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Abstract: The attainment of accurate motion control for robotic fish inside intricate underwater envi-
ronments continues to be a substantial obstacle within the realm of underwater robotics. This paper
presents a proposed algorithm for trajectory tracking and obstacle avoidance planning in robotic fish,
utilizing nonlinear model predictive control (NMPC). This methodology facilitates the implementa-
tion of optimization-based control in real-time, utilizing the present state and environmental data to
effectively regulate the movements of the robotic fish with a high degree of agility. To begin with, a
dynamic model of the robotic fish, incorporating accelerations, is formulated inside the framework of
the world coordinate system. The last step involves providing a detailed explanation of the NMPC
algorithm and developing obstacle avoidance and objective functions for the fish in water. This will
enable the design of an NMPC controller that incorporates control restrictions. In order to assess the
efficacy of the proposed approach, a comparative analysis is conducted between the NMPC algorithm
and the pure pursuit (PP) algorithm in terms of trajectory tracking. This comparison serves to affirm
the accuracy of the NMPC algorithm in effectively tracking trajectories. Moreover, a comparative
analysis between the NMPC algorithm and the dynamic window approach (DWA) method in the
context of obstacle avoidance planning highlights the superior resilience of the NMPC algorithm
in this domain. The proposed strategy, which utilizes NMPC, demonstrates a viable alternative
for achieving precise trajectory tracking and efficient obstacle avoidance planning in the context of
robotic fish motion control within intricate surroundings. This method exhibits considerable potential
for practical implementation and future application.

Keywords: robotic fish, NMPC; trajectory tracking; obstacle avoidance; DWA

1. Introduction

The utilization of ocean and river resources by humans has led to the growing promi-
nence of underwater robots in various applications. Underwater robots are utilized in
several sectors, including civil domains such as marine environmental monitoring, maritime
search and rescue, seabed resource exploration, and aquatic biology research. Additionally,
they find applications in military sectors for reconnaissance activities and the tracking of
enemy submarines [1,2]. Research on trajectory tracking and obstacle avoidance planning
for underwater robots is considered a prominent area of exploration within the realm of
marine technology.

Robotic fish, classified as a subset of underwater robots, possess attributes that align
with those of a time-variant, strongly coupled, and multi-input multi-output nonlinear
system. Trajectory tracking control and obstacle avoidance planning control have garnered
substantial attention from scholars both locally and internationally due to their prospec-
tive uses [3,4]. In the realm of underwater robotics, it is common to observe disparities
between the trajectory followed by these machines and the intended reference trajectory.
Consequently, the ability to safely navigate around obstacles is frequently compromised
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when such situations arise. The primary cause of this issue can be traced to the utilization
of non-standard mathematical models by underwater robots and the implementation of
poor control mechanisms. Extensive study has been performed by researchers worldwide
to address the issues encountered by underwater robot systems in trajectory tracking and
obstacle avoidance planning, with the aim of improving the precision and dependabil-
ity of these features. Several effective control approaches have been presented to tackle
these difficulties.

Up to this point, the predominant techniques employed for trajectory tracking of
underwater robots consist of traditional proportional integral derivative (PID) control [5,6],
sliding mode control, fuzzy control [7,8], neural network control [9,10], intelligent con-
trol [11,12], and the pure pursuit (PP) method. The PID method, being a highly prevalent
control strategy, has been extensively employed in the domain of underwater robot tra-
jectory tracking. The trajectory tracking control can utilize a neural network-based PID
system, aiming to overcome challenges posed by external disturbances, such as wind and
water currents, which hinder the construction of accurate dynamic models for underwater
robots [13]. This approach enables real-time tracking of desired heading angles and target
paths. In order to mitigate the impact of external disturbances on the variation of control
coefficients in underwater robots, a series of nonlinear PID controller designs for trajectory
tracking can be employed, utilizing saturation functions [14]. The sliding mode control
technique, which is widely recognized for its robust capabilities, is frequently employed in
the context of dynamic tracking control for underwater robots. Luo et al. [15] presented a
control strategy that utilizes the backstepping method and sliding mode control technique
to effectively address concerns related to horizontal plane trajectory tracking. This approach
allows for the quick tracking of target trajectories while ensuring sustained tracking efficacy.
Underwater robots utilize a control technique for fixed-time trajectory tracking, effectively
addressing the chattering problem generated by sliding mode control gains [16]. In the
field of fuzzy control methods, a variable fuzzy-based predictive controller framework
has been introduced. This framework is designed to address the challenge of dynamic
three-dimensional underwater trajectory tracking for autonomous underwater robots [17].
The adjustability of the structure and settings of this controller can be performed in real-
time through online means. Zhu et al. [18] addressed the issue of actuator saturation in
the context of trajectory tracking for underwater robots. To mitigate this problem, Zhu
proposed a control solution that combines fuzzy logic and backstepping techniques. This
approach allows for regulated variations in velocity that fall within acceptable ranges, as
indicated by reference. Within the framework of neural network control methods, the
underwater robot controller can autonomously track targets in the presence of uncertain
dynamics and seawater interference. This controller utilizes radial basis functions and
nonsingular terminal sliding mode control technology, achieving asymptotic stability of the
target tracking controller as demonstrated through the application of Lyapunov stability
principles [19]. Underwater robots enhance their autonomous maneuvering capabilities for
trajectory tracking tasks in perturbed underwater environments by employing a dynamic
neural control system and adaptive neural controllers [20]. Within the domain of PP ap-
proaches, Sun et al. [21] examined the precision concerns associated with conventional PP
algorithms and put forth an enhanced tracking algorithm. The design in question entails the
adaptive modification of the preview distance, which is determined by the steering angles
and deviation angles. The PP algorithm adjusts lateral deviation by selecting different
targets and dynamically modifying the preview distance, addressing the issue of subpar
tracking performance resulting from inadequate selection of the preview distance [22]. The
existing methods for trajectory tracking have undergone significant advancements, result-
ing in highly refined methodologies that provide meticulous monitoring by leveraging
exact robot modeling. Nevertheless, the current body of research predominantly focuses on
the development of kinematic controllers for ground-based robots, specifically designed to
navigate basic and conventional smooth courses. The authors neglect to take into account
the intricate nature of underwater settings and how they can impact the movement of
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robots. As a result, the controllers they have devised are not suitable for supporting the
navigation of underwater robots through complex or sudden turns, which could potentially
cause deviations from the intended trajectory.

