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Abstract: The stability of the body during locomotion is a fundamental requirement for walking
animals. The mechanisms that coordinate leg movement patterns are even more complex at water–air
interfaces. Water striders are agile creatures on the water surface, but they can be vulnerable to leg
damage, which can impair their movement. One can assume the presence of certain compensatory
biomechanical factors that are involved in the maintenance of postural balance lost after an ampu-
tation. Here, we studied changes in load distribution among the legs and assessed the effects of
amputation on the locomotory behavior and postural defects that may increase the risk of locomotion
failure. Apparently, amputees recover a stable posture by applying leg position modifications (e.g.,
widening the stance) and by load redistribution to the remaining legs. Water striders showed steering
failure after amputation in all cases. Amputations affected locomotion by (1) altering motion features
(e.g., shorter swing duration of midlegs), (2) functional constraints on legs, (3) shorter travelled
distances, and (4) stronger deviations in the locomotion path. The legs functionally interact with
each other, and removal of one leg has detrimental effects on the others. This research may assist the
bioinspired design of aquatic robots.

Keywords: locomotion; aquatic bugs; robotics; morphology; insects

1. Introduction

The legs serve as supports for the body of insects in standing posture and during
locomotion [1]. Stability of the body is an imperative requirement that must be maintained
by all six legs [2,3]. Even though many studies have documented how the mechanical
characteristics of legs influence the locomotion in terrestrial insects [4–7], the biomechanics
of locomotion and the requirements for stability in semi-aquatic insects have only been
studied to a very limited extent.

Water striders are carnivorous insects that dwell on the calm surface of diverse wa-
terbodies [8–11] (Figure 1A). Their body weight is supported by the water surface owing
to the cohesive property of water molecules [12–15]. They perform striding, leaping and
jumping to move around on the water surface for finding nutrients, chasing each other to
mate or fight, and for predation avoidance [16–21]. It is common for water striders to be
attacked by predators, such as birds, fishes and aquatic beetles [22–24], which may lead to
physical injury with leg loss, as we frequently observed in the studied population of water
striders (Figure 1B).

The effect of amputation on terrestrial locomotion has been studied extensively in
insects with tripod gaits [25–28]. In view of their sculling abilities and sliding on the water
surface, water striders are particularly suitable semi-aquatic insects to study the compen-
satory behavior during aquatic locomotion in amputated animals. It has been shown that
water striders can modify their motion by regulating leg movements [29–32], but it is
unclear, which compensatory leg movements facilitate their ability to cope with the new
conditions associated with missing supporting legs. In addition, the efficiency of striding
changes following leg amputations is unknown. Non-synchronized leg movements can
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reduce the efficiency of locomotion in insects due to the unbalanced body [33]. Earlier stud-
ies indicated that amputation in crickets leads to impairments of locomotory behavior [34],
but this effect in a similar situation has not been documented in water walking insects.
Water striders with their various body alignments are, therefore, suitable models to study
the potential impairments of aquatic locomotion.
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Figure 1. The experimental setup. (A) Water strider in its natural resting position. (B) Wild captured 
water strider missing part of hind leg (arrowhead). (C) The experimental setup including aquarium 
(2), light source on the top (1), high speed camera, (4) and mirror (3) below the aquarium. (D) Side 
view of a water strider in standing position, the white arrowheads indicate joints that were disabled 
by gluing. (E) Water strider during standing position while all legs are in contact with water surface. 
(F) Water strider with an amputation in the right hindleg. Scale bar = 5 mm. 
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sects. Water striders with their various body alignments are, therefore, suitable models to 
study the potential impairments of aquatic locomotion. 

It has been not previously documented how water striders enact adaptive striding 
patterns when they become deprived of their natural leg number. In the present paper, 
we manipulated the legs by immobilizing them in order to investigate the effects of me-
chanical dysfunction on the insect’s mobility. Therefore, the severity of amputations was 
categorized in three grades based on their stable balance during standing and motion. 
Striding is more likely to be performed by amputees with one unilaterally or maximum 
two contralaterally amputated legs. But for individuals with bilaterally and ipsilaterally 
amputated legs, it was difficult or impossible to traverse the water surface. 

Additionally, we conducted tests to investigate how the reduced number of support-
ing sites could affect the distribution of the bodyweight. As a means of understanding 
motion modifications after amputation, we assessed the alterations in body posture, as 
well as the sequential order of leg movements involved in performing a sculling stroke. 
This modelling approach may be useful in determining the biomechanical requirements 
for maintaining floating bodies on the water surface under a variety of conditions. In gen-
eral, this research not only helps understand aquatic locomotion control in water striders 
but may potentially assist the bioinspired design of aquatic robots. 

