

Article Kepler Algorithm for Large-Scale Systems of Economic Dispatch with Heat Optimization

Sultan Hassan Hakmi¹, Abdullah M. Shaheen^{2,*}, Hashim Alnami¹, Ghareeb Moustafa^{1,*} and Ahmed Ginidi²

- ¹ Electrical Engineering Department, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia; shhakmi@jazanu.edu.sa (S.H.H.); halnami@jazanu.edu.sa (H.A.)
- ² Department of Electrical Engineering, Faculty of Engineering, Suez University, Suez P.O. Box 43221, Egypt; ahmed.ginidi@eng.suezuni.edu.eg
- * Correspondence: abdullah.mohamed.eng19@suezuni.edu.eg (A.M.S.); gmoustafa@jazanu.edu.sa (G.M.)

Abstract: Combined Heat and Power Units Economic Dispatch (CHPUED) is a challenging nonconvex optimization challenge in the power system that aims at decreasing the production cost by scheduling the heat and power generation outputs to dedicated units. In this article, a Kepler optimization algorithm (KOA) is designed and employed to handle the CHPUED issue under valve points impacts in large-scale systems. The proposed KOA is used to forecast the position and motion of planets at any given time based on Kepler's principles of planetary motion. The large 48-unit, 96-unit, and 192-unit systems are considered in this study to manifest the superiority of the developed KOA, which reduces the fuel costs to 116,650.0870 USD/h, 234,285.2584 USD/h, and 487,145.2000 USD/h, respectively. Moreover, the dwarf mongoose optimization algorithm (DMOA), the energy valley optimizer (EVO), gray wolf optimization (GWO), and particle swarm optimization (PSO) are studied in this article in a comparative manner with the KOA when considering the 192-unit test system. For this large-scale system, the presented KOA successfully achieves improvements of 19.43%, 17.49%, 39.19%, and 62.83% compared to the DMOA, the EVO, GWO, and PSO, respectively. Furthermore, a feasibility study is conducted for the 192-unit test system, which demonstrates the superiority and robustness of the proposed KOA in obtaining all operating points between the boundaries without any violations.

Keywords: Kepler optimization algorithm; economic dispatch; valve point loading effect; large 192-unit system; CHPUED

1. Introduction

1.1. Motivation of the Study

Power and heat systems that are combined bear the responsibility of meeting both electrical and heating demands, which contradicts the conventional methods of electricity generation. As a result, the goal of the combined heat and power economic dispatch issue is to minimize both the total cost of producing electrical power and heat under certain operational restrictions, including the production attributes of combined power and heat (CHP) units, the electrical power, the heat balance, the production capacities of heat-only and power-only units, etc. [1]. Formally, the CHPUED problem under consideration can be represented mathematically as a non-convex constrained optimization issue. By using appropriate optimization techniques with the CHPUED issue, the ideal generation schedule for power and heat can be established. One of the primary motivations for this study is the increasing demand for efficient and sustainable power generation algorithms that can handle the challenges posed by large-scale systems and can incorporate heat optimization aspects. Moreover, the inclusion of heat optimization in the study's objectives highlights

Citation: Hakmi, S.H.; Shaheen, A.M.; Alnami, H.; Moustafa, G.; Ginidi, A. Kepler Algorithm for Large-Scale Systems of Economic Dispatch with Heat Optimization. *Biomimetics* 2023, *8*, 608. https://doi.org/10.3390/ biomimetics8080608

Academic Editors: Ameer Hamza Khan, Danish Hussain and Shuai Li

Received: 16 November 2023 Revised: 7 December 2023 Accepted: 8 December 2023 Published: 14 December 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). another important motivation. Heat optimization involves optimizing the utilization of waste heat generated during power generation processes, thereby enhancing the overall energy efficiency.

1.2. Literature Review

Economic load dispatch (ELD) is a crucial optimization problem in power systems that aims to allocate the optimal power generation among multiple generating units to meet the electricity demand at minimum cost while satisfying various operational constraints [2]. The objective of ELD is to determine the optimal power output for each generator, taking into account factors such as fuel cost, transmission losses, and system constraints. The goal is to minimize the total cost of generating electricity while ensuring that the power supply remains reliable and stable [3]. ELD considers various parameters, including the cost curves of generators, generation limits, ramp rates, transmission constraints, and renewable energies [4]. In Ref. [5], the application of an enhanced particle swarm optimizer was described for a dispatching model that takes into account various factors. These include market power sales benefits, environmental benefits from grid-connected operations, and system operation and maintenance costs. The objective of the model was to optimize the benefits of a combined system consisting of wind, photovoltaic, and concentrating solar power by optimizing its grid-connected performance. In Ref. [6], the sparrow search algorithm was utilized to address the economic load dispatch (ELD) problem in renewable integrated microgrids. The goal was to determine the optimal power output of all distributed energy sources within the microgrid, considering renewable sources, to meet the load demand at the lowest possible cost.

The initial attempts at addressing the CHPUED problem in the literature involved using deterministic methods, which required investigating the solution space over a limited number of repetitions, with the aid of a set of deterministic bounding procedures. The CHPUED problem is divided into two subproblems as indicated in Ref. [1], with the power and heat dispatches being handled separately by the Lagrangian relaxation approach. In Ref. [5], a bi-level structure with lower and upper levels was used to tackle the CHPUED issue. Additionally, in this study, the global limitations were managed at the top level, and unit generation was achieved at the lower level. Another study [6] used Benders decomposition to divide the CHPUED problem into a master problem and a sub-problem. In each iteration, the master issue was first solved to determine the heat productions, and the subproblem was then solved to produce the best power generation. Power dispatch and unit commitment issues combine to form CHPUED [7]. Thus, inner and outer Bender decompositions, in the two Benders decomposition techniques, were proposed. While the outer inner problem addressed a power dispatch, the outer master problem resolved the unit commitment problem by identifying the on/off status of each unit. Moreover, the inner decomposition ensured constraint fulfillment. Other traditional methods used to address the CHPUED problem in the literature included a branch-and-bound algorithm [8] and mixed-integer nonlinear programming [9].

The CHPUED problem becomes a non-convex problem when it is defined within the constraints of the valve point effect. Although the optimal solution is guaranteed by traditional approaches, these might not be able to solve the non-convex CHPUED issue. Metaheuristics carry out certain procedures that use their stochastic nature to investigate the solution space. Although they cannot guarantee that they will be close to the global optimum, they can nevertheless handle non-differentiable and non-convex problems and are simple to employ [10–12]. Harmony search (HS), differential evolution (DE), particle swarm optimization (PSO), and the genetic algorithm (GA) are some well-known examples of metaheuristics algorithms. A self-adaptive real-coded genetic algorithm was used to solve the non-convex CHPUED problem in Ref. [13]. In Ref. [14], PSO was utilized to solve the CHPUED problem in order to minimize the total generation cost. However, the application of PSO in this context has been limited to a small-scale system consisting of only six units, comprising two generators, two heat-only units, and two power-only units. Furthermore, the issue of transmission losses has not been considered, leading to certain inconsistencies. Additionally, the validation of the PSO approach has not been thoroughly discussed. The research conducted by [15] presented a novel approach to address the CHPUED problem by introducing a modified version of the bat optimization algorithm. This modified algorithm was designed to handle three distinct types of units to minimize the operating costs. In [10], an elitist variant of the cuckoo search algorithm has been applied for benchmark functions. In addition to this application, the elitist cuckoo search has been dedicated to solving the CHPUED problem. On the other side, the computational burden of 1000 iterations for the five- and seven-unit systems is considered, which represents more than three times that of other methods [16] with 300 iterations. Additionally, a new approach to constraint control with penalties is shown. Considering several cases, the proposed method's effectiveness is tested. In Ref. [17], a novel mutation technique known as the Mühlenbein mutation is presented to increase convergence and solution time. Real-coded GA is used to solve the CHPUED problem while taking into account the transmission system losses and the valve point impact caused by the thermal units. In Ref. [18], Cauchy distribution is used to increase the PSO's efficiency in addressing the CHPUED problem. Six separate test systems are used to validate the proposed method. Another population-based metaheuristic, PSO with time-varying acceleration coefficients, is utilized in Ref. [19] to solve the CHPUED issue, which includes generating constraints. In [20], the CHPUED problem has been treated, including renewable wind energy in order to overcome the intermittent renewable and load variations. In this study, it was solved by the metaphor-less Rao-3 algorithm, which involves the reliance on metaphors to enhance transparency, simplicity, and ease of understanding.

Along with these traditional stochastic optimization techniques, new metaheuristics have also recently been used to tackle the CHPUED problem, which represents the subject of this study. In [21], a non-convex CHPUED issue has been solved using a heap technique, which is then tested on four separate case studies with 7, 24, 48, and 96 generating units. However, the large 192-unit system has not been accounted for in this study. CHPUED, as a non-convex optimization problem, is formulated in this manuscript and solved via the Kepler optimization algorithm (KOA). In 2015 [22], an attempt to simulate the KOA in a hybrid algorithm with the gravitational search algorithm (GSA) was introduced for solving numerical benchmarks. This hybrid algorithm made use of only the first Kepler's law with high simplification. It mimicked his law by focusing the search on the sun position by either multiplying it by a uniformly distributed pseudo-random number or by adding a distance component between the sun position and each solution. In the presented study, the KOA is developed in a complete optimization framework simulating different laws and features regarding Kepler's concept [23]. The KOA enables a more efficient exploitation and exploration of the search space due to the candidate solutions' (planets') varying distances from the sun at various times. Each planet in the KOA represents a candidate solution with regard to the optimal solution (the sun), which is changed at random during the optimization process. All the practical constraints of CHPUED are considered in this paper. All operating points of different units are obtained between the boundaries without any violations.

1.3. Paper Contributions

The main points of this manuscript are summarized as follows:

- A KOA is developed and applied for the non-convex CHPUED.
- Three large-scale systems of 48, 96, and 192 units are considered tests for evaluating the effectiveness of the KOA.
- To assess the efficacy of the applied KOA, recent optimization algorithms are employed.
- To estimate the KOA's superiority, comparisons are illustrated with various wellknown methodologies that have been presented in the scientific literature.
- To demonstrate the accuracy of the proposed KOA, a feasibility study is investigated.

1.4. Paper Organization

The content of the paper is structured into five sections. The KOA algorithm is introduced in Section 2. The CHPUED optimization model is formulated in Section 3. Section 4 contains a detailed analysis and discussion of the numerical results for the three case studies. The final conclusions are drawn in Section 5.

2. CHPUED Formulation

2.1. Objective

The major objective of the CHPUED challenge is to reduce the fuel expenses associated with producing heat and electricity. As a result, CHPUED is described as an objective function that is subjected to a number of restrictions. Figure 1 displays a graphic representation of the economic CHPUED issue including their participants.

