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Abstract: The COVID-19 epidemic poses a worldwide threat that transcends provincial, philosophical,
spiritual, radical, social, and educational borders. By using a connected network, a healthcare system
with the Internet of Things (IoT) functionality can effectively monitor COVID-19 cases. IoT helps a
COVID-19 patient recognize symptoms and receive better therapy more quickly. A critical component
in measuring, evaluating, and diagnosing the risk of infection is artificial intelligence (AI). It can
be used to anticipate cases and forecast the alternate incidences number, retrieved instances, and
injuries. In the context of COVID-19, IoT technologies are employed in specific patient monitoring
and diagnosing processes to reduce COVID-19 exposure to others. This work uses an Indian dataset
to create an enhanced convolutional neural network with a gated recurrent unit (CNN-GRU) model
for COVID-19 death prediction via IoT. The data were also subjected to data normalization and data
imputation. The 4692 cases and eight characteristics in the dataset were utilized in this research.
The performance of the CNN-GRU model for COVID-19 death prediction was assessed using five
evaluation metrics, including median absolute error (MedAE), mean absolute error (MAE), root mean
squared error (RMSE), mean square error (MSE), and coefficient of determination (R2). ANOVA and
Wilcoxon signed-rank tests were used to determine the statistical significance of the presented model.
The experimental findings showed that the CNN-GRU model outperformed other models regarding
COVID-19 death prediction.
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1. Introduction

Presently, there are many diseases that have become prevalent [1]. The COVID-19
coronavirus illness was initially identified in December 2019 in China, in Wuhan, and has
since spread around the world. The virus spreads quickly because it is easily transmitted
from one individual to another [2]. Technology and science play a significant part in this
confusing conflict. China focused on medical research and using robots to deliver food and
medical supplies, automatons to clean up open spaces, and broadcasting and watching
sound information exchange publicly to encourage people to remain at home. In order to
help COVID-19 patients, a lot of human expertise was employed to detect the new particles
in transit [3]. Numerous studies are being conducted to monitor, trace contacts, forecast,
and diagnose the COVID-19 illness. One of these innovations is the Internet of Things (IoT),
which is attracting international attention for its growing role in healthcare systems’ ability
to forecast, identify, prevent, and monitor the majority of infectious illnesses. Similar to
how it aids in the battle against COVID-19, it also helps in the detection of the COVID-19
epidemic through monitoring, contract tracking, and connecting with IoT-based efficient
technologies [4]. IoT is a network of connected electronic devices, actuators, sensors, and
data that are collected in their raw form and delivered online via the internet [5].

Healthcare represents one of the vital domains that employ IoT systems and smart
devices for supervision. IoT is a successful field for many sectors and academic subjects.
IoT transition supplies modern healthcare services with scientific and socioeconomic per-
spectives. Since the outbreak of the pandemic, several scientific groups have stepped up
their efforts to employ a variety of methods to address this global issue. IoT techniques
are utilized in certain procedures, such as prenatal screening, patient monitoring, and
post-patient event response, to reduce COVID-19 exposure to other individuals [6]. The IoT-
based healthcare system is described in depth by the Internet of Medical Things (IoMT) [7].
When employed during this epidemic, the IoMT can assist patients in receiving appro-
priate medical treatment at home, and healthcare officials and governments can utilize
the extensive dataset built for COVID-19 spread control. People with mild symptoms can
buy diagnostic and medical equipment, including thermometers, smart watches, smart
helmets, drugs, protective masks, and tracking infection packages. Patients can routinely
upload overall health records via a wireless network and the internet to medical cloud
servers, and these data can be sent to the closest hospitals, health centers, or clinics, as well
as the Centers for Disease Control (CDC) [8]. IoMT offers a platform for smart devices
and sensors to communicate effectively in a smart environment, and makes it simple to
interchange data and information online.

A critical component in measuring, evaluating, and diagnosing diseases is artificial
intelligence (AI). It can be used to anticipate cases as well as forecast the number of alternate
incidences, recovered cases, and injuries, along with specific software engineering analyzers
that concentrate on the detection of patients through the production of medical images
like CT filters and X beams; a lot of professionals employ AI to uncover novel drugs and
treatments [3]. AI is made to act and think like a human brain, automating many tasks
by imitating its thought processes. In preparation for COVID-19’s eventual cross-country
accessibility, machine learning (ML) and deep learning (DL) techniques can be utilized
to track typical behavior using open data sources from real-time applications. These
techniques can forecast the immediate future and aid in minimizing the negative impacts
of COVID-19 [9–11]. Around the world, concerns have been raised about the COVID-19
pandemic strategy’s capabilities and delivery, quick response, linked information, and
evaluation [6]. Even though the current deep learning techniques have considerably
improved their performance for COVID-19 detection, the bulk of these techniques still have
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overfitting issues [12]. Advanced healthcare informatics and computational intelligence
are enabling the development of secure and patient-oriented IoT systems that use BiLSTM
deep learning and decision tree models to support automated diagnosis [13].

Optimization is a powerful tool used in various domains, and it plays a significant
role in the medical field. Optimization aims to achieve the best possible outcomes or
decisions under specific conditions based on a set of variables and defined criteria. In
the medical domain, optimization is applied in diverse areas, such as the prediction and
classification of monkeypox disease [14–16], feature selection and classification in diagnostic
breast cancer [17], classification of diabetes [18], neurodegenerative disorders [19], and
classification of COVID-19 in chest X-ray images [20]. The use of optimization in the
medical field contributes to enhancing patient outcomes and maximizing the utilization of
available resources.

An IoT-based system is necessary to address the monitoring and diagnostic issues, as
it will aid in implementing stay-at-home protocols and decreasing the number of medical
resources required [19]. With this method, information on healthcare facilities can be
gathered, allowing for more efficient medical care to be established and more equitable
distribution of government and private donations of medical supplies and equipment
to hospitals and clinics [20]. In order to provide timely and effective medical services,
especially in light of COVID-19, the disciplines of IoT and AI have been forcefully urged to
routinely automate and simplify numerous duties for health professionals. This research
delves into the role that IoMT and AI will play in bringing healthcare to a completely
new level in the face of the COVID-19 epidemic. The hybrid deep learning model of
a convolutional neural network with a gated recurrent unit for predicting COVID-19
mortality via the IoT can be combined with a biosensor for real-time patient monitoring. A
biosensor is a device that detects and measures biological, chemical, or physical signals
in the body. By integrating the biosensor with the hybrid CNN-GRU model, the system
can collect continuous and accurate data to improve the accuracy of COVID-19 mortality
prediction. This can lead to better patient outcomes and more efficient resource allocation
in clinical settings. Monitoring patients remotely and continuously, predicting the risk of
COVID-19 complications and mortality, and developing new and personalized treatment
strategies are the main motivations of this study.

