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Abstract: In this work, we compare the basketball scoring performance of two imaginary (simulated)
mechanical robots in conditions of erroneous information-processing circuits: Machine, whose moves
are controlled by a conventional digital computer and Man, controlled by a random pulse computer
composed of biologically-inspired circuits which execute basic arithmetic operations. This is the first
comparative study of robustness of the digital and the random pulse computing paradigms, with
respect to the error rate of the information-processing circuits (perr), for a mechanical robot. In spite
of the fact that Man’s computer consists of only about 100 logic gates while Machine’s requires about
3500 gates, Man achieves a significantly higher scoring probability for perr in the range from 0.01% all
the way to 10%, while at lower perr, both converge to the perfect score. Furthermore, Man’s hits make
up a smooth Gaussian distribution with a vanishing probability of making large misses even at the
highest perr, while Machine is prone to spectacular misses already at perr as low as 1 part-per-million.
These findings indicate that the biologically inspired computation requires less hardware for the
same task, and ensures higher robustness and better behaving operation than digital computation,
which are characteristics of importance for the survivability of living beings.

Keywords: biomimetic computing; random pulse computing; stochastic computing; biomimetic
robot; neuronal computing; biologically inspired computing; prosthetics

1. Introduction

Humans are probably the only living beings capable of logical thinking, that is invent-
ing, memorizing, recalling, communicating, learning and performing complex algorithms
based on yes/no decisions. As such, algorithmic thinking is formalized in the so-called
Turing computational paradigm, which can be conveniently described by Boolean algebra.
A recipe for making an apple pie is one example of an algorithm. Others include: growing
wheat, making bricks and houses, driving a car, etc. Some are purely mental, oriented
to information processing, such as the algorithm for multiplication of two long decimal
numbers or finding the largest common divisor of two integers, and so on.

Throughout its history, mankind strived to make machines that could perform algo-
rithms quicker, with less effort and with fewer errors than humans do. Regarding the latter,
various technologies evolved with time and today we have machines that almost think.
The first machines that improved on human mental capacity were computing machines
made of mechanical parts, such as the Stepped Reckoner of Leibniz, which he success-
fully assembled in 1672. It was a mechanical calculator that could add, subtract, multiply
and divide. Further advances in computing machines were made using technologies of
electro-mechanical switches (relays) [1] and electron tubes [2], both having drawbacks
of a high power consumption and large physical dimensions and weight, as well as the
problem of fast wear of the switching components, which led to short maintenance periods.
The first transistor-based computers that appeared in the mid 1950s offered far less power
consumption, a lower failure rate and greater speed. This created the idea of integrating
many transistors, forming Boolean logic circuits, on a single slice of silicon crystal: the
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so-called chip. The rest is history. The invention of an integrated microprocessor was
based upon von Neumann architecture in the early 1970s, and the steady exponential
increase in information-processing speed of microprocessors (Moore’s Law) led to their
widespread use in all information-processing and communication devices, such as in
personal computers, smart phones, home appliances, cars, medical equipment, etc.

However, it has been noted that even powerful digital microprocessors had difficulties
in performing tasks that are simple and natural to humans, such as picture and speech
recognition, or learning [3]. This should not come as a surprise because the brain internally
operates upon a completely different computational paradigm which encodes information
in time series of short electrical impulses, rather than in the logical states. The apparent
logical behavior of humans is possible because our brains contain certain regions specialized
for a two-way conversion between the internal stream of impulses and the apparent logical
actions. For example, a child performing the pen-and-pencil algorithm for the addition of
two multi-digit numbers needs to convert a multitude of optical information into an abstract
idea of a digit, and then to recall the rule for adding digits—do the math—and finally
output the correct digit by sending a myriad of pulses to the muscles of a hand that would
write it out. On the other hand, if a digital computer needed to process a huge input
of visual data streaming in from a camera in order to recognize that a suitably shaped
wooden piece, or a banana, waved in the hand of another child swirling around at a full
speed, in fact represents a toy gun, it would be in a deep trouble. But, for a child, it is a
child’s game. One could hypothesize that each of these computing paradigms (Turing and
impulse) have their own strong advantages over the other [4].