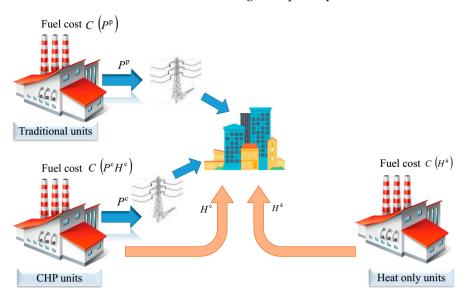


Figure 1. Graphic representation of economic CHPUED issue.

As the major objective of CHPUED is to lessen the whole cost of heat and power production, the whole cost target function (*WCTF*) can be described as the whole cost of the power-only, power-heat amalgamation, and heat-only units [24] as depicted in the following equation:

$$\operatorname{Min} WCTF = \sum_{i=1}^{N_{pr}} CT1_i (PR_i^{pr}) + \sum_{j=1}^{N_{ht}} CT2_j (HT_j^{ht}) + \sum_{k=1}^{N_{chp}} CT3_k (PR_k^{chp}, HT_K^{chp}) (\$/h) \quad (1)$$

where the terms $CT1_i(PR_i^{pr})$ and $CT2_j(HT_j^{ht})$ demonstrate the *i*th power-only and the *j*th heat-only units' cost, respectively, whilst the term $CT3_k(PR_k^{chp}, HT_k^{chp})$ determines the k^{th} CHP. The symbols N_{ht} and N_{pr} depict the heat-only and power-only units' number, respectively, while N_{chp} illustrates the CHP units' number.

The mathematical representation of three cost target functions $CT1_i(PR_i^{pr})$, $CT2_j(HT_j^{ht})$, and $CT3_k(PR_k^{chp}, HT_k^{chp})$ can be described as follows:

(1) $CT1_i$ of i^{th} power units

$$CT1_{i}(PR_{i}^{pr}) = \delta 1_{i}(PR_{i}^{pr})^{2} + \delta 2_{i}PR_{i}^{p} + \delta 3_{i} + \left|\lambda_{i}\sin(\rho_{i}(PR_{i}^{pr}-PR_{i}^{pr}))\right| (\$/h)$$
(2)

(2) $CT2_i$ of j^{th} heat units

$$CT2_{j}(HT_{j}^{ht}) = \gamma 1_{j}(HT_{j}^{ht})^{2} + \gamma 2_{j}HT_{j}^{ht} + \gamma 3_{j} (\$/h)$$
(3)

(3) $CT3_k$ of k^{th} CHP units

$$CT3_{k}(PR_{k}^{chp}, HT_{k}^{chp}) = \alpha 1_{k}(PR_{k}^{chp})^{2} + \alpha 2_{k}PR_{k}^{chp} + \alpha 3_{k} + \alpha 4_{k}(HT_{k}^{chp})^{2} + \alpha 5_{k}HT_{k}^{chp} + \alpha 6_{k}HT_{k}^{chp}PR_{k}^{chp} (\$/h)$$
(4)

where the elements ($\delta 1_i$, $\delta 2_i$, and $\delta 3_i$) and ($\gamma 1_j$, $\gamma 2_j$, and $\gamma 3_j$) describe the *i*th power-only and the *j*th heat-only units' cost coefficients, while the elements ($\alpha 1_k$, $\alpha 2_k$, $\alpha 3_k$, $\alpha 4_k$, $\alpha 5_k$ and $\alpha 6_k$) represent the *k*th CHP unit's cost coefficients. The non-differentiability and non-convexity of CHPUED, which signify the valve-point impacts, are determined by sinusoidal terms, as explained in Equation (2) [25,26].

2.2. Constraints

The following constraints are taken into account when minimizing the specified objective function. The balance among power generation and demand can be calculated using Equation (5):

(1) Power balance constraint

$$\sum_{i=1}^{N_{pr}} PR_i^{pr} + \sum_{k=1}^{N_{chp}} PR_k^{chp} = PR_{demand}$$
(5)

where PR_{demand} explains the power demand.

(2) Limits of power units' capacity

$$PR_i^{pr_{\min}} \le PR_i^{pr} \le PR_i^{pr_{\max}} \ i = 1, \dots, N_{pr}, \tag{6}$$

(3) Heat balance constraint

$$\sum_{i=1}^{N_{chp}} HT_i^{chp} + \sum_{j=1}^{N_{ht}} HT_j^{ht} = HT_{demand},$$
(7)

where H_{demand} proves thermal demand.

(4) Heat units' generation limits

$$HT_j^{ht_{\min}} \le HT_j^{ht} \le HT_j^{ht_{\max}} \ j = 1, \dots, N_{ht}, \tag{8}$$

(5) CHP capacity limits

$$PR_i^{chp_{\min}}(HT_i^{chp}) \le PR_i^{chp} \le PR_i^{chp_{\max}}(HT_i^{chp}) \ i = 1, \dots, N_{chp}, \tag{9}$$

$$HT_i^{chp_{\min}}(PR_i^{chp}) \le HT_i^{chp} \le HT_i^{chp_{\max}}(PR_i^{chp}) \ i = 1, \dots, N_{chp}, \tag{10}$$

where the heat and power unit boundaries are demonstrated by the superscripts "min" and "max".

3. Mathematical Model of KOA

The Kepler optimization algorithm (KOA), proposed in [23], is inspired from Kepler's laws for planetary motion. Each planet in the KOA acts as a candidate solution and can be updated at random during the optimization process in relation to the best-possible solution (the sun). A set of initial objects (possible solutions) containing stochastic orbitals

is used by the KOA to begin the search process. During this phase, each object is first placed in an orbit at a random location. The KOA runs in iterations after assessing the original set's fitness until the termination condition is satisfied. Because iteration is a term that is frequently used in solar system theory and cosmic cosmology, the term "time" is used in the present study instead of the iteration. In the following section, the KOA will be presented in six steps.

3.1. Step 1: Initialization Process

In this procedure, the decision parameters of an optimization issue, which are represented by a number of planets N_p and called the population size, will be distributed at random in *Dim* dimensions as follows:

$$\vec{X}_{i,j}(0) = r_1 \times \vec{X}_{j,up} + \vec{X}_{j,low}(1-r_1), i = 1: N_p; j = 1: Dim$$
(11)

where $X_{i,j}$ signifies the *i*th candidate solution (planet); N_p represents the number of candidate solutions in the search space; $X_{j,low}$ and $X_{j,up}$ characterize the lower and upper limits of the *j*th decision parameter, respectively; *Dim* denotes the issue dimension to be enhanced; and *r* stands for a number randomly generated between 0 and 1.

3.2. Step 2: Calculating an Object's Velocity

An object's velocity is influenced by $V_i(t)$ where it is in relation to the sun. In other words, a planet moves faster when it is near to the sun and slower when it is farther away. The sun's gravity is quite powerful when an object is close to it, so the planet tries to move faster to escape being drawn toward the sun. The weak gravity of the sun will force an object's velocity to slow down if it is distant from the sun. This behavior is mathematically described in Equation (12), which uses it to calculate an object's velocity around the sun using the vis viva equation. This equation has two parts as shown below:

$$V_{i}(t) = \begin{cases} (\vec{X}_{a} - \vec{X}_{i}) \times r_{4} \times H + F \times \vec{U}_{2} \times (1 - R_{i-norm}(t)) \\ \times (r_{3}\vec{X}_{i,up} - \vec{X}_{i,low})\vec{r}_{5} \ if \ R_{i-norm}(t) > 0.5 \\ (2 \times r_{4} \times \vec{X}_{i} - \vec{X}_{b})\rho + (\vec{X}_{a} - \vec{X}_{b})\rho^{*} \\ + F \times \vec{U}_{1} \times (1 - R_{i-norm}(t)) \times (\vec{X}_{i,up} - \vec{X}_{i,low})\vec{r}_{5} \ Else \end{cases}$$
(12)

where

$$H = \sqrt{\left(Ms + m_i\right) \times \mu(t)} \left| -\frac{1}{a_i(t) + \varepsilon} + \frac{2}{R_i(t) + \varepsilon} \right|$$
(13)

$$\rho = (r_3 \times (1 - r_4) + r_4) \times \vec{U} \times H \tag{14}$$

$$\rho^* = (r_3 \times (1 - r_5) + r_5) \times (1 - \vec{U}) \times H$$
(15)

where $V_i(t)$ represents the velocity of object *i* at time *t*; X_i characterizes an object *i*, whilst Fmanifests an integer number chosen randomly that belongs to the set $\{-1, 1\}$; the symbol Uis a vector containing integer number randomly chosen which belongs to the set $\{0, 1\}$; $r_1, r_2,$ r_3, r_4 , and r_5 denote random integer numbers uniformly distributed in the range [0, 1]; $\mu(t)$ denotes the universal gravitational constant; X_a and X_b signify solutions that are selected from the population at random; Ms and m_i characterize the mass of X_s and X_i , respectively; Ri(t) demonstrates the distance at time *t* among the best solution (X_s) and the object (X_i); ε demonstrates a minimal value for avoiding a divide-by-zero mistake; and a_i is the elliptical orbit semimajor axis at time *t* of object *i*, and it is defined by Kepler's third law as follows:

$$a_{i}(t) = \left[\mu(t) \times (Ms + m_{i}) \times \frac{T_{i}^{2}}{4\pi^{2}}\right]^{\frac{1}{3}} \times r_{3}$$
(16)

where T_i is an absolute value that is produced at random using the normal distribution to represent the orbital period of object *i*. The semimajor axis of object *i*'s elliptical orbit is considered in our proposed algorithm to steadily decrease over generations as the solutions advance toward the region where the best overall solution is most likely to be discovered. $R_{i-norm}(t)$ denotes normalizing the Euclidian distance among X_s and X_i ; its definition is as follows.

$$R_{i-norm}(t) = (R_i(t) - R_{\min}(t)) / (R_{\max}(t) - R_{\min}(t))$$
(17)

3.3. Step 3: Escaping from the Local Optimum

Most solar system objects rotate on their own axes and move in an anticlockwise manner around the sun; however, certain objects move in a clockwise motion. This behavior is used by the approach suggested to leave local optimal zones. The suggested KOA simulates this behavior by employing a flag F that modifies the search direction such that agents have a good chance of accurately scanning the search space.

3.4. Step 4: Updating Objects' Positions

As previously explained, objects have their own elliptical orbit around the sun. Objects rotate near the sun, becoming closer to it for a while and then moving farther from it. The two main parts of the proposed KOA, which are the exploitation and exploration phases, can simulate this behavior. The KOA searches for new locations near the best solutions while employing solutions close to the sun more precisely and exploring things far from the sun to locate new solutions. The fact that the objects are far from the sun throughout the exploration phase shows that the suggested method efficiently explores the whole search area.