This paper used an Indian dataset to test the efficacy of a convolutional neural network
(CNN) equipped with a gated recurrent unit (GRU) for predicting the next round of the
COVID-19 pandemic. In all, there are 4692 examples and eight characteristics in the
dataset utilized for this research. The CNN-GRU model for COVID-19 death prediction is
calculated using five assessment metrics: root mean squared error (RMSE), mean square
error (MSE), median absolute error (MedAE), mean absolute error (MAE), and coefficient
of determination (R2). The main contributions of this study are as follows:

• The research utilizes ML models for the death prediction of COVID-19 based on an
Indian dataset from Kaggle; it includes eight features and 4692 instances.

• Data preprocessing was performed on the chosen dataset using data normalization
and mean imputation.

• A novel CNN-GRU model with an IoT-based framework is suggested for predicting
suspected cases of the COVID-19 pandemic.

• The proposed model (CNN-GRU) and some of the ML models (Random Forest (RF)
Regressor, Support Vector Regressor (SVR), K-Nearest Neighbor (KNN) Regressor,
Bayesian Ridge (BR) Regressor, Gradient Boosting (GB) Regressor, and Dummy Re-
gressor (DR)) are examined and compared.

• The evaluation of the proposed approach was applied using MAE, MedAE, MSE,
R2, and RMSE. The obtained results illustrated that the CNN-GRU model performed
better than other prediction models and several studies.

• ANOVA and Wilcoxon signed-rank tests are used to determine if model performance
differences are statistically significant.
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The remainder of the paper is structured as follows. Related research to the search
problem is summarized in Section 2. The experimental setup for the suggested ML tech-
niques via IoT is covered in Section 3. Section 4 discusses the arguments for the findings
and main results. Section 5 concludes with a summary of our findings.

2. Related Work

The use of biosensors and the Internet of Medical Things (IoMT) in COVID-19 pre-
diction is an active area of research. Biosensors can detect biological signals and transmit
data in real-time to IoMT-enabled devices, allowing for the continuous monitoring of
patients [21]. These data can be used in combination with machine learning models to
predict disease progression, severity, and mortality. Several studies have investigated
the use of biosensors and IoMT in COVID-19 prediction. For example, a recent study
developed a biosensor-based system that uses artificial intelligence algorithms to predict
COVID-19 severity and mortality. The system integrates biosensors with IoMT-enabled
devices, allowing real-time patient monitoring and data collection [22].

Another study used a wearable biosensor to monitor COVID-19 patients and predict
disease severity based on changes in heart rate variability [23]. The study found that
changes in heart rate variability were associated with disease severity and could be used
to predict disease progression. Overall, the integration of biosensors and IoMT has the
potential to improve COVID-19 prediction, leading to better patient outcomes and a more
efficient allocation of healthcare resources [24]. Healthcare is being revolutionized by
cutting-edge innovations like IoT and smart sensors, robots, artificial intelligence (AI),
blockchain, machine learning (ML), augmented reality (AR), virtual reality (VR), big data,
cloud computing, drones and intelligent mobile applications, 5G, and so on. Pre-screening,
early identification, monitoring quarantined/infected persons, estimating future infection
rates, and other methods of dealing with COVID-19 were discussed. Research opportunities
made possible by the deployment of cutting-edge technology to combat the COVID-19
pandemic are also explored [25–27]. A developed neural network model presented by
Wieczorek et al. [28] that showed the spread of the COVID-19 virus using the NAdam
optimizer achieved 99.00% accuracy.

A six-tiered architecture of IoT tools for controlling the deadly COVID-19 virus was
presented by Farhana Ajaz et al. [29]. The function of machine learning strategies in the
identification of COVID-19 was explored. The effects of COVID-19 were mitigated in
a number of ways, some of which made use of IoT technology. In addition, IoT could
be applied in the medical field to guarantee people’s safety and health while keeping
expenses down. Mir et al. [30] presented a real-time IoT-enabled architecture for COVID-19
diagnosis and prediction by gathering symptomatic indicators and better evaluating the
virus’s characteristics. By mining health information acquired in real-time detection from
sensing devices and IoT objects, the framework was able to determine the existence of the
COVID-19 virus. The framework’s four primary parts were the data collection hub, the data
analytics hub, the diagnostics hub, and the cloud system. This paper offered five machine
learning methods for real-time pointing and detection of COVID-19 suspects. Results
indicated an accuracy of 95% or higher using the applied machine learning methods.

Anita S. Kini et al. [31] developed a system for the screening of possible instances
of COVID-19 using an ensemble of DL models and the IoT. The ensemble was made up
of three common pre-trained DL models. The CT scans were collected using clinical IoT
devices, and the automated diagnoses were processed by IoT platforms. Over the course
of a four-class dataset, the proposed methodology was evaluated against 13 competing
models. From their experiments, the suggested ensembled DL technique achieved a 98.98%
success rate. As a result, the suggested methodology accelerated the process of identifying
COVID-19. Fatema Al-Dhaen et al. [32] developed a simulation to study how ethical AI
could help the advancement of IoMT in medical settings. Asghari et al. [33] suggested
an IoT-based prediction method for colorectal cancer (CRC). Through the use of wearable
embedded devices and healthcare IoT devices, it generates a CRC prediction technique by
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collecting vital clinical data via IoMT sensors and devices, enabling the medical staff to
track the biomarkers of an aging individual over time.