2. Material and Methods 

Figure 1. The experimental setup. (A) Water strider in its natural resting position. (B) Wild captured
water strider missing part of hind leg (arrowhead). (C) The experimental setup including aquarium
(2), light source on the top (1), high speed camera, (4) and mirror (3) below the aquarium. (D) Side
view of a water strider in standing position, the white arrowheads indicate joints that were disabled
by gluing. (E) Water strider during standing position while all legs are in contact with water surface.
(F) Water strider with an amputation in the right hindleg. Scale bar = 5 mm.

It has been not previously documented how water striders enact adaptive striding
patterns when they become deprived of their natural leg number. In the present paper, we
manipulated the legs by immobilizing them in order to investigate the effects of mechanical
dysfunction on the insect’s mobility. Therefore, the severity of amputations was categorized
in three grades based on their stable balance during standing and motion. Striding is more
likely to be performed by amputees with one unilaterally or maximum two contralaterally
amputated legs. But for individuals with bilaterally and ipsilaterally amputated legs, it
was difficult or impossible to traverse the water surface.

Additionally, we conducted tests to investigate how the reduced number of supporting
sites could affect the distribution of the bodyweight. As a means of understanding motion
modifications after amputation, we assessed the alterations in body posture, as well as the
sequential order of leg movements involved in performing a sculling stroke. This modelling
approach may be useful in determining the biomechanical requirements for maintaining
floating bodies on the water surface under a variety of conditions. In general, this research
not only helps understand aquatic locomotion control in water striders but may potentially
assist the bioinspired design of aquatic robots.

2. Material and Methods
2.1. Animals

Water striders, Gerris argentatus, were collected from a pond located in the botanical
garden of Kiel University, Kiel, Germany. Several groups of amputees were established
in the laboratory to simulate physical injuries. We immobilized their legs rather than cut
them during the experiments to avoid wounds and causing misbalance by asymmetrical
removal of weight. A bead volume of glue was applied to the joint between the coxa and
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femur while the femur was flexed upward to keep the tip of the target leg away from the
water surface (Figure 1D,F).

2.2. Protocol of Measurement of Load Changes

Load change on the legs were estimated by the shadow tracking method, which has
been used in previous studies [31,35–37]. As water striders float on the top of water, the
surface below the legs is deformed in significant relationship with the load on each leg [38]
(Figure 1A). As light beams pass through water, dimples cause them to be distorted, which
leads to the appearance of a shadow area with a bright perimeter on the bottom of the
aquarium. After proper calibration, the loads on individual legs can be estimated by
measuring the size of these shadows [36,37]. According to the shadow method, vertical
forces on the water surface have a significant correlation with the shadow area of the
corresponding leg at the bottom of the vessel, and the bodyweight of water striders can be
estimated by the total shadow areas of the legs [37].

Based on the measurements of leg shadows, the load applied by each leg can be
expressed as a fraction of the total in percentage. In the present paper, based on the size
of leg shadows, the load applied by each leg was calculated, and the measurements were
converted into percentages to visualize the patterns of load changes for the amputated
water striders.

2.3. Experimental Setup

Individuals were tested in a vessel with dimensions 10 cm × 5 cm × 5 cm (L × W × H)
and filled with distilled water (ca. 5 mm in height), (Figure 1C). The tested groups per-
formed striding freely, unassisted with external stimuli, to start or finish the motion. A
source of illumination (Storz Techno Light 270 Cold Light Projector, KARL STORZ SE & Co.,
Tuttlingen, Germany) was installed on the top. The bottom of the vessel was lined with a
125-micron white semi-transparent polymer sheet (GBC) to make the shadows visible. An
inclined mirror (45 ) was placed below the vessel, to guide the shadow images to the camera.
The animals were video-recorded over a period of 255 ms using a high-speed camera at
2000 frames per second (Olympus I-Speed 3 Series High-Speed Cameras, Olympus, Tokyo,
Japan). The experiments were conducted at room temperature (25 ◦C).

2.4. Analysis Procedure

The frames of the captured videos were analysed using ImageJ to measure the shadow
areas caused by the legs [39]. From the shadows, we tracked the positions of the body
center and legs using the Manual Tracking plugin in ImageJ. We assumed the body center
corresponded to the likely position of the center of body mass. Statistical analyses were
performed by using SigmaPlot 12.0 (Systat Software Inc., San José, CA, USA).