The following equation is used to update the location of each object far from the sun in line with the preceding steps:

$$\vec{X}_i(t+1) = \vec{X}_i(t) + \vec{V}_i(t) \times F + (\vec{X}_s(t) - \vec{X}_i(t)) \times \vec{U} \times (Fg_i(t) + |r|)$$
(18)

where $X_i(t + 1)$ stands for the new location at time t + 1 of an object I, while $X_i(t)$ represents the present location of the object i at time t; $V_i(t)$ illustrates the velocity of object i that is needed to transfer to the new location, $X_s(t)$ manifests the best sun position which is associated with the best solution that acquires the least fitness score, and F is demonstrated as a flag to switch the search's direction.

The term Fg_i in the context of the Kepler optimization algorithm (KOA) represents the attraction force between the sun (X_s) and any planet (X_i). This force is calculated based on the universal law of gravitation and can be expressed using the following equation:

$$Fg_i(t) = r_4 + \mu(t) \times e_i \times (\vec{Mn_s} \times \vec{mn_i}) / (\vec{Rn_i}^2 + \varepsilon)$$
(19)

where e_i manifests the eccentricity of a planet's orbit, which is a value between 0 and 1 that was proposed to endow a stochastic characteristic to the KOA. Additionally, the normalized values of m_i and Ms can be defined by mn_i and Mn_s that demonstrate the mass of X_i and X_s , respectively.

This equation is utilized to model the gravitational force between celestial bodies, specifically the sun and the planets, as part of the algorithm's calculations. The force is an essential factor in determining the planetary motion and optimizing the trajectories of the planets within the system. By incorporating the sun's attraction force, the KOA can simulate the gravitational interactions between celestial bodies and effectively optimize the orbits and positions of the planets in the system being studied. This enables the algorithm to provide accurate and efficient solutions for various astronomical and astrophysical

problems. The normalized values of m_i and Ms can be mathematically represented by Equations (20) and (21):

$$Mn_s = r_2 \times (fit_s(t) - worst(t)) / \sum_{k=1}^{N_p} (fit_k(t) - worst(t))$$
(20)

$$mn_i = (fit_i(t) - worst(t)) / \sum_{k=1}^{N_p} (fit_k(t) - worst(t))$$
(21)

where worst(t) represents the solution candidate with the highest fitness score; $fit_k(t)$ indicates the value of the fitness function regarding each location of the object *k* at the current time *t*.

The Euclidian distance between X_s and X_i can be defined by the term (Rn_i) , as depicted in Equation (22), which represents the normalized value of (R_i) .

$$Rn_{i}(t) = \|X_{s}(t) - X_{i}(t)\|_{2} = \sqrt{\left(\sum_{j=1}^{Dim} (X_{s}(t) - X_{i}(t))^{2}\right)}$$
(22)

To manage search accuracy, $\mu(t)$ is defined by Equation (23) as a function that exponentially declines with time (*t*).

$$\mu(t) = \mu_0 \times e^{-(t/T_{\text{max}})\gamma}$$
(23)

where μ_0 is an initial value; γ is a constant; and T_{max} and t demonstrate the maximum iterations' number and current iteration number, respectively.

3.5. Step 5: Updating Distance with the Sun

The normal distance behavior, which normally fluctuates with time between the planets and the sun, is simulated to further enhance the exploitation and exploration operators of planets. The KOA will concentrate on optimizing the exploitation operator when planets are near the sun and the exploration operator when the sun is far away. This principle is represented mathematically as follows:

$$\vec{X}_{i}(t+1) = \vec{U}_{1} \times \vec{X}_{i}(t) + \left(1 - \vec{U}_{1}\right) \times \left(\vec{X}_{i}(t) + \vec{X}_{a}(t) + \vec{X}_{s}\right)/3 + \frac{1}{e^{(r \times (1 + r_{4} \times (a_{2} - 1)))}} \times \left((\vec{X}_{i}(t) + \vec{X}_{a}(t) + \vec{X}_{s})/3 - \vec{X}_{b}(t)\right)\right)$$
(24)

where a_2 defines a cyclic controlling parameter as manifested in Equation (25):

$$a_2 = -(1 + t/T_{\max}) \tag{25}$$

3.6. Step 6: Elitism

This stage employs an elitist method in order to guarantee the optimal placements for the sun and the planets. Equation (26) provides a summary of this process. Figure 2 describes in detail the flowchart of KOA.

$$\vec{X}_{i,new}(t+1) = \begin{cases} \vec{X}_i(t+1) & if fit(\vec{X}_i(t)) \ge fit(\vec{X}_i(t+1)) \\ \vec{X}_i(t) & Else \end{cases}$$
(26)

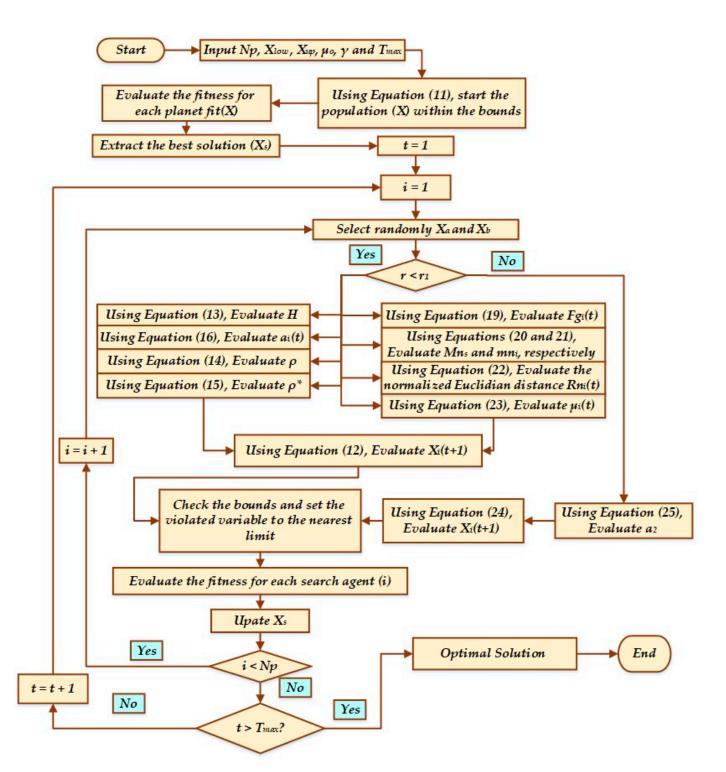


Figure 2. Flowchart of KOA.

4. Performance of KOA on the CHPUED Issue

In this section, the proposed KOA is tested on large 48-unit, 96-unit, and 192-unit test systems to demonstrate its efficacy and superiority when handing the CHPED issue.

4.1. The 48-Unit System

The system, in this instance, involves 48 total units, including 10 power–heat combination units, 12 power-only units, and 26 heat-only units. It is necessary, in this instance, to provide 2500 MWth of heat and 4700 MW of power. Additionally, the valve-point impact for power-only units is taken into account. The capacity limits of heat-only and power-only units, as well as the cost coefficients of associated units, are taken from Reference [19]. Table 1 presents the test outcomes of all units obtained using the KOA.

Unit	КОА	Unit	КОА	Unit	KOA
Pg1	448.812	Pg22	109.8988	Hg31	40.81127
Pg2	299.5241	Pg23	77.46306	Hg32	26.16548
Pg3	150.1696	Pg24	40.16544	Hg33	111.9561
Pg4	159.738	Pg25	92.93015	Hg34	91.23516
Pg5	109.9199	Pg26	55.37272	Hg35	115.2107
Pg6	159.8738	Pg27	91.53579	Hg36	101.8837
Pg7	110.3709	Pg28	45.4442	Hg37	40.00348
Pg8	159.7404	Pg29	91.34668	Hg38	26.99712
Pg9	109.939	Pg30	53.92644	Hg39	418.7711
Pg10	77.48522	Pg31	11.89511	Hg40	59.99864
Pg11	77.51255	Pg32	48.56369	Hg41	59.99945
Pg12	94.00181	Pg33	93.75923	Hg42	119.9865
Pg13	92.45571	Pg34	58.81029	Hg43	119.9993
Pg14	448.9186	Pg35	99.55169	Hg44	418.9729
Pg15	224.4459	Pg36	71.14285	Hg45	59.99973
Pg16	225.5116	Pg37	10.01567	Hg46	59.99715
Pg17	109.8786	Pg38	50.40061	Hg47	119.9984
Pg18	109.877	Hg27	110.7085	Hg48	119.9969
Pg19	109.9607	Hg28	79.69631	Sum (Pg)	4700
Pg20	159.7711	Hg29	110.5908	Sum (Hg)	2500
Pg21	159.871	Hg30	87.02126	WCTF (\$)	116,650.0870

Table 1. Test outcomes of all units for the 48-unit test system obtained using the KOA.

The output power of the power-only units (MW) is reflected by parameters between P1 and P104. P105 and P152 are the power outputs of CHP units in MW and H105 and H152 relate to heat outputs of CHP units in MWth. Additionally, H153 and H192 are the outputs of heat-only units in MWth. As can be seen in Table 1, the Sum (Hg) and Sum (Pg) values satisfy the heat and power demands of 2500 MWth and 4700 MW, respectively. As demonstrated from Table 1, the best cost value is identified by the KOA as 116,650.0870. Additionally, all results are in the feasible zone, and several individual findings are put exactly at the lower or higher bounds.

Figure 3 illustrates the suggested KOA's convergence rates for the given system, where the curve of the proposed KOA converges quickly. The proposed KOA requires around 2400 iterations to obtain the best solution. The results show that the proposed KOA has outstanding convergence rates for the given large CHPUED system.

Table 2 presents a comprehensive comparison between the proposed KOA and various other techniques reported in the literature. The comparison is conducted on a 48-unit CHPUED test system. The techniques included in the comparison are supply-demand optimization (SDO) [27], the multi-verse algorithm (MVA) [28], the gravitational search algorithm (GSA) [29], civilized swarm optimization (CSO) incorporated Powell's pattern search (PPS) [30], gray wolf optimization (GWO) [28], the salp swarm algorithm (SSA) [31], the GSO-based algorithm with ranger operators and modified scrounger (MGSO) [32], CPSO [19], differential evolution (DE) [28], the crow search algorithm (CSA) [28], the marine predator algorithm (MPA) [33], the jellyfish search optimizer (JFSO) [34], the manta ray foraging algorithm (MRFA) [28], and PSO with time-varying acceleration coefficients (PSO-TVAC) [19].