To easily recognize the COVID-19 CT images and chest X-rays available to the public,
a hybrid framework of the artificial neural network with parameters optimized using the
butterfly optimization algorithm has been suggested and compared to the pre-trained
GoogLeNet, AlexNet, and the SVM for COVID-19 recognition. With average accuracy
of 90.48, 86.76, 84.97%, and 81.09 for the proposed model, AlexNet, GoogLeNet, and
SVM, the experimental findings validated the effectiveness of the suggested model [34].
Khan et al. [35] suggested two novel DL frameworks, Deep Boosted Hybrid Learning
(DBHL) and Deep Hybrid Learning (DHL) for efficient COVID-19 identification in the
X-ray database. On the radiologist-verified chest X-ray database, the suggested COVID-19
identification frameworks were compared against traditional CNNs. Experiments showed
that the DBHL, which combined the feature spaces of two deep CNNs, achieved high levels
of accuracy equal to 98.53%.

Shawni Dutta et al. [36] suggested a technique for checking verification using the
principles of DL neural networks. The framework integrated long short-term memory
(LSTM) and gated recurrent unit (GRU) for training the database, and the outcomes of
the predictions matched those made by clinical physicians. The predictions were checked
against the source data using some metric that had been established. The experimental
outcomes demonstrated the efficacy of the suggested method in producing appropriate
outcomes in light of the serious illness epidemic. Soudeh Ghafouri et al. [37] integrated
LSTM, recurrent neural network, multilayer perceptron, and adaptive neuro-fuzzy infer-
ence system. Researchers evaluated multiple machine learning strategies for their ability
to foretell the spreading of COVID-19. These models integrated data from illnesses with
comparable patterns to COVID-19, allowing for the discovery of learning indicators that
affect differences in COVID-19 dissemination across different locations or populations, as
well as the implementation of what-if scenarios based on those approaches. Thus, these
techniques, if used in policymaking, would aid in the development of effective interven-
tions and the avoidance of ineffective restraints. From the previous work, we can conclude
that the CNN-GRU model proposed in the paper is novel in the following ways.

It uses an Indian dataset to train and test the model, which is different from most other
CNN-GRU models for COVID-19 death prediction, which have been trained on datasets
from other countries. It incorporates an IoMT-based framework into the model, which
allows the model to learn from real-time data on COVID-19 cases and deaths. It is evaluated
using a variety of metrics, including MAE, MedAE, MSE, R2, and RMSE, which provides a
more comprehensive assessment of the model’s performance. Compared to other recent
models for COVID-19 death prediction, the CNN-GRU model proposed in the paper has
the following advantages:

• It achieves better prediction performance on the Indian dataset, which is a challenging
dataset due to its high variability.

• It is more robust to noise and outliers in the data.
• It is more interpretable, meaning that it is easier to understand how the model

makes predictions.

Here are some specific examples of how the CNN-GRU model could be used to
improve COVID-19 response:

• The model could be used to predict the number of COVID-19 deaths in different
regions and countries. This information could be used to allocate resources more
effectively and to develop targeted interventions to reduce mortality.

• The model could be used to identify high-risk populations for COVID-19 mortality.
This information could be used to develop targeted public health campaigns and to
provide support to vulnerable individuals.

• The model could be used to predict the impact of different public health measures on
COVID-19 mortality. This information could be used to inform decision-making about
how to best control the pandemic.
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The CNN-GRU model is still under development, but it has the potential to be a
valuable tool for COVID-19 response. Furthermore, the CNN-GRU model proposed in
the paper is a novel and promising approach for COVID-19 death prediction. It has the
potential to be used to develop early warning systems for future waves of the pandemic
and to inform public health decision-making.

3. The Proposed CNN-GRU Model

The proposed model is a hybrid model between CNN and GRU, utilized in this paper
to predict COVID-19 via IoMT. The proposed model is compared with some ML models,
such as Random Forest (RF) Regressor [38], K-Nearest (KNN) Regressor [39], Support
Vector Regressor (SVR) [40], Gradient Boosting (GB) Regressor [41], Dummy Regressor
(DR), and Bayesian Ridge (BR) Regressor [42], as shown in Figure 1.
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The CNN-GRU model for COVID-19 death detection was developed through a series
of steps using preprocessed data collected from the Indian dataset. The first step involved
preprocessing the data to ensure they were in a format the model could use. This involved
cleaning the data, removing any missing values, and transforming them into a suitable form
for analysis. The data are divided into 80% for training and the remaining 20% for testing.
The next step was to apply a convolutional neural network (CNN) to the preprocessed data.
The CNN extracted relevant features from the data, which could be used as input for the
next step. Following the application of the CNN, a gated recurrent unit (GRU) was used to
model the temporal relationships between the features extracted by the CNN. The GRU is
a recurrent neural network capable of modeling time-series data, making it well-suited for
this task. The output of the GRU was then fed into a fully connected layer, which was used
to predict whether a patient was likely to die from COVID-19.

The creation and implementation of these models were made possible by collecting
and utilizing a comprehensive Indian dataset. To ensure the accuracy and reliability of the
suggested algorithms, various validation techniques, such as mean squared error (MSE),
mean absolute error (MAE), median absolute error (MedAE), root mean squared error
(RMSE), and R-squared (R2), were employed. The proposed methodology is visually
represented in Figure 2, outlining the steps taken to develop and evaluate the models.
These rigorous testing and validation methods ensure that the models are dependable and
accurate, making them valuable tools in various applications.
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LSTM (long short-term memory) and GRU (gated recurrent unit) are both types of
recurrent neural networks (RNNs) that are commonly used in time-series analysis and other
applications that require the modeling of enrolled processed data. It was hypothesized that
LSTM could solve the issue of vanishing and bursting gradients. In LSTM, “cells” are the
fundamental data processing units [43]. It is possible to interpret these cells as advanced
neuronal cells. Many gates in a cell regulate and keep open a pathway for data to go along
for the duration of a potentially infinite series. Because of this capacity, LSTM can tell
if data are relevant in the near and far future. Because of this, it works wonderfully for
sequential problems of any kind. LSTM’s strength lies in its ability to store and transform
the input cell memory into the output cell state via its cell state. According to the following
equations, LSTM is made up of an input gate, a forget gate, an update gate, and an output
gate [44,45]:

it = σ(Wi × [ht−1, xt] + bi) (1)

ft = σ
(

W f × [ht−1, xt] + b f

)
(2)

