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Abstract: Recently, the usage of remote sensing (RS) data attained from unmanned aerial vehicles
(UAV) or satellite imagery has become increasingly popular for crop classification processes, namely
soil classification, crop mapping, or yield prediction. Food crop classification using RS images (RSI)
is a significant application of RS technology in agriculture. It involves the use of satellite or aerial
imagery to identify and classify different types of food crops grown in a specific area. This information
can be valuable for crop monitoring, yield estimation, and land management. Meeting the criteria
for analyzing these data requires increasingly sophisticated methods and artificial intelligence (AI)
technologies provide the necessary support. Due to the heterogeneity and fragmentation of crop
planting, typical classification approaches have a lower classification performance. However, the
DL technique can detect and categorize crop types effectively and has a stronger feature extraction
capability. In this aspect, this study designed a new remote sensing imagery data analysis using
the marine predators algorithm with deep learning for food crop classification (RSMPA-DLFCC)
technique. The RSMPA-DLFCC technique mainly investigates the RS data and determines the variety
of food crops. In the RSMPA-DLFCC technique, the SimAM-EfficientNet model is utilized for the
feature extraction process. The MPA is applied for the optimal hyperparameter selection process in
order to optimize the accuracy of SimAM-EfficientNet architecture. MPA, inspired by the foraging
behaviors of marine predators, perceptively explores hyperparameter configurations to optimize the
hyperparameters, thereby improving the classification accuracy and generalization capabilities. For
crop type detection and classification, an extreme learning machine (ELM) model can be used. The
simulation analysis of the RSMPA-DLFCC technique is performed on two benchmark datasets. The
extensive analysis of the results portrayed the higher performance of the RSMPA-DLFCC approach
over existing DL techniques.

Keywords: remote sensing images; deep learning; crop classification; machine learning; computer
vision

1. Introduction

Recent developments in remote sensing (RS) data and technologies deliver the ability
of highly accessible, cheap and real time advantages [1]. In recent years, a massive quantity
of global coverage RS images have been openly available [2]. In particular, Landsat 8 satel-
lite offers high-resolution multispectral datasets including wealthy data on agricultural
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vegetation development which is easily accessible. It allows us to examine the vegetation
growth and forecast the changes over time from past to present [3]. RS is an effective data
collection technology, and it is broadly employed in agriculture, for example, to monitor
crop conditions, crop distribution, and to predict upcoming food production under various
situations [4]. Though current agricultural RSs generally use sensors from satellite environ-
ments like Landsat and MODIS, they combine and integrate the data acquired from the
aerial or ground-based sensors [5,6]. Even if satellite-borne sensors cover a larger range
from a local to a national scale, precision agriculture needs remotely sensed data with high
efficiency, knowledge, and high resolution to sufficiently study crop conditions, hence
giving support to national food provision security.

Aerial or airborne RS that uses classical aerial photography taken from aircraft, light
aircraft or unmanned aerial vehicles (UAVs) as its platform, and gets a higher ground
resolution of a few centimeters than the satellite image resolution of a few to hundreds
of meters provides two important advantages: Primarily, significant biochemical and
biophysical variables can be calculated finely at most of the levels of an individual plant,
and its images are without mixed pixel effects. Next, important phases of crop development
can be finely noticed with the use of active and current crop height created by classical aerial
triangulation technology [7]. Additionally, the highly accurate cropland mask, crop-specific
categorization and circulation gained from airborne sensors provide extra training and
validation data for satellite observation and additionally increase the respective outcome.
Successful integration of various sensor sources, wavebands, and time-stamped RS images
gives extensive feature data about crops [8]. Thus, it is a reasonable and significant study
to discover the crop classification based on RS images.

Classical RS-based image classification procedures of ML were slowly used in the
classification and detection of RS images. These models can be classified as supervised
and unsupervised classes. The first holds minimum distance, maximum likelihood, and
support vector machine (SVM). In this phase, the SVM is extensively applied in RS image
classification, even though few problems exist. DL, referring to a deep neural network,
is a type of ML technique, and because of its data expression and dominant feature ex-
traction capability, it has been widely adopted. Over the years, the identification rate of
DL on most classical identification processes has enhanced considerably [9]. Numerous
studies have exhibited that DL can extract features from RS imagery and enhance the
classifier performance.