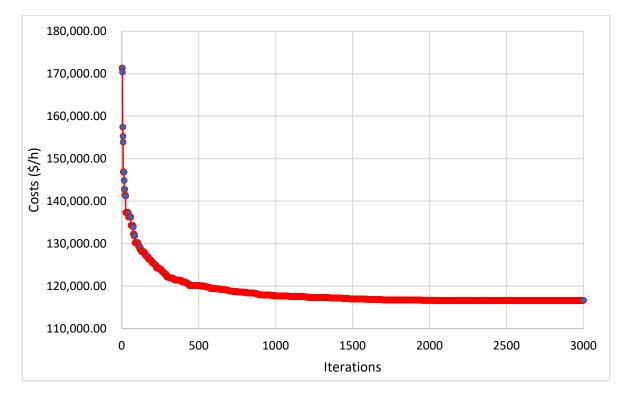


Figure 3. Convergence rates of the proposed KOA for 48-unit CHPUED system.

Table 2. Comparison of the proposed KOA	with the reported techniques for 48-unit system.
---	--

Optimizer	Min (WCTF (\$)) Improving Percentages		Average	Average	Worst	Standard Deviation (Std)
КОА	116,650.0870	-	117,104.5447	117,104.5447	117,915.5359	298.8796
CPSO [19]	120,918.9	3.660%	-	-	-	-
PSO-TVAC [19]	118,962.5	1.982%	-	-	-	-
MRFA [28]	117,336.9	0.589%	-	-	-	-
MVA [28]	117,657.9	0.864%	-	-	-	-
SSA [31]	120,174.1	3.021%	-	-	-	-
MPA[33]	116,860.6	0.180%	-	-	-	-
GSA [29]	119,775.9	2.680%	-	-	-	-
CSA [28]	122,953.5	5.404%	-	-	-	-
MGSO [32]	117,366.09	0.614%	-	-	-	-
DE [28]	120,482.7	3.286%	-	-	-	-
GWO [28]	122,583.3	5.086%	-	-	-	-
CSO and PPS [30]	117,367.09	0.615%	-	-	-	-
JFSO [34]	117,365.09	0.613%	-	-	-	-

Table 2 clearly demonstrates that the proposed KOA outperforms all the other optimizers in terms of performance and cost. It attains the most favorable results among the compared techniques, making it the superior choice for CHPUED optimization. The KOA exhibits the lowest minimum, standard deviation, average, and worst values of 116,650.0870, 298.8796, 117,104.5447, and 117,915.5359, respectively, as indicated in Table 2. This table clearly shows that the proposed KOA has the best performance and the lowest cost of these optimizers. Moreover, this comparison validates the proposed KOA's efficacy and superiority when used with CHPUED. Furthermore, the proposed KOA also receives the lowest minimum, standard deviation, average, and worst values of 116,650.0870, 298.8796, 117,104.5447, and 117,915.5359 \$, as shown in Table 2. Consequently, the proposed KOA has greater robustness than the techniques that have been reported. Based on the best attained costs, the proposed KOA shows improvements of 3.660%, 1.982%, 0.589%, 0.864%, 3.021%, 0.180%, 2.680%, 5.404%, 0.614%, 3.286%, 5.086%, 0.615% and 0.613%, respectively, compared to the following algorithms and optimization methods: CPSO [19], PSO-TVAC [19], MRFA [28], MVA [28], SSA [31], MPA [33], GSA [29], CSA [28], MGSO [32] DE [28], GWO [28], CSO, PPS [30] and JFSO [34]. These statistics further reinforce the robustness of the proposed KOA compared to the reported techniques.

The comprehensive analysis presented in Table 2 serves to validate the efficacy and superiority of the proposed KOA specifically when applied to the CHPUED problem. Its exceptional performance, combined with the lowest cost values, establishes the KOA as the most reliable and effective optimization approach within the context of CHPUED.

4.2. The 96-Unit System

The system, in this instance, involves 96 total units, including 24 power-heat combination units, 52 power-only units, and 20 heat-only units. It is necessary, in this instance, to provide 5000 MWth of heat and 9400 MW of power. Additionally, the valve-point impact for power-only units is taken into account. The capacity limits of heat-only and power-only units, as well as the cost coefficients of associated units, are taken from Reference [24]. Table 3 presents the test outcomes of all units obtained using the KOA.

Table 3. Test outcomes of all units for the 96-unit test system obtained using the KOA.

Unit	КОА	Unit	КОА	Unit	КОА	Unit	KOA
Pg1	538.7944	Pg32	110.0436	Pg63	10.02797	Hg70	21.0867
Pg2	299.6272	Pg33	110.3995	Pg64	48.32375	Hg71	109.8662
Pg3	151.2914	Pg34	110.1027	Pg65	82.02374	Hg72	88.07219
Pg4	109.8576	Pg35	159.8276	Pg66	44.18677	Hg73	123.5494
Pg5	109.9343	Pg36	78.60966	Pg67	85.76875	Hg74	99.22525
Pg6	109.8765	Pg37	77.69705	Pg68	73.52597	Hg75	41.11163
Pg7	160.1471	Pg38	57.87178	Pg69	10.29498	Hg76	28.39532
Pg8	110.2941	Pg39	94.20503	Pg70	37.45466	Hg77	408.4901
Pg9	110.342	Pg40	359.9866	Pg71	90.09144	Hg78	59.94804
Pg10	81.05786	Pg41	149.6621	Pg72	55.19146	Hg79	59.99218
Pg11	78.13509	Pg42	149.9737	Pg73	114.497	Hg80	119.9246
Pg12	92.73616	Pg43	110.1571	Pg74	68.07549	Hg81	119.9496
Pg13	92.42638	Pg44	110.1453	Pg75	12.65002	Hg82	410.5949
Pg14	628.4539	Pg45	159.932	Pg76	53.60396	Hg83	59.97848
Pg15	224.6278	Pg46	111.2773	Hg53	124.1457	Hg84	59.97649
Pg16	224.6525	Pg47	160.9166	Hg54	81.36933	Hg85	119.9758
Pg17	109.9961	Pg48	110.255	Hg55	132.9305	Hg86	119.9933
Pg18	159.7635	Pg49	79.55363	Hg56	79.41519	Hg87	405.6305
Pg19	161.739	Pg50	77.98886	Hg57	41.42439	Hg88	58.02122
Pg20	159.8074	Pg51	92.93884	Hg58	31.21828	Hg89	59.99075
Pg21	110.7902	Pg52	92.42203	Hg59	109.8515	Hg90	119.9301
Pg22	110.1921	Pg53	115.5219	Hg60	88.44604	Hg91	119.9778
Pg23	40.25017	Pg54	47.40113	Hg61	131.9541	Hg92	411.7448
Pg24	77.45754	Pg55	131.1481	Hg62	92.84449	Hg93	59.9785
Pg25	93.03079	Pg56	45.14028	Hg63	39.99935	Hg94	59.98367
Pg26	93.02481	Pg57	13.32731	Hg64	26.01246	Hg95	119.9128
Pg27	269.3372	Pg58	59.77202	Hg65	105.3056	Hg96	119.8671
Pg28	224.586	Pg59	90.13865	Hg66	78.57885	Sum (Pg)	9400
Pg29	299.8866	Pg60	55.61345	Hg67	107.3423	Sum (Hg)	5000
Pg30	109.851	Pg61	129.425	Hg68	103.879	WCTF (\$)	234,285.3
Pg31	160.1618	Pg62	60.70201	Hg69	40.11558	···/	,

H1 and H24 relate to heat outputs of CHP units in MWth, P53 and P76 are the power outputs of CHP units in MW, and between H25 and H44 are the outputs of heat-only units in MWth. The output power of the power-only units (MW) is reflected by the parameters between P1 and P52. Additionally, Sum (Hg), Sum (Pg), and WCTF stand for the total heat production (MWth), total power generation (MW), and total generation costs (\$) of

thermal electrical and energy, respectively. As can be seen in Table 3, the Sum (Hg) and Sum (Pg) values satisfy the heat and power demands of 5000 MWth and 9400 MW, respectively. The best cost value is identified by KOA as 234,285.3. Additionally, all results are in the feasible zone, and several individual findings are put exactly at the lower or higher bounds. Additionally, the standard HBA, the standard JSA, and the proposed HBJSA effectively achieve all constraints with 100% accuracy, as illustrated in Table 3.

Figure 4 illustrates the suggested KOA's convergence rates for the given system, where the curve of the proposed KOA converges quickly. The proposed KOA requires around 2700 iterations to obtain the best solution. The results show that the proposed KOA has outstanding convergence rates for the given large CHPUED system.

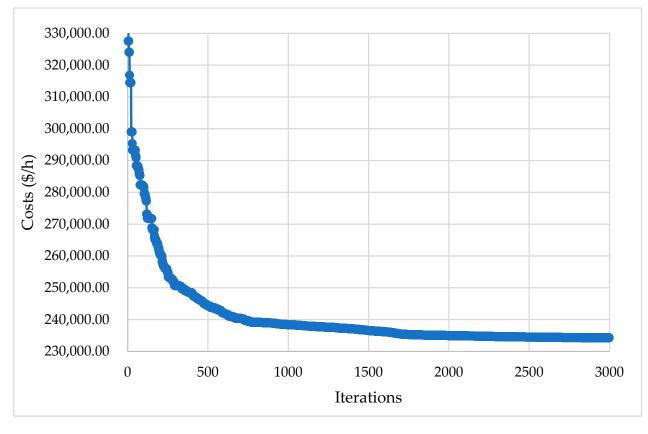


Figure 4. Convergence rates of the proposed KOA for 96-unit CHPUED system.

A comparison between the proposed KOA and other reported techniques is depicted in Table 4. The reported techniques that are employed for the 96-unit CHPUED test system are the whale optimization algorithm (WOA) [24], supply-demand optimization (SDO) [27], the marine predator algorithm (MPA) [33], the improved MPA (IMPA) [33], the heap technique (HT) [34], the jellyfish search optimizer (JFSO) [34], hybrid HTJFSO (HHTJFSO) [34], the manta ray foraging algorithm (MRFA) [28], weighted vertices optimization and PSO (WVO-PSO) [35], and PSO with time-varying acceleration coefficients (PSO-TVAC) [19]. This table clearly shows that the proposed KOA has the best performance and the lowest cost of these optimizers. Moreover, this comparison validates the proposed KOA's efficacy and superiority when used with CHPUED. Furthermore, the proposed KOA also receives the lowest minimum, standard deviation, average, and worst values of 234,285.2584, 761.7006, 235,683.2917, and 236,929.2188. Consequently, the proposed KOA has greater robustness than the techniques that have been reported. Based on the best attained costs, the proposed KOA derives improvements of 0.423%, 0.349%, 0.235%, 1.030%, 0.416%, 0.853%, 2.072%, 1.588%, 2.807% and 0.811%, respectively, compared to the following algorithms and optimization techniques: JFSO [34], HT [34], HHTJFSO [34], WOA [24], IMPA [33], MPA [33], PSO-TVAC [19], WVO-PSO [35], WVO [35] and SDO [27]. These statistics further reinforce the robustness of the proposed KOA compared to the reported techniques.

