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Abstract: The motion process of legged robots contains not only rigid-body motion but also flexible
motion with elastic deformation of the legs, especially for heavy loads. Hence, the characteristics
of the flexible components and their interactions with the rigid components need to be considered.
In this paper, a hierarchical control strategy for robots with rigid–flexible coupling characteristics is
proposed. This strategy involves (1) leg force prediction based on real-time motion trajectories and
feedforward compensation for the error caused by flexible components; (2) building upon the centroid
dynamics model of the rigid-body chassis, the centroid trajectories (centroid angular momentum
(CAM) and centroid linear momentum (CLM)) and the body trajectory are taken into account to
derive the optimal drive torque for maintaining body stability; (3) finally, the precise force control
of the hydraulic drive units is achieved through the sliding mode control algorithm, integrating the
dynamic model of the flexible legs. The proposed methods are validated on a giant hexapod robot
weighing 3.5 tons, demonstrating that the introduced approach can reduce the robot’s vibrations.

Keywords: multi-legged robot; rigid flexible coupling; hierarchical control; robot dynamics; feedforward
compensation; force control

1. Introduction

In recent years, the exploration of increasingly unstructured environments has led to
significant advancements in legged robotics [1–4], particularly large-scale legged robots
driven by hydraulic systems, which demonstrate both carrying capacity and operational
ability [5,6]. However, the elasticity-induced deformation of the legs in heavy-duty robots
during motion [7] impacts the overall stability of the system and the tracking accuracy of
the motion trajectory. The coupling of motion between flexible and rigid systems is highly
complex, and the flexible deformation of the legs can affect energy consumption and induce
body oscillation in the robot [8].

There is extensive current research on rigid–soft coupling robots, with the most
direct solution being the optimization of the robot structure based on modern design
methods [9,10]. K. Xu [11] proposed an optimized design method for the flexible joint
linkage of a quadruped robot, which improves the payload capacity of the robot. How-
ever, for existing robots, it is challenging to modify their structures, necessitating research
from a control perspective. T. Zhang [12] and Chen, T [13] proposed a pre-adaptive input
shaping method to suppress the residual vibration. K. Zheng [14] utilized the singular per-
turbation principle to decompose the motion into slow and fast subsystems with different
time scales. However, the vibration mode of legged robots is forced vibration, and the
aforementioned methods do not yield ideal control results for such vibrations.

Xun, M. [15] and Pan, T. [16] studied active control of flexible components by designing
a piezoelectric actuator. The issue of rigid–flexible coupling in mechanisms has also been
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widely studied in aerospace [17]. Zhong, R [18] utilized neural networks to identify rigid–
soft coupling terms and improved attitude control precision through an enhanced PD
controller. Ye, D [19] proposed a robust output feedback attitude-tracking control method,
ensuring that the rigid–flexible spacecraft could track time-varying reference attitudes
based solely on angle and angular velocity measurements. The feedback from the actual
position information of the legs of a legged robot is difficult to obtain, and its body vibration
is primarily caused by the coupling between the rigid body and the flexible legs. Therefore,
the methods above do not apply to legged robots.

The error caused by the flexible components feedforward compensation method
has proven effective on industrial robotic arms [20]. X. Chen [21] established an error
model for robot rigid–soft coupling, improving robotic accuracy through non-kinematic
calibration of industrial robots. Deng, K [22] employed an external measurement system
and a compliance model to measure or estimate compliance errors, subsequently using
control algorithms to compensate for these errors. If flexible deformation can be accurately
predicted, it can ensure force stability in the robot’s parallel mechanisms during support,
inhibiting the majority of oscillations. The movement of legged robots primarily relies
on supporting legs bearing the entire vehicle’s weight; the deformation of the legs is
directly influenced by the forces they endure. Therefore, the prerequisite for feedforward
compensation is an accurate leg dynamics model. Dynamic modeling is mainly achieved
through Euler’s method and Lagrange’s method [23], with common modeling methods for
flexible bodies being the finite-element method [24,25] and assumed-modes method [26,27].
Ren [28] derived the rigid–soft coupled dynamic equations for a parallel-legged hexapod
robot based on the assumed-modes method and Lagrange equations. Through dynamic
analysis, it was demonstrated that the impact of leg elasticity deformation on the motion
characteristics of legged robots during movement cannot be ignored.

Research on the control strategies for suppressing oscillations in flexible robots has
focused on impedance control based on the position of inner loops and the force of outer
loops. References [29–31], respectively, utilized the principle of impedance control on
bipedal, quadrupedal, and hexapod robots, conducting research on the motion control of
flexible robots based on feedback from force sensors set at the foot ends. However, for
deformable flexible mechanisms, it is difficult to achieve effective force tracking based on
position impedance control, and due to the influence of impedance model parameters, the
system may exhibit steady-state errors [11,32]. The deformation of the legs is minimal
relative to the robot’s range of motion, but because the supporting process involves a
parallel mechanism, the coupling relationship between the body and each leg leads to
oscillations in the robot.

Therefore, this article proposes a hierarchical control strategy based on the rigid–soft
coupling characteristics of the robot, as shown in Figure 1. The robot’s real-time center-of-
gravity position is obtained through the robot’s inertial measurement unit, foot-end force
sensors, and cylinder position sensors. Then, the real-time foot-end force is predicted using
the Kalman algorithm, and feedforward compensation is performed for single-leg flexible
deformation, reducing the deviation due to flexible deformation between the base of each
leg and the foot-end position. To improve the robot’s terrain adaptability, impedance
control based on the position of the inner loop is employed at the initial extremities in
contact with the ground. A precise force control method is used when the foot-end force
reaches the target threshold. First, the trajectory tracking of the CAM [33], CLM, and the
body trajectory were conducted to obtain the desired driving torque of the legs. Then, the
sliding mode control algorithm is used to accurately control the output force of the electro-
hydraulic servo valve control cylinder system, eliminating the impact of the remaining
deviation from feedforward compensation and disturbances on the robot body.
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Figure 1. Schematic diagram of hierarchical control strategy.

