
Citation: Yousefpour Shahrivar, R.;

Karami, F.; Karami, E. Enhancing

Fetal Anomaly Detection in

Ultrasonography Images: A Review

of Machine Learning-Based

Approaches. Biomimetics 2023, 8, 519.

https://doi.org/10.3390/

biomimetics8070519

Academic Editors: Zhaowei Chen

and Huiling Chen

Received: 29 August 2023

Revised: 5 October 2023

Accepted: 26 October 2023

Published: 2 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Review

Enhancing Fetal Anomaly Detection in Ultrasonography
Images: A Review of Machine Learning-Based Approaches
Ramin Yousefpour Shahrivar 1,† , Fatemeh Karami 2,† and Ebrahim Karami 3,*

1 Department of Biology, College of Convergent Sciences and Technologies, Science and Research Branch,
Islamic Azad University, Tehran, 14515-775, Iran

2 Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch,
Islamic Azad University, Tehran, 14515-775, Iran

3 Department of Engineering and Applied Sciences, Memorial University of Newfoundland,
St. John’s, NL A1B 3X5, Canada

* Correspondence: ekarami@mun.ca
† These authors contributed equally to this work.

Abstract: Fetal development is a critical phase in prenatal care, demanding the timely identification
of anomalies in ultrasound images to safeguard the well-being of both the unborn child and the
mother. Medical imaging has played a pivotal role in detecting fetal abnormalities and malforma-
tions. However, despite significant advances in ultrasound technology, the accurate identification
of irregularities in prenatal images continues to pose considerable challenges, often necessitating
substantial time and expertise from medical professionals. In this review, we go through recent
developments in machine learning (ML) methods applied to fetal ultrasound images. Specifically, we
focus on a range of ML algorithms employed in the context of fetal ultrasound, encompassing tasks
such as image classification, object recognition, and segmentation. We highlight how these innovative
approaches can enhance ultrasound-based fetal anomaly detection and provide insights for future
research and clinical implementations. Furthermore, we emphasize the need for further research
in this domain where future investigations can contribute to more effective ultrasound-based fetal
anomaly detection.

Keywords: fetal anomaly; prenatal diagnosis; machine learning; deep learning; ultrasonography imaging

1. Introduction

Fetal development is a critical phase in human growth, in which any abnormality
can lead to significant health complications. The subjectivity and inaccuracies of medi-
cal sonographers and technicians in interpreting ultrasonography images often result in
misdiagnoses [1–3]. Fetal anomalies can be defined as structural abnormalities in prenatal
development that manifest in several critical anatomical sites, such as the fetal heart, central
nervous system (CNS), lungs, and kidneys (Table 1) [4,5]. These anomalies can arise during
various stages of pregnancy and can be caused by different genetics and environmental
factors, or a combination of both, which are called multifactorial disorders (Figure 1) [6,7].
Ultrasound and genetic testing are two examples of prenatal screening and diagnostic tools
that can help find these abnormalities at an earlier gestational age. Fetal abnormalities can
have varying degrees of influence on a child’s health, from those that are easily treatable to
those that result in the child’s death either during pregnancy or shortly after birth [8]. The
occurrence of fetal anomalies differs across different populations. Structural anomalies in
fetuses can be detected in approximately 3% of all pregnancies [9]. Ultrasound (US) is still
the most commonly used method to safely screen for fetal anomalies during pregnancy,
but it is mainly dependent on sonographer expertise and, therefore, is error-prone. In
addition, US images sometimes lack high quality and discrete edges that can lead to inac-
curate diagnosis [10,11]. Fetal development is crucial and complex, and abnormalities will
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significantly impact the children’s and sometimes the maternal health [12]. In this regard,
the ever-increasing progress in the field of computer science has produced a wide variety
of methods, such as machine learning (ML), deep learning (DL), and neural networks
(NN), that are specific techniques within the broader field of artificial intelligence (AI) and
have gained notable popularity in the medical field [13–18]. These methods include, but
are not limited to, image classification, segmentation, detection of specific objects within
images, and regression analysis. Consequently, numerous studies have been carried out
on developing DL- and ML-based models for the accurate recognition of various types of
prenatal abnormalities, including heart defects, CNS malformations, respiratory diseases,
and renal anomalies in the context of chromosomal disorders or in the isolated forms. Here,
we present a review of the recent state-of-the-art ML-based models for the detection of fetal
anomalies. We have searched popular databases such as PubMed, Google Scholar, and
Web of Science, and included papers published in high-quartile and impact-factor journals
to review the current state of AI in this matter (Figure 2). First, we will give an overview
of different ML- and DL-based methods. Second, we will discuss common types of fetal
anomalies and the performance of the models that have been employed. Finally, we will
discuss some of the challenges that researchers face in this field.