In recent years, there has been significant progress in the development of autonomous
obstacle avoidance technology in the field of underwater robotics. This has led to an increase
in research efforts by both local and international research teams, focusing on the study of
autonomous obstacle avoidance planning for underwater robots. In order to guarantee the
autonomous ability of underwater robots to avoid obstacles in scenarios including multiple
stationary objects, Li introduced a control approach for obstacle avoidance in a spherical
underwater robot. This strategy relies on the utilization of an ultrasonic sensor array.
This approach considers the kinematic and dynamic models of the robot as well as the
properties of ultrasonic sensors [23]. In order to address the nonlinear and fully constrained
tracking as well as obstacle avoidance issues, mobile robots utilize an extended state
observer to estimate unknown disturbances. Additionally, the robot effectively resolves
obstacle avoidance problems during movement by employing obstacle region distance cost
potential functions [24]. To address challenges related to collision avoidance, robots can
utilize a framework of motion planning and tracking control. This framework employs a
multi-constraint numerical optimization technique for motion planning, enabling effective
control for obstacle avoidance [25]. Xiang et al. [26] presented an enhanced obstacle
avoidance approach for mobile robots, specifically focusing on the obstacle avoidance
problem. This method builds upon the Dynamic Window Approach (DWA) and was
proposed by Xiang. This method integrates fuzzy logic to dynamically modify weight
coefficients in real-time, addressing the limited adaptability observed in the conventional
DWA methodology. This is achieved through the analysis of target and obstacle information.
Liu made enhancements to the conventional DWA algorithm, which is commonly employed
in path planning studies for land-based robots, in order to address the unique challenges
posed by underwater environments. These challenges include the need to attain globally
optimal paths and perform real-time dynamic obstacle avoidance. This improvement was
documented in a research paper [27]. Conventional obstacle avoidance methods commonly
employ obstacle information to adjust control variables for avoidance or produce avoidance
paths. Nevertheless, these methods do have certain limitations. The utilization of obstacle
data to adjust control parameters for the purpose of avoiding obstacles has the potential
to cause disorganized movement of the robot, leading to instability in control due to
substantial changes in both linear and rotational velocities.

The conventional control techniques employed in the field of robotic fish frequently
depend on PID control or empirical methodologies. However, these methods demonstrate
some shortcomings in terms of their performance and ability to withstand challenges in
intricate underwater settings. The present work introduces several novel contributions,
which are outlined below:

(1) The utilization of nonlinear model predictive control (NMPC) in the realm of motion
control for nonlinear robotic fish systems. This approach utilizes real-time optimization
solutions to boost the adaptability of robotic fish in different surroundings, allowing for
accurate trajectory tracking and obstacle navigation. In contrast to conventional trajectory
planning techniques that predominantly focus on position and velocity alterations, this
methodology incorporates enhanced control over acceleration.

(2) The implementation of trajectory planning and optimization algorithms based on
acceleration, which enables the achievement of smoother motion for robotic fish
and the reduction of excessive inertial forces during movement. Consequently, this
approach improves the precision of trajectory monitoring as well as the level of
comfort experienced.

The remainder of this paper is organized as follows. Section 2 presents the theoretical
framework of the bionic robotic fish, encompassing key variables such as the position,
velocity, and acceleration of the device. This model serves as a foundation for the imple-
mentation of motion control strategies and obstacle avoidance mechanisms. In Section 3,
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a controller based on NMPC is introduced. This controller formulates trajectory tracking
and obstacle avoidance planning as an optimization problem. In Section 4, simulation
studies are conducted to validate the efficacy of the proposed NMPC technique in the
context of trajectory tracking and obstacle avoidance tasks for underwater robotic fish. The
final section provides a summary of the entire article and offers insights into the potential
practical implications of employing the nonlinear model predictive control method.

2. Modeling of Robotic Fish

In order to accomplish trajectory tracking of the robotic fish, a kinematic model is
created to characterize its motion, incorporating variables such as velocity, location, and
rotational angles. To achieve a more sophisticated formulation of the kinematic model for
the biomimetic robotic fish, it is necessary to build a coordinate system that effectively
characterizes the fish’s motion. As depicted in Figure 1, the 0 — xyz coordinate system is
defined as the carrier coordinate system of the biomimetic robotic fish, where o represents
the fish’s center of mass, and the x and y axes denote the lateral and longitudinal directions
of the fish, respectively, while the z-axis is oriented upward perpendicular to the fish’s body.
Additionally, the O — XYZ coordinate system, also referred to as the global coordinate
system or the world coordinate system, is defined. Here, the XOY plane lies parallel to the
horizontal plane, and the OZ axis is oriented vertically upward [28].
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Figure 1. Motion coordinate system of bionic robot fish.

