Bij
1 is the connectivity matrix and Bi

2 is boundary conditions linear-transformation matrix.

2.2. Elastic Forces

The nonlinear Lagrangian strain tensor, ϵL, can be defined using the right Cauchy–
Green deformation tensor as follows [39]:

ϵL =
1
2

(
JTJ − I

)
(11)

The gradients of the displacement vector are defined in Equation (9), in which
J = ∂rij/∂rij

0 = JeJ−1
0 . It is possible to verify that, if the body experiences a rigid mo-

tion, matrix J is orthonormal, and thus it is clear from Equation (10) that there is no strain.
Note that

Je =
∂rij

∂X
=

∂Ao r̄ij

∂xi
∂xi

∂X
= Ao

∂r̄ij

∂xi AT
o = Ao J̄eAT

o

Similarly, J0 = Ao J̄0AT
o , thus

J = Ao J̄e J̄−1
0 AT

o = Ao J̄ijAT
o (12)

where J̄ij = ∂r̄ij/∂r̄ij
0 , is defined in Equation (9). Therefore, the strain tensor with respect to

the element coordinate system can be defined as

ϵL = Ao ϵ̄LAT
o (13)

ϵ̄L =
1
2

(
J̄T J̄ − I

)
(14)

Because of the symmetry of the strain tensor, it is sufficient to identify only six strain
components, three normal strains, and three shear strains, such that the strain vector can be
written as

ϵ =
[

ϵxx ϵyy ϵzz 2ϵxy 2ϵxz 2ϵyz
]T (15)

The stress components of the element can be defined using the constitutive equation
as follows

σ = Eϵ (16)

where E is the matrix of the elastic constants of the material [44]. The elastic forces of the
element can be derived by using the following expression of the strain energy:

U =
1
2

∫
V

ϵTσ dV =
1
2

∫
V

ϵTEϵ dV (17)

The vector of the elastic forces, Qij
k , that is produced due to deformation of element j, can

be defined using the strain energy, U, as follows:

Qij
k =

∂Uij

eij (18)

Several studies investigated the accuracy and usability of a continuum mechanics
approach in the description of elastic forces of a three-dimensional beam element [45–47].
It should be mentioned that the strain tensor given by Equation (14) is defined as a function
of the element coordinates ECS

(
xijyijzij) and, therefore, the elastic forces are defined as a

volume element that allows for describing the deformation of the beam cross-section.
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2.3. Generalized External Forces

The principle of virtual work can be used to develop the vector of the generalized
forces on the body i, element j, i.e., Qij

e , that can be developed due to external Cartesian
forces and moments. The virtual work carried out by applying an external force vector,
acting on an arbitrary point on the element, can be written with respect to SCS

(
Fij

)
or

BCS
(
F̄ij) as follows

δW = F̄ijTδr̄ij = QijT
e δeij (19)

Substituting the value of r̄ from Equation (5) yields

δW = F̄ijTδr̄ij

= F̄ijTSijδēij

= F̄ijTSijTiT
o δeij

QijT
e = F̄ijTSijTiT

o (20)

In the case of describing the generalized forces related to the unconstrained nodal coordi-
nates of the body (i), i.e., pi, one can conclude that

δW = F̄ijTSijTiT
o Bij

1 Bi
2δpi (21)

⇕
QiT

p = F̄ijTSijTiT
o Bij

1 Bi
2 (22)

The absence of rotating angular coordinates in ANCF elements complicates the appli-
cation of moments compared to the application of point forces. In the context of applied
moments, it can be held that

δW = M̄ijTδϑ̄
ij (23)

which is the applied moment M̄ij at a given point on the body (i)-element (j) times the
virtual change in orientation δϑ̄

ij, at that point. The virtual change δϑ̄
ij can be expressed as

δϑ̄
ij
= ω̄ijδt (24)