The main contributions of this paper are as follows:

(1) Feedforward compensation for robot flexible deformation is proposed, predicting
the center of gravity and foot-end force for feedforward compensation of flexible
deformation.

(2) A coordinated control strategy is proposed involving hydraulic drive unit force control
and leg impedance control, along with a controller based on the rigid-body trunk
and flexible-leg models. The desired drive force/moment is obtained by a quadratic
programming algorithm using the CAM, CLM, and torso trajectories as objective
functions.

The proposed control method reduces the body vibration caused by flexible deformation.
The remainder of this paper is organized as follows: Section 2 describes the kinematics

and dynamics modeling of the legs. Section 3 presents the hierarchical controller. Section 4
discusses the results of experiments and simulations, and the conclusion is presented in
Section 5.

2. Related Work

In this paper, we have developed the insect-like hexapod biomimetic robot shown in
Figure 2. It is composed of six three-link rigid–flexible mechanical legs. The D-H parameters
of the structure of each leg are shown in Table 1.
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Table 1. D-H parameter of the leg.

Leg Section Li di αi θi

Hip joint 1.5 m 0 π/2 θ1
Thigh 1.5 m 0 0 θ2
Shin 0.33 m 0 0 θ3

The motion schematic of the robot is shown in Figure 2. During movement, all the
legs of the robot are divided into two parts: one is supporting, and the other is swinging.
Legs in the swinging state only need to overcome their own weight. In contrast, legs
in the supporting state bear the weight of the entire robot and are subjected to greater
forces, producing corresponding deformations. Therefore, this paper mainly studies the
supporting legs in the supporting state.

The schematic diagram of the elastic deformation of the leg under the force during
the support stage is shown in Figure 2. The linkage mechanism in the middle of the thigh
includes the constraint of the hydraulic cylinder hinge point, so the flexible thigh cannot be
simplified as an Euler beam. Thus, the thigh is divided into two parts, lengths l21 and l22,
respectively. The angle between the decomposed thigh and the line connecting the head
and tail joints is θa and θb, respectively, then l2 = l21cosθa+l22cosθb. The lower leg is a slender
rod with small elastic deformation, described by the Euler–Bernoulli beam. When the robot
walks, the ratio of leg axial deformation and shear deformation is small, so this paper only
analyzes the bending deformation of the leg linkage. The situations of shear and torsion
have not been taken into account.

The representation of vector rk at position P1 after deformation of point P in relation
to the inertial coordinate system is as follows:

rk = r0 +
0
kR(uf + vf) (1)

where r0 denotes the displacement vector of the floating coordinate system under the
inertial coordinate system, 0

kR denotes the rotation matrix from the floating coordinate
system to the inertial coordinate system, and uf and vf denote the vector representations
of an arbitrary point under the floating coordinate system before deformation and after
flexible motion, respectively.

According to the assumed modal method, the deformation vf within the floating
coordinate system is described in a discretized manner as:

vf = ∑ n
i=1ai(t)Φi(x) (2)

where ai(t) is the modal coordinate, and Φi(x) is the modal function.
The total kinetic energy of a single leg is the sum of the rigid-body base part, the

flexible thigh, and the kinetic energy of the flexible calf, where the kinetic energy of the
flexible body is expressed as:

T =
1
2

∫ L

0
ρ

.
rT .

rdl =
1
2

.
qTM

.
q (3)

where ρ is the material density, l is the length of the leg connecting rod,
.
q is the generalized

velocity coordinate, and M is the connecting rod mass matrix.
The position of point P1 on the flexible thigh link l21, under the X0Y0Z0 coordinate

system, is expressed as:
r1 = A1(u11 + v11) + l1 (4)

where u11 and v11 represent the vectors of P1 before and after deformation in the floating
coordinate system, and A1 represents the rotation transformation matrix of the thigh
floating coordinate system x1y1z1 in X0Y0Z0. The parameters are as follows:
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u11 =

[
x1 0 0

]T , v11 =
[
0 0 v1

]T , l1 =
[
l1 0 0

]T

A1 =

cos θ1 cos θ2 − sin θ1 cos θ1 sin θ2
sin θ1 cos θ2 cos θ1 cos θ1 sin θ2
− sin θ2 0 cos θ2

 (5)

The bending deformation following the discretization under the assumed mode
method is expressed as:

v1 = a1 sin
πx1

l21 cos θa
+ a2 sin

2πx1

l21 cos θa
(6)

The kinetic energy of the thigh l21 segment is:

T21 =
1
2

∫ l21 cos θa

0
ρ

.
r1

T .
r1dl =

1
2

.
q2

TM21
.
q2 (7)

Similarly, the kinetic energy T22 of the thigh l22 and the kinetic energy T3 of the shin
can be obtained. The total kinetic energy of the rigid flexible coupling leg linkage system is

T = T1 + T21 + T22 + T3 (8)

where T1 = 1
2 J0

.
θ

2
1, J0 is the rotational inertia of the base node. The generalized coor-

dinates and their derivatives in the entire single leg rigid flexible coupling system are

q =
[
θ1 θ2 θ3 a1 a2 b1 b2

]T .
q =

[ .
θ1

.
θ2

.
θ3

.
a1

.
a2

.
b1

.
b2

]T
. The total mass

matrix for a single leg is obtained by combining the mass matrices of the base, flexible
thigh, and flexible calf according to their respective generalized coordinates, derived in
Appendix A.