2.5. Labeling of Legs and Their Amputations

The dark spots on the bottom of the aquarium are the shadows of the legs (Figure 1E).
The shadows correspond to the dimples in the water surface tension film under the legs.
The shadows of forelegs, midlegs, and hindlegs on the left and right sides are indicated
by (LF, LM and LH) and (RF, RM and RH), respectively [40] (Figure 2A). FL, ML, and HL
indicate the pairs of forelegs, midlegs, and hindlegs, respectively.

We amputated animals by immobilizing the target legs to assess different effects
depending on the disability of particular legs or their combinations. “−” indicates the body
side with the amputated leg, “+” represents the normal side of body, and “&” indicates the
combination of two amputations. This study addresses the impact of unilateral (−/+ or
+/−), bilateral (−/−), ipsilateral (−/+ & −/+) and contralateral (−/+ & +/−) amputations.
Accordingly, the amputation possibilities are listed in Table 1.
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by the midlegs (scull-legs) while the body slides on the water by the forelegs and hindlegs 
(ski-legs) [31,35] (Figure 3A). A sculling stroke is generated by the midlegs during the 
driving phase as the tips of legs move backward from the catch position to the finish po-
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while the body continues to slide without effort during the passive sliding. On the basis 
of the experimental data, we classified the severity effect of amputations into three grades 
based on their ability to execute sculling (Table 2). 

Figure 2. Illustration of shadow areas of legs and BOS for intact water striders and those with amputa-
tions. (A–E) The scheme of corresponding shadow area for the forelegs, midlegs and hindlegs which
are labeled as LF, LM and LH, and as RF, RM and RH, on left and right sides, respectively. The black
dots denote the contact points of legs. The scheme of BOS for the amputees. The normal BOS (shown
with the dotted-line) is repeated in (B–E). (A) Intact water strider. (B) Right-hindleg amputation +/−
RH. (C) Left-foreleg amputation −/+ LF. (D) Right-hindleg and left-foreleg amputation +/− RH &
−/+ LF. (E) Right-midleg amputation +/− RM.

Table 1. The amputation possibilities.

Symbols Amputated Leg(s)

+/− RH Right-hindleg

−/+ LF Left-foreleg

−/− HL Hindlegs pair

−/− ML Midlegs pair

−/− FL Forelegs pair

+/− RH & +/− RM Right-hindleg and Right-midleg

+/− RF & +/− RM Right-foreleg and Right-midleg

3. Results
3.1. Severity Grades of Amputations

A common trait among all amputees was the inability to perform straightforward
striding. Striding occurs through the symmetrical process of sculling, which is carried
out by the midlegs (scull-legs) while the body slides on the water by the forelegs and
hindlegs (ski-legs) [31,35] (Figure 3A). A sculling stroke is generated by the midlegs during
the driving phase as the tips of legs move backward from the catch position to the finish
position. Following this, the midlegs swing forward through the air to the recovery position,
while the body continues to slide without effort during the passive sliding. On the basis of
the experimental data, we classified the severity effect of amputations into three grades
based on their ability to execute sculling (Table 2).

Table 2. Severity grades of amputations.

Grade I Grade II Grade III

+/− RH +/− RH & −/+ LF −/− HL

−/+ LF −/− FL −/− ML

+/− RM +/− RH & +/− RM

+/− RF & +/− RM
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separates the driving phase (left) and the recovery phase (right). The circle, square and triangle 
indicate three key positions of the midlegs at the catch, finish and recovery positions, respectively. 
During the driving phase, the midlegs travel backward from the catch position to the finish position 
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Grade I: Amputees, with ability to maintain standing position, can execute sculling 
(+/− RH, −/+ LF, and +/− RM) (Figures 2B,C,E and 3B–E). 

Grade II: Amputees can stand on water, while unable to perform a typical striding 
(+/− RH&−/+ LF and −/− FL) (Figures 2D, 3D and 4A). In −/− FL, the ventral side of the 
thorax serves as a bearing point for a short period of time during swinging of midlegs 
(Figure 4A). In +/− RH&−/+ LF, the right midleg never swings through the air and stays 
attached to the water surface. 

Figure 3. Sequences of leg kinematics during striding cycles. (A–E) The body position within a
striding sequence for intact and individuals with +/−RH, −/+ LF, +/− RH & −/+ LF and +/−
RM amputations, respectively. The insets indicate the BOS and the position of the center of the body
during swinging the midlegs. The number in each frame indicates the time in millisecond. (A) Dotted
line separates the driving phase (left) and the recovery phase (right). The circle, square and triangle
indicate three key positions of the midlegs at the catch, finish and recovery positions, respectively.
During the driving phase, the midlegs travel backward from the catch position to the finish position
and touch-off from the water surface. The recovery phase starts with swing of the midlegs while the
body passively continues sliding. During passive sliding, the body slides across the surface of the
water without effort of the midlegs. The midlegs after swing touch-down to the water surface at the
recovery position.