Table 4. Comparison of the proposed KOA with the reported techniques for 96-unit system.

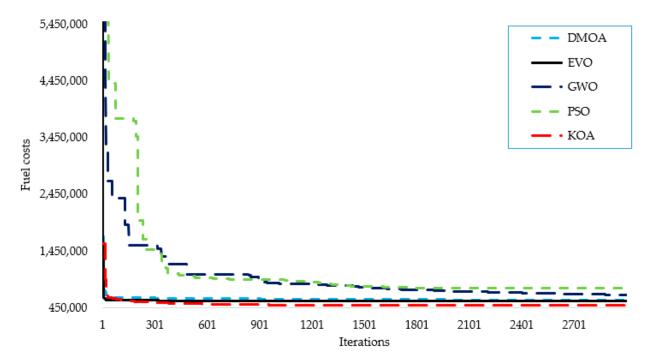
Optimizer (WCTF (\$/h))		Improving Percentages	Average	Worst	Std
КОА	234,285.2584	-	235,683.2917	236,929.2188	761.7006
JFSO [34]	235,277.05	0.423%	236,688.7625	237,940.189	859.1088
HT [34]	235,102.65	0.349%	236,853.3030	239,119.459	1594.7970
HHTJFSO [34]	234,836.04	0.235%	235,646.1289	236,967.064	764.9310
WOA [24]	236,699.15	1.030%	237,431.4678	238,877.049	971.5473
IMPA [33]	235,260.3	0.416%	-	-	-
MPA [33]	236,283.1	0.853%	-	-	-
PSO-TVAC [19]	239,139.5018	2.072%	-	-	-
WVO-PSO [35]	238,005.79	1.588%	-	-	-
WVO [35]	240,861.3210	2.807%	-	-	-
SDO [27]	236,185.18	0.811%	-	-	-

The extensive examination depicted in Table 4 provides substantial evidence to support the effectiveness and superiority of the proposed Kepler optimization algorithm (KOA) in addressing the CHPUED problem. The remarkable performance of the KOA, coupled with its cost-effectiveness, solidifies its position as the most dependable and efficient optimization approach for CHPUED applications.

4.3. The 192-Unit System

The system, in this instance, involves 192 total units, including 48 power–heat combination units, 104 power-only units, and 40 heat-only units. It is necessary, in this instance, to provide 10,000 MWth of heat and 18,800 MW of power. Additionally, the valve-point impact for power-only units is taken into account. The capacity limits of heat-only and power-only units, as well as the cost coefficients of associated units, are taken from Reference [24].

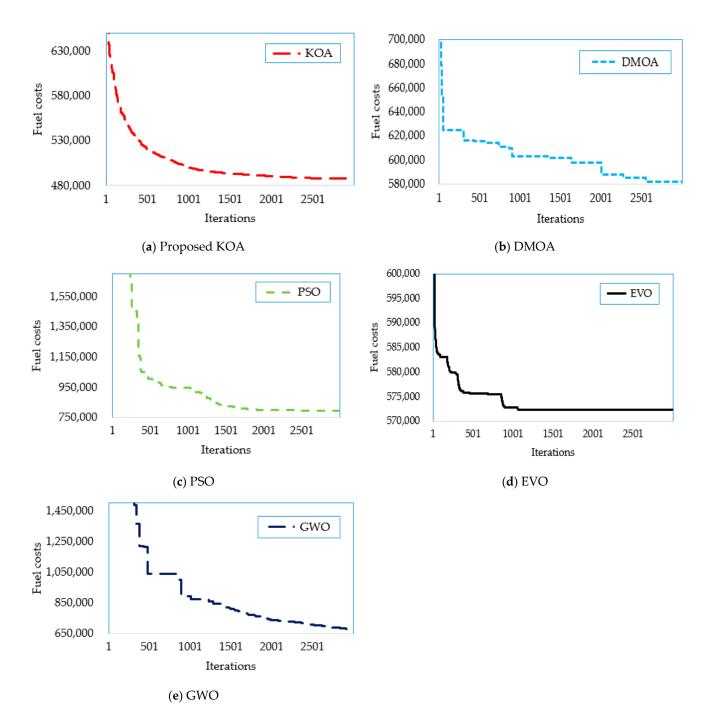
Table 5 presents the obtained objective costs of the proposed KOA, the dwarf mongoose optimization algorithm (DMOA) [36], the energy valley optimizer (EVO) [37], GWO and PSO. The best cost value is identified by the KOA as 487,145.2. As demonstrated from Table 5, KOA acquires a value of 487,145.2, whereas the DMOA [36], the EVO [37], GWO, and PSO have values of 581,798, 572,324.8, 678,051.9, 793,224.8, respectively. According to the obtained costs, the presented KOA successfully achieves improvement of 19.43%, 17.49%, 39.19% and 62.83% compared to the DMOA, the EVO, GWO and PSO, respectively.


Table 5. Obtained costs of the KOA, DMOA, EVO, GWO, and PSO for the large 192-unit system.

Algorithm	DMOA	EVO	GWO	PSO	KOA
WCTF (\$)	581,798	572,324.8	678,051.9	793,224.8	487,145.2
Improving Percentages	19.43%	17.49%	39.19%	62.83%	-

Also, the detailed test outcomes of all units obtained using the applied algorithms are tabulated in Appendix A. The output power of the power-only units (MW) is reflected by parameters between P1 and P104. P105 and P152 are the power outputs of CHP units in MW and H105 and H152 relate to heat outputs of CHP units in MWth. Additionally, H153 and H192 are the outputs of heat-only units in MWth. As can be seen in Table 5, the Sum (Hg) and Sum (Pg) values satisfy the heat and power demands of 10,000 MWth and 18,800 MW, respectively.

Figure 5 illustrates the convergence rates of the KOA, the DMOA, the EVO, GWO, and PSO for the given system, where the curve of the proposed KOA converges quickly.


Regarding Figure 5, Table 6 presents the detailed setting of parameters for the applied algorithms. As shown in Figure 5, the proposed KOA requires around 1500 iterations to obtain the best solution. The results show that the proposed KOA has outstanding convergence rates over the DMOA, the EVO, GWO, and PSO for the given large CHPUED system. It can be seen from Figure 5 that the DMOA and EVO seem to have a line convergence characteristic from the first to the last iteration. To clarify this point, a close zooming vision is displayed for the convergence rates of each individual applied algorithm in Figure 6. As shown in Figure 6b, the DMOA does not show a line characteristic, but on the contrary, it shows a gradual decrease in the objective. Compared to the KOA in Figure 6a, the proposed KOA shows a smooth converging feature, while the DMOA convergence is unsmooth like stairs. On the other side, the EVO starts searching and finding solutions to minimize the objective. Unfortunately, it derives a straight line after approximately half of the iterations' journey. This indicates that this method is stuck in a local minimum. This analysis illustrates the significant convergence characteristics of the proposed KOA against the DMOA, the EVO, GWO, and PSO.

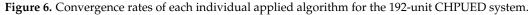


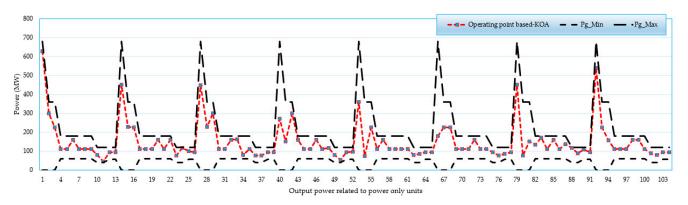
Figure 5. Convergence rates of the proposed KOA, DMOA, EVO, GWO, and PSO for the 192-unit CHPUED system.

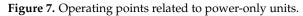
Table 6. Setting of parameter	ers for the applied algorithr	ns for the large 192-unit system.
-------------------------------	-------------------------------	-----------------------------------

Algorithm	Parameter Settings
КОА	$\mu_o = 0.1$; $\gamma = 15$; number of solutions = 100; maximum number of iterations = 3000.
DMOA	number of babysitters = 3; number of alpha group = 97; number of scouts = 97; babysitter exchange parameter = 431; alpha female—vocalization = 2; number of solutions = 100; maximum number of iterations = 3000.
EVO	number of solutions = 100; maximum number of iterations = 3000.
GWO	number of solutions = 100; maximum number of iterations = 3000.
PSO	cognitive parameter ($c1$) = 2; social parameter ($c2$) = 2; number of solutions = 100; maximum number of iterations = 3000.

To display the simulation time, Table 7 records the average time per each iteration of the proposed KOA for all cases. As shown in this table, the simulation time for the large-scale system of 192 units is 0.1399 s, where it records 0.0952 for the 48-unit system with time increased by more than 32%. The more the scalability of the case study under investigation increases, the more simulation time is required. By utilizing the well-known Big O notation, the computational complexity of the applied algorithm can be estimated by multiplying the number of design variables, number of solutions and maximum number of iterations. Based on that, the computational complexity for each case study is recorded in Table 8.

Case Study	Average Time Per Iteration (Seconds)
48-unit CHPUED system	0.0952
96-unit CHPUED system	0.0981
192-unit CHPUED system	0.1399


Table 7. Simulation time of the proposed KOA for all cases.


Table 8. Computational complexity of the applied algorithm.

Test Case	Dimension	Number of Solutions	Maximum Number of Iterations	Computational Complexity
48-unit test system	60	100	3000	O (1,800,000)
96-unit test system	120	100	3000	O (3,600,000)
192-unit test system	240	100	3000	O (7,200,000)

4.4. Feasibility Study for 192-Unit System

A feasibility study is conducted for the 192-unit test system when applying the KOA. Figures 7–10 display the operating points related to power-only units, CHP units and heat-only units, respectively. As illustrated, all operating points are found between the boundaries of power-only, heat-only, and CHP units. These results demonstrate the effectiveness of the proposed KOA in obtaining practical feasible solutions without any violations. All results are in the feasible zone, and several individual findings are put exactly at the lower or higher bounds. Furthermore, as shown in Figures 7–10, the proposed KOA completely and accurately satisfies all criteria.