The elastic potential energy of the flexible thigh and flexible calf is as follows:

V =
1
2

E1I1

∫ l21 cos θa

0

[
∂2u1

∂x1
2

]2

dx1 +
1
2

E2I2

∫ l2

l21 cos θa

[
∂2u2

∂x22

]2

dx1 +
1
2

E1I1

∫ l21 cos θa

0

[
∂2u3

∂x32

]2

dx1 (9)

E is the elastic modulus of the leg material, where E1 = E2 = E3, and I1, I2, I3 are the
average moment of inertia of each cross section. Equation (9) can be deformed by using
generalized coordinates:

V =
1
2

qTKq (10)

where K is the stiffness matrix, derived in Appendix B.
The gravitational potential energy of the system can be expressed as:

G = m1g
l1
2
+ m2g

l2
2

sin θ2 + m3g(l2 sin θ2 −
l3
2

cos(θ2 − θ3)) (11)

The Lagrange equation is expressed as:

d
dt
(

∂L
∂

.
q
)− ∂L

∂q
= Q (12)

where L = T − G − V , and Q represents all the generalized forces in the system.
It can be obtained from Equation (12):

M
..
q +

.
M

.
q− ∂

∂q
(

1
2

.
qTM

.
q) + Kq = QF (13)

The generalized driving force array QF is derived from the principle of virtual work:

QF =
[
τ1 τ2 − τ3 τ3 τ2

π
l21 cos θa

+ τ3
π

l22 cos θb
τ2

π
l21 cos θa

− τ3
π

l22 cos θb
τ3

π
l3

τ3
2π
l3

]
(14)
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3. Layered Control of Rigid–Flexible Coupling Characteristics

This section introduces a hierarchical control framework for robots with rigid–flexible
coupling characteristics. It primarily includes a trajectory planning layer for a foot-end
trajectory with flexible deformation feedforward compensation. To maintain the stability of
the robot’s torso, there is a force planning layer that solves for the desired torque of each leg
based on the torso’s center-of-mass trajectory and torso posture tracking. Finally, there is
an execution layer of the controller, which includes a controller for precisely controlling the
hydraulic drive unit, and an impedance controller that adapts to the external environment.

3.1. Feedforward Compensation

Due to the flexible deformation effect causing a change in the leg structure, the
real-time position of the center of gravity is not easily computed. Therefore, this paper
determines the position of the center of gravity during operation through a nonlinear
neural-network model. The foot-end force of the supporting leg and the posture of the
torso are used as inputs to the prediction model, and the output is the CoM trajectory. The
extreme learning machine (ELM) algorithm effectively overcomes the local optima traps
commonly found in gradient algorithms [34]. It is a special type of single-hidden-layer
feedforward neural network (SLFN), with only one hidden layer similar to a neuronal layer.

The motion trajectory of the trunk is determined by the trajectory of the supporting
foot, so the motion trajectory of the trunk can be determined based on the trajectory
planning of the foot end. If the translation of the trunk is ∆x and ∆y, then we can obtain:

Fiz = A−1 ·

mg
0
0

+ ∆x′ ·A′−1 ·

 0
mg
0

+ ∆y′ ·A′−1 ·

 0
0

mg

 (15)

where A′ =

 1 · · · 1
x1 · · · xn
y1 · · · yn

, 3 ≤ n ≤ 6.

Equation (15) can be expressed as:

Fiz = fco + ∆x′ · fc1 + ∆y′ · fc2 (16)

where fco is the vector of the vertical force at the foot at the initial moment of support;
fc1 and fc2 are the normal vectors of the translation amount during the support process;
∆x′ and ∆y′ are the translation amounts of the trunk’s center of gravity relative to the
foot-end point.

From Equation (16), in any support process, the vertical force exerted at the end of the
foot is linearly related to the amount of translation of the torso. Therefore, the foot-end
force can be predicted by the motion trajectory of the trunk, then the predicted value of the
end-of-foot force can be derived from the Kalman filter [35], and the Kalman prediction
equation is embodied in Appendix C.

Based on the predicted foot-end force, the deformation is described by the dynamics
model of the leg and the intrinsic characteristic stiffness of the leg structure. The error of
the foot-end-to-leg datum can be expressed as:

E(Ti) =
∂Ti
∂θ1
· E(θ1) +

∂Ti
∂θ2
· E(θ2) +

∂Ti
∂θ3
· E(θ3) (17)

where θ is the angle between each component driven by the servo cylinder. The size of each
oil cylinder of a single leg can be calculated based on its geometry, that is, the coordinate
error of the landing point can be expressed by the size of the oil cylinder.

Therefore, the target trajectory of the robot after compensation is:

xmc = xm + ∆Ef (18)
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where xm is the desired trajectory of the foot end, and xmc is the actual trajectory entered by
the controller.

3.2. Torque Control for Rigid–Flexible Coupled Robots

This paper proposed a multi-control model switching strategy, which includes precise
force control of single-leg virtual impedance and hydraulic drive units. This strategy
provided segmented control over robot movements. When the leg transitioned from the
swing phase to the initial stage of the support phase, impedance control was employed to
quickly track the foot-end force. When the foot-end force error reached a set threshold, it
was assumed that the environment could provide sufficient support force for the system.
At this point, the controller switched to the force controller of the hydraulic drive unit. The
robot’s smooth movement was achieved through the coordinated control of the two. The
impedance control abstracted the robot’s leg as a virtual mass-spring-damping model, as
shown in Figure 3. Based on the real-time force F, the impedance control model returned
the correction amount of displacement x1, which was then added to the expected motion
displacement x2 to generate a new displacement x3.
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Given that the robot speed is relatively low and its motion state is smooth, the motion
can be analyzed as quasi-static, as shown in Figure 3. On an inclined surface, the force
equation for each foot end can be expressed as:

AF = W (19)

where F =
[
F1x F1y F1z . . . Fnz

]T ∈ R3n is the representation of the force at the foot
end of each leg in the three coordinate directions; W = [Fx Fy Fz Mx My Mz] is

the force and the torque applied to the robot; A =

[
I3 I3 . . . I3
P1 P2 . . . Pj

]
∈ R6×3n, in which

I is the unit matrix, and Pj = [Gxj3
Gyj3

Gzj3], where Gxj3, Gyj3, and Gzj3 represent the
coordinate values of the foot end in each direction relative to the center of mass.