This article develops a remote sensing imagery data analysis using the marine preda-
tors algorithm with deep learning for food crop classification (RSMPA-DLFCC) method.
The RSMPA-DLFCC technique mainly investigates the RS data and determines the variety
of food crops. In the RSMPA-DLFCC technique, the SimAM-EfficientNet model is utilized
for the feature extraction process. The MPA is applied for the optimal parameter selection to
optimize the accuracy of SimAM-EfficientNet architecture. MPA, inspired by the foraging
behaviors of marine predators, perceptively explores hyperparameter configurations to
optimize the hyperparameters, thereby improving the classification accuracy and general-
ization capabilities. For crop type detection and classification, an extreme learning machine
(ELM) model can be used. The simulation analysis of the RSMPA-DLFCC method takes
place on the UAV image dataset.

The rest of the paper is organized as follows. Section 2 provides the related works and
Section 3 offers the proposed model. Then, Section 4 gives the result analysis and Section 5
concludes the paper.

2. Literature Review

Kwak and Park [10] examined self training with domain adversarial networks (STDAN)
to classify crop types. The main function of STDAN is to integrate adversarial training for
improving spectral discrepancy issues with self training in order to create novel trained
data in the targeted field, utilizing present ground truth details. In [11], a unique structure
based on deep CNN (DCNN) and the dual attention module (DAM) makes utilization
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of the Sentinel 2 time series dataset which was projected for crop identification. Fresh
DAM was applied to the removal of enlightened deep features using the advantages of
spatial and spectral features of Sentinel 2 datasets. Reedha et al. [12] targeted the design
of attention-related DL networks in a significant technique to state the earlier mentioned
complications regarding weeds and crop detection with drone systems. The objective is to
inspect visual transformers (ViT) and implement them in the identification of plants in UAV
images. In [13], the results of accurate recognition were tested to associate the phenology
of vegetation products by time series of Landsat8, digital elevation model (DEM), and
Sentinel 1. Next, based on the agricultural phenology of crops, radar Sentinel1 and optical
Landsat8 time-series data with DEM were used to enhance the performance classification.

Sun et al. [14] proposed a technique for attaining deduction of fine-scale crops by
combining RS information from different satellite images by construction of chronological
scale crop features inside the parcels employing Sentinel 2A, Gaofen-6, and Landsat 8. The
authors adopted a feature-equivalent technique to fill in the missing values in the time
series feature-building methods to prevent problems with unidentified crops. Li et al. [15]
introduced a scale sequence object-based CNN (SS-OCNN) that identifies images at the
object phase by taking segmented object crop parcels as the primary unit of analysis,
therefore providing the limits between crop parcels that were defined precisely. Next, the
segmented object was identified utilizing the CNN approach combined with an automated
generating scale structure of input patch sizes.

Zhai et al. [16] examined the contribution of the data to rice planting area mapping.
Specifically, the introduction of the red-edge band was to build a red-edge agricultural
index derived from Sentinel 2 data. C band quad pol Radar sat 2 data was also utilized.
The authors employed the random forest technique and finally collaborated with radar and
optical data to plot rice-planted regions. In [17], the authors designed an enhanced crop
planting structure to plot the structure for rainy and cloudy regions using collective optical
data and SAR data. First, the author removed geo parcels from optical images with high
dimensional resolution. Next, the authors made an RNN-based classification appropriate
for remote detecting images on a geo parcel scale.

3. The Proposed Model

This manuscript offered the development of automated food crop classification using
the RSMPA-DLFCC technique. The RSMPA-DLFCC technique mainly investigates the RS
data and determines different types of food crops. In the RSMPA-DLFCC technique, three
major phases of operations are involved, namely the SimAM-EfficientNet feature extractor,
MPA-based hyperparameter tuning, and ELM classification. Figure 1 represents the entire
process of the RSMPA-DLFCC approach.