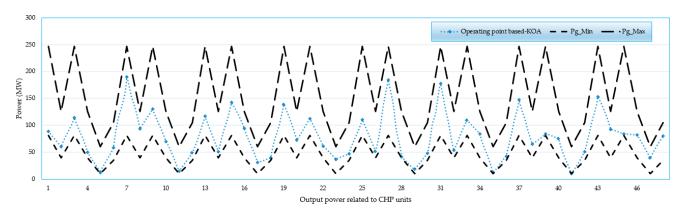


Figure 8. Operating points related to CHP units in terms of their output power.

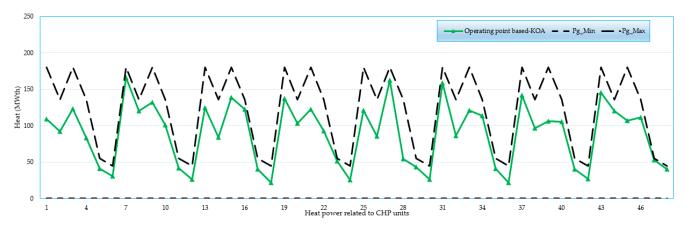


Figure 9. Operating points related to CHP units in terms of their output heat.

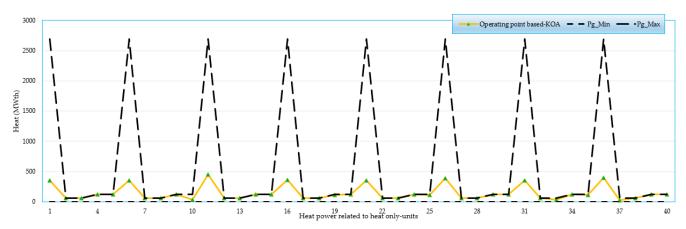


Figure 10. Operating points related to heat-only units.

4.5. Discussion

In the previous subsections, the proposed KOA is tested on large 48-unit, 96-unit, and 192-unit test systems. Different remarks are discussed, which are summarized in the following paragraphs.

Tables 1 and 3 and Appendix A provide a comprehensive depiction of the operating points of the power-only, CHP, and heat-only units for all units in the three investigated systems. These tables effectively describe and demonstrate that the operating points of all units, which are categorized as power-only, CHP, and heat-only, are maintained within the specified limits. This serves as evidence that the proposed KOA successfully preserves the operating points within the defined boundaries.

The convergence rates of the suggested KOA are visualized in Figures 3, 4 and 6 for the three investigated systems. These figures vividly illustrate the high-quality and rapid response of the KOA's convergence rates. The plots demonstrate the algorithm's ability to quickly converge toward optimal solutions, indicating its efficiency and effectiveness.

Tables 2, 4 and 5 present various comparisons between the proposed KOA and other reported techniques for the three investigated systems. The extensive analysis provided in these tables showcases the exceptional performance and cost-effectiveness of the proposed KOA when compared to alternative methods. The KOA not only achieves superior results in terms of CHPUED optimization, but it also exhibits greater robustness compared to its counterparts. These findings strongly validate the credibility and value of the proposed KOA as an efficient and reliable optimization solution for CHPUED applications.

For the large 192-unit test system, a feasibility study is conducted and analyzed using Figures 7–10. These figures demonstrate that all operating points fall within the boundaries of power-only, heat-only, and CHP units. The results illustrate the effectiveness of the proposed KOA in obtaining practical and feasible solutions while avoiding any

violations. All the obtained results lie within the feasible zone, and several individual findings precisely align with the lower or upper bounds. Furthermore, as depicted in Figures 7–10, the proposed KOA satisfactorily fulfills all the defined criteria, demonstrating its accuracy and compliance with the given constraints.

5. Conclusions

5.1. Paper's Findings

In this study, the KOA is developed for the non-convex CHPUED issue. Kepler's laws of planetary motion serve as the main source of inspiration for the KOA. According to Kepler's laws, four operators—position, gravitational force, mass, and orbital velocity—affect how planets move around the sun. To demonstrate the effectiveness of the proposed KOA methodology, three test CHPUED systems are chosen, which are 48, 96, and 192-unit systems. Additionally, new optimizers are introduced for the large 192-unit test system, which are the DMOA, the EVO, GWO, and PSO. A feasibility study is conducted, which demonstrates the superiority and robustness of the proposed KOA. Furthermore, the proposed KOA delivers the lowest overall cost values for the three test systems when compared with various well-known methodologies that have been presented in the scientific literature and the new approaches that are implemented for the first time in this research.

5.2. Future Works

The proposed Kepler optimization algorithm (KOA) demonstrates significant potential for effectively addressing the CHPUED problem in large-scale systems. There is room for further enhancement in the system's performance.

- One potential area of enhancement is to upgrade the model by incorporating external market signals.
- Integrating external factors and signals from the market can help determine the optimal dispatch scenario.
- The constraints of the transmission losses can be considered, which add more complexity to the study.
- The scope of the work can be expanded by incorporating the emission dispatch of thermal units.
- Considering the environmental impact and emissions of the thermal units can lead to more sustainable and environmentally friendly dispatch solutions.
- The integration of renewable energies should be considered for future extensions of the work, promoting a greener and more sustainable energy mix.

Author Contributions: Conceptualization, A.G.; Methodology, A.M.S.; Software, A.M.S.; Validation, A.M.S.; Formal analysis, A.G.; Investigation, H.A. and A.G.; Data curation, S.H.H.; Writing—original draft, A.G.; Writing—review & editing, H.A.; Visualization, G.M.; Supervision, S.H.H. and G.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP23-122.

Conflicts of Interest: The authors declare no conflict of interest. There are no financial competing interest.

20 of 23

Appendix A

Tables A1 and A2 record the detailed test outcomes of all units obtained using the applied algorithms for the 192-unit system. Table A1 displays the output electrical powers from power-only units regarding the KOA, the DMOA, the EVO, GWO, and PSO. Also, Table A2 displays the output electrical and heat powers from CHP and heat-only units regarding the KOA, the DMOA, the EVO, GWO, and PSO.

Table A1. Output electrical powers from power-only units regarding KOA, DMOA, EVO, GWO, and PSO for the 192-unit system.

Unit	DMOA	EVO	GWO	PSO	KOA	Unit	DMOA	EVO	GWO	PSO	КОА
Pg1	174.4182	448.799	628.4634	539.1442	629.1331	Pg61	62.98548	127.446	160.1939	60	110.3749
Pg2	244.4594	319.5189	8.117312	360	300.1081	Pğ62	94.045637	73.04489	48.89186	40	78.26122
Pg3	246.9179	224.7471	85.90084	359.9992	224.2466	Pg63 Pg64	95.095479	82.58672	76.54153	40	84.58004
Pg4 Pg5	163.9458	70.75565	131.4979	60	110.3729	Pg64	116.50456	58.24736	64.01384	55	92.5379
Pg5	127.0533	114.4128	174.8349	179.9989	109.9616	Pg65	112.32882	92.2212	115.9772	120	94.09216
Pg6	97.80373	110.3963	109.8681	60	159.7144	Pg66	386.54269 219.58848	628.3049	635.5608	1.6574276	180.5931
Pg7	82.64369	136.3851 90.59523	151.7705	60 180	110.5713 109.7013	Pg67	219.58848 178.59082	123.3935 175.2344	4.23799	360 0	224.9961
Pg8 Pg9	122.0835 165.1865	104.3483	62.34392 159.8432	180	110.1922	Pg68 Pg69	178.59082	126.2191	$310.7114 \\ 126.4011$	100.46434	225.5173 110.8168
Pg10	89.35626	85.93036	70.06314	40	78.27927	Pg70	100.59707	137.768	78.02074	180	110.6743
Pg11	84.92388	85.12978	96.43349	120	43.99838	Pg71	81.052792	137.9082	155.4551	60	110.4331
Pg12	98.99822	88.60448	118.4218	55	92.8743	Pg72	120.96628	113.491	65.80614	180	160.4197
Pg13	94.462	96.68395	85.69435	55	92.79832	Pg73	139.2029	133.8202	160.5635	180	110.4285
Pg14	425.6213	263.8784	628.0853	680	450.1082	Pg74	127.74529	122.1182	175.8073	60.036551	111.1456
Pg15	233.561	149.756	330.4895	0	227.5378	Pg75	58.032026	89.98149	79.68891	120	93.31288
Pğ16	168.8089	153.1829	359.9657	0	224.0146	Pğ76	50.446032	70.14322	88.16762	76.721665	77.00711
Pg17	132.6032	91.9275	159.9322	180	110.0895	Pg77	75.188085	95.22196	75.94925	55	84.51632
Pg18	90.41802	111.1778	167.999	65.02851	109.5931	Pg78	75.090964	66.16529	119.7468	120	92.51662
Pg19 Pg20	152.9372	103.9256	170.1467	60	110.5872	Pg79	396.90259 54.831829	448.9468	628.5149	679.99984	451.8399 76.45995
Pg20	113.8235	135.956	108.5677	60	160.5694	Pg80	54.831829	156.3718	299.5566	0	76.45995
Pg21	102.4749	152.448 136.4479	61.09929 107.4706	180 180	111.0999 160.08	Pg81	192.45143	$141.0076 \\ 111.0114$	357.2925 139.106	0 60	150.0747 132.3369
Pg22 Pg23	$116.5048 \\98.57747$	77.61179	95.16397	180	76.57349	Pg82 Pg83	137.34809 102.39792	124.031	92.66801	160.82869	132.3369
Pg24	69.99943	69.24365	69.49135	120	115.0327	Pg84	102.39792	149.3372	72.11485	180	110.7002
Pg25	74.98295	58.11324	118.7751	55	97 8527	Pg85	140.97606	113.9025	113.3606	179.97632	160.294
Pg26	107.4874	93.90026	62.83023	120	97.8527 93.89541	Pg86	98.353789	158.0664	157.7157	60	111.7676
Pg27	130.2818	393.9314	628.8686	0	448.5537	Pg87	82.70602	104.2559	61.37461	60	136.1275
Pg28	202.8742	251.2048	4.105242	360	227.8284	Pg88	70.062991	99.80671	74.94761	120	115.7378
Pg29	101.974	224.3351	309.367	0	299.847	Pg89	101.70538	91.36633	45.4811	120	88.38295
Pg30	149.0897	107.5555	161.4966	60	110.2662	Pg90	96.584487	59.95746	63.64475	120	108.3084
Pg31	124.6886	138.9449	160.8727	180	111.8424	Pg91	92.112756	91.97635	94.04333	55	92.86743
Pg32	93.87523	110.1144	95.53187	180	160.1724	Pg92	646.61874	110.7548	678.4753	680	539.4136
Pg33	78.43197	151.2344	70.05601	180	162.0457	Pg93	256.19755	223.3503	302.8407	357.30215	225.2475
Pg34 Pg35	154.356 86.91799	109.3927 114.6454	68.09066	167.6068	80.54356	Pg94	220.09345 113.48862	184.7615	$1.312341 \\ 126.5713$	0	157.8272
Pg35 Pg36	102.368	63.95323	107.543 42.15703	$\begin{array}{c} 180 \\ 40 \end{array}$	110.7539 77.67327	Pg95 Pg96	93.56559	106.7757 159.4062	126.5713	180 180	110.1955 110.6043
Pg37	85.88163	63.93323 74.68514	42.13703	40.3999	77.37991	Pg96 Pg97	153.0745	133.3575	142.1973	65.613323	110.8045
Pg38	90.14782	91.10007	73.3533	57.69111	92.37051	Pg98	91.853495	97.28445	71.5857	61.951258	159.7578
Pg39	106.8801	96.7277	83.8524	120	92.36988	Pg99	105.02995	130.9669	161.0273	180	159.6356
Pg40	537.0964	353.6418	0	0	269.7407	Po100	107.11788	124.7339	159.7256	180	109.8936
Pg41	226.4437	317.6857	ŏ	7.252238	149.7111	Pg100 Pg101	87.902036	83.01983	88.0214	120	87.91491
Pg42	196.0879	148.9983	1.939074	359.9946	299.1913	Pg102	72.763196	87.04375	53.99422	120	78.05281
Pg43	136.7817	141.4821	66.73899	60.12266	159.7018	Pg103	88.142268	87.24567	119.919	55	92.51872
Pğ44	62.4416	137.3353	146.7645	60.02225	109.5677	Pg103 Pg104	101.25252	99.1737	62.69223	120	93.32982
Pg45	80.90206	93.01569	171.1177	180	110.3502	Pg105	184.28464	150.6826	210.538	136.23557	88.70108
Pg46	130.3269	139.3121	109.8648	60	159.8408	Pg106	61.687297	72.20073	103.9249	125.8	59.9183
Pg47	148.1692	109.4169	135.5804	60	109.9596	Pg107	139.87923	132.0641	100.0922	129.94934	114.4677
Pg48	108.8255	131.6218	158.033	60	115.596	Pg108	101.89348	63.19561	79.98875	60.779838	49.69122
Pg49	60.06298	43.3716	53.12575	40	80.30361 52.28408	Pg109	15.867864	31.36009	29.45192	33.066112	12.32701
Pg50 Pg51	50.61262 79.94245	77.5151 83.08679	$70.16409 \\ 60.41968$	120 120	93.1087	Pğ110 Pg111	66.056337 147.16246	79.13215 138.5883	37.64521 111.4306	81.821153 247	58.4113 190.3511
Pg52	97.30817	68.1	75.10253	87.41094	95.1087 95.29422	Pg112	74.170207	92.37211	44.82001	44.277967	93.70398
Pg53	352.3213	448.4259	628.8927	679.9969	359.0342	Pg112	134.13176	165.2974	212.0918	147.7214	130.6392
Pg54	160.1921	150.6065	24.29994	0	74.73825	Pg114	78.339142	76.64612	47.54094	125.8	70.07984
Pg55	338.1157	155.9095	0.016443	Ő	225.1658	Pg115	34.486175	28.88131	34.25237	60	14.32984
Pg56	117.1937	128.2089	178.8473	60	109.797	Pg116	81.471568	89.49547	54.88681	105	49.16335
Pg56 Pg57	104.443	162.2053	60.65029	180	159.9216	Pg117	178.77234	156.8938	205.7086	211.52341	116.8013
P258	83.74165	158.3383	162.6725	180	109.8658	Pg118	68.201565	78.05904	46.15124	125.8	50.50524
Pg59	107.3655	110.4594	72.58097	60	110.0816	Pg119	182.59667	178.6734	116.2796	208.65061	142.3482
Pg60	127.2445	109.6603	142.5323	60	109.4778	Pg120	96.392192	88.2642	54.64609	125.8	94.62255