Table 1. An overview of various fetal structural anomalies categorized into distinct groups, each
associated with specific clinical conditions potentially affecting prenatal development.

Type of Anomaly Disorders Refs

Neural Tube Defects (NTDs) Spina Bifida, Anencephaly [19]
Heart Defects Ventricular Septal Defect (VSD), Tetralogy of Fallot [20]

Gastrointestinal Anomalies Esophageal Atresia, Anal Atresia, Gastroschisis [21]
Limb Anomalies Polydactyly, Syndactyly, Amelia [21]

Craniofacial Anomalies Cleft Lip and Palate, Microcephaly [22]
Genitourinary Anomalies Hydronephrosis, Renal Agenesis [23]

Respiratory Anomalies Congenital Diaphragmatic Hernia, Pulmonary Hypoplasia [24]
Chromosomal Anomalies Down Syndrome, Edwards Syndrome, Patau Syndrome [25]Biomimetics 2023, 8, x FOR PEER REVIEW 3 of 32 

 

 

 
Figure 1. An overview of the most common risk factors associated with fetal abnormalities of the heart, 
brain, lung, and kidneys. These risk factors can have a profo bcb4und impact on the health and well-
being of newborns. Limiting the exposure to these risk factors can mitigate the risk of fetal defects [26–
30]. 

 
Figure 2. (a) An overview of the number of original papers published on PubMed yearly from 2000 
to 2023 in this matter. The following PubMed query was used for the generation of this figure: 
(“Machine Learning” OR “Artificial Intelligence” OR “Machine Learning”[Mesh] OR 
“Unsupervised Machine Learning”[Mesh] OR “Supervised Machine Learning”[Mesh] OR 
“Artificial Intelligence”[Mesh] OR “Algorithms”[Mesh] OR “Deep Learning” OR “Algorithm”) AND 
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well-being of newborns. Limiting the exposure to these risk factors can mitigate the risk of fetal
defects [26–30].
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Figure 2. (a) An overview of the number of original papers published on PubMed yearly from 2000 to
2023 in this matter. The following PubMed query was used for the generation of this figure: (“Machine
Learning” OR “Artificial Intelligence” OR “Machine Learning”[Mesh] OR “Unsupervised Machine
Learning”[Mesh] OR “Supervised Machine Learning”[Mesh] OR “Artificial Intelligence”[Mesh]
OR “Algorithms”[Mesh] OR “Deep Learning” OR “Algorithm”) AND (“Ultrasound Images” OR
“Ultrasonography”[Mesh] OR “Ultrasonography, Prenatal”[Mesh] OR “Echocardiogram” OR “Neu-
rosonography” OR “Echocardiography” OR “Ultrasound”) AND (“Embryonic and Fetal Devel-
opment”[Mesh] OR “Fetal” OR “Fetus” OR “Fetus”[Mesh] OR “Prenatal”) AND (“abnormalities”
OR “anomalies” OR “defects” OR “malformation”) NOT Review[Publication Type]. (b) Network
representation of the most common keywords in the literature using the same PubMed query results.
The three most common keywords in the network are pregnancy, ultrasonography, and algorithms.
This network was generated by the authors, using the VOSviewer software version 1.6.19.

2. Methods in Machine Learning for Fetal Anomaly Detection

Machine learning (ML) is a computational technique originated from the field of
computer science. In recent years, ML has been extensively used in various fields, such
as medical image analysis, and has provided many valuable methods and approaches
for more accurate and specific diagnoses. The field of medical image analysis is rapidly
evolving, and new models and techniques are constantly emerging (Figure 3). One of
the more widely used techniques in this field is deep learning (DL). A recent study has
evaluated the practicality of DL-based models within clinics. They have found that AI-
driven technologies can significantly help sonographers by performing disruptive tasks
automatically, thus allowing technicians to focus mainly on interpreting images [31]. AI-
based tools have great potential to lead to a paradigm shift in how we practice medicine.
Many researchers have now constructed ML- and DL-based models to use in applications
ranging from evaluating gestational age [32] to the simultaneous anomaly detection of fetal
organs, which will be discussed in more detail in the following sections.

2.1. Deep Learning

The structure and operation of a single neuron directly influenced the biomimetic
hypothesis that gave rise to DL. The brain comprises interconnected neurons that handle
information and learn from encounters, strengthening connections between neurons that
activate simultaneously. Similarly, DL-based models consist of numerous layers of intercon-
nected artificial neurons that imitate this arrangement. Information is processed through
these layers of neural connections, with each neuron assigning importance (weights) to
inputs and transmitting results to linked nodes. The model learns by fine-tuning connection
weights through backpropagation to enhance its capacity to identify patterns, much like
neural pathways form in the brain through learning. DL- and ML-based models, in general,



Biomimetics 2023, 8, 519 4 of 31

develop complex data representations without being explicitly programmed, much like the
brain develops cognitive abilities [6,33,34].
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Figure 3. A visual representation of the AI landscape with three primary subsections: artificial
intelligence, machine learning, and deep learning. The figure highlights four deep learning models
(CNN, U-Net, ResNet, and RNN) and four machine learning algorithms (classification, clustering,
PCA, and regression) as key components within these domains.