Therefore, the formulation of the virtual change in orientation δϑ̄
ij can be obtained when

the angular velocity for a material point, ω̄ij, inside an ANCF element is defined. The
vorticity tensor describes the angular velocity ω̄ij at the given point in the continuum
element and can be expressed as follows [48]:

∼
ω̄

ij
=

 0 −ω̄z ω̄y
ω̄z 0 −ω̄x
−ω̄y ω̄x 0

 =
1
2

(
L − LT

)
(25)

where L is the velocity gradient tensor that can be defined as

L =
∂˙̄rij

∂r̄ij (26)

Equation (26) can be written in terms of the deformation gradient as follows:

L =
∂˙̄rij

∂r̄ij =
∂˙̄rij

∂r̄ij
0

∂r̄ij
0

∂r̄ij =
˙̄J
ij(

J̄ij
)−1

(27)

Substituting the value of J̄ij, Equation (9), yields

L =˙̄J
ij
e J̄ij−1

0 J̄ij
0 J̄ij−1

e = ˙̄J
ij
e J̄ij−1

e (28)
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It can be seen that the velocity gradient L can now be written in terms of the nodal
coordinates and the time derivative of the nodal coordinates. Using Equation (25), one can
conclude that

ω̄ij =

ω̄x
ω̄y
ω̄z

 =
1
2

L3,2 − L2,3
L1,3 − L3,1
L2,1 − L1,2

 = Ḡij ˙̄e (29)

Substituting the value of ω̄ij into Equation (24), and then into the virtual work of Equation (23),
yields

δW = M̄ijTω̄ijδt (30)

= M̄ijTḠij ˙̄eij
δt (31)

= M̄ijT Ḡij δēij (32)

= M̄ijT Ḡij TiT
o δeij (33)

Thus, the generalized forces due to external moments can be described as follows:

QijT
e = M̄ijT Ḡij TiT

o (34)

QijT
p = M̄ijT Ḡij TiT

o Bij
1 Bi

2 (35)

The complete vector of the generalized forces, due to external forces and moments can be
written as follows:

QijT
p =

(
F̄ijTSij + M̄ijT Ḡij

)
TiT

o Bij
1 Bi

2 (36)

2.4. Static Analysis

The equations of motion of the continuum robot structure, say, body i, can then be
written in a matrix form in terms of the unconstrained generalized coordinates p̈ as

Mip̈i=QiT
k + QiT

p = QiT (37)

Note the complete set of generalized coordinates of the body, ei = Bij
1 Bi

2pi. The Qi
p is the

vector of generalized external forces and moments that was discussed in the last section
(Equation (36)) and Qi

k is the elastic forces, as expressed in Equation (18). The preceding
equation accounts for all geometric nonlinearities since nonlinear strain-displacement
relations are used (Equation (14)). Thus, the static analysis can be carried out by solving
the following equation:

Qi(p) = 0 (38)

The nonlinear equations can be solved using the Newton–Raphson iteration procedure in
which the values of the nodal coordinates at step (n + 1) can be calculated as

p(n+1) = p(n) + ∆p (39)

∆p = −
[

∂Qi(n)

∂p(n)

]−1

Qi(n) (40)

where ∂Qi(n)/∂p(n) is called a tangent stiffness matrix and vector Qi(n) includes the elastic
and external forces at iteration step n. In the solution process, the tangent stiffness matrix is
calculated numerically using perturbations in the nodal coordinates and finite differences.
The convergence criterion for the iteration is defined as follows:

|∆p| < ε (41)
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where |.| is the Euclidean norm of the vector. Thus, given the Cartesian forces and/or
moments, the generalized forces can be calculated, and the corresponding nodal coordinates
can be obtained. Figure 2 shows the various configurations of continuum robots, whereby
Cartesian forces are applied along the local x- and z- axes, and Cartesian moments are
applied about the z- and y- axes to excite bending modes, where 12 elements of silicone
rubber are forming the continuum robot. The last-node frame representing the tip point
orientation (node 13) of both the un-deformed and deformed shapes are shown. The figures
demonstrate the robot connectivity and continuity, while also validating the correctness
of the elastic and external force formulation of the beam element. It is crucial to note that
the derivation of the velocity transformation matrix Ḡij(e), which depends on the nodal
coordinates, is significant in the context of applying moments to a cross-section undergoing
rotation. The subsequent derivation of the elements of this matrix will be elaborated upon
in the inverse solution.