3.1. Feature Extraction Using SimAM-EfficientNet Model

The RSMPA-DLFCC technique applies the SimAM-EfficientNet model to derive fea-
ture vectors. A novel CNN called EfficientNet was launched by Google researchers [18].
The study uses a multi-dimensional hybrid method scaling model making them consider
the speed and accuracy of the model even though the existing network has advanced
considerably in speed and accuracy. Through compound scaling factors, ResNet raises
the network depth to optimize the performance. By improving accuracy and ensuring
speed, EfficientNet balances the network depth, width, and resolution. EfficientNet-B0 is
the initial EfficientNet model. The most basic model B0 is: concerning resolution, layers,
and channels, B1-B7 overall of 7 models adapted from B0.

Many existing attention modules generate 1D or 2D weights. Next, the weights created
are extended for channel and spatial attention. Generally, the present attention module faces
the two subsequent challenges. The former is the attention module could extract features
through channel and space that results in the flexibility of attention weight. Moreover,
CNN is influenced by a series of factors and has a complex structure. SimAM considers
these spaces and channels in contrast to them. Without adding parameters, it presents
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3D attention weights to the original network. Based on neuroscience theory, an energy
function can be defined and, in turn, derive a solution that converges faster. This operation
is executed in ten lines of code. An additional benefit of SimAM is that it prevents excessive
adjustment to the network architecture. Hence, SimAM is lightweight, more flexible, and
modular. In numerous instances, SimAM is better than the conventional CBAM and SE
attention models. Figure 2 illustrates the architecture of SimAM-EfficientNet.
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The SimAM model defines an energy function and looks for important neurons. It
adds regular terms and uses binary labels. At last, the minimal energy is evaluated by the
following expression:

e∗t =
(

4
(

λ + σ2
))

/(
(

t− u)2 + 2σ2 + 2λ
)

(1)

ut =
1

M− 1

M−1

∑
i=1

xi, σ2
t =

1
M− 1

M−1

∑
i=1

(xi − ut)
2 (2)

where µt and σ2
t are the mean and variance of each neuron. t is the target neuron. λ

indicates the regularization coefficient. Using M = H ×W, the neuron count on that
channel is attained. Finally, the dissimilarity between neurons and peripheral neurons is
associated with the energy used. The implication of all the neurons is evaluated by 1/e∗.
The scaling operator is used to refine the feature and it can be formulated as follows:

X = X·sigmoid (1/E) (3)

The sigmoid function is used to limit the size of the E value. In Equation (3), E group
each e across the channel and spatial sizes.
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EfficientNet-B0 has a total of nine phases. The initial phase is 3× 3 convolutional
layers. The second to the eighth phases are MBConv, which is the building block of these
network models. The last phase is made up of a pooling layer, a 1× 1 convolutional layer,
and the FC layer. MBConv has five different parts. The initial part is a 1× 1 convolutional
layer. The next part is a depth-wise convolution layer. The third part is the SE attention
mechanism. The fourth part is a 1× 1 convolutional layer for reduction dimension. Lastly,
the dropout layer lessens the over-fitting problem. After the first convolutional layer,
the SimAM module was added to increase channel and spatial weights. The original
EfficientNet comprises the SE attention mechanism.

The SimAM-EfficientNet is made up of seven SimAM-MBConv models, one FC layer, two
convolution layers, and one pooling layer. At first, the images with 224× 224× 3 dimensions
are ascended by the 3× 3 convolution layers. The dimensions of the images obtained with
features are 112× 112× 32. Next, the image features are extracted by the SimAM-Conv.
The connection will be deactivated when both SimAM-Convs are the same, and the input
will connect. The FC layer is utilized for classification and the original channel is restored
after a 1× 1 point-wise convolutional layer.

3.2. Hyperparameter Tuning Using MPA

For the optimal hyperparameter selection process, the MPA is applied. The MPA is
derived from the foraging tactics of the ocean predator [19]. MPA is a population-based
metaheuristic approach. The optimization technique begins with the arbitrary solution.