ML and DL models can efficiently analyze US images to identify abnormalities and
anomalies in fetuses. Using each model has its own advantages and disadvantages (Table 2).
ML systems can learn to detect issues like physical defects, growth restrictions, and cardiac
anomalies by training algorithms on labeled datasets of normal and abnormal fetal scans.
This ability can help obstetricians and radiologists screen for problems and intervene early
to improve fetal outcomes. Convolutional neural networks (CNNs) are commonly used
for the automated analysis of US images. These algorithms can segment, classify, and
quantify anatomical structures to detect anomalies. Other approaches, like generative
adversarial networks (GANs), can synthesize fake but normal US images to compare with
actual scans [35,36].

Table 2. Summary of advantages and disadvantages of popular DL-based models that are currently
being used in a wide variety of tasks, including medical image analysis. Each model is different in its
complexity, training time, and ability to deal with high-dimensional data, and has its own pros and
cons for medical image analysis tasks.

Model Advantages Disadvantages Refs.

Convolutional Neural
Networks (CNNs)

• Highly effective for medical
image analysis.

• Automatically learn hierarchical features.
• Can handle various medical

image modalities.

• Require a large amount of labeled data.
• Computationally intensive and

require GPUs.
• Susceptible to overfitting with small data.

[37–39]
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Table 2. Cont.

Model Advantages Disadvantages Refs.

Recurrent Neural
Networks (RNNs)

• Suitable for sequential medical data
(e.g., time series).

• Can capture temporal dependencies
(3D US videos).

• Useful for tasks such as
electrocardiogram analysis.

• Can suffer from vanishing
gradient problem.

• Limited in handling very long sequences.
• Computationally expensive for

deep networks.

[40]

Long Short-Term
Memory (LSTM)

• Mitigates vanishing gradient problem.
• Suitable for modeling temporal patterns.
• Effective for tasks like EEG signal analysis.

• Complex architecture may lead
to overfitting.

• Training may be slower than
standard RNNs.

• Hyperparameter tuning can
be challenging.

[41]

Gated Recurrent
Unit (GRU)

• Simpler than LSTM, easier to train.
• Suitable for sequential medical data.
• Requires less computation than LSTM.

• May not capture long-term
dependencies well.

• Limited in handling very long sequences.
[42]

Transformer

• Effective for tasks like medical
text analysis.

• Self-attention mechanism captures context.
• Can process variable-length sequences.

• Initially designed for fixed-length inputs.
• May require a large amount of

training data.
• Computationally intensive, needs GPUs.

[43]

Generative Adversarial
Networks (GANs)

• Can generate synthetic medical images for
data augmentation.

• Useful for generating realistic
medical images.

• Can be adapted for image-to-image
translation tasks.

• Training can be unstable and challenging.
• Mode collapse may lead to

limited diversity.
• Requires careful tuning and monitoring.

[44]

Autoencoders

• Useful for feature extraction in
medical images.

• Can learn meaningful representations.
• Used for unsupervised learning and

anomaly detection.

• Need a clear objective for their use.
• Sensitive to noise in the input data.
• Architectural choices can

impact performance.
[45]

U-Net

• Designed for semantic segmentation tasks.
• Efficiently captures spatial information.
• Commonly used in medical

image segmentation.

• May require a large dataset for training.
• Prone to overfitting with limited data.
• May need architectural modifications for

3D data.
[46]

ResNet

• Effective for very deep networks
(residual connections).

• Addresses vanishing gradient problem.
• Achieves state-of-the-art results in

image classification.
• Transfer learning-friendly architecture.

• Increased model complexity.
• May require more data for training.
• Computationally intensive.

[47]

2.1.1. Convolutional Neural Networks (CNNs)

CNNs are the most widely utilized deep learning model, and they have had the
most success in medical image processing thus far. They have been mostly used for tasks
like abnormality detection, organ segmentation, and disease classification. CNNs are
becoming more popular because, unlike traditional machine learning algorithms like KNN,
SVM, logistic regression, etc., they do not need feature engineering. Due to their excellent
performance in medical imaging and their ability to be parallelized with GPUs, CNNs have
recently seen widespread adoption within the medical imaging research community [48].
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A CNN consists of convolution and pooling layers. Convolution extracts image features by
applying small kernels to input pixels, producing feature maps. These maps are passed
through activation functions and then downsized by pooling layers, often using max
pooling. Multiple convolution and pooling steps create a hierarchy of features. The data are
then transformed into a 1D array for classification. CNNs capture image patterns efficiently,
making them useful for tasks such as recognizing edges or shapes [37–39,49].