Figure 2. Effect of applying moments on continuum robot structure.

2.5. 3D-Beam Element with Circular Cross Section

A well-known structure of a 3D beam with a circular cross section, i.e., circular rods, is
utilized in constructing continuum robots. In this case, the coordinates of the material point
in the undeformed configuration with respect to the element frame are described in terms
of the axial and radial displacements and an angle measured counter clockwise from the

element frame. The coordinates of an arbitrary point can be described as ϱ̄ij:
[

xij rij θij
]T

.
The Cartesian coordinates are related to the cylindrical coordinates (see Figure 3), by

x = x
y = r cos(θ)
z = r sin(θ)

 (42)

Using Equation (42), the shape function can be described by the cylindrical coordinates, i.e.,
Sij(ūij) → Sij(ϱ̄ij). The transformation of the displacement field can be carried out asūx

ūy
ūz

 =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

ūx
ūr
ūθ

 (43)

The Jacobian matrix can be described in cylindrical coordinates ϱ :(x, r, θ) as follows:

D̄ =
∂ūij

ϱ̄i =

 ∂ūx
∂x

∂ūx
∂r

∂ūx
∂θ

∂ūr
∂x

∂ūr
∂r

∂ūr
∂θ

∂ūθ
∂x

∂v
∂r

∂ūθ
∂θ

 (44)

Thus, the gradients of the displacement vector can be estimated as follows [49]:

J̄ij
e =

D̄1,1 D̄2,1
1
r D̄3,1

D̄2,1 D̄2,2
1
r (D̄2,3 − ūθ)

D̄3,1 D̄3,2
1
r (D̄3,2 + ūr)

 (45)
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A similar procedure can be carried out to estimate J̄ij
0 , and then the deformation gradients

J̄ij (Equation (9)) can be calculated. Based on the deformation gradient, the strain tensor of
a beam element with a circular cross area can be calculated using Equation (14). The axial
component ϵxx remains the same as for a rectangular cross section. Moreover, the variables
of volume integration are the parameters (x, r, θ) and the volume integration boundaries

are altered to Vij =
L∫

0
· · ·

+π∫
−π

· · ·
R∫
0
· · · rdrdθdx. Using the mapped forms described above,

the dynamic terms can be updated for circular cross section 3D beams.

Figure 3. Beam element of circular cross section.

3. Deep-CNN Quasi-Statics Modeling

The primary objective of developing a deep CNN model is to construct a surrogate
model that can effectively approximate the challenging inverse problem of ANCF statics
modeling of continuum robots. The CNN model is intended to determine immediate
solutions for the tip moments M̄i 13 that are necessary to achieve a specific tip pose, as
defined by p ∈ R12. In the current study, our focus was on the effects of constant moments
applied to the robot tip. These moments, which could be implemented via applying
tensions to cables in a cable-driven continuum robot, primarily induce pure bending. This
type of bending is less likely to result in buckling deformation within the cross-section of
the robot.

The primary distinction of the CNN utilized in our research lies in its inherent ability
to effectively capture and analyze spatial correlations within the dataset. This aspect is
particularly advantageous in our application, where the key features include the position
and orientation of the robot’s tip. These features are inherently spatially correlated across
the robot’s workspace, largely due to the physical constraints and specific dimensions of
the robot. By doing so, the model can efficiently predict the required tip moments, thereby
solving the inverse problem.