X0 = Xmin + rand(Xmax − Xmin ) (4)

where Xmin and Xmax denotes the lower and upper boundaries, and rand is a randomly
generated integer in the range [0, 1]. In the MPA, Prey and Elite are two different matrices
with similar dimensions. The optimum solution is selected as the fittest predator while
creating the Elite matrix.

The finding of and search for prey is checked through these matrices.
→
X

I
indicates the

dominant predator vector, n is the searching agent, and d, the dimension. Both prey and
predator are the search agents.

Elite =



X I
1,1 X I

1,2 . . . X I
1,d

X I
2,1 X I

2,2 . . . X I
2,d

...
...

...
...

...
...

...
...

X I
n,1 X I

n,2 . . . X I
n,d


nxd

(5)

where the jth dimension of ith prey is represented as Xi,j. The optimization method is
connected to both matrices. Predator uses these matrices for updating the position.

Prey =



X1,1 X1,2 . . . X1,d
X2,1 X2,2 . . . X2,d
X3,1 X3,1 . . . X3,d

...
...

...
...

...
...

...
...

Xn,1 Xn,2 . . . Xn,d


nxd

(6)

In the MPA, there are three stages discussed in detail.
Phase 1 occurs if < ((Max− Iter)/3). Iter and Max− Iter denote the existing and

maximal iteration counter. P shows the constant number with the value of 0.5. The
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appropriate tactic is one where the predator should stop. In Equation (7) of stage 1, vector
RB portrays the Brownian motion and uniformly distributed random number in [0,1].

−−−−→
stepsizei =

→
R ⊗

(−−→
Elitei −

→
RB ⊗

−−→
Preyi

)
i = 1, . . . n

−−→
Preyi =

−−→
Preyi + P·

→
R ⊗
−−−−→
stepsizei

(7)

Phase 2 realized if ((Max− Iter)/3) < Iter < ((2Max− Iter)/3. Once the prey move-
ment is Lévy, then the predator movement should be Brownian. The prey is responsible

for exploitation, and the predator is responsible for exploration. The multiplication of
→
RL

and Prey represent the prey movement, and the prey movement can be exemplified by

adding the stepsize to the prey position. The
→
RL vector is a random number representing

Lévy motion. CF denotes an adaptive parameter. stepsize for the predator movement can
be controlled by the CF.

−−−−→
stepsizei =

→
RL ⊗

(−−→
Elitei −

→
RL ⊗

−−→
Preyi

)
i = 1, . . . n/2

−−→
Preyi =

−−→
Preyi + P·

→
R ⊗

→
stepsizei

(8)

−−−−→
stepsizei =

→
RB ⊗

(→
RB ⊗

−−→
Elitei −

−−→
Preyi

)
i = n

2 , . . . n

−−→
Preyi =

−−→
Elitei + P·CF⊗

−−−−→
stepsizei

CP =
(

1− Iter
Max− Iier

)(2 lter
Max− Iter )

(9)

Phase 3 occurs If > ((2Max− Iter)/3). As the optimum strategy, the predator move-
ment is Lévy.

−−−−→
stepsizei =

→
RL ⊗

(→
RL ⊗

−−→
Elitei −

−−→
Preyi

)
i = 1, . . . n

−−→
Preyi =

−−→
Elitei + P·CF⊗

−−−−→
stepsizei

(10)

The factors including fish aggregating devices (FADs) or eddy formation may affect
the predator strategy are called the FADs effect. r is a randomly generated value within [0,1].
→
U shows the binary vector with an array of 0 and 1. r1 and r2 depict the random indexes of

prey matrices.
→
Xmin and

→
Xmax denote the lower and upper boundaries of the dimension.

−−→
Preyi =


−−→
Preyi + CP

[→
Xmin +

→
R ⊗

(
→
x max −

→
Xmin

)]
⊗
→
U, r ≤ FADs

−−→
Preyi + [FADs(1− r) + r]

(−−→
Preyi −

−−→
Preyi

)
, r > FADs

(11)

The fitness selection is a major factor in the MPA technique. An encoded solution is
used for evaluating the outcome of the solution candidate. The accuracy values are the
foremost conditions used to design an FF.