Grade I: Amputees, with ability to maintain standing position, can execute sculling
(+/− RH, −/+ LF, and +/− RM) (Figures 2B,C,E and 3B–E).

Grade II: Amputees can stand on water, while unable to perform a typical striding
(+/− RH&−/+ LF and −/− FL) (Figures 2D, 3D and 4A). In −/− FL, the ventral side of
the thorax serves as a bearing point for a short period of time during swinging of midlegs
(Figure 4A). In +/− RH&−/+ LF, the right midleg never swings through the air and stays
attached to the water surface.

Grade III: This grade of amputation leads to the inability to stand and move over
water (−/− ML, −/− HL, +/− RH & +/− RM and +/− RF & +/− RM). In this case, the
water striders are trapped in the water and sink shortly after being above the water surface
(Figure 4B,C; Figure 5A,B). Similar outcomes are expected for more severe amputations.
Individuals without both midlegs can remain over the water surface and perform a stagger-
ing motion (Figure 4B). The motion is accomplished by rotation of the body to one side and
pulling forward the hindleg on the other side, then repeating the motion to the other side.
These amputees can only travel over a very short distance of a few millimeters. Although
the grooming behavior is normal behavior for intact individuals, with of rubbing midlegs
against forelegs or hindlegs on the same side, in our observations, +/− RH & +/− RM and
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+/−RF & +/− RM amputations were trapped by the water as soon as they were put on the
water surface (Figure 5A,B).
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Figure 5. +/− HL & +/− ML (A) and +/− FL & +/− ML (B) amputations were trapped in water
immediately after they were put on the water surface.

Amputees of all types demonstrate non-symmetrical leg movement in comparison
with intact individuals. In this study, we report on measurements mainly performed for
amputees in Grades I and II.

3.2. Changes in Standing Posture

Generally, water striders stand with six points of contact, while the body center is located
over the middle of the base of support (BOS) (Figure 2A). BOS refers to the imaginary area
beneath the body and within the points where the legs contact the surface. BOS is associated
with maintaining the equilibrium of body posture [41]. An amputation leads to an asymmetry
in the BOS, while the area of BOS varies by the number of legs circumscribing the area. On the
same scale, the BOS for the studied insects showed a variety of shapes and sizes (Figure 2B–E).
BOS measurements for the intact, +/− RH, −/+ LF, +/− RH & −/+ LF, and +/− RM
amputated individuals were 274, 177, 288, 144, and 220 mm2, respectively.

3.3. Load Change on the Legs during Locomotion

The kinematics of leg sequences for amputees differed from those of intact individuals
(Figure 3A–E). We plotted the load changes on the legs for amputees during a given time
(Figure 6A–D). The load change graphs for amputees showed different load patterns for all
legs, compared with intact individuals (Supplementary Figure S1).
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Figure 6. Load changes on the legs during striding. (A–D) The graphs of load changes on the legs
in percentage for individuals with +/−RH, −/+ LF, +/− RH & −/+ LF and +/− RM amputations,
respectively. Each graph shows the mean value of load, with the legs of each pair presented in one
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in the static state, and the dash-dotted gray lines are the baselines that represent the average load
value applied on left-legs in the static state. (A) Faint gray lines with circled joints represent normal
mean values of load for intact individuals for reference (Supplementary Figure S1). N = 3.

For +/−RH, an abnormal increase in the load on the right foreleg was observed. This
was accompanied by a decrease in the load on the left foreleg (Figure 6A). For −/+ LF,
the initial load reduction on the only foreleg was followed by a massive load increase to a
peak value (Figure 6B). The increasing load acting on the forelegs could be due to anterior
leaning of the body. In both types of +/−RH and −/+ LF amputations, the swing duration
of the midlegs was shorter than in intact animals, particularly on the affected side of body.

In the case of the +/−RH & −/+ LF amputation, the range of load disruption for the
legs was more extensive than in all other amputees (Figure 6C). Also, the right midleg
acted as a support during the passive sliding phase and was constantly in contact with
the water surface (Figure 3D). Following the driving phase, the load increased on the
remaining foreleg.

In the case of +/−RM amputation, with a shortened swing period, the load on the
only midleg was higher than normal (Figure 6D). There was an unusually high level of
pressure on the left foreleg and hindleg during the sculling stroke.