U-Net, a subclass of CNN, has gained significant popularity in the medical imaging
community for image segmentation tasks due to its effectiveness and efficiency. It was first
introduced in 2015 as a novel method for biomedical image segmentation by Ronneberger
et al. [50]. The U-Net architecture is named after its U-shaped design, which consists of an
encoder path and a corresponding decoder path (Figure 4b). The encoder path progressively
reduces the spatial dimensions of the input image while simultaneously extracting high-
level features via convolutional and pooling layers. The decoder path then upsamples the
feature maps to restore their original spatial resolution, using skip connections to combine
low-level and high-level features for precise segmentation [46,50,51]. U-Nets are renowned
for their ability to capture fine-grained details and local context, which makes them suitable
for biomedical image segmentation, cell detection, and organ localization. Due to their
ability to manage limited labeled data and generate accurate segmentation results, they
have gained popularity in medical image analysis.

2.1.2. Generative Adversarial Networks (GANs)

GANs have shown promise in medical image synthesis, augmentation, and translation.
They can generate realistic medical images, which can be used for data augmentation, rare
disease simulation, and anomaly detection. A GAN is a novel unsupervised learning
network that was introduced by Goodfellow et al. in 2014 [52]. This unique neural network
architecture involves training two networks at the same time, one for image creation and the
other for discriminating between actual and artificially generated images (Figure 5) [53,54].
The critical difference is that CNNs are discriminative models for supervised learning
tasks, while GANs are generative models for unsupervised learning problems. A standard
GAN has two networks: the generator and the discriminator. The generator aims to
produce realistic synthetic data, while the discriminator tries to differentiate between actual
and generated data. During training, both networks engage in a two-player minimax
game where the generator attempts to deceive the discriminator and the discriminator
tries to classify actual and generated samples correctly. One significant advantage is
that GANs allow for effective anomaly detection even when training data for abnormal
cases are limited [55,56]. This is especially true for studies where large image datasets
are not available, such as fetal echocardiograms. The generator learns to produce high-
fidelity synthetic images that mimic the distribution of normal cases. Meanwhile, the
discriminator learns the patterns of normal anatomy. During testing, real images containing
abnormalities would be expected to be classified by the discriminator as fake, allowing for
anomaly detection [57]. Additionally, GANs provide continuous learning; as more real fetal
image data are collected over time, the networks can be further tuned to improve analysis
performance. This is particularly advantageous for the analysis of fetal heart images
because the shape of the fetal four-chamber heart (FCH) changes substantially based on
the specific gestational week that the fetus is in. As new data from different gestational
weeks become available, the GANs can adapt and improve their analysis performance
by adjusting their learned representations of the fetal four-chamber heart for different
developmental stages [58].
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Figure 5. Generative adversarial network (GAN) architecture. GANs consist of two key components.
The generator transforms random noise (z) into synthetic/fake images (x), aiming to create realistic
images. Simultaneously, the discriminator, which has been trained on real images from a dataset,
classifies images as real or fake.

2.1.3. Recurrent Neural Networks (RNNs)

RNNs are a class of neural networks used for processing sequential information, such
as time-series analysis or 3D medical image analysis (Figure 4a). They can capture temporal
dependencies and have been applied to tasks like cardiac motion analysis, video-based
medical diagnosis, and longitudinal disease progression modeling. The most well-known
variety of RNNs are LSTM (long short-term memory) networks, a subclass of RNNs.
Due to their ability to effectively process sequential data, they are beneficial for medical
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image analysis tasks. The loss of spatial information is problematic for medical image
segmentation when using a typical LSTM network since the inputs must be vectorized [41].
A potential solution is to use a convolutional LSTM, in which the multiplication of vectors
is replaced with a convolutional operation [40,42].

3. Applications of Machine Learning in Fetal Anomaly Detection

To fully appreciate the role of machine learning in the diagnosis of fetal abnormalities,
it is necessary to first become familiar with the standard imaging technique that serves
as the foundation of this diagnostic procedure. In comparison to computed tomography
(CT) and magnetic resonance imaging (MRI), US imaging is the preferable method since
it allows for real-time, cost-effective prenatal examination without the use of ionizing
radiation. The standard procedure for fetal anomaly detection is typically a multi-step
process, starting with the identification and interpretation of the sonographic images
(Figure 6a). The initial scans are obtained in the first trimester, followed by a detailed
anatomic survey in the second trimester. This survey involves the examination of multiple
fetal organ systems and structures like the heart, brain, lungs, and kidneys, among others.
Following this, the images are analyzed, pre-processed for any potential noise and errors,
and finally fed into ML-based models for the detection of abnormalities or deviations from
the normal developmental patterns (Figure 6b,c). ML can significantly streamline this
process by automating the initial analysis and potentially identifying abnormalities with
greater accuracy and speed than traditional manual interpretation. This section will explore
how US imaging works, its advantages, and its ability to capture standard views of fetal
structures throughout pregnancy. US is an essential screening and diagnostic technique
during all three trimesters of pregnancy, allowing for dynamic viewing of the whole fetus.