To investigate that hypothesis, in this work we investigate one exemplary use of
the random pulse computation (RPC) paradigm, using a simple model which is by no
means meant to be a realistic model of human brain, but which is inspired by information-
processing components found in living neurons. In particular, we study and compare
the performance of two imaginary basketball-playing robots: a robot named “Man” that
operates upon the biologically inspired RPC paradigm and a robot named “Machine” that
operates upon the conventional digital computation (DC).

Previous art was focused on the investigation of immunity of the information pro-
cessing against the noise present in the input data. That includes: contour edge recog-
nition in images [4–7], image gamma correction [8], pattern/symbol recognition [9] and
speaker/sound localization [10]. While in these works a superior noise immunity of the
RPC paradigm has been found, in this study we are up to a completely different notion of
immunity, namely the one related to the hardware damage. There are three differences to
the previous art.

First, in previous studies, noise was added to the input data while the information-
processing circuitry was operating flawlessly, whereas here we assume that the data are
noiseless, but that the information-processing circuits are subject to a random failure.
The second difference is that, in the previous art, a single instance of performing a task,
such as the processing of the same image with DC and RPC, can clearly display all of
the major differences between the two paradigms. However, a single instance of two
robots performing the same task tells us virtually nothing: one needs to perform a large
number of trials in order to deduce the statistical distribution of outcomes. And finally,
in the previous art, a single statistical imperfection, for example on a small part of the
picture, does not affect the overall impression and evaluation of the result, because it is an
average performance that matters. The fundamental difference with the performance of a
mechanical robot is that a single wrong move, for example of a warehouse picking robot,
or a surgical robot, can cause irreparable damage. Therefore, in the proposed research,
we are much more interested in the severity and overall probability of outliers than in the
average behavior.

To the best of our knowledge, this work is the first comparative study of robustness of
the system for controlling movements of a mechanical robot. The motivation for this line of
research is twofold. Firstly, when choosing a robot technology for a critical mission, it is
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important to know which of the two computing paradigms would offer an advantage in the
case of operation in a harsh environment, such as in a highly corrosive, high-temperature
or strong radiation environment, which could cause either soft or permanent damage to
the functionality of its information-processing circuits. This is relevant for the survivability
of the robot. Secondly, this line of research could give us an insight into the following
question: why did living beings, which are indeed composed of intrinsically unreliable
components, evolve to use impulse instead of digital computation?

The paper is organized as follows. First, the random pulse computation paradigm
is briefly explained and all computational circuits used in this study are presented. Next,
the physical model of basketball shooting is developed, which results in a mathematical
function describing the ballistic of the hit. The Methods section presents the implementation
of required computation in both RPC and DC paradigms. What follows are a presentation
and comparison of results of computer simulations of RPC and DC approaches, followed
by concluding remarks.

2. Random Pulse Computation Paradigm

Contemporary digital computers are based upon the Turing machine theoretical
model realized in the von Neumann architecture. Each number, in the digital computing
paradigm (DC), is represented by a string of binary digits stored in the computer’s memory.
Elementary arithmetic operations—subtraction, addition, multiplication and division—are
performed by manipulation of the binary digits in a fashion similar to pen-and-pencil
algorithms taught to children in elementary schools. The actual algorithms are based upon
Boolean algebra logic operations and executed by so-called logic gates (OR, AND, NOT),
while memory is realized by a sequential logic circuit, so-called flip-flop, which in turn
is made of logic gates. These arithmetic algorithms, optimized for a fast execution, are
implemented as a complex circuit containing thousands of logic gates, known as arithmetic
logic units (ALUs), which are an essential part of the von Neumann architecture of a
digital computer.