When a hexapod robot walks on real terrain, the foot-end forces in the support phase
must satisfy the friction constraints to reduce slippage. Because the size of the foot end is
negligible compared to the overall size of the hexapod robot, the contact between the foot
end and the ground is assumed to be a point contact.√

F2
ix + F2

iy ≤ ξF2
iz (20)

where ξ is the static friction coefficient.
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Additionally, the support-phase foot-end force Fiz must satisfy the following con-
straints:

Fiz ≥ 0 (21)

The elastic deformation of the flexible-leg structure is influenced by the reaction force
at the robot’s foot end. Consequently, achieving a uniform distribution of force across each
leg can reduce the elastic deformation of each supporting leg. Therefore, the square sum of
the difference in force between each leg is used as the optimization target, as shown below:

min (F− G)T (F− G)
s.t. AF = W

EF ≤ 0
(22)

where G = G/n, n represents the number of support legs of the robot, and G is the
gravitational force acting on the robot.

The simplified impedance control model of the robot is shown in Figure 3, and the
mathematical expression of the impedance control model is:

Fr − F = Md(
..
X−

..
Xr) + Bd(

.
X−

.
Xr) + Kd(X−Xr) (23)

where Md, Bd, and Kd are the target inertia, target damping, and target stiffness matrices
of the impedance control model, F and Fr represent the actual and desired contact forces,
respectively, and X and Xr represent the actual and desired positions, respectively.

The transfer function of Equation (23) is:

G(s) =
X(s)
F(s)

=
1

Ms2 + Bs + K
(24)

During the robot’s movement, when there is a protrusion on the ground, the foot makes
contact with the ground earlier, and the foot pressure sensor provides a certain amount
of force feedback. At this point, the anticipated force on the foot is zero, and following
impedance control, the foot end retracts to some extent. When there is a depression on the
ground, a delay in contact exists between the foot end and the ground. After impedance
control, the foot end extends to compensate for the tilt of the robot’s body. Although
impedance control can enhance the robot’s terrain adaptability, its effectiveness depends
on the parameter settings. For legged robots with rigid–flexible coupling characteristics,
relying solely on impedance control will inevitably cause oscillation in the robot’s torso
when the robot’s leg undergoes flexible deformation.

In order to reduce the robot vibrations caused by the coupling of the flexible-leg
deformation and the robot’s trunk, a force control model mapping from task space to
joint space is established. Joint acceleration, torque, and foot–ground interaction force
are treated as decision variables, and the desired output torque of the strongly coupled
dynamic system is solved using the quadratic programming (QP) optimization algorithm.
The robot’s trunk can be considered a rigid body, and the momentum of each rod is mapped
into the centroid space with the centroid as the origin, leading to the derivation of the
centroid momentum model.

In this paper, the spatial notation of six-dimensional vectors is used to represent the
angular and linear momentum of the rigid body uniformly as:

hi =

[
hangle

i
hline

i

]
=

[
Ii miS(ri)

miS(ri)
T miE3

][
wi
vi

]
= Îiv̂i (25)

where hi is the rigid-body momentum, S(ri) is the skew-symmetric cross product matrix,
E3 is the unit diagonal matrix, Ii is the spatial inertia, Îi is the inertia tensor, v̂i is the velocity
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of the motion at the origin oi of the coordinate system, wi is the angular velocity vector,
hangle

i is the linear momentum, and hline
i is the angular momentum.

The total momentum of the robot’s multi-rigid-body system is the sum of the momenta
of all rod elements projected onto the centroid coordinates, which can be expressed as:

hG =
N

∑
i=1

iXT
Ghi =

N

∑
i=1

iXT
G Îi Ĵi

.
q = AG

.
q (26)

where hG is the momentum space transformation matrix from coordinate system oi to
centroid coordinate system; AG is the centroidal momentum matrix.

The kinetic equations for the CoM were obtained by taking a first-order derivative of
Equation (26):

fG =
.
hG = AG

..
q +

.
AG

.
q (27)

where fG is the vector of the net external force at the centroid.
Hexapod robots belong to the floating-base system, and its dynamic equations are

expressed as follows:

M(q)
..
q + C(q,

.
q)

.
q + G(q) = STτt + JT

λλ (28)

where λ is the constraint forces due to contact.
The gravity term and the force of the legs on the body are equivalent to the net

external force of the floating body, and the dynamic equation of the floating body can be
simplified as:

P′1(M
..
q + C

.
q) = τt = φT

1 ft (29)

where P1 = [E6 06×n], φ1 is the relationship torque between the net external force and the
generalized force acting on the floating body, τt is the generalized force torque acting on
the floating body, and ft is the net external force acting on the floating body.

Since the centroid coordinate axis is parallel to the inertial system coordinate axis, the
system’s net external force acting at the centroid can be directly described using the task
space system net external force:

f∗G =

 .
h

angle
G
.
h

line
G

 =

[ .
h

angle∗
G

mG
..
c∗

]
(30)

Due to the flexible deformation of the legs and the movement of the robot, there is a
deviation between the actual trajectory and the ideal centroid trajectory, so the centroid
trajectory PD feedback compensation is introduced as follows:

f∗G =

[ .
h

angle
G + kp,θ(h

angle
G − hangle′

G ) + kd,θ(
.
h

angle
G −

.
h

angle′

G )

mG[
..
c∗kp,c(c− c′) + kd,c(

.
c− .

c′)]

]
(31)

When calculating inverse dynamics, the position tracking error needs to be considered
to ensure that the torque calculation in the joint drive space controls the task space body
pose. The relationship between the task space body pose and the joint space generalized
acceleration can be expressed as:

..
x∗b = Jb

..
q +

.
Jb

.
q (32)

where xb is the acceleration vector of the expected body pose, and Jb is the Jacobian matrix
from joint space to body pose.