3.4. Positioning of Bodies during Striding Cycle

In amputees, the striding cycle was associated with heading error, while the bodies
rotated around the vertical axis of the body center (Figure 7). Based on the body center
tracking, the heading error angles for +/− RH, −/+ LF, +/− RH & −/+ LF and +/− RM
were α = 8◦, β = 21◦, γ = 10◦ and ε = 47◦, respectively, and the body yaw angles were
τ = 19◦, φ = 29◦, ω = 20◦ and ϕ = 35◦ and 9◦, respectively. For ϕ, we presented two values
as the animals initially showed a sharp yaw angle, but the body continued sliding with
a low change in the yaw angle. Contralateral amputation of one foreleg and one hindleg
resulted in the rotation of the body in zigzagged patterns, but the striding cycle ended with
a deviation, as well as rotation toward the direction of the amputated hindleg (Figure 7D).
The amputees travelled shorter distances than intact animals during a given time (255 ms),
with distances of 28, 23, 21, 14, and 18 mm for the intact, +/− RH, −/+ LF, +/− RH & −/+
LF, and +/− RM individuals, respectively (Figure 8A).
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Figure 7. Illustration of the body trajectory. (A–E) The body positions during a striding cycle. The
black arrow lines indicate the real direction of body sliding. (B–E) α = 8◦, β = 21◦, γ = 10◦ and
ε = 47◦ show the angle of deviation between the direction of body sliding and the reference pose of
the body (Dashed arrow lines). τ = 19◦, φ = 29◦, ω = 20◦ and ϕ = 35◦ and 9◦ indicate the spinning
angles of heads relative to the vertical axis of the body center. (A) Intact water strider. (B) Right-
hindleg amputation +/−HL. (C) Left-foreleg amputation −/+ FL. (D) Right-hindleg and left-foreleg
amputation −/+ FL & +/− HL. (E) Right-midleg amputation +/− ML.
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Figure 8. Comparison of travelling distance and the body velocity before and after amputations.
(A,B) Travelling distances within a given time (255 ms) for intact, right-hindleg amputation +/− HL,
left-foreleg amputation −/+ FL, right-hindleg and left-foreleg amputation −/+ FL & +/− HL, and
right-midleg amputation +/− ML. The lines with arrowhead denote the bodies still moving, the line
with a dot at the end denotes a body that stopped within the given time. (B) Velocity of bodies over
time for intact, right-hindleg amputation +/− HL, left-foreleg amputation −/+ FL, right-hindleg
and left-foreleg amputation −/+ FL & +/− HR, and right-midleg amputation +/− ML.
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The loss of one foreleg and one hindleg, or contralateral limb loss, causes the velocity
of the body to rapidly reach peaks that are lower than normal for intact individuals and
then drop to zero in a short period of time (Figure 8B).

3.5. Jumping Ability

Although only striding has been characterised, the ability of the amputees to jump
was also noted in this study. According to previous studies, synchronized movements of
the midlegs and the hindlegs are required to perform jumping [30,32]. The amputee water
striders with one missing foreleg, one hindleg, one midleg, both forelegs, a combination of
one foreleg and one hindleg, and a combination of one midleg and one foreleg were able to
jump, whereas individuals missing both midlegs, both hindlegs or a combination of one
midleg and one hindleg were unable to jump. Consequently, water striders must possess a
minimum of three middle and hind legs (both midlegs with one hindleg, or one midleg
with both hindlegs) to be able to jump.

4. Discussion
4.1. Postural Change after Amputation

A highly sprawled position of the legs can provide insects with a stable posture [42].
However, insects can stand on fewer than six legs in contact with the water surface during
the grooming behavior [43,44]. The absence of support from a single leg leads to immediate
body postural changes [45]. Nevertheless, amputated insects adjust the legs to widen their
stance in order to increase the size of the BOS [26]. As we observed for the examined
amputee groups of water striders, the BOS changed in different ways due to different sets
of weight-supporting legs (Table 2). With a larger area BOS, there is more chance for the
center of the body to be positioned within the BOS and to increase body stability [28]. Based
on the size and shape of the BOS, we anticipate that individuals are in unstable position
in the following order with the first one as the most unstable: +/−RH&−/+ LF, +/− RM,
+/− RH and −/+ LF (Figure 2B–E). Although the individuals without forelegs can perform
a kind of sculling, those with an absence of support from the hindlegs are even unable to
stay on the water surface (Figure 4A,C). Our previous study indicated that the midlegs play
a compensatory role during absence of support from the forelegs [31]. Also, amputation
of each hindleg alone or in combination with other legs has a more substantial impact on
falling risk due to the strong shrinkage of the BOS. Based on the natural configuration of
the legs, the removal of both hindlegs causes the center of the body mass to be located
outside the BOS (Figures 2A and 4C).