ct = tanh(Wc × [ht−1, xt] + bc) (3)

ot = σ(Wo × [ht−1, xt] + bo) (4)

ht = ot × tanh(ct) (5)

where it, ft, ct, ot, and ht are the input, forget, update, output gate, and hidden layers.
CNN relies heavily on a supervised learning model inspired by how humans naturally

pay attention to images. The convolutional neural network (CNN) is chosen over other ma-
chine learning models since it does not need any sort of feature extraction preparation [46].
The convolutional, max-pooling, and nonlinear activation layers make up a CNN, a cat-
egory of deep neural networks. Convolution, the procedure that gives CNN its name, is
carried out in the convolutional layer, which is regarded as a primary layer of the CNN. In
the convolutional layer, the inputs to the layer are processed by means of kernels. Feature
maps are created by convolving all the convolutional layer outputs [47]. Training a CNN
model is difficult because of issues with disappearing and growing gradients. Two modern
deep learning methods, GRU and LSTM, efficiently deal with this problem. To get around
training issues and save the system’s current state across iterations, a new variant of CNN
called the GRU has been created [48].

In 2014, Cho proposed a variation of the LSTM called the gated recurrent unit (GRU).
Currently, GRU networks are mostly used for classification problems and are seldom used
for regression problems. Given that there is no output gate in a standard LSTM, the training
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time is longer and more parameters are required [49]. The update gate in a GRU cell is a
combination of the forget gate and the input gate, which is a concealed state. Not only that,
but GRU unifies the hidden and cell states into a single state. These equations characterize
the GRU’s hidden, updated, and reset states as follows [44]:

pt = (1 − zt)× pt−1 + zt × pt (6)

dt = σ(Wd × [pt−1, it]) (7)

st = σ(Ws × [pt−1, it]) (8)

pt = tanh
(
W ×

[
rt × pt−1, it

])
(9)

where it, pt−1, d, st, and pt are the vectors of input, previous output, update gate, reset
gate, and hidden layer, respectively. The parameter zt is a weighting factor that determines
the extent to which the value of pt is influenced by the value of pt−1.

While both LSTM and GRU networks have been shown to be effective in various tasks,
the choice between them often depends on the specific problem being addressed, the size of
the dataset, and the computational resources available. In some cases, LSTM networks can
be preferable when modeling very long sequences, while GRUs can be a better choice for
smaller datasets or when training time is a concern. Ultimately, the choice between LSTM
and GRU networks should be made based on careful experimentation and the evaluation
of their performance on the specific task at hand. Algorithm 1 outlines the steps involved
in the proposed CNN-GRU model for COVID-19 death detection. The model is designed
to take preprocessed data from the Indian dataset as input and generate predictions of the
likelihood of COVID-19-related deaths in patients.

Algorithm 1: Proposed CNN-GRU for COVID-19 death prediction

1. Input: COVID-19 dataset D, Number of CNNs N.
2. Initialize GRU parameters.

//Preprocess dataset
3. Normalize sample in dataset D.
4. Divide D into 2 subsets: training and testing.
5. Define the CNN layer with filters, kernel size, activation function, and padding.
6. Apply the CNN layer to the input data to extract relevant features.
7. Define the GRU layer with hidden units, activation function, and dropout rate.

//Train CNNs
8. For i = 1 to n do
9. Train CNN using the training set

//Build the GRU model
10. Add the GRU layer of L1 units and set dropout = d1 and recurrent dropout =
s1.
11. Compute update gate dt, reset gate st using Equations (7) and (8).
12. Compute the candidate state pt using Equation (9)
13. While stopping criteria did not met do
14. While training for all instances do
15. Calculate linear function as an activation function used in the output
layer.
16. Update weights and bias
17. End while
18. End while

//Test the proposed model
19. Test hyperparameters with the test dataset.
20. Return evaluate result in the test dataset.



Biomimetics 2023, 8, 552 9 of 25

4. Statistical Analysis of Dataset

In this section, we utilized the standard Indian dataset available at Kaggle with the
link https://www.kaggle.com/datasets/imdevskp/covid19-corona-virus-india-dataset,
accessed on 6 November 2023.

The dataset collection on the COVID-19 outbreak in India includes various sources
of information. The data collection began on January 30 when the first case of COVID-19
in India was reported, originating from China. The dataset includes multiple files, such
as complete.csv, which provides day-to-day state-wise numbers of cases sourced from
the Ministry of Health and Family Welfare (MoHFW) website. The dataset also includes
information on the number of tests conducted on a daily basis and the latest state-level
tests. The data sources for this collection are the Ministry of Health and Family Welfare,
India’s official website, and the COVID-19 India Tracker website, with the data themselves
accessible through the COVID-19 India Tracker Data API. These sources provide valuable
information for tracking and analyzing the COVID-19 situation in India.

The dataset comprises 4692 instances and eight features, including latitude, longitude,
total confirmed cases, cured/discharged/migrated, new cases, new deaths, and new re-
coveries, with the target feature being deaths. Since we have 4692 cases, 80% of which
was classified for training and the remaining 20% for testing, we trained 3754 subjects and
tested the remining 938 subjects. A summary of the statistical analysis for the dataset is
presented in Table 1.

Table 1. Statistical calculation for the features.

Count Mean Std. Min. 50% Max.

Latitude 4692 23.185 6.6359 0.0 23.9408 34.2996
Longitude 4692 81.451 6.9594 0.0 79.0193 94.7278

Total confirmed cases 4692 11,393 37,208 1.0 619.0000 468,265
Cured/Discharged/Migrated 4692 6908 23,390 0.0 197.5000 305,521

New cases 4692 418.6 1259 0.0 26.0000 18,366
New deaths 4692 0.0 0.0 0.0 0.0 0.0

New recovered 4692 283.06 947.9 −1.0 8.0000 13,401
Death 4692 291.28 1213 0.0 5.0000 16,476

Latitude and longitude are geographic coordinates that can be used to track the spread
of COVID-19 across different regions and countries. By knowing the location of confirmed
cases, health officials can identify potential hotspots and take targeted measures to contain
the spread of the virus. Moreover, latitude and longitude information can be used with
other demographic and environmental data to better understand the factors contributing
to the spread of COVID-19, such as population density, air pollution levels, and weather
patterns [50].