But, von Neumann is not only known for his work on digital computers: he was also
the first to propose biologically inspired impulse-counting computation in 1956 [11,12]
followed by the works of others [13–15]. Namely, in the human brain, information between
neurons is represented and exchanged via short electrical pulses, such as the one schemati-
cally shown in Figure 1a. A typical neuron, as illustrated in Figure 1, has one output and
many (up to thousands) inputs. Neurons are mutually interconnected via dendrites (their
inputs) and axons (their outputs) into a complex neural network. It has been established
that a typical neuron features dendrites which upon receipt of a pulse release either a small
amount of positive charge (excitatory pulses) or negative charge (inhibitory pulses) into
the neuron cell. All of the charge received by a neuron cell is summed up in the so-called
axon hillock, thus establishing its electric potential. When the potential reaches a certain
threshold, the axon hillock releases a nerve pulse into the axon (output of the neuron) and
resets its potential back to the resting level of about −70 mV. The pulse is conveyed to
the input(s) of other connected neuron(s). This operation of the axon hillock is logically
equivalent to the operation of a bidirectional (up/down) counter, a circuit well-known
in digital engineering [16], for which the state is additionally compared to a predefined
threshold value. Such a counter advances by one upon every pulse that arrives on its Up
input, and counts down by one upon each pulse arriving at its Down input. Such a circuit
is indeed used in RPC.
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Figure 1. A typical neuronal pulse (a); schematic drawing of a neuron (b); and a random pulse train
model used in the random pulse computing paradigm (c).

The neuronal pulse cycle lasts about 4–5 ms; therefore, the maximum pulse rate is
limited to about 200–250 cps. Neurons communicate to each other via series of pulses
which appear to be distributed randomly over time [17]. Such a phenomenon is called
a random pulse train (RPT). In the random pulse computation, we model an RPT by a
sequence of electric pulses that can appear in an uninterrupted series of time intervals of
duration ∆t, as shown in Figure 1c. Each individual pulse is generated as a Binomial event
with probability p ∈ [0, 1]. Such an RPT represents the real number p. For example, if,
for each time interval, a fair coin is tossed and pulse generated if the coin shows heads,
then such an RPT represents the number 1/2. If an RPT is generated by tossing a heavily
unfair coin which yields heads with probability of, say, 1/3, then it will represent number
1/3, etc. Usually, pulses are assumed to be the digital logic pulses, because they can
be easily generated, manipulated and analyzed by Boolean logic circuits conveniently
available in reconfigurable chips such as Field Programmable Gate Array (FPGA), but other
technologies have also been investigated [18].

As opposed to the digital computer which relies on ALU, a complex circuit consisting
of thousands of logic gates, the elementary arithmetic operations in RPC can be performed
with much less hardware. The RPC circuits used in this study are shown in Figure 2.

Up

Q2Q1Q0 Q3 Q4

Down

Counter

p0

p1

p0

pz = p0 p1 pz = 1 − p0

pz = p0 / p1

.

DIV
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2
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p0

p1
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p1

p0

p1
p0 / p1

pz
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(d) (e)

(c)(b)(a)

Figure 2. Elementary operations circuits of a RPC: multiplier (a); inverter (b); half-adder (symbol) (c);
divider (d); and the divider symbol (e).

For example, given two statistically independent RPTs with pulse probabilities p0 and
p1, the probability to have simultaneous impulses form both is simply a product of the two
pulse probabilities, p0 p1, as guaranteed by the law of probability. Incidentally, the Boolean
operation X AND Y yields a pulse if and only if both A and B carry a pulse at the same
time. Thus, a single AND gate can multiply two numbers, as shown in Figure 2a. It can
be shown that the NOT gate calculates the function f (p0) = 1− p0, as shown in Figure 2b.
Plain addition of numbers cannot be performed, since the sum of two probabilities, say p0
and p1, spans between 0 and 2, which cannot be represented by a probability. The solution
is found in the half-adder circuit (HA), shown schematically in Figure 2c, which calculates
(p0 + p1)/2. The division can be effectively made by the use of the up/down counter,
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mentioned before, as shown in Figure 2d. Interestingly, equivalents of Boolean operations
needed for realization of this and other RPC circuits are found in the synapses of biological
neurons [19]. This particular divider circuit, proposed in our previous research [20], is quite
precise, fast and well-suited for the purpose of this study. Henceforth, it will be represented
by a symbol shown in Figure 2e. A detailed construction of the half-adder and a review of
other known RPC circuits can be found elsewhere [4,20].