The coordinates of the fish body’s center of mass in the world coordinate system
are as follows: P, = (X, Y, Z)T. The rotational vector representation of the fish body’s
center of mass in the world coordinate system is expressed as follows: A, = (¢, 6, 1p)T.
The transformation of the center of mass of the fish body in the carrier coordinate system
to the world coordinate system can be achieved by utilizing a rotational vector. As a
result, the matrix that represents the transformation of the linear velocity of the fish body’s
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center of mass from the carrier coordinate system to the world coordinate system can be
mathematically described in the following manner

"Ry, = R(Y)R(O)R(¢) €))
where
Cyp —Syp O Co 0 Sy 1 0 0
R(yp) = [Slp Cy O] , R(yp) = [ 0 1 0] , R(yp) = [O o —54,] ,
0 0 1 —Sp 0 Sy 0 Sy GCp

CgSLp C¢C¢ + S(PS@SL/) —S(pcl/; + C¢59C¢
—Sy S¢Co CypCy
In a similar manner, the matrix that represents the transition of the angular velocity of

the fish body’s center of mass from the coordinate system of the carrier to the coordinate
system of the world can be expressed as follows.

1 S4Ty  CyTy
"I,=10 Cp  —Sy 3)

0 S4/Co Cy/Co

Cng, —C¢S¢ + C¢C9C¢ 54,54, + C¢59C¢

Here, S, represents sin(x), Cy represents cos(x), and Ty represents tan(x); it is also
evident that R(x) is an orthogonal matrix, satisfying the relation R~ (x) = R (x) [29].

When V, = (u, v, w)" represents the linear velocity components of the robotic fish
along the x, y, and z axes in the carrier coordinate system, and (), = (p, g, r)T denotes the
angular velocity components of the fish’s center of mass in the same coordinate system, the
position and orientation of the fish’s center of mass in the world coordinate system can be
mathematically represented using iterative formulas.

-/ e

The iterative formula for the velocity of the fish’s center of mass is as follows.

)=/

where V}, represents the linear acceleration components of the fish’s center of mass in

Vi

o dt ()

the carrier coordinate axes, while (), signifies the angular acceleration components in the
carrier coordinate system. The kinematic equation of the robotic fish can be formulated as

depicted in Equation (7).
WR, 0 W
— b 3x3 b 6
[03x3 wa] [Qb] ©

X = uCyCy + v(—CypSy + CpCoCyp) + w(SpSy + CpSeCy)

Y = MCQSlp + v(C¢C¢ + S¢SQS¢) + ZU(—S(pClp + ClpSQClp)
Z = —uSp+vSpCo + wCypCo

¢ =p+qSpTo +1CpTp

9 = qC¢ - 1’54;

$ =4Sp/Co +rCy/Cy

Py
Aw

@)
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Here, only the planar motion of the robotic fish is taken into consideration. This
implies that substituting 8 = ¢ =0, p = g = 0, w = 0 into (7) yields the following result.

X = ucosyp —vsiny
Y:usinlp+vc051p ®)
b=

The kinematic model of the robotic fish pertains to the temporal progression of its
motion states, which often includes details such as position, velocity, and orientation.
Nevertheless, in order to incorporate the acceleration of the fish, it becomes imperative
to transition from the kinematic model to a dynamic model. The dynamic model takes
into account not just variations in velocity and position, but also integrates the impact of
acceleration on these variables.

The dynamic model of the robotic fish exhibits a strong correlation between accel-
eration and steering angle. The rate of change in acceleration has a direct influence on
variations in the steering angle, while modifications in the steering angle, in turn, have a
reciprocal effect on both the direction and magnitude of acceleration. The mathematical
representation of the relationship between acceleration and steering angle can be expressed
as follows

y=ay ©)
p="0 o
u 0
where a, and a, denote the accelerations along the lateral and longitudinal axes of the
robotic fish, respectively. The dynamic model of the robotic fish is presented as

X = ay
y=a,
p=%-% (10)

X = ucosyp —vsiny
Y = usiny +vcosy

This study enhances the kinematic model by incorporating acceleration, so transform-
ing it into a dynamic model. This modification allows for a more accurate representation
of the motion behavior exhibited by the robotic fish. The inclusion of acceleration in the
analysis facilitates a more comprehensive comprehension of the dynamic properties shown
by the fish. This holds special significance in the context of designing control algorithms
and optimizing the motion performance of the fish.

3. A NMPC-Based Control Method for Robotic Fish
3.1. Overview of NMPC Algorithm

For a nonlinear system, consider the following general form of a discrete model

g(t+1) = f(&(t),u(t))
Zt)ex u(t)er (11)

where f () represents the state transition function of the system, ¢ denotes an ns-dimensional
state variable, u signifies an m.-dimensional control variable, x stands for state variable
constraints, and I' refers to control variable constraints.

Setting (0, 0) = 0 as a stable point of the system, which also serves as the control
objective, for any given time domain N, the following optimization objective function Jx ()

is considered
t+N—1

In@E®)U) =} 1K), uk) +PE(t+N)) (12)

k=t
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where U(t) = [u(t), - ,u(t+ N —1)]" represents the control input sequence within the
time domain N, and {(t) signifies the trajectory of the system’s state vector under the
influence of the input vector sequence U(t). The first term () in the optimization objective
function represents the tracking capability towards the desired output, and the second term
P() signifies terminal constraints [30].

At any arbitrary time, the predictive model of the NMPC system can forecast all state
variables of the system from time t + 1, + 2 to t + N, where N, represents the prediction
horizon, based on the actual outputs and control inputs of the biomimetic robotic fish up
to the current time. NMPC then, in accordance with the objective function and system
constraints defined for the specific system, computes all control inputs from time t to ¢ + N,
where N, signifies the control horizon [31].