Total confirmed cases and cured/discharged/migrated data are important variables
that can be used to track the progression of COVID-19 in a given region. By analyzing the
number of confirmed cases over time, health officials can monitor the spread of the virus
and make informed decisions about public health interventions. Similarly, the number of
people who have been cured or discharged can provide insights into the effectiveness of
treatments and the population’s overall health status.

Regarding COVID-19 mortality prediction, confirmed cases and cured/discharged/
migrated data can help provide context and inform the development of predictive models.
For example, the number of confirmed cases can be a useful predictor of mortality, as
regions with a high number of confirmed cases can have a higher mortality rate due to the
strain on healthcare resources. Similarly, regions with a high number of cured or discharged
cases can have a lower mortality rate due to the effectiveness of treatments.

A heatmap analysis can be a useful tool for exploring the relationships between
different features in a COVID-19 mortality prediction dataset. By identifying correlations
and potential confounding variables, heatmap analysis can help to inform the development

https://www.kaggle.com/datasets/imdevskp/covid19-corona-virus-india-dataset
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of more accurate and robust predictive models. The heatmap analysis for the dataset
features is shown in Figure 3.
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A box plot can be used to identify the distribution of the various features that are used
as predictors in the predictive model. For example, a box plot can show the distribution of
the number of confirmed cases, new deaths, or age, and highlight any potential outliers or
anomalies that can affect the predictive model’s accuracy.

Box plots can also help compare the distributions of different features in the dataset.
For example, a box plot can show the distribution of the number of deaths in different
regions or populations, or compare the distributions of the number of confirmed cases and
the number of new cases.

Histograms can be used to analyze the distribution of different features that can be
important predictors of mortality. For example, a histogram can show the distribution of
the number of confirmed cases, new deaths, or age, and help to identify any patterns or
trends in the data.

Histograms are helpful in identifying the shape of the distribution of a feature, in-
cluding whether it is symmetric, skewed, or has multiple peaks. A histogram shows the
distribution of the number of deaths in different regions or populations, or compares the
distributions of confirmed cases and new cases. Figure 4 demonstrates a box plot for the dis-
tribution analysis of the features. Figure 5 demonstrates the histogram for the distribution
analysis of the features.
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Pair plots are a valuable tool for detecting patterns and trends within a dataset and
investigating potential associations between different features. They can aid in detecting
non-linear relationships and correlations between features that are not immediately evident
from the individual analysis. Figure 6 illustrates the pair plot utilized to analyze the
distribution of the features.
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5. Performance Indicators

Different models are compared using many validation techniques in this study, includ-
ing MSE, MAE, MedAE, RMSE, and R2 [51].

5.1. Mean Squared Error (MSE)

The mean squared error (MSE) of an estimator is the average difference (in squares)
between the estimated and actual values. The mean squared error approximates an es-
timator. It is always positive, and features that get closer to zero are preferable. MSE is
calculated according to Equation (10).

MSE =
1
n∑n

t=1

(
Zt − Ẑt

)2
(10)

where n stands for the total number of data points, Zt indicates the observed value at time
t, and Ẑt represents the predicted value at time t.
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5.2. Mean Absolute Error (MAE)

Without considering the direction of the forecasts, it assesses the average size of the
inaccuracies. It is the norm over the test of the obvious differences between anticipation
and true experience, where each different feature is given an equal weight. According to
Equation (11), the acquired value of MAE is computed.

MAE
∑n

t=1
∣∣rq − r

∣∣
n

(11)

where n denotes the errors number, and rq − r stands for the absolute errors.

5.3. Median Absolute Error (MedAE)

According to Equation (12), this measure is the median of the absolute differences
|Zt − Ẑt| for every n pair of predictions and measurements.

MedAE = median
(∣∣∣Z1 − Ẑ1

∣∣∣, . . . ,
∣∣∣Zn − Ẑn

∣∣∣) (12)

5.4. Root Mean Squared Error (RMSE)

It is the residuals’ standard deviation. The percentage of residuals indicates how
far away from the relapse line the information is focused. RMSE measures the degree of
dispersion of these residuals. In a metaphorical sense, it reveals how evenly distributed
the data are along the line of best fit. In climatology, forecasting, and relapse investiga-
tion, RMSE is frequently used to validate test results. Equation (13) contains the RMSE
calculation formula.

RMSE =

√√√√ 1
K

k

∑
M=1

(am − âm)
2 (13)

where k denotes the number of observations, am stands for the observed value, and âm
represents the predicted value.

5.5. Coefficient of Determination (R2)

It is an objective measure of how closely the data resemble the fitted relapse line.
It is also known as the assurance coefficient or the assurance coefficient for repeated
relapses. It is always in the range between 0% and 100%. 0% indicates that the model
makes no distinction between the information about the changeability of the response
around its mean, and 100% indicates that it makes no distinction between the information
about the fluctuation of the reaction around its mean. Equation (14) provides the R2

mathematical equation.

R2 = 1 − ∑
(
ti − t̂i

)2(
ti − ti

)2 (14)

where ti denotes the actual cumulative confirmed instances, t̂i represents the anticipated
cumulative confirmed cases, and ti stands for the average of actual cumulative con-
firmed cases.

6. Experimental Results

The experiment results were obtained using Jupyter Notebook version 6.4.6, a widely
used software tool for analyzing and visualizing data in the Python programming lan-
guage. With Jupyter Notebook, users can write and execute code, create visualizations,
and document their analysis within a single interface accessible via a web browser. The
experiment was conducted on a computer running Microsoft Windows 10 and equipped
with an Intel Core i5 processor and 16 GB of RAM.

In order to evaluate the performance of the proposed model (CNN-GRU) for predicting
the COVID-19 death rate, six classification models, namely, Random Forest (RF) Regressor,
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Support Vector Regressor (SVR), K-Nearest Neighbor (KNN) Regressor, Bayesian Ridge
(BR) Regressor, Gradient Boosting (GB) Regressor, and Dummy Regressor (DR) were used
for comparison using the same dataset. The performance of these classification models was
evaluated using MSE, MAE, RMSE, MedAE, and R2 metrics.