Fitness = max (P) (12)

P =
TP

TP + FP
(13)

where TP and FP represent the true and false positive values.
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3.3. Classification Using ELM Model

The ELM algorithm is applied for the automated detection and classification of food
crops. The ELM model is used to generate the weight between the hidden and the input
layers at random, and during the training process, it does not need to be adjusted and only
needs to set the number of HL neurons in order to attain an optimum result [20]. Assume
N arbitrary sample (X, t), where Xj =

[
xj1, xj2 . . . xjn]

T ∈ Rn, ti =[ ti1, ti2 . . . tim]
T ∈ R is

formulated by
L

∑
i=1

βig
(
Wi · Xj + bi

)
= tj, j = 1, . . . , N (14)

The weight of ith neurons in the input layer and HL is Wi = [wi1, wi2 . . . win]
T , chosen

at random. The resultant weight is βi, and the learning objective is to obtain the fittest
βi. The jth input vector is Xj. The inner product of Wi and Xj is Wi · Xj. The bias of ith HL
neuron is bi. The set non-linear activation function is g(x). The output vector of the ith

neurons is g
(
Wi · Xj + bi

)
. The target vector attained from the jth input vector is tj. It can

be represented in the matrix form:
Hβ = T

H(W1, . . . , WL, b1, . . . , bL, . . . , X1, . . . , XL)

=

 g(W1 · X1 + b1) . . . g(WL · XN + b1)
...

. . .
...

g(W1 · XN + b1) . . . g(WL · XN + b1)



β =

βT
1
...

βT
L

 and T =

TT
1
...

TT
L

 (15)

The output of the HL node is H, the output weight is β, and the desired output is T.
The following equation is used to get Ŵi, β̂i, b̂i as follows:

‖H
(

Ŵi, b̂i

)
β̂i − T‖ = min

W,b,β
‖H(wi, bi)βi − T‖, i = 1, . . . , L (16)

As shown in Equation (17), this corresponds to minimalizing the loss function,

E =
N

∑
j=1

(
L

∑
i=1

βig
(
Wi · Xj + bi

)
− tj

)2

(17)

Since the HL offset and the input weight Wi are determined randomly, then the output
matrix of HL is also defined. As shown in Equation (18), the training purpose is transmuted
into resolving a linear formula Hβ = T:

β̂ = H+T (18)

where the optimum output weight is β̂. The Moore–Penrose generalized the inverse of H
matrix is H+, and it is shown that the norm of the obtained solution is unique and minimal.
Thus, ELM has better robustness and generalization.

4. Results Analysis

The proposed model is simulated using the Python 3.8.5 tool. The proposed model is
experimented on PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB
HDD. The food crop classification performance of the RSMPA-DLFCC system is validated



Biomimetics 2023, 8, 535 9 of 17

on the UAV image dataset [21], comprising 6450 samples with six classes. For experimental
validation, we have used 80:20 and 70:30 of training (TR)/testing (TS) set.

Figure 3 demonstrates the confusion matrices produced by the RSMPA-DLFCC tech-
nique under 80:20 and 70:30 of the TR phase/TS phase. The experimental values specified
the efficient recognition of all six classes.
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In Table 1 and Figure 4, the food crop classification analysis of the RSMPA-DLFCC
methodology is calculated at 80:20 of the TR phase/TS phase. The observational data
specified that the RSMPA-DLFCC system properly categorizes seven types of crops. With
80% of the TR phase, the RSMPA-DLFCC technique offers an average accuy of 98.12%,
precn of 93.23%, recal of 90.76%, Fscore of 91.89%, and MCC of 90.77%. Additionally, with
20% of TS phase, the RSMPA-DLFCC method offers an average accuy of 98.22%, precn of
93.06%, recal of 90.42%, Fscore of 91.57%, and MCC of 90.56%, respectively.
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Table 1. Food crop classifier outcome of RSMPA-DLFCC algorithm at 80:20 of TR phase/TS phase.