In this paper, the PD feedback control model is applied to the positional trajectory
tracking of the torso. The robot’s motion process is affected by flexible deformation, position
control error, and the nonlinear strong coupling between foot–ground interaction, so this
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paper uses a quadratic programming optimization algorithm to solve the problem. Its
optimization paradigm is expressed as follows:

min
γ

1
2γ

TQγ+ rTγ

s.t. CEγ+ ce = 0
CIγ+ ci ≥ 0

(33)

The objective functions are all expressed in the form of least squares optimization, and
the Hessian matrix and gradient term of the objective function are Q = ATA, R = −AT H,

where A =

[
w0AG
w1Jb

]
, and R =

[
η0[f∗G −

.
AG

.
q]

η1[f
..
xb + kp,b(xb − xb

′) + kd,b(
.
xb −

.
xb
′)−

.
Jb

.
q]

]
The decision variables are:

γ = [
..
q τt] (34)

The inequality constraints of the optimization algorithm include generalized accelera-
tion constraints and joint torque constraints, while the equality constraint is the centroid
dynamics equation constraint. The system’s optimal torque τt can be obtained through
a numerical solution algorithm. Then, in combination with the dynamic model of the
flexible-leg mechanism, the desired input torque τs for the hydraulic drive unit is obtained.

The desired output force of the cylinder is:

Fc = J0
−1τs (35)

where J0
−1 is the Jacobi matrix of the cylinder force reaction joint moment of the leg.

According to the force analysis of the hydraulic drive unit in Appendix D, the state
variables of the system are selected as x = [x1, x2, x3, x4] = [xp,

.
xp, p1, p2]. The state space

equations are as follows:
.
x1 = x2.
x2 = (−KLx1 − Btx2 + A1x3 −A2x4 − Fc)/mt
.
x3 = Γ1u + βe

V1
(−A1x2 − (Cip + Cep)x3 + Cipx4 + d)

.
x4 = Γ2u + βe

V2
(−A2x2 + Cipx3 − (Cip + Cep)x4)

(36)

where

Γ1 =
KsvβeCdw

V1

√
2
ρ

∣∣∣∣ (1 + sgn(xv))ps

2
+

(−1 + sgn(xv))p0

2
− sgn(xv)x3

∣∣∣∣
Γ2 = −KsvβeCdw

V2

√
2
ρ

∣∣∣∣ (1− sgn(xv))ps

2
+

(−1− sgn(xv))p0

2
+ sgn(xv)x4

∣∣∣∣
The equation of state of the system can be expressed as:{ .

x = Ax + Bu
y = Cx

(37)

The synovial surface and control rate were set to the following form:

e = F̂q − Fq (38)

The sliding mode surface is defined as follows:

s = e (39)

Let
.
s = 0, the equivalent control v of the system is:
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.
s =

.
e =

.
F̂q −

.
Fq (40)

The switching function of the sliding control is:

vs = −εsgn(s)− ks (41)

The function is established as follows using the theory of Lyapunov functions:

V = 1
2 s2, s = e

.
V = s

.
s = s

.
e = s(−εsgn(s)− ks) = −ε|s| − ks2 ≤ 0

(42)

The established slip film control system that can be obtained from Equation (42) is
stable. However, the sign function in the sliding film control will cause vibration and
chattering to the system, so the following boundary layer function is chosen to replace the
sign function:

sat(
s
µ
) =

{
sgn(s/µ) |s/µ| ≥ 1

s/µ |s/µ| < 1
(43)

where µ is the boundary layer function.
The control rate of the synovial system is:

u = b−1[
.
F̂q − εsat(s/

.
µ)− ks−Ax] (44)

4. Results and Discussion
4.1. Simulation

The heavy-duty hexapod robot is loaded with a total weight of 3500 kg. The mass
distribution of the torso is simulated by adjusting the corresponding mass blocks in Adams
according to the actual center-of-gravity position, and the fine flexible body models of
the thighs and calves are created by using the finite-element software and imported into
Adams through the Modal Neutral File (MNF). A control algorithm model of the system
was constructed in Matlab/Simulink, and a hydraulic system model based on a jet pipe
feedback two-stage servo valve control cylinder was also constructed. The force and
displacement output by the cylinder were used as driving signals for the robot in the
Adams environment.

A dynamic strain gauge and three-axis right-angle strain flower were used to test
the dynamic stress and strain of the legs of a hexapod robot. As shown in Figure 4, the
testing scheme design for dynamic stress and strain in this article is presented. According
to the distribution characteristics of the stress cloud map analyzed by simulation, the
experimental area is divided, and the number and position of the measured points are
determined. Due to the maximum load on the middle leg during two-step walking, the left
middle leg is selected as the experimental leg, and a total of 10 strain patterns are pasted on
the thigh and calf. The measurement point positions are determined in the experiment in
Hypermesh and described with node information, making it easy to find the corresponding
areas in Adams during post-processing comparative analysis.

In the experiment, strain signals from different directions were collected and processed
into equivalent stress for each measurement point and then compared with the simulation
results. The comparison curves for some of the measurement points are shown in Figure 5.
It can be observed that, although there are certain errors and fluctuations between the
experimental curve and the simulation curve, these are due to influences from factors
such as the on-site environment, foot contact stiffness, joint friction coefficients, wire fixing
methods, and patch operations. The overall trend remains highly consistent, thereby
validating the accuracy of the rigid–flexible coupling simulation model and the rationality
of subsequent analysis based on this model.
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Figure 5. Results of stress tests on LM leg.

A two-step forward mode was adopted as the robot’s motion planning during the
simulation process, with three legs serving as the supporting legs and the other three as
the swinging legs. The gait cycle was set to 2 s, with a duty factor of 0.5, a stride length
of 1 m, and the foot end of the swinging leg was elevated by 0.2 m in the z direction. The
robot’s foot trajectory utilized a low-impact foot trajectory method, constrained by the
initial position and speed, and the acceleration adopts an even sine function. As shown in
Figure 6, the prediction results of the centroid prediction algorithm proposed in this paper
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are displayed. It can be seen that the real-time error of the CoM in three directions does not
exceed 1 mm, which can be applied to the feedforward compensation control of flexible
deformation.
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Figure 6. Simulation scenarios and predictive results of the neural-network model.