The CNN-GRU model consists of two convolution layers, one max-pooling layer,
one GRU layer, one hidden layer, and an output layer that returns a single, continuous
value. The first convolution layer consists of 32 filters, and the kernel size is 5. The second
convolution layer consists of 16 filters, and the kernel size is 3. The GRU layer includes
100 hidden units. The hidden layer includes 16 neurons. The activation function used in
the output layer is the linear function. The number of epochs used is 50.

Table 2 displays the hyperparameters used for the regression models in the experiment.
The Random Forest (RF) model was set with a value of 20 for its N_estimators parameter. In
the K-Nearest Neighbor (KNN) regressor model, its N_neighbors are set to 10 and a weight
function of “distance”. The Support Vector Regression (SVR) model was set with a tolerance
value of 0.01, regularization value (C) of 1, and kernel set to “rbf” which means radial basis
function (RBF) kernel SVM. The Gradient Boosting (GB) regressor model was set with a
learning rate of 0.1, 200 estimators, and a maximum depth of 3. The Dummy Regressor (DR)
model was set to use the “mean” strategy. The Bayesian Ridge (BR) regressor model was set
to run for 300 iterations with a tolerance value of 0.001. Finally, the CNN hyperparameters
are also mentioned in detail.

Table 2. Hyperparameters for the regression models.

Models Hyperparameters

RF N_estimators = 20.

KNN N_neighbors = 10, weights = “distance”.

SVR Tol = 0.01, C = 1, kernel = “rbf”.

GB Learning_rate = 0.1, n_estimators = 200, max_depth = 3.

DR Strategy = “mean”.

BR N_iter = 300, tol = 0.001.

CNN learnRate = 0.001, hiddenLayerTwo = 256, hiddenLayerOne = 256, epochs = 40,
dropout = 0.4, batch_size = 32

The reasons behind selecting these specific sets of hyperparameters for each model are
as follows:

1. Random Forest (RF): N_estimators = 20: The number of estimators determines the
number of decision trees in the random forest ensemble. A higher number of estima-
tors can improve performance, but it also increases computational complexity. The
value of 20 was likely chosen as a trade-off between accuracy and computational
efficiency.

2. K-Nearest Neighbors (KNN): N_neighbors = 10: This parameter specifies the num-
ber of neighbors to consider for classification or regression. Choosing 10 neighbors
suggests that the model should consider a relatively large neighborhood for making
predictions. The weights = “distance” determines the weight assigned to each neigh-
bor during prediction. By setting it to “distance,” the model gives higher weight to
closer neighbors, which can be useful when the distribution of data points is uneven.

3. Support Vector Regression (SVR): Tol = 0.01: This parameter represents the tolerance
for stopping criteria. A smaller tolerance value can lead to a more precise solution at
the cost of increased computation time. C = 1: The C parameter controls the trade-off
between achieving a smaller training error and a larger margin. A smaller C value
allows more errors in the training set but may result in a wider margin. Kernel = “rbf”:
The kernel parameter specifies the type of kernel function to be used. “Rbf” stands
for radial basis function, which is commonly used for non-linear regression problems.
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4. Gradient Boosting (GB): Learning_rate = 0.1: This parameter determines the step size
at each boosting iteration. A smaller learning rate can make the model converge more
slowly but may lead to better generalization. n_estimators = 200: The number of boost-
ing stages to perform. Increasing the number of estimators can improve the model’s
performance, but it also increases the computational cost. max_depth = 3: This param-
eter sets the maximum depth of each decision tree in the gradient boosting ensemble.
Limiting the depth can prevent overfitting and promote better generalization.

5. Decision Tree Regression (DR): Strategy = “mean”: This parameter specifies the
strategy to use when a node in the decision tree has no samples. The “mean” strategy
replaces the missing value with the mean of the target values of the samples in
that node.

6. Bayesian Ridge (BR): N_iter = 300: The number of iterations for the Bayesian Ridge
estimator. Increasing the number of iterations allows the model to refine its estimates
further. tol = 0.001: This parameter sets the tolerance for convergence. A smaller
tolerance value indicates a more precise convergence criterion.

The selection of these hyperparameters depends on various factors, including the
nature of the dataset, problem complexity, and computational constraints. The chosen
hyperparameters aim to strike a balance between model performance and efficiency based
on prior knowledge and experimentation. It is worth noting that hyperparameter tuning
is often an iterative process, and the optimal values can vary depending on the specific
problem and data.

Table 3 summarizes the performance of the regression models and the proposed CNN-
GRU model. The Random Forest (RF) model had an MSE of 3.2 × 10−5, MAE of 0.003,
MedAE of 0.0017, RMSE of 0.0057, and R2 of 0.64. The K-Nearest Neighbors (KNN) model
had an MSE of 3.7 × 10−5, MAE of 0.004, MedAE of 0.0023, RMSE of 0.0060, and R2 of 0.60.
The Support Vector Regressor (SVR) model had an MSE of 1.8 × 10−6, MAE of 0.001,
MedAE of 0.0008, RMSE of 0.0013, and R2 of 0.96. The Gradient Boosting (GB) model had
an MSE of 4.2 × 10−5, MAE of 0.004, MedAE of 0.0028, RMSE of 0.0065, and R2 of 0.53.
The Dummy Regressor (DR) model had an MSE of 7.06 × 10−5, MAE of 0.006, MedAE
of 0.0043, RMSE of 0.0084, and R2 of 0.23. The Bayesian Ridge (BR) model had an MSE of
7.4 × 10−5, MAE of 0.006, MedAE of 0.0045, RMSE of 0.0085, and R2 of 0.22. The pro-
posed CNN-GRU model achieved the best results; it had an MSE of 1.14 × 10−9, MAE of
2.5 × 10−5, MedAE of 1.8 × 10−5, RMSE of 3.3 × 10−5, and R2 of 0.99.

Table 3. Performance of the regression models and the proposed CNN-GRU model.