3.1. Ultrasound Imaging

US imaging provides a real-time, low-cost prenatal evaluation with the additional
advantages of being radiation-free and noninvasive in comparison to CT and MRI [59].
During a US exam, a transducer probe is placed against the mother’s abdomen and moved
to visualize fetal structures. The probe transmits high-frequency sound waves, which are
reflected to produce two-dimensional grayscale images representing tissue planes. The US
machine calculates the time interval between transmitted and reflected waves to localize
anatomical structures. Repeated pulses and reflections generate real-time visualization of
the fetus. The US can capture standard views such as the four-chamber heart, profile, lips,
brain, spine, and extremities [60–62]. Fetal standard planes in US imaging refer to specific
anatomical views to assess fetal development. They provide a standardized orientation
for evaluating different structures and measurements in the fetus, aiding in diagnosing
potential abnormalities or monitoring the growth and well-being of the developing baby
during pregnancy. Thus, the automatic recognition of standard planes in fetal US images is
an effective method for diagnosing fetal anomalies. According to the International Society
of Ultrasound in Obstetrics and Gynecology (ISUOG) guidelines, there are several types of
fetal standard planes (Table 3) [63–65].

Until now, numerous studies have been conducted to find the best models and ap-
proaches for reliable US image and video segmentation [66–69]. The evaluation of fetal
health is the most common application of ultrasound technology. In particular, ultrasound
is used to monitor the development of a fetus and detect any abnormalities early on. Pla-
centa anomalies, growth restrictions, and structural defects all fall into this category. Due
to their improved pattern recognition skills, DL models such as CNN have proven to be
effective in the detection of abnormalities (Figure 7). In this context, continuing research on
developing novel DL-based image recognition models has the potential to dramatically
improve the predicted accuracy of US image segmentation. Table 4 showcases some of
the properties of popular DL-based models that are currently being utilized in the medical
image analysis field.
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performed on a pregnant woman to identify potential fetal organ abnormalities. (b) This section Figure 6. Ultrasound image analysis pipeline. (a) In this initial phase, ultrasound imaging is per-
formed on a pregnant woman to identify potential fetal organ abnormalities. (b) This section presents
a variety of deep learning models designed for different ultrasound image analysis task, such as
CNN, U-Net, and RNN. (c) This section demonstrates the wide-ranging applications facilitated by
deep learning models, including biometric measurements (e.g., head circumference), standard plane
identification, and detection of fetal anomalies. Ultrasound images were obtained from the follow-
ing dataset on the Kaggle (https://www.kaggle.com/datasets/rahimalargo/fetalultrasoundbrain,
accessed on 1 August 2023).

Table 3. Various standard planes for different fetal anatomical structures, as recommended by the
International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) guidelines. This criterion
helps provide a systematic approach to ultrasound imaging in obstetrics by clearly defining the
standard planes for key fetal anatomical structures. The purpose is to ensure a consistent and
accurate visualization of these structures, irrespective of the ultrasound operator’s skill level. This
approach aids in the early detection of fetal anomalies, helping with timely interventions if needed.

Standard Plane Description

Fetal Abdomen (FASP) Standard plane for extrapolating biometric measurements of the fetal abdomen.

Brain (FBSP) Standard plane for extrapolating biometric measurements of the fetal brain.

Femur (FFESP) Standard plane for extrapolating biometric measurements of the fetal femur.

Trans-Ventricular (FVSP) Standard plane of brain imaging involving visualization through the ventricles.

Trans-Thalamic (FTSP) Standard plane of brain imaging involving visualization through the thalamus.

Maternal Cervix Standard plane for evaluating the maternal cervix.

Fetal Heart

• Left Ventricular Outflow Tract (LVOT)
• Four-Chamber View (FCH)
• Right Ventricular Outflow Tract (RVOT)
• Three-Vessel Trachea (3 VT)
• Three-Vessel View (3 VV)

Fetal Trans-Cerebellum (FCSP) Standard plane for imaging the fetal cerebellum.

Fetal Facial (FFSP) Standard plane for imaging the fetal face. Includes axial (FFASP), coronal, and sagittal planes.