Figure 7 shows the actual z-direction positions of the foot end of the three supporting
legs relative to the leg base. It can be seen that there is a deviation between the actual
positions of the foot ends of the three legs in the support state and the positions calculated
through position sensor feedback and the kinematic model. A strong coupling relationship
exists between the supporting legs and the rigid body. If the controller plans according
to the foot-end trajectory that has not undergone deformation, it will lead to the internal
force coupling of the leg itself and the internal force coupling of all supporting legs and the
body, causing instability in the entire body. It can be observed that the flexible deformation
of the three legs changes with the body’s movement, with the LM leg experiencing the
most significant flexible deformation, due to the fact that the force exerted on this leg is the
greatest among all supporting legs.
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Figure 7. Actual trajectory of the foot end of the supporting leg with respect to the origin of the
coordinate system of the supporting leg.

The feedforward compensation control proposed in this paper was validated through
simulation, with the results of the left middle (LM) leg shown in Figure 8. As original
controllers (OCs) could only improve the control accuracy of the drive unit and were
powerless against the flexible deformation of the leg mechanism, there was a corresponding
deviation in the foot trajectory relative to the base position from the expected trajectory.
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However, the position information of the feedback controller could not reflect this deviation,
thereby exacerbating the coupling between the leg and the body, leading to vibrations
throughout the system. The method of feedforward compensation for flexible deformation
proposed in this paper significantly improved the tracking accuracy of the robot’s foot
trajectory relative to the leg base. It reduced the real error of the foot trajectory relative to
the leg base.
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Figure 8. Curves of the desired and actual trajectories of the foot.

Figure 9 illustrates the changes in the position of the centroid during the robot’s
motion. It can be seen that the robot’s flexible-leg deformation would cause a deviation in
the CoM. The error in the z direction was present when the gait transitioned to a state with
multiple legs providing support simultaneously, resulting in a temporary reduction in the
body’s z-direction deviation, which then returned to the normal error level. Meanwhile,
corresponding deviations also existed in the trajectories of the CoM in the x and y direction,
which was due to the different deformation states of the supporting legs exerting different
forces on the robot’s body, causing a shift in the movement trajectory of the CoM. The
HCRFC controller was capable of controlling the CoM more smoothly and reducing the
deviation of the CoM during the robot’s movement.
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Figure 9. Curves of the desired and actual trajectories of the CoM.

As shown in Figure 10, a force deviation occurred during the robot’s gait transition
and movement. The LM leg could be seen to bear the highest force, and the force on the RR
and RF legs on one side changed with the CoM, but the overall vibration of the robot caused
force fluctuations at the foot end. Due to the flexible deformation of the leg, a deviation
exists between the actual position and the feedback position, which could easily lead to force
oscillations during impedance control and impede the tracking of the desired force. It can
be observed that after adopting the method of HCRFC mentioned in Section 3.2, although
certain force deviations may occur during the gait transition process, these deviations can
be quickly reduced to achieve a stable state, facilitating smooth movement of the robot.
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Figure 10. Curve of tracking effect of desired and actual force.

Based on the analysis mentioned above, it is understood that when the robot body
experiences vibrations, the trajectory of the center of mass will also deviate. This deviation
concurrently affects the force exerted on the legs. Thus, the trajectory of the center of mass
can effectively reflect the system’s motion state. In order to show the performance of the
proposed control method more clearly, this study simulated different scenarios for analysis,
using the maximum deviations in the three directions of the CoM as the targets. The results,
shown in Table 2, indicated that the control strategy proposed in this paper effectively
improved the performance of robots with rigid–flexible coupling characteristics.

Table 2. Table of HCRFC controller control performance.

Level Road Roll Angle = 10◦ Pitch Angle = 10◦

OC LCRFC OC LCRFC OC LCRFC

Gx_Error (mm) 38.3 6.6 41.6 6.9 53.6 8.3
Gy_Error (mm) 11.6 1.4 14.3 1.6 12.3 1.4
Gz_Error (mm) 4.8 0.9 5.1 0.9 6.7 1.2

4.2. Experiments

The control strategy proposed in this paper was validated on a real hexapod robot,
as shown in Figure 11. The control system was built in a hardware-in-the-loop configu-
ration, where the control algorithm model was established on a host computer through
MATLAB/Simulink and then deployed to an embedded industrial computer. The embed-
ded industrial control host used the VxWorks system, was equipped with corresponding
PCI cards, and had ample development resources, enabling real-time data exchange with
multiple distributed systems. The parameters of the experimental motion trajectory were
the same as the simulation conditions, with a bipedal walking pattern being used. The gait
cycle was 2 s, the stride was 1m, and the leg lift height was 0.2 m. Due to the noise in the
sensor data, a Butterworth filter was used for smoothing, with a delay of 0.2 ms.

This paper analyzes the expected foot forces that provide a direct reference for feed-
forward compensation, as the actual position of the foot and leg data in a realistic robot
is difficult to measure. Figure 12 shows the estimation results of future foot force based
on the centroid trajectory and current foot force using the Kalman prediction algorithm. It
can be seen that the centroid trajectory based on foot force and estimation proposed in this
article can accurately predict the foot force at the next moment.

Figures 13 and 14 present the data on the CoM position and foot-end force in the
experiment. The trajectory of the CoM was predicted using a neural-network model,
while the data on foot-end force were directly measured by sensors. It was observed
that, in the initial stages, the robot still experienced transient vibrations due to the impact
system, causing certain deviations in all three directions and corresponding fluctuations
in the foot-end force of the supporting legs. After employing the HCRFC control, the
robot demonstrated improved trajectory tracking performance in all three directions of
the CoM, and the foot-end force of each supporting leg also reached a stable state more
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quickly. However, compared to the simulation results, its control performance declined
somewhat, because the robot had to consider disturbances such as friction, processing
errors, and other external environmental factors. These issues will be the focus of our future
research. In summary, the experiment and simulation validated the performance of the
HCRGC controller.

Biomimetics 2023, 8, x FOR PEER REVIEW 16 of 21 
 

 

Table 2. Table of HCRFC controller control performance. 