3.1. Data Collection and Processing

Data-driven modeling can be enhanced by increasing the size of the training dataset, re-
sulting in more accurate predictions. However, this comes at the expense of substantial com-
putational resources. Our research integrated the ANCF model, obtained in Equation (38),
to generate the training datasets. We applied a set of moments M = [Mx, My, Mz] to the
robot’s end-effector into the ANCF model and derived the robot’s corresponding poses
p ∈ R12 containing the position and gradients. The three moment values are swept one
after the other across the entire range of the robot’s workspace. This dataset forms the
foundation for our data-driven approach to model the robot’s behavior.

It can be quite time-consuming to explore all the possible combinations of moments
for the robot’s tip. As a pragmatic approach, we generated a comprehensive dataset with
1520 data points. The collected data points were obtained within the expected workspace
of the continuum robot, which has a fixed length of 40 cm. The sampling process was
meticulously designed to ensure thorough coverage of the operational range of the robot,
while also adhering to permissible moment limits, as depicted in Figure 4, showing the
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positions and orientations of the robot’s end-effector. In order to ensure reliable model
performance and generalization, the dataset was divided into three subsets: 70% for
training, 15% for validation, and the remaining 15% for rigorous testing. This partitioning
strategy was implemented to aid in achieving robust model training and evaluation.
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Figure 4. Sampled data points from the robot’s workspace were used as the training dataset for
the CNN-based static modeling. The orientation of the robot’s end-effector is displayed as coordi-
nate frames at selected data points, where the red, green, and blue axes represent the x, y, and z
coordinates respectively.

In order to utilize CNNs for modeling the statics of the continuum robot, we must first
convert each data point, represented as pi ∈ R12, into an image. This is accomplished by
stacking the robot tip position in the x, y, and z dimensions with the gradient vectors r as
detailed in Figure 5. The resulting feature images, which represent the robot’s pose, are
denoted as I ∈ R1520×3×4. To enhance the model’s training stability, the training and testing
data are normalized using the Z-score technique, which ensures that our data have a mean
of µ = 0 and a standard deviation of σ = 1. Each data point p is normalized as follows:

p′ = (p − µ)/σ

It is important to note that the values of µ and σ are calculated solely based on the training
data.

target dataset  feature dataset 

Figure 5. Stacking of robot’s position and gradients to form a 3 × 4 image representing the robot’s
pose to be used in the CNN-based statics modeling of a continuum robot.

3.2. CNN Model Architectures

In this document, we present a CNN framework that has been specifically designed to
approximate the inverse statics of the robot modeled using the ANCF. The input size of
the network is fixed at 3 × 4, corresponding to the representative image of the tip’s pose,
while the objective of the network is to predict the required tip moments as its output. The
CNN model begins with a convolutional layer, pooling layer, and flatten layer, followed
by feeding the input data to the fully connected layers, as shown in Figure 6. The kernel
size of the first convolution layer is chosen to be 16 while the hyperbolic tangent (tanh)
activation function is selected.
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input image (3x4) Conv2D(16, 2x2) MaxPooling(2x2)

Convolution Pooling

fully connected (16)

Output (3)

tanh

tanh

linear

fully connected (8)

Flattening

Figure 6. The CNN architectures employed in the inverse statics modeling of continuum robots.

3.3. Training of DNN Models

In the course of training our CNN models, we employed the Mean-Squared Error
(MSE) loss function. This choice is of utmost significance in training the deep regressor
model that approximates the inverse statics of the continuum robot. The MSE loss function
effectively quantifies the divergence between the CNN model’s estimated output, denoted
as ŷ(ζ), and the corresponding reference output, y, which relates to either forward or
inverse statics modeling. The Mean-Squared Error is expressed mathematically as follows:

MSE =
1
N

N−1

∑
i=0

[ŷ(ζ)i − yi]2 (46)

The ζ symbol in the given equation denotes the network parameters, encompassing learn-
able weights and biases. To enhance the model’s performance, the Adam optimizer [50] has
been employed, with an initial learning rate of 10−2 as its hyperparameter. Furthermore,
the customization of hyperparameters is warranted for individual numerical examples,
such as the training batch size and the number of epochs, which will be explained in detail
in the subsequent sections.