Lumbosacral Spine (FLVSP) Standard plane for imaging the fetal lumbosacral spine.

https://www.kaggle.com/datasets/rahimalargo/fetalultrasoundbrain
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Figure 7. The typical workflow of a CNN for ultrasound image analysis. Convolution Layer: This
displays the initial layer where input images are processed using convolution operations to extract
features. Pooling Layer: This illustrates the subsequent layer where pooling operations (e.g., max-
pooling) are applied to reduce spatial dimensions and retain important information. Fully Connected
Layer: This shows the layer responsible for connecting the extracted features to make classification
decisions or predictions. Flattening: This represents the process of converting the output from the
previous layers into a one-dimensional vector for further processing.

Table 4. The table presents a comprehensive comparison of various neural network architectures
commonly employed in the field of medical image processing. Each architecture is assessed across
multiple characteristics, including architecture type, primary use case, network purpose, training
approach, loss of function, and data augmentation methods that are commonly used along with
them. These architectures have been employed for diverse applications such as image segmentation,
generation, classification, and improved generalization. The table also highlights popular variants,
references to relevant studies, and key attributes.

Ensemble of NNs Cascaded CNN CNN GAN U-Net Characteristic

Combination of
various networks Feedforward Feedforward Generator-

Discriminator Encoder-Decoder Architecture

Improved
Generalization Image Segmentation Image Classification Image Generation Image Segmentation Application

Improved Performance Hierarchical
Feature Extraction

Feature Extraction and
Pattern Recognition

Image Generation and
Enhancement

Segmentation and
Feature Extraction Network Purpose

Various
(e.g., Bagging, Boosting) Supervised Supervised Unsupervised Supervised Training Approach

Varies based on
constituent nets Cross-Entropy Loss Cross-Entropy Loss Adversarial Loss DICE Coefficient Loss Loss Function

N/A
(Individual Networks)

N/A
(Part of Cascaded CNN) N/A (Part of GAN) Generator Network U-Net Architecture Generator Network

N/A
(Individual Networks)

N/A
(Part of Cascaded CNN) N/A (Part of GAN) Discriminator Network N/A (Part of GAN) Discriminator Network

Combination
of Features Hierarchical Features Hierarchical Features N/A Low-level and

High-level Features Feature Learning

Sometimes used Occasionally used Occasionally used Rarely used Commonly used Data Augmentation

Varies based on
constituent nets Robust to noise Robust to noise Sensitive to noise Can handle noise and

incomplete data Noise Handling

Improved
Robustness, Accuracy

Hierarchical
Feature Extraction

Hierarchical
Feature Learning

Realistic Image
Generation

Accurate Segmentation,
Feature Localization Advantages

Complexity
and over-fitting

Complexity
and over-fitting Limited receptive field Mode collapse Requires sufficient

training data Challenges

Bagging,
Boosting, Stacking

Cascade-CNN,
Stacked CNN VGG, ResNet, Inception DCGAN, CycleGAN U-Net++, U-Net 3+ Popular Variants

[70,71] [72] [42] [73,74] [46,75] Refs



Biomimetics 2023, 8, 519 11 of 31

Recent advancements in this field have shown great potential for extracting nuanced
features from complex fetal US imaging data, which we will discuss in the following
sections. Ultimately, integrating DL-based models with the clinical workflow provides
automated or semi-automated [76] reliable approaches to efficiently analyzing the nu-
anced characteristics of individual US scans, thus equipping healthcare providers with
a more comprehensive set of tools for fetal health evaluation. The US examination is
divided into trimesters to correspond with the three distinct phases of pregnancy, each
lasting approximately three months, in order to provide a structured approach for monitor-
ing fetal development and evaluating the health of both mother and child at key points
during gestation.

3.1.1. First Trimester

First-trimester US imaging is typically performed between 11 and 13 weeks of gesta-
tion [77]. Its primary uses are to confirm pregnancy viability, determine gestational age,
evaluate multiple gestations, and screen for significant fetal anomalies such as neural tube
defects, abdominal wall defects, cardiac anomalies, nuchal translucency (NT), and some sig-
nificant fetal brain abnormalities [78,79]. An abnormal NT measurement (≥3.5 mm (>p99))
during the first-trimester US can strongly predict the risk of chromosomal abnormalities
and even congenital heart defects [80–82].

3.1.2. Second Trimester

Second-trimester US imaging is commonly performed between 18 and 22 weeks of
gestation. The primary aim is a detailed anatomical survey to evaluate fetal growth and full
screening for structural abnormalities and placental growth and status. The fetal anatomy
scan assesses the brain, face, spine, heart, lungs, abdomen, kidneys, and extremities [83].
The second-trimester US has high detection rates for major fetal anomalies if performed
by a qualified expert. The appropriateness criteria provide screening recommendations
for fetuses in the second and third trimesters with varying risk levels (Table 5) [84]. These
guidelines are essential for healthcare providers to ensure proper prenatal care and in-
formed decision making for expectant mothers and their developing fetuses.