Compared with the pattern of weight distribution in intact individuals, the shadows
below the legs of amputees resized, whereas the shadows on the left and right sides
were not equal (Figure 2A–E). The leg sensory equipment assists with the control of load
distribution among the legs [46,47]. Amputated insects can benefit from this mechanism to
coordinate the rest of their legs with a gentle load shift among them. Quantifying changes
in the shadow sizes of the legs provides a precise measurement that indicates the extra
weight from removed legs was unevenly shifted to different remaining legs (Table 3). Based
on the particular set of missing legs, the body shows some degree of leaning toward a side.
In the absence of support from one leg, the adjacent leg, and the rest of legs on the same
side of amputation primarily take the load bearing, and also those on the opposite side
play a compensatory role to support the body.

The water striders are extremely efficient and agile water surface walkers, which makes
them ideal for inspiring the design of robots that need to operate on water surfaces [48,49].
This knowledge can assist with understanding how multi-legged aquatic robots could
coordinate support on the water surface to maintain a stable stance.
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Table 3. Static measurements.

Animal Model
Load Value on Legs (%) BOS

(mm2)R1 R2 R3 L1 L2 L3

Intact * 19 10 21 19 10 21 274

+/− RH 21 18 0 20 13 28 177

−/+ LF 30 10 22 0 11 27 288

+/− RH & −/+ LF 34 22 0 0 15 29 144

+/− RM 21 0 27 20 13 19 220
* Typical pattern of bodyweight distribution in intact water striders [31].

4.2. The Presence of All Legs Is Essential for Straightforward Striding

A major challenge for walking animals is maintaining body balance, particularly
during the transition between two gaits, when the stability of the body is low [28]. A larger
BOS that is obtained by widening the angle of the legs improves stability of the body during
stepping [25–27]. In terrestrial insects, the BOS is small in size during the tripod gait when
only three legs are in contact with the surface [3,28,42]. In addition to the shrinkage of the
BOS, an amputation-induced condition moves the center of the body to the edge of the
BOS, resulting in an unstable state, which is further exacerbated, when it is situated outside
of the BOS [50–54] (Figure 2B–E). However, insects can slightly improve their mechanical
efficiency by adjusting locomotory behavior after amputation [27].

Prior to performing motion, semi-aquatic insects can adjust the position of their legs,
to achieve a six-legged starting posture with appropriate weight distribution [31,35,55]. In
the case of severe types of amputation, falling of the body occurs in the standing position or
immediately at the beginning of sculling (Figure 5). Despite this, some types of amputees
can adjust their legs to execute striding. However, synchronization of midlegs movement,
which is imperative for straightforward striding [56,57], is not commonly achieved for all
amputees (Figure 3A–E).

Hence, the most important consequence of leg amputation was the change in the body
locomotion trajectory (Figure 7). The body of disabled water striders rotated toward the
affected side due to a lack of any support from the hindleg and midleg, or toward the
opposite side after removal of the foreleg. This rotation causes the body to pull to the same
side and results in the heading error.

A substantial risk of steering control loss can occur after the removal of a hindleg
and particularly in combination with the amputation of a foreleg when the amputees
were unable to keep the body in the initial posture (Figure 7B–D). On the other hand,
following a sharp rotation about the vertical axis of body at the beginning of locomotion, the
striding path was improved for the individuals with −/+ LF and +/− RM characteristics
(Figure 7C,E). It seems that the hindlegs enable the insects to reverse the body rotation
and direct it on a nearly straight path; however, a little heading error remains as the body
continues sliding. The heading error is opposite or toward the side on which only the
midleg or foreleg are in contact with the water surface in the cases of −/+ LF and +/− RM
amputations, respectively. This shows that the hindlegs are functionally essential, but not
sufficient, for steering.

In terrestrial insects, the legs work together to provide an optimal locomotion pro-
cess [58]. Similarly, in water striders, all the legs are seen to play an essential role in efficient
striding. Previous studies reported a rudder role for the hindlegs during striding [16,59,60].
However, the rudder function of hindlegs to direct and improve the locomotion trajectory
is not independent of the natural movements of other legs. In other words, the hindlegs
are unable to perform their steering function when other legs are not functioning prop-
erly. However, further studies are needed to uncover how the kinematic chain of each
leg, which is dependent on the degrees of freedom of their joints, is important in motion
trajectory control.
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4.3. Asymmetrical Load Changes on the Legs during Locomotion