3. Physical Model

In order to compare the performance of the two computing paradigms, we model two
robots: Man, which makes use of the random pulse computer, and Machine, which makes
use of the standard digital processing used in virtually all contemporary robots.

The two basketball-playing robots, Man and Machine, could be fairly complex: they
should have some kind of vision and possibly other sensors that would pour large amounts
of information into their central processing unit (CPU), or robotic brain. The output
of the CPU should empower various actuators that would create required movements,
notably those responsible for shooting the ball into the hoop. This general architecture of a
basketball-playing robot is schematically shown in Figure 3.

Figure 3. General architecture of a basketball playing robot. Visual information is used to dynamically
distill distance D to the hoop at game time. Through training, the CPU (robotic brain) should have
acquired the other necessary ballistic quantities beforehand, such as: the ball launching length s,
height of the hoop with respect to the player ∆h, and launching angle ϑ with respect to the horizontal
plane. This allows the CPU to compute force fH by which the hand has to push the ball in order to
score a point.

Modeling of the robots in this study will be limited to the ballistic part of the informa-
tion processing, illustrated in Figure 4.

∆h

y

xDx = 0

FH

FB

ϑ

Fg

h0 h1

Figure 4. Forces, distances and the reference frame used in the modeling of a basketball player.
There are two forces that act upon the ball: force exerted by hand ( ~FH) and gravitational force (~Fg).
The resulting net force acting upon the ball (~FB) makes an angle (ϑ) with respect to the horizontal
axis, which we call the “launch angle”.
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The total force ~FB acting on the ball of mass m is the vector sum of the force exerted by
the player’s hand ( ~FH) and the gravitational force Fg:

~FB = ~FH + ~Fg (1)

where:
~FB = FB cos(ϑ)x̂ + FB sin(ϑ)ŷ (2)

~Fg = −mgŷ. (3)

Combining Equations (1)–(3), one obtains:

FB = mg

−sin(ϑ) +

√
FH
mg

2
− cos2(ϑ)

 (4)

Solving Equation (4) for FH yields:

FH = FB

√
1 + 2

mg
FB

sin(ϑ) +
(

mg
FB

)2
. (5)

Since, in a realistic case, the hand force FH is about an order of magnitude greater than the
ball weight (mg), the following expression holds to an excellent approximation:

FH = FB + mg sin(ϑ). (6)

Initially, the ball is at rest. It is then accelerated by the hand on a path of length s, tilted at
an angle ϑ with respect to the horizontal axis, with a constant force FB, reaching velocity v0
at release. The energy conservation yields:

sFB =
mv2

0
2

. (7)

The vertical component of the ball travel is described by:

h1 − h0 = ∆h = v0 sin(ϑ)t− g
2

t2 (8)

while the horizontal travel is given by:

D = v0 cos(ϑ)t⇒ t =
D

v0 cos(ϑ)
(9)

where ∆h is the vertical difference between the height of the hoop and the starting point
of the ball, ϑ is the launch angle measured from the horizontal plane, D is the horizontal
distance between the player and the center of the hoop and v0 is the launch velocity of the
ball. Inserting Equation (9) into Equation (8) yields:

∆h = D tan(ϑ)− g
2

D2

cos2(ϑ)

1
v2

0
(10)

and inserting Equation (7) into Equation (10) yields:

∆h = D tan(ϑ)− g
2

D2

cos2(ϑ)

m
2sFB

. (11)
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Solving Equation (11) for FB gives:

FB =
mg

4s cos(ϑ) sin(ϑ)
D2

D tan(ϑ)− ∆h
(12)

To arrive to the required hand force, insert Equation (12) into Equation (6):

FH =
mg

4s cos(ϑ) sin(ϑ)
D2

D tan(ϑ)− ∆h
+ mg sin(ϑ). (13)

Because RPC calculates only with numbers in the interval [0, 1], we need to rewrite
Equation (13) such that all of its terms satisfy that range

FH = mg

(
k(ϑ)

D/s
1− ∆h

D cot(ϑ)
+ sin(ϑ)

)
(14)

where we defined
k(ϑ) =

1
4 sin2(ϑ)

. (15)

Finally, we arrive to:

FH =
2mg

C

[
1
2

(
k(ϑ)

CD/s
1− ∆h

D cot(ϑ)
+ C sin(ϑ)

)]
(16)

where we introduced an arbitrary dimensionless scaling constant C > 0. We keep the factor
of 1/2 in front of the round brackets because, as mentioned before, an exact summation
of two terms in RPC is only possible if divided by two [20]. All terms in the bracket are
dimensionless and in the in the range of [0, 1], except for D/s. The latter is greater than 1
everywhere on the basketball court, while in the 3-pointer region it reaches its maximum
value of about 10. If we take C = 0.1, then both summands in the bracket will be less than
or equal to 1. Because the force FH must be positive, we conclude that the denominator in
the brackets must be positive, that is:

1− ∆h
D

cot(ϑ) > 0. (17)

Indeed, it is just the kinematic condition necessary for the ball to reach the plane of the hoop
from above. As noted before, we take both the ball acceleration path s and the launching
height ∆h to be constants, fixed for a given player, dependent on its physical predispositions
and shooting routine. Furthermore, researchers have found that the optimal ball launching
angle ϑ for direct hits is about 52◦ [21] while for bank shoots it is 54◦ [22]. Even though we
do not investigate bank shoots here, the similarity of the two angles indicates that exercising
the ball launching angle of about 53◦ is an optimal practice for both kinds of shooting. We
adopt it as the unique shooting angle, and define three constants: k1 = k(53◦) = 0.392,
k2 = cot(53◦) = 0.754 and k3 = sin(53◦) = 0.799. Bearing in mind that the ball mass m
and the gravitational constant g are constants too, this leaves the hand force a function of a
single variable, namely the shooting distance D:

FH(D) = G

[
1
2

(
k1

CD/s
1− ∆h

D k2
+ Ck3

)]
= GpH (18)

where G is an overall multiplicative constant:

G =
2mg

C
(19)
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which has the unit of force (newton), while pH is a dimensionless probability that needs
to be calculated on-the-fly by the player, while participating in the game. The constant G
is a motoric hardware gain factor which determines how the pulse probability pH ∈ [0, 1]
translates to the actual force exerted by the actuator (robotic hand). Constant G should be
acquired by calibration, learning or other means well-known in the art of robotics [23].

4. Methods

The main goal of this study is to investigate how performances of the RPC and
DC computing paradigms compare, when subject to the same range of hardware failure
probability perr. As a figure of merit, we use the scoring probability in a simplified basketball
game in which players make a direct shot into the hoop from various distances.

To perform the study of the two computing paradigms, we simulate both robots,
namely Man and Machine, on a PC computer, using a computer program that was written
from scratch.

When playing a basketball game, both robots calculate the hand force FH(D) required
to launch the ball into the basket by using Equation (18). It is assumed that each robot
is supplied with a precise value of the distance D, which would be obtained by the vi-
sual sensor and associated data processing which we do not consider here. The motoric
hardware gain G would likely be different for each individual robot. It is assumed to be
adjusted prior to the game and that it stays constant during the game. Being just an overall
multiplicative constant, it is irrelevant for this study and is not considered.