NMPC aims to solve, at each time step, the following constrained finite-horizon
optimization problem

T, TN (G U (13)

s.t. Cryrr = f(Coptike), k=1t t+N—1 (14)
et €X k=t+1,--- t+N-1 (15)

u, €l k=t t+N-1 (16)

Crr = () (17)

SNt € Xfin (18)

where Equation (14) represents the state constraints imposed by the system,
Equations (15) and (16) denote the constraints on the state vector and control input vector,
respectively, Equation (17) entails the initial state constraint, and Equation (18) pertains to
the terminal state constraint.

The framework flowchart of NMPC control is shown in Figure 2.

Controller
Reference ¥ Rolling output U_ | Robotic fish
. L X,
(Koyo)————1 trajectory optimization system o)

& e(k)

A

NMPC predictor

A

Figure 2. NMPC control flowchart.

Here, (x,, yo) represents the initial position of the bionic robotic fish at the current
moment, e(k) denotes the error between the predicted pose and the reference trajectory, and
(x,y) signifies the position of the bionic robotic fish in the next moment after prediction.

Figure 3 depicts the predictive control framework employed for the nonlinear model
of the bionic robotic fish.

Figure 3 illustrates the representation of several components in the context of a robotic
fish. The red dashed line corresponds to the reference trajectory, while the green dashed line
represents the predictive output of the robotic fish for the reference trajectory. Additionally,
the black dashed line denotes the control input created by the predictive model. At any
time step k, the predictive model of the NMPC system can predict all state variables from
time step k + 1 to k + N, where N, is the prediction horizon, based on the actual output
and control input of the robotic fish in the subsequent time steps starting from the current
time step k. NMPC computes the control inputs for all time steps from k to k + N, — 1,
where N, is the control horizon, according to the objective function and system constraints
defined for the specific system.
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Figure 3. Nonlinear Model Predictive Control for Biomimetic Robotic Fish.

Finally, the control inputs obtained from the optimized control sequence at time step k
are applied to the controlled system. The process is repeated at time step k + 1 to obtain
the next set of control inputs. This rolling optimization continues until the predictive
output of the robotic fish converges to the reference trajectory, completing the NMPC
predictive control.

3.2. Functions for Obstacle Avoidance and Objective Functions

The obstacle avoidance function entails modifying the penalty function value by
considering the discrepancy between the distance of obstacles and the target point. In
this case, a greater function value is assigned to a closer distance. An augmentation in
the weight coefficient has a tendency to render the planning outcomes more cautious. In
scenarios when the robotic fish lacks information regarding obstacles, the weight coefficient
will have no impact on the planning results. When encountering substantial measurement
or estimation mistakes in the state of the robotic fish, it is possible to utilize higher weight
coefficients. Nevertheless, this phenomenon also results in a rise in tracking deviation, as
demonstrated in the subsequent analysis

SobsVi
— %)+ (Yi—y0)* +¢

]obs,i = (19)

(Xi

where S, is the weight coefficient, v; = v2 + vi is the square of the robotic fish’s swimming
velocity, (Xj,Y;) represents the position coordinates of the obstacle point in the world
coordinate system, (x,,,) denotes the coordinates of the robotic fish’s center of mass in
the world coordinate system, and { is a very small positive value introduced to prevent
division by zero situations in the denominator.

The objective function at the trajectory planning level is to minimize deviations from
the global reference path and achieve obstacle avoidance. The act of circumventing hurdles
is achieved by implementing penalty functions in the following manner

Np 2
min % {[npre(t 47 [ 1) = ey (44 0)] % QI x R+ ons
1=
S.t. umin < ut < umax

(20)
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where 17pre and 77, are the predicted trajectory and the reference trajectory, respectively,
and Q and R are weight matrices.

The management of motion kinematic trajectory tracking and obstacle avoidance in
robotic fish include the manipulation of the fish’s lateral and longitudinal accelerations
to regulate its forward and backward velocity, lateral velocity, and yaw rate. This action
is undertaken with the purpose of ensuring that the center of mass of the fish follows
a specified reference trajectory, resulting in the continuous reduction of the discrepancy
between the projected trajectory and the reference trajectory until it reaches zero.

3.3. Design of the NMPC Controller

NMPC employs a nonlinear model to forecast forthcoming states by considering the
present state and a sequence of control inputs inside the control horizon. The process at
hand is evidently characterized by an iterative methodology, wherein it is necessary to
establish an explicit iteration equation in order to estimate the solution of the differential
equation, considering that the control sequence is unknown. In the realm of actual en-
gineering applications, numerical methods that are frequently employed encompass the
Euler method and the fourth-order Runge-Kutta algorithm. In this part, the forward Euler
approach is utilized to discretize Equation (10) and transform it into a predictive model.

() =x(i—1)+T xax(i

()= yli—1)+Txa ) |

(1) = 9 — 1)+ T x ay () /(i — 1) ~ T [ax(i) /i 1) e1)
H)=X({i—-1)4Tx [x i—1)cosy(i—1) —'y(i—l)sinlp(i— 1)]
)=Y([i—1)+Tx[x(i—1)sing(i—1)+y(i—1)cosp(i —1)]

Taking into account the maximum hydrostatic pressure that the robotic fish can endure
while swimming underwater, the following dynamic constraints are incorporated:

|ax|< Fy/m 22)
|ay| < Ep/m
where F, represents the maximum hydrostatic pressure the fish body can endure. Equations
(10) and (22) can be succinctly expressed as follows

E(1) = F(E(0),u(t) -
lu(t)|< Fp
where ¢ = [x,y, ¢, X, Y]T consists of five discrete state vectors, which are the swimming
velocities of the robotic fish in the x and y directions, the heading angle, and the Cartesian
coordinates of the fish, while u(t) represents the control input.