Class Accuy Precn Recal Fscore MCC

TR Phase (80%)

Maize 97.27 94.88 96.57 95.72 93.72

Banana 97.79 95.33 96.31 95.82 94.32

Forest 98.18 94.70 96.02 95.36 94.23

Other 98.31 92.96 92.81 92.89 91.93

Legum 98.90 92.81 87.46 90.05 89.51

Structure 98.28 88.69 75.38 81.50 80.89

Average 98.12 93.23 90.76 91.89 90.77

TS Phase (20%)

Maize 97.52 95.16 97.74 96.44 94.55

Banana 98.68 96.45 98.03 97.24 96.38

Forest 98.22 95.83 95.47 95.65 94.53

Other 97.98 91.18 89.86 90.51 89.39

Legum 98.60 86.76 86.76 86.76 86.03

Structure 98.29 92.98 74.65 82.81 82.47

Average 98.22 93.06 90.42 91.57 90.56
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In Table 2 and Figure 5, the food crop classification analysis of the RSMPA-DLFCC
technique is calculated at 70:30 of TR Phase/TS Phase. The experimental values indicate
that the RSMPA-DLFCC technique appropriately categorizes seven types of crops. With
70% of the TR phase, the RSMPA-DLFCC algorithm offers an average accuy of 97.98%, precn
of 91.79%, recal of 88.64%, Fscore of 90.02%, and MCC of 88.90%, respectively. In addition,
with 30% of TS phase, the RSMPA-DLFCC system offers average accuy of 98.07%, precn of
92.13%, recal of 90.13%, Fscore of 91.06%, and MCC of 89.92%, correspondingly.
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Table 2. Food crop classifier outcome of RSMPA-DLFCC algorithm at 70:30 of TR phase/TS phase.

Class Accuy Precn Recal Fscore MCC

TR Phase (70%)

Maize 98.14 96.42 97.87 97.14 95.77

Banana 97.92 94.46 97.57 95.99 94.61

Forest 97.87 94.83 94.40 94.61 93.29

Other 97.70 89.16 91.20 90.17 88.87

Legum 98.16 87.23 79.46 83.16 82.29

Structure 98.07 88.65 71.30 79.04 78.55

Average 97.98 91.79 88.64 90.02 88.90

TS Phase (30%)

Maize 98.29 97.25 97.41 97.33 96.08

Banana 97.57 93.74 97.24 95.46 93.83

Forest 98.14 95.71 94.69 95.20 94.05

Other 97.62 89.52 90.31 89.91 88.57

Legum 98.50 89.58 81.90 85.57 84.88

Structure 98.29 86.96 79.21 82.90 82.11

Average 98.07 92.13 90.13 91.06 89.92
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To calculate the performance of the RSMPA-DLFCC methodology on 80:20 of TR
Phase/TS Phase, TR and TS accuy curves are defined, as shown in Figure 6. The TR and TS
accuy curves demonstrate the performance of the RSMPA-DLFCC technique over numerous
epochs. The figure offers the details about the learning task and generalization capabilities
of the RSMPA-DLFCC system. With a rise in epoch count, it is observed that the TR and TS
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accuy curves attained are enhanced. It is noted that the RSMPA-DLFCC approach enriches
testing accuracy that has the ability to identify the patterns in the TR and TS data.
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Figure 7 illustrates an overall TR and TS loss value of the RSMPA-DLFCC methodology
on 80:20 of TR Phase/TS Phase over epochs. The TR loss shows the model loss acquired
reduces over epochs. Mainly, the loss values are decreased as the model adapts the weight
to diminish the predicted error on the TR and TS data. The loss analysis illustrates the
level where the model is fitting the training data. It is evidenced that the TR and TS loss
is progressively minimized and described that the RSMPA-DLFCC technique effectively
learns the patterns revealed in the TR and TS data. It is also observed that the RSMPA-
DLFCC methodology modifies the parameters for reducing the difference between the
predicted and actual training labels.