For its calculation of the required hand force as a function of the distance to the basket,
Man uses the steering circuit shown in Figure 5. This circuit is a straightforward imple-
mentation of Equation (18) using elementary circuits listed in Figure 2 whose operation is
explained in the previous section.

A

B

p
A
 / p

B

A

B

p
A
 + p

B

2

HA∆h / D

k
2

k
3

CD / s

C

DIV

p
H

k
1

Figure 5. Random pulse steering circuit which implements Equation (18). It calculates hand force
FH = GpH (up to the motoric gain G which is hardwired into the actuator system) which needs to be
exerted on the ball, in order to hit the hoop at the distance D.

In our previous work, we have developed and experimentally tested successful simula-
tion routines for the elementary RPC circuits [20], which we now use to build the kinematic
processor presented here. In the simulation of this circuit, the error due to the hardware
failure is implemented such that whenever a pulse appears there is a constant probability
perr, that this pulse is either deleted or that another pulse is added. It is also assumed that
enough statistics from pulses are collected so that the statistical error does not dominate
the calculation error due to the hardware failure, that is, the simulation calculates the
probability pH at the output of the steering circuit. In this manner, the hardware failure can
be studied and isolated from other effects.

To perform the calculation of Equation (18) for the Machine, we emulate the following
arithmetic operations at the level of ALU: binary add, binary subtract, binary multiply
and binary division. For the division, the Newton-Raphson method [24,25] is used. The er-
ror in the calculation of Equation (18) is implemented in the following manner. Whenever a
bit is about to be manipulated, a flip of its value is implemented with a constant probability
perr. The rationale behind that is the following. Each time an individual bit is accessed in
memory, there is a probability of an error, and the only possible error is a change in the
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stored value, namely a flip from 0 to 1 or from 1 to 0. In the modern computer hardware,
such flips are extremely rare, but when they do happen they cause unpredictable behavior.
In our case, it leads to a dramatic miss of the basket, as will be shown.

The simulation goes as follows. First, a distance to the hoop D and hardware failure
probability perr are chosen. Using these two values, a robot calculates FH , with which it
intends to shoot the ball on the target. Now, starting from that value of FH , the simulation
program calculates the exact trajectory of the ball and finds the intersection of the trajectory
of the falling ball with the plane of the hoop, which is denoted DHIT . It can be shown that
by using Equations (5) and (12), the hit distance is given by:

DHIT =
v2

0 sin(ϑ) cos(ϑ)
g

(
1 +

√
1− 2g∆h

v2
0 sin2(ϑ)

)
(20)

The distance to the center of the hoop is given by:

∆D = DHIT − D. (21)

Since the official basketball hoop diameter is dH = 18 inches and the ball diameter is
dB = 9.4 inches (ball size “7”), it is taken take that a score (a successful throw) is achieved
if the trajectory of the center of the falling ball intercepts the plane of the hoop within
(dH − dB)/2 = 4.3 inches (10.9 cm) from the center of the hoop. This whole process is
repeated 40,000 times to gather enough statistics for a given pair (D, perr).

Next is a note on circuit complexity. A DC computer, for the 16 bit floating point
precision, would use at least one multiplier (1461 gates), one adder/subtractor (96 gates),
one divider (cca. 1700 gates) and three register memories (288 gates), totalling about
3500 gates. To evaluate Equation (20), the required computations have to be performed
in a sequential order, which requires some steering logic and memory that is not counted
in this estimate. On the other hand, the particular RPC circuit, in Figure 5, assuming
an 8-bit counter for the divider, can be realized with only 65 logic gates plus a quantum
entropy source (QES) or about 100 gates when using an 8-bit pseudo-random number
generator instead of QES [20]; it requires no storage memory, and all computations are
conducted simultaneously.