Model MSE MAE MedAE RMSE R2

RF 3.2 × 10−5 0.003 0.0017 0.0057 0.64
KNN 3.7 × 10−5 0.004 0.0023 0.0060 0.60
SVR 1.8 × 10−6 0.001 0.0008 0.0013 0.96
GB 4.2 × 10−5 0.004 0.0028 0.0065 0.53
DR 7.06 × 10−5 0.006 0.0043 0.0084 0.23
BR 7.4 × 10−5 0.006 0.0045 0.0085 0.22

CNN-GRU 1.14 × 10−9 2.5 × 10−5 1.8 × 10−5 3.3 × 10−5 0.99

Figures 7–13 demonstrate the actual death vs. predicted death for the models, namely,
RF, KNN, SVR, GB, DR, BR, and the proposed CNN-GRU, respectively. Figure 14 displays
the mean squared error and mean absolute error vs. the number of epochs using the
CNN-GRU model.
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RMSE is used to evaluate CNN-GRU model outcomes. Ten independent runs describe
the CNN-GRU model in Table 4. These runs’ minimum, median, maximum, and mean
average errors are provided. These error measurements from numerous models runs
allow the evaluation of the CNN-GRU model’s consistency and efficiency. This detailed
explanation facilitates the analysis of the model’s performance and reliability.

Table 4. A description of the proposed CNN-GRU model as well as the results of other models based
on the RMSE factor.

RF KNN SVR GB DR BR CNN-GRU

Number of values 10 10 10 10 10 10 10
Minimum 0.0047 0.005 0.0003 0.0045 0.0064 0.00795 3.3 × 10−6

25% Percentile 0.0057 0.006 0.0013 0.00625 0.0084 0.0085 3.3 × 10−6

Median 0.0057 0.006 0.0013 0.0065 0.0084 0.0085 3.3 × 10−6

75% Percentile 0.0057 0.006 0.001533 0.0065 0.0084 0.0085 3.33 × 10−6

Maximum 0.00667 0.007 0.0023 0.0075 0.0094 0.00915 3.5 × 10−6

Range 0.00197 0.002 0.002 0.003 0.003 0.0012 2 × 10−7

Mean 0.005697 0.006 0.001393 0.0063 0.0083 0.00851 3.33 × 10−6

Std. Deviation 0.000464 0.000471 0.000556 0.000789 0.000738 0.000284 6.75 × 10−8

Std. Error of Mean 0.000147 0.000149 0.000176 0.000249 0.000233 8.97 × 10−5 2.13 × 10−8

Sum 0.05697 0.06 0.01393 0.063 0.083 0.0851 3.33 × 10−5

Table 5 shows the ANOVA findings for the proposed CNN-GRU model and the other
models. This statistical analysis seeks to explain model differences. ANOVA findings can
show if model performance varies statistically. The Wilcoxon signed-rank test compares
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the CNN-GRU model and the other models in Table 6. This non-parametric test compares
matched data, like model performance on the same dataset. The Wilcoxon signed-rank
test and ten separate iterations of each model enable accurate comparisons and increase
the study’s reliability. These statistical tests objectively evaluate the CNN-GRU model
compared to the other models. ANOVA and Wilcoxon signed-rank p-values can be used to
determine if model performance differences are statistically significant. These findings help
explain the CNN-GRU model’s comparative efficacy and applicability for the job or dataset.

Table 5. The ANOVA test for the presented CNN-GRU model and other models.

SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 0.000642 6 0.000107 F (6, 63) = 375.4 p < 0.0001
Residual (within columns) 1.79 × 10−5 63 2.85 × 10−7 - -
Total 0.00066 69 - - -

Table 6. The Wilcoxon signed-rank test for the presented CNN-GRU model and other models.

RF KNN SVR GB DR BR CNN-GRU

Theoretical median 0 0 0 0 0 0 0
Actual median 0.0057 0.006 0.0013 0.0065 0.0084 0.0085 3.3 × 10−6

Number of values 10 10 10 10 10 10 10
Wilcoxon signed-rank test
Sum of signed ranks (W) 55 55 55 55 55 55 55
Sum of positive ranks 55 55 55 55 55 55 55
Sum of negative ranks 0 0 0 0 0 0 0
p value (two-tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.0057 0.006 0.0013 0.0065 0.0084 0.0085 3.3 × 10−6

Figure 15 compares the CNN-GRU model to several RMSE-based models. Each
model’s RMSE would be plotted to compare performance. Figure 16 shows the RMSE
histograms for the proposed CNN-GRU model and other models. The histogram of RMSE
values shows the spread and concentration of each model’s results. Figure 17 shows the QQ
plots, residual plots, and heat maps of the proposed CNN-GRU model and other models.
QQ plots compare error distributions to theoretical distributions. Residual plots show
the model’s performance by comparing observed and anticipated values. The heat maps
reveal data trends and correlations. These data show the CNN-GRU model’s capacity
to outperform the other models in RMSE and provide a complete study of the model’s
performance and attributes. To show the proposed CNN-GRU model advances, another
dataset is compiled in Appendix A.
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7. Conclusions and Perspectives

The COVID-19 pandemic has presented a global challenge transcending boundaries,
such as provincial, radical, conceptual, spiritual, social, and pedagogical. To effectively
monitor COVID-19 patients, an interconnected network facilitated by the Internet of Things
(IoT) is useful. This technology enables patients to identify symptoms and receive treatment
quickly, and artificial intelligence (AI) is used to measure, assess, and diagnose the risk of
infection. In addition, AI can also predict the number of alternate incidents, recoveries, and
casualties, and forecast future cases. IoT technologies have also been employed to minimize
COVID-19 exposure to others through prenatal screening, patient monitoring, and post-
patient incident response procedures. This study utilized an advanced CNN-GRU model
with data normalization and imputation for COVID-19 death prediction using an Indian
dataset that contained eight features and 4692 instances. Five evaluation metrics were used
to assess the performance of the model, and the results showed that the CNN-GRU model
outperformed other models for COVID-19 death prediction achieving the lowest values
of MSE, MAE, MedAE, and RMSE, and the highest R2. Thus, the CNN-GRU model is
recommended for similar predictive tasks. There are several possible avenues for future
work in this area:



Biomimetics 2023, 8, 552 21 of 25

1. Incorporate more data sources: Many potential data sources could be used to improve
COVID-19 death prediction models. For example, social media data could be used to track
the spread of misinformation about COVID-19, which could help identify regions at a
higher risk of experiencing a surge in cases and deaths. Additionally, data on weather
patterns, pollution levels, and other environmental factors could be integrated to better
understand how these variables affect the spread and severity of COVID-19.