4. Results and Discussion

In this section, we conducted a series of numerical experiments to evaluate the effec-
tiveness of the proposed CNN quasi-static models based on ANCF. Firstly, we assessed the
performance of the CNN model by examining its training and validation losses throughout
training, which allowed us to identify potential areas for improvement. Subsequently, we
compared the trained model with the testing data collected, enabling us to establish its reli-
ability and accuracy. Furthermore, we employed the proposed CNN-based inverse model
to generate the moments required to track a specified trajectory in the task space, which
yielded promising results. To determine the optimal model architecture, we conducted a
five-fold cross-validation analysis on five models, enabling us to make informed decisions.

4.1. CNN Model Performance

The TensorFlow 2.x API was used to execute the training and prediction processes on
a personal computer. It is worth noting that the choice of computer hardware significantly
impacts the duration of the training process. This study used a central processing unit
(CPU) with a clock speed of 2.8 GHz to train the models. Figure 7 depicts the Mean
Squared Error (MSE) losses for the CNN inverse statics models across 500 epochs and their
convergence towards minimum loss values in the training and validation datasets.

To evaluate the performance of the models, the testing dataset consisting of 512 samples
with a batch size of 64 is used. A comparison between the CNN-based model’s estimated
and target data is represented in Figure 8, along with the corresponding absolute error.
Due to space constraints, only the first 100 samples are displayed. Both models show
a negligible error level, as evidenced by the close proximity between the estimated and
target signals.
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Figure 7. Graph showing the Mean Squared Error (MSE) of training and validation losses dur-
ing the Convolutional Neural Network (CNN) training for the inverse static modeling of the
continuum robot.

0 50 100
Sample

5

0

5

10

M
x 

[N
.m

] Estimated
Target

0 50 100
Sample

10

0

10

M
y 

[N
.m

]

0 50 100
Sample

10

0

10

M
z [

N.
m

]

0 50 100
Sample

0.0

0.5

1.0

Ab
so

lu
te

 E
rro

r [
N.

m
]

0 50 100
Sample

0.0

0.2

0.4

Ab
so

lu
te

 E
rro

r [
N.

m
]

0 50 100
Sample

0.00

0.25

0.50

0.75

Ab
so

lu
te

 E
rro

r [
N.

m
]

Figure 8. A comparison of the target versus estimated moments in the CNN-based inverse statics
model, including the corresponding absolute error and the mean absolute errors highlighted with
red horizontal lines.

4.2. Trajectory Generation

In order to evaluate the practicality of the proposed CNN-based quasi-inverse statics
model, a reference trajectory has been provided, which specifies the desired poses over time
for the robot’s tip to follow. The CNN model is responsible for computing the necessary
moments to be applied at the robot’s tip to ensure it adheres to the reference trajectory. The
reference trajectory is illustrated in Figure 9, highlighted in red and denoted as pre f ∈ R12

with the corresponding coordinates indicating the tip orientation. The reference trajectory
is computed based on the Constant Curvature Model (CCM) [17], which is widely adopted
in defining the kinematics of a single-segment continuum robot. The reference rotation
trajectory Rref and the reference positions xref are chosen as

Rref =

C2
ϕ(Cθ − 1) + 1 SϕCϕ(Cθ − 1) −CϕSθ

SϕCϕ(Cθ − 1) C2
ϕ(Cθ − 1) + 1 −SϕSθ

CϕSθ SϕSθ Cθ

 (47)
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xref


s Cϕ(Cθ − 1)

θ
s Sϕ(Cθ − 1)