5. Results

First, the scoring probability is investigated for a set of shooting distances D = 1 m,
3 m, 5 m and 7.24 m (the latter being the 3-pointer line). The score probabilities, as functions
of the shooting distance D and failure probability perr, are shown in Figure 6a. The results
for Man are plotted in red and for Machine in blue. Plotted values are the result of averaging
over 40,000 hits and have statistical relative errors on the order of 0.5%.
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Figure 6. Score probability of Man (in red) and Machine (in blue) for a set of shooting distances
D = 1 m, 3 m, 5 m, and 7.24 m, as a function of hardware failure probability perr (a). Ratio of scoring
probabilities for Man and Machine, as a function of perr (b).

The first observation that catches the eye is that Machine always scores worse than Man.
This may seem counter-intuitive, because Machine uses a deterministic computer while
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Man uses a probabilistic one. But, since we introduced random errors in the computation,
they have both became probabilistic, and it turns out that the RPC is significantly more
resilient to hardware errors than the DC. Starting from the perfect (100%) score, which they
both achieve at a very low perr, already at the error level of 0.2%, Machine’s success rate
falls to 50% while Man’s is still clipped to a perfect 100% score from any shooting distance.
In fact, the ratio of the scoring probability of Man to the scoring probability of Machine,
shown in Figure 6b, rises as perr drops, reaching its maximum of about 56–84 at 4% failure
probability. It is fascinating that even at 10% failure rate, Man still scores between 5.1%
from the 3-pointer line and 17% from a one-meter distance, while Machine scores only from
0.09–0.36% in the same range of distances.

A more detailed insight into the shooting patterns of Man and Machine is obtained by
plotting the distributions of hit distances, shown in Figure 7. Each plot shows distributions
of 40,000 hits for both robots, red for Man and blue for Machine, at the indicated perr,
and shooting distance D = 3 m.
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Figure 7. A series of plots showing hit position distributions for Man (red) and Machine (blue), at the
indicated hardware error probability perr, and shooting distance D = 3 m. Each plot is generated
with statistics of 40,000 shots, but not all are visible because some fall outside of the window.

It is interesting to note that, on average, Man always scores more than or equal to what
Machine scores, for any combination of D and perr. However, the ratio of the distribution
peaks at the center of the hoop is in favor of Machine as long as perr < 0.7%, while for
the greater perr, Man is in advantage. This illustrates one crucial difference between the
two paradigms. Given a low enough perr, the DC is unbeatable when it comes to the
precision, for example in calculating number π to a million decimal places or finding an
exact solution to a numerical problem. However, when a “good enough” solution is (nearly)
as good as the exact one for all practical purposes, like in this basketball game where the
ball only needs to pass through the hoop, but it does not need to do it very precisely; or,
in the well-known logistic “traveling salesman” problem where the lowest price itinerary
is searched for. Typically, there are many solutions to this problem which are of acceptable
cost. But, if any of them can be found quickly, there is no justification to spend a lot of
resources searching for the best one. For such problems, the RPC approach might offer
an advantage.

Another important observation is the dispersion of hits, as seen in Figure 7. At a very
low hardware error probability perr = 10−6, the two robots perform almost the same and
both have a scoring probability near 1. Still, even at a perr that low, Machine features outlier
hits are those which are not grouped with the main distribution peak. As perr grows larger,
Machine shows a clear tendency to make more and more “wild” shots which miss the hoop
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dramatically. In the particular simulation of 40,000 hits used to generate the plot in Figure 7
with perr = 10−6, there were 434 hits (or 1.1%) that miss the basket by over 1011 meters,
or roughly the distance between the Earth and Sun! These are not seen in the plot due to
the small region shown of only ±10.4 cm. The percentage of misses rises quickly with perr,
as is shown in Figure 6a. Of course, very large misses stemming from bad computation
would not be possible in an actual game due to the limited strength of the robotic arms,
but, still, those misses would look spectacular!