The PR curve of the RSMPA-DLFCC approach on 80:20 of TR phase/TS phase, il-
lustrated by plotting precision against recall as described in Figure 8, confirms that the
RSMPA-DLFCC technique achieves improved PR values under all classes. The figure repre-
sents that the model learns to identify different class labels. The RSMPA-DLFCC achieves
improved effectiveness in the recognition of positive samples with reduced false positives.

The ROC analysis, provided by the RSMPA-DLFCC system on 80:20 of TR phase/TS
phase demonstrated in Figure 9, has the ability the differentiate between class labels. The
figure shows valuable insights into the trade-off between the TPR and FPR rates over
dissimilar classification thresholds and differing numbers of epochs. It introduces the
accurately predicted performance of the RSMPA-DLFCC methodology on the classification
of various classes.

In Table 3, detailed comparative results of the RSMPA-DLFCC technique are demon-
strated with current models [22,23]. Figure 10 investigates a comparative analysis of the
RSMPA-DLFCC with recent approaches in terms of accuy. The experimental values high-
lighted that the RSMPA-DLFCC technique reaches an increased accuy of 98.22%, whereas
the SBODL-FCC, DNN, AlexNet, VGG-16, ResNet, and SVM models obtain decreased
accuy values of 97.43%, 86.23%, 90.49%, 90.35%, 87.70%, and 86.69%, respectively.
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Figure 11 investigates a comparative analysis of the RSMPA-DLFCC system with
recent techniques, with respect to precn and recal . The observational data highlighted
that the RSMPA-DLFCC system attains a raised Precn of 93.06%, while the SBODL-FCC,
DNN, AlexNet, VGG-16, ResNet, and SVM methods obtain reduced precn values of 89.02%,
86.11%, 87.68%, 85.28%, 86.42%, and 87.99%, correspondingly. In addition, the RSMPA-
DLFCC system attains recal values of 90.42% whereas SBODL-FCC, DNN, AlexNet, VGG-
16, ResNet, and SVM systems get decreased recal values of 85.03%, 84.39%, 81.7%, 81.35%,
81.18%, and 83.61%, respectively. These experimental data indicated that the RSMPA-
DLFCC methodology reaches the maximum food crop classification process.
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Table 3. Comparative outcome of RSMPA-DLFCC with other systems.

Methods Accuy Precn Recal Fscore

RSMPA-DLFCC 98.22 93.06 90.42 91.57

SBODL-FCC [22] 97.43 89.02 85.03 86.74

DNN l [23] 86.23 86.11 84.39 86.29

AlexNet Model [23] 90.49 87.68 81.7 83.36

VGG-16 Model [23] 90.35 85.28 81.35 85.7

ResNet Algorithm [23] 87.7 86.42 81.18 83.02

SVM Model [23] 86.69 87.99 83.61 84.21

5. Conclusions

This manuscript offered the development of automated food crop classification using
the RSMPA-DLFCC technique. The RSMPA-DLFCC technique mainly investigates the
RS data and determines different types of food crops. In the RSMPA-DLFCC technique,
the SimAM-EfficientNet model is utilized for the feature extraction process. The MPA is
applied for the optimum hyperparameter selection in order to optimize the accuracy of
SimAM-EfficientNet architecture. The simulation analysis of the RSMPA-DLFCC method
takes place on benchmark UAV image dataset. The widespread result analysis portrayed
the higher performance of the RSMPA-DLFCC approach over existing DL models, with
a maximum accuracy of 98.22%. In future work, real-time remote sensing data will be
a priority, enabling the model to adapt dynamically to changing crop conditions and
emerging threats. Moreover, future work can focus on the integration of multi-modal data
sources, such as thermal imaging or hyperspectral data, and will broaden the scope of crop
classification, providing a more comprehensive understanding of crop health and types.
Finally, field tests can be performed to assess the real-world performance and accuracy of
the RSMPA-DLFCC technique in diverse agricultural settings and will be essential for its
practical deployment and validation.
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