 Level Road Roll Angle = 10° Pitch Angle = 10° 
OC LCRFC OC LCRFC OC LCRFC 

Gx_Error (mm) 38.3 6.6 41.6 6.9 53.6 8.3 
Gy_Error (mm) 11.6 1.4 14.3 1.6 12.3 1.4 
Gz_Error (mm) 4.8 0.9 5.1 0.9 6.7 1.2 

4.2. Experiments 
The control strategy proposed in this paper was validated on a real hexapod robot, 

as shown in Figure 11. The control system was built in a hardware-in-the-loop 
configuration, where the control algorithm model was established on a host computer 
through MATLAB/Simulink and then deployed to an embedded industrial computer. The 
embedded industrial control host used the VxWorks system, was equipped with 
corresponding PCI cards, and had ample development resources, enabling real-time data 
exchange with multiple distributed systems. The parameters of the experimental motion 
trajectory were the same as the simulation conditions, with a bipedal walking pattern 
being used. The gait cycle was 2 s, the stride was 1m, and the leg lift height was 0.2 m. Due 
to the noise in the sensor data, a Butterworth filter was used for smoothing, with a delay 
of 0.2 ms. 

 

 
Figure 11. Diagrams of experimental platforms and scenarios. 

This paper analyzes the expected foot forces that provide a direct reference for 
feedforward compensation, as the actual position of the foot and leg data in a realistic 
robot is difficult to measure. Figure 12 shows the estimation results of future foot force 
based on the centroid trajectory and current foot force using the Kalman prediction 
algorithm. It can be seen that the centroid trajectory based on foot force and estimation 
proposed in this article can accurately predict the foot force at the next moment. 

Figure 11. Diagrams of experimental platforms and scenarios.

Biomimetics 2023, 8, x FOR PEER REVIEW 17 of 21 
 

 

Figure 12. Curves of predicted and actual end-foot forces. 

Figures 13 and 14 present the data on the CoM position and foot-end force in the 
experiment. The trajectory of the CoM was predicted using a neural-network model, while 
the data on foot-end force were directly measured by sensors. It was observed that, in the 
initial stages, the robot still experienced transient vibrations due to the impact system, 
causing certain deviations in all three directions and corresponding fluctuations in the 
foot-end force of the supporting legs. After employing the HCRFC control, the robot 
demonstrated improved trajectory tracking performance in all three directions of the 
CoM, and the foot-end force of each supporting leg also reached a stable state more 
quickly. However, compared to the simulation results, its control performance declined 
somewhat, because the robot had to consider disturbances such as friction, processing 
errors, and other external environmental factors. These issues will be the focus of our 
future research. In summary, the experiment and simulation validated the performance 
of the HCRGC controller. 

Figure 13. Curves of motion deviation of the CoM. 

Figure 14. Curve of tracking effect of desired and actual force. 

5. Conclusions 

4.0 4.5 5.0 5.5 6.0

5

10

15
 Actual  KF PE 

RF
-F

or
ce

[k
N

]

Time[s]
4.0 4.5 5.0 5.5 6.0

14

16

18

20

22  Actual  KF PE 

LM
-F

or
ce

[k
N

]

Time[s]
4.0 4.5 5.0 5.5 6.0

5

10

15
 Actual  KF PE

RR
-F

or
ce

[k
N

]

Time[s]

0 2 4 6 8
-20

-15

-10

-5

0

-5

-10

-15

-20

 HCRFC  OC

X
-E

rro
r[m

m
]

Time[s]
0 2 4 6 8

-10

-5

0

5

10

-

-5

 HCRFC  OC

Y
-E

rro
r[m

m
]

Time[s] 0 2 4 6 8
-7

-5

-2

0

2

-2

-5

 HCRFC   OC 

Z-
Er

ro
r[m

m
]

Time[s]

-7

0 2 4 6 8
0

5

10

15
HCRFC  OC Desired 

R
F-

Fo
rc

e[
kN

]

Time[s]
0 2 4 6 8

0

10

20

HCRFC OC Desired 

LM
-F

or
ce

[k
N

]

Time[s]
0 2 4 6 8

0

5

10

15

20 HCRFC  OC  Desired 

RR
-F

or
ce

[k
N

]

Time[s]

Figure 12. Curves of predicted and actual end-foot forces.

Biomimetics 2023, 8, x FOR PEER REVIEW 17 of 21 
 

 

Figure 12. Curves of predicted and actual end-foot forces. 

Figures 13 and 14 present the data on the CoM position and foot-end force in the 
experiment. The trajectory of the CoM was predicted using a neural-network model, while 
the data on foot-end force were directly measured by sensors. It was observed that, in the 
initial stages, the robot still experienced transient vibrations due to the impact system, 
causing certain deviations in all three directions and corresponding fluctuations in the 
foot-end force of the supporting legs. After employing the HCRFC control, the robot 
demonstrated improved trajectory tracking performance in all three directions of the 
CoM, and the foot-end force of each supporting leg also reached a stable state more 
quickly. However, compared to the simulation results, its control performance declined 
somewhat, because the robot had to consider disturbances such as friction, processing 
errors, and other external environmental factors. These issues will be the focus of our 
future research. In summary, the experiment and simulation validated the performance 
of the HCRGC controller. 

Figure 13. Curves of motion deviation of the CoM. 

Figure 14. Curve of tracking effect of desired and actual force. 

5. Conclusions 

4.0 4.5 5.0 5.5 6.0

5

10

15
 Actual  KF PE 

RF
-F

or
ce

[k
N

]

Time[s]
4.0 4.5 5.0 5.5 6.0

14

16

18

20

22  Actual  KF PE 

LM
-F

or
ce

[k
N

]

Time[s]
4.0 4.5 5.0 5.5 6.0

5

10

15
 Actual  KF PE

RR
-F

or
ce

[k
N

]
Time[s]

0 2 4 6 8
-20

-15

-10

-5

0

-5

-10

-15

-20

 HCRFC  OC

X
-E

rro
r[m

m
]

Time[s]
0 2 4 6 8

-10

-5

0

5

10

-

-5

 HCRFC  OC

Y
-E

rro
r[m

m
]

Time[s] 0 2 4 6 8
-7

-5

-2

0

2

-2

-5

 HCRFC   OC 

Z-
Er

ro
r[m

m
]