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 96.56051 \\ 106.3423 \\ 105.7199 \\ 39.85337 \\ 27.14903 \\ 0085 & 145.2778 \\ 018000000000000000000000000000000000$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 106.3423\\ 105.7199\\ 39.85337\\ 0&27.14903\\ 0085&145.2778\\ 120.2272\\ 0&106.5817\\ 3081&111.0589\\ 1353&52.44464\\ 3515&40.30933\\ .152&354.035\\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 105.7199\\ 39.85337\\ 27.14903\\ 0085\\ 145.2778\\ 0& 120.2272\\ 106.5817\\ 3081\\ 111.0589\\ 1353\\ 52.44464\\ 5515\\ 40.30933\\ .152\\ 354.035\\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.14903 0085 145.2778 120.2272 106.5817 0381 111.0589 1353 52.44464 9515 40.30933 .152 354.035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.085 & 145.2778 \\ 0 & 120.2272 \\ 0 & 106.5817 \\ 03081 & 111.0589 \\ 1353 & 52.44464 \\ 1515 & 40.30933 \\ .152 & 354.035 \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.2272 106.5817 3081 111.0589 1353 52.44464 9515 40.30933 .152 354.035
Pg136 53.75736 70.05483 66.04534 62.12208 53.19527 Hg149 111.1171 69.60678 0.080402 0 Pg137 186.328 160.1726 106.0133 247 109.8631 Hg150 76.90896 76.83802 61.43779 77.67 Pg138 81.15719 57.42499 54.55075 60.01059 84.42479 Hg151 43.16865 32.22891 12.89287 44.57	106.5817 3081 111.0589 1353 52.44464 9515 40.30933 .152 354.035
Pg137 186.328 160.1726 106.0133 247 109.8631 Hg150 76.90896 76.83802 61.43779 77.63 Pg138 81.15719 57.42499 54.55075 60.01059 84.42479 Hg151 43.16865 32.22891 12.89287 44.53	3081111.0589135352.44464951540.30933.152354.035
Pg138 81.15719 57.42499 54.55075 60.01059 84.42479 Hg151 43.16865 32.22891 12.89287 44.5	135352.44464951540.30933.152354.035
19100 01.10719 07.42499 04.00070 00.01009 04.42479 119101 40.10000 02.22091 12.09207 44.0	951540.30933.152354.035
Pg139 33.65432 40.93528 20.1056 21.06007 12.26503 Hg152 29.58749 25.5232 0.643083 31.89	.152 354.035
Pg140 73.72299 72.46381 49.46903 35 42.41974 Hg153 492.3627 577.014 925.105 1397	
Pg141 162.5896 151.2043 146.9895 135.9768 147.785 Hg154 34.75965 33.51306 59.69694 6	0 59.91993
Pg142 71.31964 67.96666 64.26362 125.8 65.17869 Hg155 16.07438 51.50848 59.94694 6	0 59.83564
Pg143 171.6939 110.9543 111.3473 233.3459 83.79595 Hg156 63.97824 70.72145 0.902541 12	
Pg144 74.93626 84.43365 48.01269 44.00456 75.66889 Hg157 79.19911 49.06161 2.204878 (
Pg145 42.10098 34.04034 38.92032 60 10.26045 Hg158 620.9072 685.6878 909.6608 (
Pg146 78.11662 81.77873 35.49127 105 50.79323 Hg159 23.35992 36.49364 0.132797 6	
Pg147 138.7505 181.9151 134.0777 152.7939 153.2985 Hg160 42.2545 21.84263 58.04509 6 Pg148 98.76258 67.52022 106.5738 125.8 92.43806 Hg161 65.53427 85.31346 119.9548 12	
Pg148 98.76258 67.52022 106.5738 125.8 92.43806 Hg161 65.53427 85.31346 119.9548 12 Pg149 123.4756 138.6376 120.5755 246.9105 84.26077 Hg162 88.75652 59.12272 119.9832 12	
Pg150 100.8023 92.11579 57.43339 43.09641 81.89629 Hg163 593.1704 557.3912 910.0227 1552	.225 451.6828
Pē151 47.5644 49.11082 39.03834 21.99167 39.08587 Hē164 40.84546 28.39691 6.243836 (
Pg152 71.07851 73.09166 35.52999 62.7455 79.6928 Hg165 26.72567 40.88351 1.255413 0	
Hg105 143.0187 142.1079 177.43 135.7857 108.7822 Hg166 59.93746 67.65058 0.096145 (
Hg106 90.88735 79.54195 130.1675 0 92.10741 Hg167 108.2142 103.2702 0.040991 12	
Hğ107 126.5657 129.3163 0.000412 132.2196 123.4405 Hğ168 651.7794 522.4332 906.7537 (
Hg108 69.20408 94.21251 109.3067 92.84554 83.27392 Hg169 10.41676 45.48739 6.791869 6	
Hg109 31.29471 25.45084 0 49.28014 40.97655 Hg170 13.80173 32.38762 1.068761 6	
Hg110 30.37513 22.48432 0.134585 41.0851 30.57175 Hg171 87.94417 77.85746 8.44×10^{-05} 12	
Hg111 103.5517 115.8397 0.92819 9.79×10^{-05} 165.9765 Hg172 86.86305 55.04469 5.058568 12	
Hğ112 97.67907 47.03794 9.108935 7.216803 120.0454 Hğ173 737.661 585.6358 920.5892 (
Hg113 127.911 152.0281 178.3112 135.6339 132.3767 Hg174 7.250124 18.07854 0.274126 6 Hg114 78.25294 66.01586 0.887772 4.642805 100.8766 Hg175 46.82325 26.62512 0.685941 6	
Hg114 78.25294 66.01586 0.887772 4.642805 100.8766 Hg175 46.82325 26.62512 0.685941 6 Hg115 39.48022 28.2455 0.111545 0 41.79333 Hg176 104.8884 84.52888 20.36861 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Hg117 88.30371 100.3173 174.6643 177.7991 124.3396 Hg178 716.495 602.1813 907.8548 (
Hg117 88.30371 100.3173 174.6643 177.7991 124.3396 Hg178 716.495 602.1813 907.8548 (Hg118 56.75794 55.3174 0.059311 0 84.03871 Hg179 50.7917 27.42597 3.635189 6	
Hg119 136.3953 134.5814 3.576152 176.4035 139.0128 Hg180 25.99096 59.86144 13.01303 6	0 59.87757
Hğ120 94.99244 102.3033 0.2653 0 122.1011 Hğ181 106.4563 119.7318 0.001621 12	
Hg121 13.33646 25.92046 0.414366 43.82525 40.565 Hg182 43.1831 47.23645 0.604342 12	
Hg122 27.42141 24.99265 1.737371 0.141283 21.96434 Hg183 528.5626 765.2542 907.7043 1465	
Hğ123 63.13502 112.5775 163.3978 0 137.3244 Hğ184 41.81199 47.29115 0.444441 0	
Hg124 35.0343 56.9659 87.60028 31.82819 103.3148 Hg185 48.15765 32.108 2.205178 6 Hg125 73.4311 59.39658 0.75323 0 122.4838 Hg186 49.18479 97.81689 0.038816 12	
Hg125 73.4311 59.39658 0.75323 0 122.4838 Hg186 49.18479 97.81689 0.038816 12 Hg126 57.58084 90.97783 1.747817 0 93.08094 Hg187 88.52079 40.21094 0 12	
Hg127 7.690224 25.85509 0.069185 0 51.25276 Hg188 739.6827 757.5151 899.629 1401	
Hg128 20.55402 26.5521 0.001147 30.13535 25.26957 Hg189 50.24342 38.4695 59.96731 6	
$H_{g}^{2}129 - 99.64527 - 113.7313 - 167.7151 - 132.7904 - 121.0729 - H_{g}^{2}190 - 34.05605 - 26.36133 - 59.97419 ($	
Hg130 66.35591 87.23498 0 0 85.29981 Hg191 106.9444 119.9435 119.9653 (119.9612
Hg131 141.8201 58.84182 0.001814 153.311 162.7133 Hg192 57.37515 75.64223 120 12	.0 119.7678
Hğ132 102.1795 59.0631 0.032602 118.7186 54.42837 Sum (Pg) 18,800 18,800 18,800 18,	
Hg133 22.77924 16.49257 7.884998 0 43.44979 Sum (Hg) 10,0000 10,0000 10,000 10,000 10,00000000	
WCTF (\$) 581,798 572,324.8 678,051.9 793,2	24.8 487,145.2