θ
s Sθ

θ

 (48)

where S{.} and C{.} represent the sine and cosine functions of an angle, respectively. The
s symbol represents the robot length of 40 cm, while θ and ϕ are the curvature and
plan of curvature angle that are swept to generate the reference trajectory within the
robot’s workspace.
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0.20.10-0.1-0.2

(a) (b) (c)

Figure 9. Reference trajectory generated to test the applicability of the proposed CNN inverse statics
model of the continuum robot. (a) is showing the reference trajectory in orange over the dataset and
the reference poses in RGB coordinates, (b,c) are the projection of the generated reference,

The CNN-based inverse statics model processes the input reference trajectory to pro-
vide the corresponding moments to be applied. These moments are seamlessly integrated
into the analytical model derived from ANCF, as expressed in Equation (39). Figure 10
compares the trajectories generated using the CNN-based approach and the model-based
approach, along with the associated tip-moment profiles. The observed similarities between
both trajectories indicate the immense potential of the developed CNN-based inverse model
for trajectory generation and control. While the error may seem significant, we believe it
to be acceptable for two key reasons. Firstly, the larger discrepancies are predominantly
observed along the z-axis, specifically below 0.2 m. As illustrated in Figure 9, this region
of the workspace contains relatively few data points. This scarcity is a consequence of
the range of moments applied during the dataset generation, which inherently limits the
precision of solutions in this area. Secondly, the reference trajectory was constructed using
the constant curvature model, primarily to ensure realistic orientations for the desired
trajectory. However, it is important to note that the constant curvature model does not
necessarily align precisely with the general ANCF model, which may contribute to the
observed deviations.

4.3. K-Fold Cross Validation

K-fold cross-validation is a robust method for assessing the performance and general-
izability of predictive models, particularly in fields such as machine learning and statistical
analysis [51]. In this technique, the dataset is divided into k equal or nearly equal-sized
subsets or folds. The process involves using one of these folds as the validation set to
test the model, and the remaining k − 1 folds serve as the training set. This procedure
is repeated k times, with each of the k subsets used exactly once as the validation data.
The results from these k iterations are then averaged to produce a single estimation. This
method is highly regarded for its ability to mitigate the bias associated with the random
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sampling of the training and validation sets, as every data point is in a validation set exactly
once and in a training set k − 1 times. It is particularly beneficial in situations where the
available data are limited, as it maximizes both the training and testing data available for
each iteration. By doing so, k-fold cross-validation provides a more comprehensive insight
into the model’s performance, helping to identify issues such as overfitting or underfitting,
and thus leading to more robust and reliable models.
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Figure 10. Comparative analysis of reference trajectories for CNN-based inverse statics testing versus
trajectories derived from moments estimated by the CNN model.

In this subsection, the performance of the proposed CNN model was rigorously evalu-
ated utilizing the K-Fold Cross-Validation method. This methodological approach is pivotal
for extensively testing an inverse statics model across a range of architectural configura-
tions, thereby ensuring their robustness and reliability. The dataset was partitioned into
k = 5 distinct subsets, facilitating an iterative process of training and evaluating the model.
Such a comprehensive assessment strategy enables a deeper understanding of the model’s
performance under diverse conditions. More critically, this evaluation framework not only
aids in selecting the most efficacious architectural configuration but also offers insightful
perspectives on the generalization capabilities of the model in realistic scenarios.

In this research, a series of five Deep Neural Network (DNN) models were developed,
utilizing both feed-forward and Convolutional Neural Network (CNN) architectures. The
models encompass a range of trainable parameters, varying from 259 to 2515, and are
structured across two to three layers, as elaborated in Table 1. Convolutional layers within
these models are indicated by the prefix ’C’, followed by a subscript denoting the number of
kernels and the size. Fully connected layers are represented with the prefix ’F’, accompanied
by a subscript indicating the number of neurons. For convolutional layers, a stride of 1
was consistently employed, without the inclusion of padding. The activation functions
were predominantly set to the hyperbolic tangent (tanh), except for the output layer where
a linear activation function was implemented. In scenarios where the model lacked a
convolutional layer at the input stage, a flattened layer was integrated to transform the
input pose image into a column vector.