Time[s]

-7

0 2 4 6 8
0

5

10

15
HCRFC  OC Desired 

R
F-

Fo
rc

e[
kN

]

Time[s]
0 2 4 6 8

0

10

20

HCRFC OC Desired 

LM
-F

or
ce

[k
N

]

Time[s]
0 2 4 6 8

0

5

10

15

20 HCRFC  OC  Desired 

RR
-F

or
ce

[k
N

]

Time[s]

Figure 13. Curves of motion deviation of the CoM.
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5. Conclusions

This paper proposed an HCRFC strategy for legged robots. Firstly, to reduce the defor-
mation of the body and the flexible-leg end, a method of flexible deformation feedforward
compensation is proposed. Then, to minimize the impact of leg deformation on the robot’s
body, a dynamic component compensation control is designed that takes into consideration
the centroid linear momentum, centroid angular momentum, and body trajectory. The
CLM, CAM, and body trajectory are used as objective functions to solve for the desired
driving torque through a quadratic programming optimization algorithm. Finally, a sliding
mode controller is designed to achieve torque tracking of the hydraulic drive unit. This
control strategy has been tested and simulated on a hexapod robot with a total weight of
3.5 tons. The results show that the method proposed in this paper can effectively reduce
system vibrations. The control framework proposed in this paper can be widely applied in
the field of legged robots.

In the future, we will focus on researching the decoupling control between each leg
and joint in the support state. In addition, introducing energy-based posture adjustment
into the existing framework is one of our upcoming goals.
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Appendix A

The total mass matrix of the leg is represented as follows:

M =



m11 0 0 0 0 0 0
0 m22 m23 m24 m25 m26 0
0 m32 m33 0 0 m36 m37
0 m42 0 m44 0 0 0
0 m52 0 0 m55 0 0
0 m62 m63 0 0 m66 0
0 0 m73 0 0 0 m77


where
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m11 = m̃21(
a2

1+a2
2

2 sin2 θ2 −
l221
3 cos θa(sin2 θ2 − 1) + l21

π cos θa sin 2θ2(a1 − a2
2 )) + m̃22(

a2
1+a2

2
2 sin2 θ2 −

l222
3 cos θb(sin2 θ2 − 1)

+ l22
π cos θb sin 2θ2(a1 − a2

2 )) + m3(
l221 cos2 θa+l222 cos2 θb

2 cos θ2
2 −

l3
3 (sin2 θ3 − 1) + b2

1+b2
2

2 sin2 θ3 +
l3
π sin 2θ3(b1 − b2

2 )

+l2 cos θ2(l3 cos θ3 +
4b1
π sin θ3)) + l2

1(m2 cos θ2 + m3 cos θ3) +
4l1
π (m2a1 sin θ2 + m3b1 sin θ3) + J0;

m22 = m2
3 (l2

21 + l2
22 + cos2 θa + cos2 θb +

a2
1+a2

2
2 ) + m3l2

2 ; m23 = m32 = mp(l2
3 − l2l3 sin θ3)− m3 l2 l3

2 cos(θ2 + θ3)− 2b1
π l2 sin(θ2 + θ3);

m24 = m42 = − m̃21 l21 cos θa+m̃22 l22 cos θb
π ; m25 = m52 = m̃21 l21 cos θa+m̃22 l22 cos θb

2π ; m26 = m62 = 2m3 l2 cos(θ2+θ3)
π ;

m33 = mp l32 + m3(
l22
3 +

b2
1+b2

2
2 ); m36 = m63 = m3 l3

π ; m37 = m73 = m3 l3
2π ; m44 = m55 = m2

2 ; m66 = m77 = m3
2

Appendix B

The stiffness matrix of the leg is represented as:

K =



0
0

0
k44

k55
π4

2l3
3

E3I3

8π4

l3
3

E3I3


where

k44 =
π4E1I1

2(l21 cos θa)
3 +

π4E2I2

2(l21 cos θa + l22 cos θb)
3 −

π4E2I2

2(l21 cos θa)
3 ; k55 =

8π4E1I1

(l21 cos θa)
3 +

8π4E2I2

(l21 cos θa + l22 cos θb)
3 −

8π4E2I2

(l21 cos θa)
3

Appendix C

The expression for the Kalman prediction algorithm is as follows:{
yt = fiz(yt−1) + w(t)

zt = yt + vt
(A1)

where w(t) is the system state error and v(t) is the measurement error, and the model’s
prediction step equation is: {

ŷ′t = fiz(ŷt−1)

P̂′t = NP̂t−1NT + Q̂t
(A2)

where P̂′ is the covariance matrix of the current predicted state, Q̂t is the learnable parameter
in the model, and N is the Jacobi matrix of fiz(·) with respect to yt.

The equation for the updating step of the model is
Kt = P̂′t(P̂

′
t + R̂t)

−1

ŷt = ŷ′t + Kt(ẑt − ŷ′)
P̂t = (I−Kt)P̂

′
t

(A3)

where R̂t is the learnable parameter in the model, ẑt is the observation of the target at
moment t, and Kt is the Kalman gain.

Appendix D

An electro-hydraulic servo valve-controlled cylinder system was used as the hydraulic
drive unit of the robot, and the flow equation of the servo valve is:

QL = Ksvxv −KcPL (A4)

where Ksv is the zero position flow gain of the directional valve, and Kc is the pressure-flow
coefficient of the directional valve at steady state.
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The flow rate in the working chamber of the hydraulic cylinder is:

QL = Ac
dyg

dt
+ CL pL +

Ve

4βe
· dpL

dt
(A5)

In this paper, the force balance equations of the hydraulic cylinder piston and load are
obtained by neglecting the nonlinear loads such as Coulomb friction:

AAPA −ABPB = Mt
d2yg

dt2 + Bt
dyg

dt
+ KLyg + FL (A6)

Mt is the total mass of the hydraulic cylinder piston and load, b is the viscous damping
coefficient of the load, KL is the spring stiffness of the oil, and FL is the external load force
acting on the piston.
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