4. Simulation Analysis and Validation

The paper presents trajectory tracking and obstacle avoidance simulations as a means
to validate the efficacy of the NMPC algorithm in the motion control of the bionic robotic
fish. This study aims to evaluate and compare the tracking performance of the NMPC track-
ing algorithm and the Pure Pursuit (PP) algorithm on S-shaped and cloverleaf trajectories.
Furthermore, this study conducts a comparative analysis between the obstacle avoidance
method of NMPC and the Dynamic Window Approach (DWA) algorithm, focusing on their
respective effectiveness in avoiding obstacles along circular routes. This study employs
a comparative analysis to establish the precision of the NMPC algorithm in trajectory
tracking and evaluate the efficacy of its obstacle avoidance planning.
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4.1. Trajectory Tracking Control Algorithm
4.1.1. Control of S-Shaped Curve Trajectory Tracking

In a 10 m by 10 m plane, a reference trajectory is set with the starting coordinates (0, 5)
and the ending coordinates (10, 1.5). Due to the computational complexity of the algorithm,
a point mass model without considering size information is employed for the fish model.
The initial state of the fish is denoted as ¢ = [00 77/20 5]T, and the allowable range for
trajectory tracking error is 0.1 m. The NMPC controller possesses a state variable dimension
of ns =5, a prediction horizon of N, =5, a control horizon of N; = 3, and a sampling time
of T =0.02 s. For the PP controller, the lookahead distance coefficient is 0.1, the lookahead
distance is 1 m, and the sampling time is 0.02 s. Figure 4 presents the tracking trajectories
of the fish. It can be observed that both the NMPC and PP tracking algorithms successfully
achieve trajectory tracking from the starting point to the destination.

10
Reference
ol . NMPC Path .
PP Path

0 1 2 3 4 5 6 7 8 9 10
x(m)

Figure 4. Trajectory tracking results of bionic robotic fish—S-shaped.

Although both of the aforementioned algorithms are capable of achieving trajectory
tracking, it is important to note that their respective tracking effects exhibit notable dif-
ferences. The PP tracking method has a tendency to diverge from the reference trajectory,
particularly when encountering steep curves. In contrast, the NMPC tracking approach
does not demonstrate this behavior. In order to offer a more comprehensive analysis of the
tracking effects exhibited by the two algorithms, a comparison was undertaken by exam-
ining the disparities between the trajectory tracked by each algorithm and the reference
trajectory. The findings are displayed in Figure 5.

The superiority of the robotic fish’s tracking accuracy under the control of the NMPC
algorithm, as compared to the PP algorithm, is clear, leading to reduced errors. The
PP tracking algorithm exhibits notable inaccuracies at sample points 69, 211, and 358,
wherein the largest tracking error amounts to 0.2046 m. The observed divergence above the
acceptable threshold for tracking error is by a magnitude of 204.6%. This deviation may be
attributable to abrupt changes in the trajectory occurring at these specific sample locations.
In contrast, the trajectory error observed in the NMPC tracking method consistently remains
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below 0.1 m, while the turning errors converge within the allowed range of error. Upon
comparing the error values of the two algorithms, it becomes apparent that the NMPC
method demonstrates superior performance in relation to overshoot and settling time
when compared to the PP algorithm. The findings of this study provide empirical evidence

supporting the superior accuracy and stability of the NMPC algorithm in trajectory tracking
when compared to the PP algorithm.

(a) NMPC Tracking Error
T T T T T T T T
0.0 = —
— X: 67 ¥:218 FeETT
E . 0.04085 . 0.03983 N
g » - —0.03971
g 0 COWA WY L S 1 — L f =
B
=1
—0.5 R -
-1 | 1 | | 1 | | | 1
[ 50 100 150 20 2500 300 350 100 1500 500
Sampling Point
(b) PP Tracking Error
T T T T T T T |
05| *211 n
. :0.2046
E ]
z a X: 69 ¥:358
5 [ ":—0.2045 02054
B ——— -—
[=]
0.6 K -
-1 1 1 | | 1 1 | | 1
[ 50 100 150 200 250 300 150 400 450 500
Sampling Point

Figure 5. Trajectory Error Comparison of NMPC and PP.

The occurrence of trajectory tracking errors may be attributed to the orientation angle
of the robotic fish, denoting the angle between the lateral body axis of the fish and the

direction of the Earth’s -axis. Figure 6 depicts a comparison of the orientation angle between
PP control and NMPC.

.......... PP
0.5 ¢

—0.5 -

Steering Angle(rad)

~15} =N :

72.5 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Sampling Point

Figure 6. Turning angles comparison of NMPC and PP.
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In the range of sample points 90 to 230, it is seen that the magnitudes of the orientation
angles obtained under the PP control approach tend to be greater compared to those
obtained using the NMPC method. The occurrence of tracking errors may be observed
in Figure 4, as indicated by the excessive orientation angles between the first and second
extremum points. In a comparable manner, it can be observed that the PP control method
demonstrates instances of notably greater orientation angles inside the sampling point
intervals of 250 to 330 and 400 to 500, whereas the NMPC control approach does not exhibit
similar occurrences.