Table 1. Selected architectures for the five-fold cross validation experiment.

Model Layers Size Average MSE

1 F16, F3 259 4.19
2 C8,2, F3 187 8.17
3 C8,2, C4,2, F3 199 7.19
4 C16,2, C8,2, F3 651 4.54
5 C32,2, C16,2, F8, F3 2515 1.07

The training of these models was executed using the Adam optimizer across 100 epochs,
with Mean Squared Error (MSE) serving as the loss function. This process was further
augmented by a five-fold cross-validation approach to ensure a comprehensive evaluation
and validation. The convergence patterns of the learning algorithm, encompassing all
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networks and folds, are depicted in Figure 11a. Additionally, Figure 11b provides a detailed
analysis of the mean values and standard deviations of the MSE losses for each model
architecture, specifically focusing on the CNN inverse statics models.
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Figure 11. (a) Training losses expressed as mean squared error (MSE) for five deep neural network
(DNN) models during five-fold cross-validation. (b) The mean and standard deviation of the MSE
achieved by each model across the five folds.

Notably, networks with a greater number of parameters are represented in dark red,
indicating that larger networks exhibit improved convergence towards smaller MSE values.
To simplify our selection process, we opted for a neural network that performed reasonably
well in both the training and testing phases. This exploration of compact and fast-learning
architectures holds the promise of bolstering the overall system’s robustness.

5. Conclusions

In conclusion, this research introduces a data-driven modeling approach, employing a
deep convolutional neural network (CNN), tailored for real-time solutions in the inverse
statics of soft continuum robots within the Absolute Nodal Coordinate Formulation (ANCF)
framework. The CNN model is adeptly designed to address the spatial continuities and
inherent nonlinearity of ANCF, facilitating the resolution of complex inverse quasi-statics
in soft continuum robotics. The model demonstrates an acceptable accuracy in providing
ANCF solutions with minimal tolerance levels, effectively tackling challenging inverse
quasi-static problems in continuum robots.

Integrating the Deep CNN with the ANCF, as newly proposed in this research, marks
a considerable improvement over the current approaches. It offers a more powerful
and efficient solution for statics modeling in soft continuum robotics. This advancement
facilitates the resolution of inverse statics problems for soft robots modeled using ANCF. In
our system, the model is designed to receive a specified target position for the end-effector
and then compute the requisite external moments at the robot’s tip to achieve this position.

The study also underscores the utility of this approach in generating adequate trajecto-
ries for continuum robots by accurately determining the necessary moments to be applied
at the robot’s extremities. Through comprehensive numerical studies, the efficacy of the
proposed method has been established, highlighting its applicability in practical scenarios.
However, further research is required to extend this method to the dynamic modeling
of continuum robots using the ANCF framework. Future work should also explore the
integration of CNN-based control in continuum robotics, along with the experimental
validation of the deep learning models, in order to further substantiate and enhance the
applicability of these methods.

In the evolving landscape of continuum robotics, the integration of deep learning
models in data-driven model predictive control (MPC), especially when applied to robots
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modeled using the Absolute Nodal Coordinate Formulation (ANCF), presents a fertile
ground for future research. The fusion of deep learning and MPC opens up innovative pos-
sibilities, ranging from enhanced learning algorithms capable of comprehending complex
dynamics to the implementation of real-time control systems that can seamlessly integrate
feedback and adjust to changing conditions. One of the paramount challenges in this
domain is improving computational efficiency, which can be achieved through optimized
neural network structures and the utilization of advanced hardware accelerators. This
advancement is essential for ensuring the robustness and reliability of these systems across
diverse operational environments, including industrial and medical applications.
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