This behavior is in stark contrast with that of Man, whose distribution of hits has not a
single outlier and is close to the Gaussian (normal) distribution around the center of the
hoop. The normal distribution in RPC is not a surprise, because the total deviation from
the mean is composed of a large number of small binary errors, which indeed is a feature
used in the Hagen’s deduction of the normal distribution [26].

On the other hand, because in the DC binary numbers are represented in a position
system where a bit represents a magnitude according to its position in the number, a single
bit flip may cause a large error and even a sign flip. In such computation, a single bit-flip
error, let alone its further propagation during the computation, is likely to produce a
dramatic error in the final result.

6. Discussion and Conclusions

The basketball scoring performances of two imaginary mechanical robots were com-
pared as a function of error probability of their circuits: Man which uses an RPC computer
and Machine which uses a conventional DC computer. Each robot comprises a hand, which
throws the ball, and a black-box system which supplies the momentary distance D between
the robot and the basketball hoop. The task of the robot is to calculate the force with which
it has to push the ball in order to make a score. This implies computing a certain ballistic
equation, derived in this study and assumed imprinted (coded) into its computer. With a
flawless computer, both robots would score every single time.

However, the main point of this study is the assumption that information-processing
circuits in both robots are unreliable and prone to making single-bit-flip errors with a
probability perr. In practice, such errors can indeed occur due to a number of factors: ioniz-
ing radiation, high temperature, electrical noise in the circuits caused by electromagnetic
interference (also known as EMI), bad power supply, component aging or for other reasons.
Because of that, robots will sometimes miss the goal. The figure of merit for comparing
their performances as a function of perr is the scoring probability. The scoring probability
was investigated for a set of shooting distances D = 1 m, 3 m, 5 m and 7.24 m (the latter
being the 3-pointer line). The score is defined as a hit within 10.9 cm from the center of the
hoop. The results are as follows.

First, it has been found that Man achieves a significantly higher scoring probability for
perr in the range from 0.01% all the way to 10%, while at lower perr, both robots converge to
the perfect score. While Man scores better, Machine scores more close to the dead center of
the hoop for perr up to 0.7%, evaluated at D = 3 m distance. Nevertheless, at a higher perr,
Man is again superior, not only in just making a score, but also in hitting the dead center of
the hoop.

Second, it is found that Man’s hits form a Gaussian distribution around the center
of the hoop, with a vanishing probability of making large misses even at the highest perr
researched (10%). On the other hand, Machine is prone to spectacular misses readily at perr
as low as 1 part-per-million. In that case, about 1.1% of all shoots would end up over one
hundred million kilometers away from Earth! Of course, because of the limited strength
of Machine’s robotic arm, the ball would fall closer, but still it would make a very large
miss. This is a strong indication that even a slightly damaged DC-based robot, in a real-life
situation, might do crazy things. This could be important for applications where reckless
behavior may cause havoc or irreparable damage to the robot or its surroundings and
cannot be tolerated; for example, a warehouse picking robot or a surgical robot.
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Finally, the complexity of Man’s RPC computer was estimated at about 100 logic gates
if it uses a pseudo-random adder with 8-bit LFSR or 65 logic gates plus a quantum entropy
source and it uses random adder [20], while it is about 3500 logic gates for the DC computer
of Machine.

These findings indicate that the biologically inspired computation requires less hard-
ware for the same task, ensures higher robustness to the hardware malfunction and fea-
tures a better behaved operation than the digital computation in case of damage. These
are all characteristics of high importance for the survivability of living beings and may
shed some light on why living beings use pulsed instead of digital computation in their
nervous systems.

The results of this study are expected to contribute to the development of biomimetic
robots, especially those destined for tasks that could be efficiently performed by the
RPC computation, as well as for operation in environments which can impair a robot’s
information-processing circuitry. Finally, this study may inspire novel approaches to the
operation of prosthetic limbs and their interface with the human nervous system.
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