Based on Figures 4-6, it can be inferred that both the NMPC and PP tracking techniques
have the ability to accurately follow the predetermined trajectory. Specifically, in the context
of straight or smooth pathways, each of these tracking approaches produce comparable
trajectories and provide favorable control results. However, while navigating via S-shaped
or sharp turning courses, there are observable differences in the trajectories followed by
the PP and NMPC methods. Specifically, the NMPC technique demonstrates a higher
level of accuracy in tracking trajectories compared to the PP method. The NMPC tracking
approach demonstrates the ability to precisely track the reference trajectory on linear
pathways, as well as achieve convergence of tracking trajectories to the reference trajectory
on curved paths.

4.1.2. Trajectory Tracking Control of Cloverleaf-Shaped Curves

In order to enhance the credibility of our control method’s ability to track trajectories
in a more intricate setting, subsequent to the successful tracking of the S-shaped curve
trajectory, the robotic fish proceeded to navigate the more demanding cloverleaf-shaped
trajectory. In contrast to the S-shaped curve, the cloverleaf curve is characterized by
pronounced turns and fast fluctuations in speed, necessitating a considerable level of agility
and accurate control capabilities from the robotic fish system. The initial state of the fish
is denoted as ¢ = [00 7t/2 10 5]T, and the allowable range for trajectory tracking error is
0.2 m. The NMPC controller possesses a state variable dimension of n; = 5, a prediction
horizon of N, =5, a control horizon of N, = 3, and a sampling time of T = 0.02 s. For the PP
controller, the lookahead distance coefficient is 0.1, the lookahead distance is 1 m, and the
sampling time is 0.02 s. The simulation diagram illustrating the robotic fish tracking the
cloverleaf trajectory is shown in Figure 7.

The provided diagram illustrates that both the NMPC and PP tracking methods
are capable of achieving trajectory tracking for the cloverleaf curve. However, distinct
disparities between the two approaches become apparent when examining the locally
magnified image. The tracking approach employed by the PP system exhibits a tendency to
execute premature turns in instances where the steering angle exceeds a certain threshold,
resulting in suboptimal adherence to the intended curved trajectory. In order to provide a
more comprehensive illustration of the tracking impacts of the two techniques, an analysis
is conducted to determine the disparities between the tracking trajectory and the reference
trajectory. The obtained findings are visually presented in Figure 8.

The experimental results demonstrate that by employing the NMPC method as de-
picted in Figure 8, the robotic fish exhibits a significantly reduced tracking error, tending
towards zero. The observed tracking flaws in both approaches primarily manifest at the
extremities of the cloverleaf pattern. The PP tracking method exhibits a maximum tracking
error of 0.2633 m, above the acceptable range for tracking error by 131.65%. On the other
hand, the NMPC tracking approach exhibits a maximum trajectory error of 0.1088 m, which
falls within the acceptable limit for tracking errors. This observation confirms that the
NMPC tracking approach exhibits more precision in complicated situations when com-
pared to the PP tracking method. Figure 9 depicts a visual representation of the contrasting
turning angles exhibited by the robotic fish when subjected to two different control methods,
namely NMPC control and PP control.
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Figure 9. Turning Angles under NMPC Control and PP Control.

Figure 9 illustrates that, on the whole, there exists a marginal disparity between the
turning angles when subjected to NMPC control and PP control. Nevertheless, it is worth
noting that the turning angle under PP control exceeds that under NMPC at the extreme
points. The occurrence of large turning angles in PP control at these critical places has
the potential to result in tracking errors, hence causing divergence from the intended
reference trajectory.

Based on the analysis of Figures 7-9, it is apparent that, within the intricate context
of the four-leaf clover curve, both the NMPC and PP control approaches demonstrate
effective trajectory tracking capabilities, exhibiting commendable performance in this
regard. Nevertheless, there are discernible distinctions between the PP and NMPC tracking
systems at the extremities of the four-leaf clover. The tracking trajectory of the PP method
has a tendency to deviate from the reference trajectory at the tips, accompanied by the
occurrence of anticipatory turning. In contrast, the NMPC tracking approach reveals precise

convergence to the reference trajectory at the tips.

4.2. Validation of Obstacle Avoidance Planning and Control Algorithm
The obstacle avoidance control for the robotic fish, based on the principles of tra-
jectory tracking, is implemented using NMPC. The process entails the identification of
recently introduced obstacles and the iterative calculation of both the objective function
and the obstacle avoidance function. The aforementioned iterative procedure ultimately
accomplishes the objectives of tracking control and obstacle avoidance control along a
predetermined trajectory. The PP algorithm does not possess inherent obstacle avoidance
functionality. Its primary objective is to guide the robot along a specified course, disregard-
ing the existence of impediments in the surrounding environment. The presence of barriers
within the environment can potentially result in collisions when employing the pure PP
algorithm. The DWA method has been specifically developed to address the challenges of
path planning and obstacle avoidance in the context of mobile robots. The objective of this
research is to facilitate the robot’s ability to promptly react, maneuver past barriers, and
adhere to the predetermined path in order to achieve the desired outcome within intricate
surroundings. Therefore, in the process of validating obstacle avoidance control algorithms,
a comparative analysis is conducted between the NMPC obstacle avoidance algorithm
and the DWA obstacle avoidance algorithm. The simulation results obtained through the
utilization of NMPC and DWA obstacle avoidance algorithms on a predetermined track
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are depicted in Figure 10. The successful avoidance of impediments by the robotic fish is
clearly demonstrated under the control of both algorithms.
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Figure 10. Obstacle avoidance trajectories of the robotic fish by using NMPC and DWA.

In this context, the initial state of the robotic fish is defined as = [00 71/2 8 S]T. The
NMPC controller has a state variable dimension of 15 = 5, a prediction horizon of N, =10, a
control horizon of N = 3, and a sampling time of T = 0.05 s. The safety margin between the
robotic fish and obstacles is set at 0.3 m. The centroids of obstacles 1, 2, and 3 are located at
coordinates (5, 8), (2, 5), and (5, 2) respectively, with each obstacle having a radius of 0.2 m.