Table A2. Output electrical and heat powers from CHP and heat-only units regarding KOA, DMOA, EVO, GWO, and PSO for the 192-unit system.

References

- 1. Henwood, T.G.M.I. An algorithm for combined heat and power economic dispatch. *IEEE Trans. Power Syst.* **1996**, *11*, 1778–1784. [CrossRef]
- Singh, N.; Chakrabarti, T.; Chakrabarti, P.; Margala, M.; Gupta, A.; Praveen, S.P.; Krishnan, S.B.; Unhelkar, B. Novel Heuristic Optimization Technique to Solve Economic Load Dispatch and Economic Emission Load Dispatch Problems. *Electronics* 2023, 12, 2921. [CrossRef]
- 3. Tai, T.C.; Lee, C.C.; Kuo, C.C. A Hybrid Grey Wolf Optimization Algorithm Using Robust Learning Mechanism for Large Scale Economic Load Dispatch with Vale-Point Effect. *Appl. Sci.* **2023**, *13*, 2727. [CrossRef]
- 4. Mulo, T.; Syam, P.; Choudhury, A.B. Hybrid and Modified Harmony Search Optimization application in economic load dispatch with integrated renewable source. *Electr. Eng.* **2023**, *105*, 1923–1935. [CrossRef]

- 5. Sashirekha, A.; Pasupuleti, J.; Moin, N.H.; Tan, C.S. Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates. *Int. J. Electr. Power Energy Syst.* **2013**, *44*, 421–430. [CrossRef]
- 6. Abdolmohammadi, H.R.; Kazemi, A. A Benders decomposition approach for a combined heat and power economic dispatch. *Energy Convers. Manag.* **2013**, *71*, 21–31. [CrossRef]
- Sadeghian, H.R.; Ardehali, M.M. A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on Benders decomposition. *Energy* 2016, 102, 10–23. [CrossRef]
- 8. Rong, A.; Lahdelma, R. An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning. *Eur. J. Oper. Res.* 2007, *183*, 412–431. [CrossRef]
- Kim, J.S.; Edgar, T.F. Optimal scheduling of combined heat and power plants using mixed-integer nonlinear programming. *Energy* 2014, 77, 675–690. [CrossRef]
- 10. Yang, Q.; Gao, H.; Dong, N.; Liu, P. An elitist cuckoo search algorithm for combined heat and power economic dispatch. *Int. J. Prod. Res.* **2023**. [CrossRef]
- 11. Basu, M. Bee colony optimization for combined heat and power economic dispatch. *Expert Syst. Appl.* **2011**, *38*, 13527–13531. [CrossRef]
- 12. Zou, D.; Li, S.; Kong, X.; Ouyang, H.; Li, Z. Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy. *Appl. Energy* **2019**, 237, 646–670. [CrossRef]
- 13. Subbaraj, P.; Rengaraj, R.; Salivahanan, S. Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm. *Appl. Energy* **2009**, *86*, 915–921. [CrossRef]
- Sadek, S. Economic Dispatch of Combined Heat and Power Systems using Particle Swarm Optimization. *Int. J. Adv. Eng. Bus. Sci.* 2023, 4, 100–109. [CrossRef]
- 15. Dinh, B.H.; Nguyen, T.T.; Quynh, N.V.; Van Dai, L. A novel method for economic dispatch of combined heat and power generation. *Energies* **2018**, *11*, 3113. [CrossRef]
- 16. El-Sehiemy, R.; Shaheen, A.; Ginidi, A.; Elhosseini, M. A Honey Badger Optimization for Minimizing the Pollutant Environmental Emissions-Based Economic Dispatch Model Integrating Combined Heat and Power Units. *Energies* **2022**, *15*, 7603. [CrossRef]
- 17. Haghrah, A.; Nazari-Heris, M.; Mohammadi-Ivatloo, B. Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation. *Appl. Therm. Eng.* **2016**, *99*, 465–475. [CrossRef]
- Nguyen Trung, T.; Vo Ngoc, D. Improved Particle Swarm Optimization for Combined Heat and Power Economic Dispatch. *Sci. Iran.* 2016, 23, 1318–1334. [CrossRef]
- 19. Mohammadi-Ivatloo, B.; Moradi-Dalvand, M.; Rabiee, A. Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients. *Electr. Power Syst. Res.* **2013**, *95*, 9–18. [CrossRef]
- Kaur, P.; Chaturvedi, K.T.; Kolhe, M.L. Economic Dispatch of Combined Heat and Power Plant Units within Energy Network Integrated with Wind Power Plant. *Processes* 2023, 11, 1232. [CrossRef]
- Shaheen, A.M.; Elsayed, A.M.; Elattar, E.E.; El-Sehiemy, R.A.; Ginidi, A.R. An Intelligent Heap-Based Technique with Enhanced Discriminatory Attribute for Large-Scale Combined Heat and Power Economic Dispatch. *IEEE Access* 2022, 10, 64325–64338. [CrossRef]
- 22. Sarafrazi, S.; Nezamabadi-Pour, H.; Seydnejad, S.R. A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization. *J. King Saud Univ.-Comput. Inf. Sci.* 2015, 27, 288–296. [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Azeem, S.A.A.; Jameel, M.; Abouhawwash, M. Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler's laws of planetary motion. *Knowl.-Based Syst.* 2023, 268, 110454. [CrossRef]
- 24. Nazari-Heris, M.; Mehdinejad, M.; Mohammadi-Ivatloo, B.; Babamalek-Gharehpetian, G. Combined heat and power economic dispatch problem solution by implementation of whale optimization method. *Neural Comput. Appl.* 2019, *31*, 421–436. [CrossRef]
- 25. Mohammadi-Ivatloo, B.; Rabiee, A.; Soroudi, A. Nonconvex dynamic economic power dispatch problems solution using hybrid immune-genetic algorithm. *IEEE Syst. J.* 2013, *7*, 777–785. [CrossRef]
- 26. Chen, X. Novel dual-population adaptive differential evolution algorithm for large-scale multi-fuel economic dispatch with valve-point effects. *Energy* **2020**, 203, 117874. [CrossRef]
- 27. Ginidi, A.R.; Elsayed, A.M.; Shaheen, A.M.; Elattar, E.E.; El-Sehiemy, R.A. A Novel Heap based Optimizer for Scheduling of Large-scale Combined Heat and Power Economic Dispatch. *IEEE Access* 2021, *9*, 83695–83708. [CrossRef]
- Shaheen, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Ghoneim, S.S.M. Economic Power and Heat Dispatch in Cogeneration Energy Systems Using Manta Ray Foraging Optimizer. *IEEE Access* 2020, *8*, 208281–208295. [CrossRef]
- 29. Beigvand, S.D.; Abdi, H.; La Scala, M. Combined heat and power economic dispatch problem using gravitational search algorithm. *Electr. Power Syst. Res.* **2016**, *133*, 160–172. [CrossRef]
- 30. Narang, N.; Sharma, E.; Dhillon, J.S. Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell's pattern search method. *Appl. Soft Comput. J.* **2017**, *52*, 190–202. [CrossRef]
- 31. Shaheen, A.M.; El-Sehiemy, R.A. A Multiobjective Salp Optimization Algorithm for Techno-Economic-Based Performance Enhancement of Distribution Networks. *IEEE Syst. J.* **2021**, *15*, 1458–1466. [CrossRef]
- 32. Davoodi, E.; Zare, K.; Babaei, E. A GSO-based algorithm for combined heat and power dispatch problem with modified scrounger and ranger operators. *Appl. Therm. Eng.* 2017, 120, 36–48. [CrossRef]

- 33. Shaheen, A.M.; Elsayed, A.M.; Ginidi, A.R.; EL-Sehiemy, R.A.; Alharthi, M.M.; Ghoneim, S.S. A novel improved marine predators algorithm for combined heat and power economic dispatch problem. *Alexandria Eng. J.* **2021**, *61*, 1834–1851. [CrossRef]
- 34. Ginidi, A.; Elsayed, A.; Shaheen, A.; Elattar, E.; El-Sehiemy, R. An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids. *Mathematics* **2021**, *9*, 2053. [CrossRef]
- Dolatabadi, S.; El-Sehiemy, R.A.; GhassemZadeh, S. Scheduling of combined heat and generation outputs in power systems using a new hybrid multi-objective optimization algorithm. *Neural Comput. Appl.* 2020, 32, 10741–10757. [CrossRef]
- 36. Moustafa, G.; El-Rifaie, A.M.; Smaili, I.H.; Ginidi, A.; Shaheen, A.M.; Youssef, A.F.; Tolba, M.A. An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems. *Mathematics* **2023**, *11*, 3297. [CrossRef]
- Azizi, M.; Aickelin, U.; Khorshidi, H.A.; Baghalzadeh Shishehgarkhaneh, M. Energy valley optimizer: A novel metaheuristic algorithm for global and engineering optimization. *Sci. Rep.* 2023, 13, 226. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.