Table 5. Appropriateness criteria for fetal anomaly screening in second- and third-trimester pregnan-
cies. These criteria can help ensure that any potential risks or complications are detected early on.
They also allow for the possibility of intervention, if necessary, to ensure the health of both mother
and baby.

Variant Status

Variant 1 Initial second- and third-trimester fetal anomaly screening in low-risk pregnancy is appropriate using a
transabdominal ultrasound (US) pregnant uterus scan.

Variant 2 Initial second and third-trimester fetal anomaly screening in high-risk pregnancy is appropriate using a
transabdominal detailed US pregnant uterus scan. Controversy exists around MRI and standard US use.

Variant 3 Soft marker identification on US anatomy scans suggests a subsequent transabdominal detailed scan and
follow-up US scans, chosen based on marker type, to manage patient care effectively.

Variant 4 Significant anomalies found on US screening lead to a transabdominal detailed US, MRI fetal without IV
contrast, US echocardiography, and follow-up US scans for comprehensive patient care management.

3.1.3. Third Trimester

Third-trimester US imaging is often performed around 28–32 weeks of gestation to
re-confirm fetal growth and position, screen for anomalies that may have developed since
the prior scan, and make further assessments on the placental location and growth. It
was found that fetal anomalies can be discovered in 1/300 pregnancies during routine
third-trimester ultrasounds [85]. While US is valuable for prenatal screening, it does have
limitations. The imaging quality can be impaired by the maternal body environment, fetal
position, shadowing from bones, and low amniotic fluid volume [86,87]. Interpretation
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requires extensive training and is subject to human error. A computerized analysis of US
images using ML offers the potential to overcome some human limitations. ML methods
aim to improve screening accuracy and standardize interpretation by applying AI to
analyze US data. These models can be trained to identify anomalies in poor-quality scans
and detect subtle or complex patterns that may be missed by the technicians. However,
further research is still needed to fully integrate ML into clinics and medical workflows.

3.2. Diagnosis of Fetal Abnormalities
3.2.1. Congenital Heart Diseases

Congenital heart diseases (CHDs) are classified as common and severe congenital
malformations in fetuses, occurring in approximately 6 to 13 out of every 1000 cases [88].
Although, CHDs may have no prenatal symptoms, they may result in significant morbidi-
ties, and even death, later in life. Since heart defects are the most common fetal anomalies
among fetuses, research interest in this matter is consequently higher than other types
of defects. Evaluating the cardiac function of a fetus is challenging due to the factors
such as the fetus’s constant movement, rapid heart rate, small size, limited access, and
insufficient expertise in fetal echocardiography among some sonographers, which makes
the identification of complex abnormal heart structures difficult and prone to errors [89–91].
Fetal echocardiography was introduced about 25 years ago and now needs to incorporate
advanced technologies.

The inability to identify CHD during prenatal screening is more strongly influenced by
a deficiency in adaptation skills during the performance of the SAS test than by situational
variables like body mass index or fetal position. The cardiac images exhibited a considerably
higher frequency of insufficient quality in undiscovered instances as compared to identified
ones. In spite of the satisfactory image quality, CHD was undetected in 31% of instances.
Furthermore, it is worth noting that in 20% of instances when CHD went undiscovered,
the condition was not visually apparent despite the presence of high-quality images [92].
This study illustrates the significance and necessity of ML approaches as tools that can
successfully reduce the number of undetected CHD cases and enhance the accuracy of
prenatal diagnosis.

Echocardiography, a specialized US technique, remains the primary and essential
method for early detection of fetal cardiac abnormalities and mortality risk, aimed at iden-
tifying congenital heart defects before birth. It is extensively employed during pregnancy,
and the obtained images can be used to train DL models like CNN to automate and enhance
the identification of abnormalities [93]. An echocardiogram consists of a detailed US test
of the fetal heart, performed prenatally; utilizing AI for analyzing echocardiograms holds
promise in advancing prenatal diagnosis and improving heart defect screening [94]. In
this context, Gong et al. conducted a study wherein they developed an innovative GAN
model. Integrating the DANomaly and GACNN (generative adversarial CNN) neural
network architectures resulted in the creation of this model. The objective of this study
was to train the model using extracted features derived from FCH images obtained from
echocardiogram video slices. Moreover, they used an extension of the original GAN model
called the Wasserstein generative adversarial network with gradient penalty (WGAN-GP)
to extract features from fetal FCH images. They eventually developed a novel DGACNN,
intending to identify CHD by combining the GAN discriminator architecture with addi-
tional CNN layers. According to the study, the DGACNN model demonstrated an 85%
recognition accuracy in detecting fetal congenital heart disease (FHD), surpassing other
advanced networks by 1% to 20%. Compared to expert cardiologists in FHD recognition,
the proposed network achieved a remarkable 84% accuracy in the test set [95].