Based on Figure 10, it is evident that, while both of the aforementioned approaches
possess the ability to navigate around obstacles, there exists a notable discrepancy in the
efficacy of their avoidance capabilities. The obstacle avoidance method known as DWA
presents difficulties in terms of extended avoidance trajectories and increased avoidance
radii. Furthermore, following the successful evasion of impediments, the system encounters
difficulties in promptly reestablishing its predetermined direction. The obstacle avoidance
system based on NMPC successfully tackles the challenge of accommodating greater
radii while efficiently returning to the original trajectory following obstacle avoidance. In
order to facilitate a more thorough examination of the obstacle avoidance capabilities of
these two approaches, this research undertakes a calculation of the disparity between the
reference trajectory and the obstacle avoidance trajectories derived from both algorithms.
The findings are illustrated in Figure 11.

Upon analysis of Figure 11, it becomes evident that the DWA obstacle avoidance
method demonstrates a notably extended control period compared to the NMPC obstacle
avoidance method throughout the process of navigating around obstacles. Furthermore, it
is seen that the avoidance trajectories generated by the DWA approach exhibit substantial
deviations from the reference trajectory. The DWA approach exhibits a maximum variation
of 1.547 m during the process of obstacle avoidance. Furthermore, the minimal diver-
gence from the reference trajectory following successful obstacle avoidance is measured
at 0.3303 m. Both of these processes exhibit noticeable instances of excessive and ineffec-
tive avoidance trajectories. On the other hand, the obstacle avoidance approach using
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NMPC demonstrates a maximum variation of 0.9035 m while navigating around obstacles.
Furthermore, once the avoidance is successfully executed, it promptly converges towards
the desired reference trajectory. During this particular phase, the largest divergence from
the reference trajectory is recorded as 0.3183 m. This suggests that the obstacle avoidance
method using NMPC is capable of efficiently navigating around obstacles within a nar-
rower range of deviation, while simultaneously exhibiting a swift convergence towards the
desired trajectory.
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Figure 11. Distances between the obstacle avoidance trajectory and the reference trajectory.

In order to evaluate the efficacy of the DWA and NMPC obstacle avoidance techniques
in safely maneuvering around obstacles, the distance between the centroid of the robotic
fish and the centroids of the obstacles is employed as a metric. The findings are illustrated
in Figure 12.

By examining Figure 12, it is observed that, when employing the DWA obstacle
avoidance technique, the robot fish’s centroid maintains minimum distances of 0.2836 m,
0.5535 m, and 0.4932 m from the centroids of the three obstacles, respectively. The lowest
distances associated with the three obstacles are 141.8%, 276.27%, and 246.6% of the respec-
tive obstacle radius, which is 0.2 m. The NMPC obstacle avoidance approach demonstrates
control over the minimum distances, which measure 0.3729 m, 0.3677 m, and 0.3891 m.
These distances correspond to 186.45%, 183.85%, and 194.55% of the obstacle radius, respec-
tively. Based on the examination of the aforementioned data, it can be inferred that both
approaches for obstacle avoidance consistently maintain a considerable margin of safety
from the obstacles during the avoidance procedure. Moreover, within the framework of
the NMPC obstacle avoidance approach, it has been observed that the minimum distance
of the centroid exhibits a rather consistent behavior, hence preventing the occurrence of
extremely large or short avoidance distances.

Based on the analysis of Figures 10-12, it can be observed that the DWA obstacle avoid-
ance method demonstrates adherence to safety standards. Nevertheless, it presents certain
concerns, such as an excessive avoidance radius and a delayed convergence of the avoidance
trajectory towards the reference trajectory. The obstacle avoidance mechanism employed
by NMPC guarantees that both the process of avoidance and the resulting trajectory of
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the robot fish remain within acceptable ranges, so demonstrating its notable precision
and reliability. Additionally, it can be observed that the minimum distances between the
centroid of the robot fish and the centroids of the obstacles are all contained within a range
of 1.5 to 2 times the radius of the obstacles. This finding serves to demonstrate the efficient
and reasonably consistent obstacle avoidance capabilities of the NMPC approach.
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Figure 12. Distances between the centroid of the robotic fish and the centroids of obstacles.

5. Discussion

The exact control of robotic fish motion has long been a challenging task in the realm
of underwater robotics, particularly inside complicated underwater settings. In order to
tackle this particular difficulty, the present study utilizes a trajectory tracking and obstacle
avoidance planning algorithm for autonomous underwater vehicles inspired by NMPC
(Nonlinear Model Predictive Control). The method presented in this study aims to enhance
control performance by incorporating real-time system status and external environmental
information. This approach facilitates the achievement of agile and responsive control for
the robotic fish. The initial step involves establishing the dynamic model of the robotic
fish within the global coordinate system. Subsequently, the NMPC algorithm is delineated
and accompanied by the formulation of obstacle avoidance and objective functions, hence
facilitating the development of an NMPC controller that incorporates control restrictions.

In order to assess the efficacy of this methodology, the NMPC algorithm and the PP
algorithm were employed to achieve trajectory tracking on S-shaped and cloverleaf curves,
respectively. The comparison results are shown in Figures 13 and 14.