Sculling performance is well known to fluctuate with changes in body posture and
the distribution of load on the legs [56,57,61]. During sculling, loading and unloading of
the legs must occur symmetrically to ensure straightforward sliding [31,35]. Load shifting
among the legs is an important factor strongly affecting the insect walking [50,62]. Insects
are unable to execute stepping without the compensatory weight support by the other
legs [45]. By switching from the more stable six-legged posture [1] to a stance with fewer
legs, the body posture of the water strider becomes asymmetrical (Figure 2). In response,
during striding, an irregular pattern is observed with increases and decreases in the load
carried by the remaining legs that is different from the symmetrical pattern in an intact
water strider (Figures 3 and 6) (Supplementary Figure S1). This is important because the
power generation for walking is influenced by the pattern of load distribution among the
legs [63]. During passive sliding, the loads on the legs gradually return to the levels at
the starting position. With dysfunction of the legs, the amputees are unable to avoid the
irregularity of body sliding, and lean back to the normal posture, which causes a load
perturbation on the legs (Figure 6). With an increasing number of amputated legs, the
range of the load perturbation for the remaining legs was more extensive (Figure 6C). Thus,
with the complete set of legs in intact animals which allows load balancing, the disturbance
of locomotion performance remains minimal.

Amputation of any leg interferes with the load-bearing task of the other legs (Figure 2).
Subsequently, disproportionate load distribution influences the sequential order of locomo-
tion features, which leads to abnormality in the striding performance (Figures 3 and 6–8).
Earlier studies have shown that irregular loading of legs directly influences kinematics of in-
sects [64,65]. However, during terrestrial locomotion, insects can coordinate the movements
of their legs during stepping and modify their motion in response to load changes [66,67].
With a fair striding performance, individuals with +/− RH or −/+ LF can roughly re-
establish their postural control. This shows that there is a degree of coordination between
the legs which allows water striders to optimize their ability to float in water.

As a result of amputations, terrestrial insects change their stepping pattern due to
alterations in their balance. In turn, this leads to an increasing energy cost of locomo-
tion [34,68]. Water striders with amputations must put their legs in unusual positions
to fulfil the supportive function, which can restrict their normal leg movements. Conse-
quently, it becomes increasingly difficult for amputees to maintain their floating on the
water surface. In addition, they are unable to achieve a smooth load shifting among the
legs that is required for a gentle striding performance (Supplementary Figure S1).

4.4. Changes in Locomotory Behavior after Amputations

The horizontal thrust of body is exclusively provided through the sculling stroke, by
using the midlegs [14,56,69,70]. In the present paper, this was also confirmed by observing
the inability of the amputees without midlegs to execute striding (Figure 4B). Absence of
support from one leg interferes with the kinematics of the other legs since the latter change
their usual function, which in turn affects the efficiency of locomotion [45,71]. Quantifi-
cation of velocity and travelling distance associated with the locomotion of intact water
striders provided us with an indicator to assess the interaction between sculling and strid-
ing. Shorter traveling distances by amputees with only one midleg is attributed to impaired
sculling stroke (Figure 8A). The travelling distances indicating the efficiency of sculling
stroke were negatively affected by all types of amputation, even if both midlegs remained
intact. It seems that missing any other supporting leg also leads to impaired locomotory
behavior. Impaired locomotion also leads to reduced walking speed in terrestrial insects,
such as cockroaches [72], mole crickets [73], and stick insects [58,74]. In water striders,
the results are similar, showing that amputations affect both floating of the body and the
generation of propulsion.

Despite having both midlegs, +/− RH & −/+ LF, +/− RH and −/+ LF amputees
were found to be unable to execute symmetrical sculling. This exacerbates the lack of
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steering control that affects the locomotion parameters. For instance, the velocity of the
body drops faster than normal (Figure 8B). The initial surge in body velocity that is followed
by a gradual deceleration occurs during steady sliding [31]. The common feature of the
amputees is a rapid drop in velocity from the peak that is gained during the sculling
stroke (Figure 8B). It is unclear whether the presence of all legs is essential for a gradual
reduction in the body velocity or if animals behaviorally reduce it in response to weak
steering control. The striding cycle ended during the given time for the +/−RH&−/+ LF
amputees, but the remaining amputees were able to maintain velocity to cover further
distances. Affected by a lack of stabilizing function provided by the hindlegs and forelegs,
amputees may have greater loss of control over their stability and thus reduce their speed
to avoid toppling (Figure 8B). Thus, it can be deduced that instability of the body negatively
affects striding during both driving and passive sliding phases. It shows the efficient
striding of water striders requires synergic function of all legs, especially the midlegs. If
missing any leg, water striders are unable to sustain a proper balance, and a considerable
amount of propelling power may be wasted in attempting to maintain body floating and
steering. This is manifested as a reduction in travelling distances during a given period of
time (Figure 8A). Even so, the exact mechanism of how water striders control their speed
during passive sliding is unknown, which can be explored in future studies. We predict the
presence of certain mechanical constraints on the degrees of freedom in leg joints leading
to unbalanced posture of the body that in turn increases the expenditure of energy.