2. Improve model accuracy: There are several ways to improve the accuracy of COVID-19
death prediction models. One approach is to use more sophisticated machine learning
algorithms, such as reinforcement learning, which can handle more complex data
and provide more accurate predictions. Another method is to improve the data qual-
ity used to train the models, for example, by incorporating more granular data on
individual patients’ health status and medical history.

3. Develop models for specific populations: COVID-19 has been shown to affect dif-
ferent populations in different ways, with some people (such as the elderly or those
with underlying health conditions) at a higher risk of death than others. Therefore,
developing targeted models for specific populations could be an effective way to
improve the accuracy of COVID-19 death predictions and better allocate resources for
prevention and treatment.

4. Combine prediction models with interventions: Predicting COVID-19 death is only
helpful if the information can be used to take action to prevent deaths. Therefore,
future work could integrate death prediction models with intervention strategies,
such as targeted vaccination campaigns, lockdown measures, or specific treatments
for high-risk patients. By combining prediction models with interventions, public
health officials could take a more proactive approach to managing the pandemic and
reducing the number of COVID-19 deaths.
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Appendix A

To show the proposed CNN-GRU model advances, another dataset is compiled,
which is available at https://www.kaggle.com/datasets/imdevskp/corona-virus-report,
(accessed on 6 November 2023).

The CNN-GRU model outcomes are assessed using RMSE. Table A1 presents the
description of the CNN-GRU model based on ten independent runs, showcasing the
minimum, median, maximum, and mean average errors. These runs’ minimum, median,
maximum, and mean average errors are provided. By considering error measurements
across multiple model runs, one can thoroughly evaluate the consistency and efficiency

https://www.kaggle.com/datasets/imdevskp/covid19-corona-virus-india-dataset
https://www.kaggle.com/datasets/imdevskp/covid19-corona-virus-india-dataset
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https://www.kaggle.com/datasets/imdevskp/corona-virus-report
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of the CNN-GRU model. This comprehensive explanation facilitates the analysis of the
model’s performance and reliability.

Table A2 presents the ANOVA results for both the CNN-GRU model and the com-
parative model. This statistical analysis aims to elucidate any distinctions between the
models. ANOVA findings are instrumental in revealing whether there are statistically
significant variations in model performance. The Wilcoxon Signed Rank test, as delineated
in Table A3, compares the CNN-GRU model with the models under comparison. Con-
ducted over ten separate iterations for each model, the Wilcoxon Signed-Rank test ensures
precision in comparisons and enhances the overall reliability of the study. These statistical
assessments provide an objective evaluation of the CNN-GRU model in relation to other
models. By examining the p-values from ANOVA and the Wilcoxon Signed-Rank test,
one can ascertain whether the observed differences in model performance are statistically
significant. Such findings contribute to a better understanding of the CNN-GRU model’s
relative effectiveness and suitability for a given task or dataset.

Table A1. An overview of the proposed CNN-GRU model and an examination of the outcomes of
alternative models, focusing on the RMSE metric.

RF KNN SVR GB DR BR CNN-GRU

Number of values 10 10 10 10 10 10 10
Minimum 0.002004 0.002132 0.000128 0.001919 0.002729 0.00339 1.41 × 10−6

25% Percentile 0.002431 0.002559 0.000554 0.002665 0.003582 0.003625 1.41 × 10−6

Median 0.002431 0.002559 0.000554 0.002772 0.003582 0.003625 1.41 × 10−6

75% Percentile 0.002431 0.002559 0.000653 0.002772 0.003582 0.003625 1.42 × 10−6

Maximum 0.002844 0.002985 0.000981 0.003198 0.004009 0.003902 1.49 × 10−6

Range 0.00084 0.000853 0.000853 0.001279 0.00128 0.000512 8 × 10−8

Mean 0.00243 0.002559 0.000594 0.002687 0.003539 0.003629 1.42 × 10−6

Std. Deviation 0.000198 0.000201 0.000237 0.000336 0.000315 0.000121 2.7 × 10−8

Std. Error of Mean 6.26 × 10−5 6.36 × 10−5 7.5 × 10−5 0.000106 9.95 × 10−5 3.83 × 10−5 8.54 × 10−9

Sum 0.0243 0.02559 0.005938 0.02687 0.03539 0.03629 1.42 × 10−5

Table A2. The ANOVA analysis for the provided CNN-GRU model and alternative models.

ANOVA Table SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 0.000117 6 1.95 × 10−5 F (6, 63) = 375.3 p < 0.0001
Residual (within columns) 3.26 × 10−6 63 5.18 × 10−8

Total 0.00012 69

Table A3. The Wilcoxon Signed-Rank test applied to the showcased CNN-GRU model and
alternative models.

RF KNN SVR GB DR BR CNN-GRU

Theoretical median 0 0 0 0 0 0 0
Actual median 0.002431 0.002559 0.000554 0.002772 0.003582 0.003625 1.41 × 10−6

Number of values 10 10 10 10 10 10 10
Wilcoxon Signed Rank Test
Sum of signed ranks (W) 55 55 55 55 55 55 55
Sum of positive ranks 55 55 55 55 55 55 55
Sum of negative ranks 0 0 0 0 0 0 0
p value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.002431 0.002559 0.000554 0.002772 0.003582 0.003625 1.41 × 10−6

Figure A1 illustrates a comparison between the CNN-GRU model and various models
based on RMSE. The RMSE for each model is plotted to facilitate a performance comparison.
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In Figure A2, histograms of RMSE for both the CNN-GRU model and comparative models
are presented, visually depicting the distribution and concentration of RMSE values for
each model. Figure A3 showcases QQ plots, residual plots, and heat maps for the CNN-
GRU model and comparative models. QQ plots are used to assess the distribution of errors
in comparison to theoretical distributions, while residual plots demonstrate the model’s
performance by contrasting observed and expected values. The heat map provides insights
into data trends and correlations. These visualizations collectively demonstrate the CNN-
GRU model’s superior performance in RMSE compared to the models under consideration,
offering a comprehensive analysis of the model’s attributes and overall effectiveness.
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