Both the NMPC tracking method and the PP tracking method have the capability
to accurately follow the reference trajectory. In the case of straight or smooth pathways,
both of these approaches provide comparable trajectories and demonstrate efficient control.
Nevertheless, disparities in trajectory tracking between the Pure Pursuit (PP) and Nonlinear
Model Predictive Control (NMPC) methods become apparent, particularly while navigating
along S-shaped routes. In this scenario, the PP tracking approach exhibits a lower level of
precision compared to NMPC. In contrast to the PP tracking approach, NMPC demonstrates
superior performance in precisely tracking the reference trajectory on straight roads, as
well as ensuring convergence to the reference trajectory on curved paths. The differences
between the PP and NMPC tracking systems are apparent within the complex four-leaf
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clover curve environment. Premature turning may be observed in the trajectory of the PP
tracking method at the extremities of the clover leaves, indicating a deviation from the
reference path. On the other hand, it can be observed that the NMPC control approach
exhibits a high level of precision in achieving convergence towards the desired trajectory at
the leaf tips. This finding serves as empirical evidence supporting the efficacy of NMPC in
accurately monitoring trajectories.
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Figure 13. Trajectory Tracking Results of Robotic Fish on S-shaped Curve.
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Figure 14. Trajectory Tracking Results of Robotic Fish on Four-leaf Clover Curve.
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Subsequently, a comparison examination was conducted to assess the obstacle avoid-
ance planning capabilities of the NMPC algorithm and the DWA algorithm. The comparison
results are shown in Figure 15.
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Figure 15. The planned trajectory for obstacle avoidance of the robotic fish.

The DWA obstacle avoidance approach satisfies the necessary conditions for ensuring
safety. However, it does encounter several challenges, including an excessively large
obstacle avoidance radius and a lack of rapid convergence of the avoidance trajectory to the
intended path. On the other hand, the obstacle avoidance method using NMPC guarantees
that the trajectory for avoiding obstacles stays within a suitable range during the collision
avoidance procedure and after the avoidance maneuver is executed. This approach exhibits
notable precision and stability. In addition, the obstacle avoidance method employed by
NMPC ensures that there is a minimum distance maintained between the center of mass of
the fish and the center of mass of the obstruction, which is within a range of 1.5-2 times
the radius of the obstacle. This demonstrates the method’s commendable performance in
terms of both effectively avoiding collisions and maintaining stability. This study examines
the effectiveness of the NMPC algorithm in the context of obstacle avoidance planning,
hence assessing its resilience.

The utilization of NMPC by the robotic fish in order to achieve trajectory tracking and
plan for obstacle avoidance exhibits certain constraints, hence suggesting potential avenues
for future enhancements.

5.1. Limitations

e  One of the main challenges associated with NMPC approaches is their high compu-
tational cost, as they necessitate the recalculation of control algorithms at each time
step. Therefore, in intricate underwater environments, particularly those that neces-
sitate immediate reactions, the substantial computing complexity could potentially
undermine real-time efficacy.
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o  The effectiveness of NMPC approaches is contingent upon the precision of the system
dynamics models. Nevertheless, the dynamics of underwater environments can be
impacted by various factors, including water flow and turbulence. The task of guaran-
teeing the precision of the model presents a formidable challenge, thus impacting the
efficacy of NMPC.

e  One limitation of NMPC methods is their inadequate adaptability to complex un-
derwater environments. In situations characterized by extreme conditions or high
complexity, these methods may struggle to effectively respond to various scenarios,
particularly when faced with unfamiliar obstacles or rapidly changing conditions.
Consequently, this can result in a decline in the performance of the NMPC algorithm.

5.2. Future Research Directions

e  Future research endeavors may prioritize the refinement of NMPC algorithms, with
a particular emphasis on augmenting computational efficiency, mitigating reliance
on model correctness, and optimizing control parameters to effectively accommodate
intricate underwater settings.

e  Multi-Model Fusion: The integration of diverse sensor data and distinct control models
is employed to raise the flexibility of the system to environmental variations, thus
augmenting the system’s robustness.

e  The proposed approach involves the integration of deep learning techniques with
adaptive control methods, allowing the robotic fish to autonomously modify con-
trol strategies by leveraging learnt environmental patterns. This integration aims to
enhance the adaptability of the robotic fish in complicated situations.

6. Conclusions

This study intends to achieve trajectory tracking and obstacle avoidance effects by
enhancing the NMPC algorithm and implementing it on the nonlinear system of the
robotic fish. Initially, the establishment of the global coordinate system and the body-fixed
coordinate system, along with the transformation relationship between the body centroid
of the fish and these coordinate systems, was undertaken. A kinematic model incorporating
acceleration was formulated based on the provided information. This work presents a
comprehensive examination of the NMPC approach, focusing on the formulation of obstacle
avoidance functional functions and NMPC objective functions. In continuation of the
previous discussion, a NMPC controller was developed, integrating control constraints and
system constraints in order to guarantee the precision and stability of motion trajectories.
The examination of the simulation outcomes revealed a close correspondence between
the tracked trajectory of the centroid of the fish and the reference trajectory. When faced
with barriers, the fish demonstrated the ability to successfully navigate around them,
subsequently returning to the designated trajectory and ultimately reaching the intended
destination. A comparative analysis between the PP tracking algorithm and the NMPC
tracking algorithm revealed that the latter exhibited superior precision. In contrast to the
DWA obstacle avoidance algorithm, the NMPC algorithm demonstrated superior levels of
safety and stability. Nevertheless, it should be noted that the NMPC algorithm exhibited
a comparatively higher computing burden and lengthier execution duration. Additional
investigation is required to enhance and refine the NMPC algorithm in order to achieve
optimal performance in the execution of simulation experiments. The primary objective of
this study was to conduct a simulation with a solitary fish. Subsequent research endeavors
may encompass exploring the concept of multi-fish formation control in order to attain
trajectory tracking capabilities and effectively avoid obstacles.
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