4.5. Characterizations of Striding after Amputation

Utilizing their sensory system, insects govern their normal leg kinematics and adapt
to various walking surfaces [45,75]. Adaptive spatiotemporal coordination patterns after
leg amputation are known in cockroaches [45,68], stick insects [53,58], desert ants [76,77],
and fruit flies [78,79]. Even after amputation, insects can execute a coordinated approach
to adaptation of leg movement patterns to improve their mechanical efficiency [27]. In
water striders, the leg pairs on two sides of the body normally move in synchrony with
each other during both phases of driving and passive sliding. The supportive role of
the legs extensively changes after amputation, mainly with asymmetrical alterations in
leg movement timings (Figure 3). Amputations induce dramatic changes in patterns of
the midleg movements, particularly in the timing of key events including sculling stroke,
touch-off from and touch-down to the water surface, swing and so on (Figure 3). Water
striders use asymmetrical sculling in some cases, such as when carrying prey. They support
their bodies with one midleg and propel themselves forward with the other [80]. In the
amputated water striders, the midlegs never detach from the water surface, or swing
quickly in a shorter period of time (Figure 3). This illustrates that the midlegs are required
to take more weight-bearing responsibilities as the body is in an instable state. It is a sign
of coordination of the legs, which ensures a proportionate load distribution between the
remaining legs. The assessment of the leg loading patterns of water striders indicates
their partial dependency on each other. Although it seems that the sculling movements of
midlegs are largely independent of each other, their kinematics are loosely coupled with
the function of other legs (Figure 3).

An amputation impedes the natural leg placement and reduces the leg’s ability to
govern movements. In fact, the dysfunction of each leg adversely affects the overall
functioning of the locomotion system. Although their mobility continues, the amputees
show difficulties in maintaining a stable locomotion trajectory, velocity and travelling
distance (Figures 7 and 8). However, amputated water striders can partially adapt the
orchestration of leg movements to establish striding. Although the forelegs and hindlegs
do not contribute to sculling, they may actively minimize the body instability imperfections
to enable smooth locomotion [31]. There seems to be a predominant impact on striding
performance associated with the loss of the hindleg (Figures 6 and 7).

Amputations, depending on their severity, lead to behavioral changes in striding.
Since the probability of falling becomes more pronounced, as the center of body approaches
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the edge of the BOS, animals reduce the time of sculling and sliding, depending on the
severity of their amputation (Figures 3 and 8). Hence, the present study represents a useful
approach for understanding adaptability of the locomotory system of water striders to
challenging situations.

The amputees, in some cases, can perform locomotion in a rather stable manner
despite differences from the typical striding. Thus, water striders can be a good model
system for the optimisation of walking robots after accidental damage. Our findings can
also potentially help to develop aquatic-legged robots for use in environments with high
risks of damage.

5. Conclusions

Water striders with missing legs achieve posture stability by adapting their BOS using
their remaining legs. Despite not being sufficiently coordinated, they modify the position
of their legs after amputation to improve weight distribution and avoid falling. Water
striders spread their legs further apart from the body to compensate for the shrinkage of
the BOS that results from a decreased number of contact points. Only individuals with
one or two unpaired missing supports can stand over water, but this does not imply their
ability to execute sculling. After amputation, the efficiency of striding becomes lower,
the risk of falling higher, the travelling distance shorter and the maximum velocity lower.
During locomotion, the amputees control leg movements by a fast recovery that is coupled
with a rapid body re-alignment, which minimizes the induced irregularities in locomotion
and prevents the body from toppling. There is a certain interdependence between the
kinematics of each leg and that of the other legs. In either case, steering control error of the
body appears to result from the loss of hindlegs and forelegs at the first and second ranks,
respectively. Our results help to elucidate the adaptability of water strider locomotion to
the challenging condition of missing extremities. Additionally, this research may facilitate
the design of stable water-walking robots with different numbers of supporting limbs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomimetics8070524/s1. Figure S1: Load changes on the legs
during striding. (A) The gray boxes in the background indicate the driving phase. The dashed lines
are the baselines that represent the average load value applied on the legs in the static state. Gray
lines are individuals, and the black lines are the mean for each leg. (B) The black lines are the mean
for each leg pair. The dashed lines are the baselines that represent the average load value applied on
the legs in the static state. Shadows below the forelegs, midlegs and hindlegs are labeled as LF, LM
and LH, and as RF, RM and RH, on the left and right sides, respectively. FL ML and HL represent the
pairs of forelegs, midlegs, and hindlegs respectively [31].
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