While GANs have demonstrated their effectiveness in anomaly detection and genera-
tive modeling, it is possible to enhance their analytical performance for intricate tasks like
fetal echocardiography assessment by training an ensemble of multiple neural networks
and integrating their predictions. The use of an ensemble of neural networks involves
the integration of different neural networks in order to address certain machine-learning
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objectives. The key concept is that an ensemble of multiple neural networks would typ-
ically exhibit greater performance compared to any individual network. In this regard,
Arnaout et al. trained an ensemble of neural networks to differentiate normal from CHD
cases with respect to the guideline-recommended cardiac views. They used 107,823 images
from 1326 echocardiograms and ultrasound images of fetuses between 18 and 24 weeks
of gestation. A CNN view classifier was used to train a model capable of identifying the
five screening views in fetal ultrasounds. Any image that did not correspond to one of the
five views specified by guidelines was classified as ‘non-target’, such as the head, foot, or
placenta. The results indicated great performance with an area under the curve (AUC) of
0.99 [96].

The four-chamber view facilitates the assessment of cardiac chamber size and the
septum. In contrast, the left ventricular outflow tract view offers a visualization of the aortic
valve and root. The right ventricular outflow tract view provides insight into the pulmonary
valve and artery, and the three-vessel view confirms normal anatomy by showcasing the
pulmonary artery, aorta, and superior vena cava. Additionally, the arch view scrutinizes
the transverse aortic arch and branching vessels. During routine obstetric US screenings,
these five standard views—the four-chamber, left ventricular outflow, right ventricular
outflow, three-vessel, and arch views—give a full view of the fetal heart and major blood
vessels (Table 6). This inclusive approach allows for detecting various significant congenital
heart conditions before birth.

Emphasizing the importance of the four-chamber views, we can delve into a study
by Zhou et al. [97]. They introduced a category attention network aimed at simultaneous
image segmentation for the four-chamber view. They modified the SOLOv2 model for
object instance segmentation. However, SOLOv2 encounters a potential misclassification
issue with grids within divisions containing pixels from different instance categories. This
discrepancy arises because the category score of a grid might erroneously surpass that of
surrounding grids, which affects the final quality of instance segmentation. Certain image
portions would become intertwined, leading to challenges in accurate object classification.
To address this, the researchers integrated a “category attention module” (CAM) into
SOLOv2, creating CA-ISNet. The CAM analyzes various image sections, aiding in accu-
rately determining object categories. The proposed CA-ISNet model underwent training
using a dataset of 319 images encompassing the four cardiac chambers of the fetuses. The
functionality of this model relies on three distinct branches:

1. Category Branch, responsible for assigning each instance to an appropriate cardiac
chamber by predicting the semantic category of the instance.

2. Mask Branch, segmenting the heart chambers within the images.
3. Category Attention Branch. This component learns the category-related information

of instances to rectify any inaccurate classifications made by the category branch.

The results demonstrated an average precision rate of 45.64%, with a DICE range of
0.7470 to 0.8199. DICE is an average value of two other measurements, which are precision
and recall rate, and it gives us an overall performance rate for models.

Concerning the simultaneous segmentation framework, another study was conducted
to analyze and simultaneously segment lung and heart US images using a U-Net based
architecture. One of the challenges with these approaches is that they can lead to a “multi-
scale” problem. This is because every neural network model has its own receptive field scale,
but organs in US images vary in size and scale. Therefore, a single scale may not accurately
segment all organs. However, in a recent study, the mentioned problem has been addressed
by their proposed multi-scale model with an attention mechanism by extracting multi-scale
features from images with additive attention gate units for irrelevant feature elimination.
Their dataset consisted of 312 US images of the fetal heart and lungs. The images, however,
were acquired from a single source, which can lead to an overfitting problem and a relatively
low number of images. Nevertheless, the simultaneous segmentation capability of this
model has great potential because it allows a more holistic view of fetal anatomy to assess
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developmental anomalies. In addition, it can also allow for efficient single-pass processing
of US images [98].

Another recent study aimed to predict 24 objects within the fetal heart in the four-
chamber view using a Mask-RCNN architecture. Instead of using the whole ultrasound,
the researchers employed the four standard fetal heart images as input data. These objects
comprised the four standard shapes of fetal heart views, 17 heart chamber objects for each
view, and three types of CHD: atrial septal defect (ASD), ventricular septal defect (VSD),
and atrioventricular septal defect (AVSD). The model achieved a DICE of 89.70% and IoU
of 79.97 [99]. However, it is worth noting that their DL-based approach was evaluated
using a relatively small dataset of 1149 fetal heart images. Additionally, the study was
conducted using data from a single center, which may limit the generalization of the results
to other populations.

Xu Lu et al. proposed a novel approach to segmenting the apical four-chamber view
in fetal echocardiography. Their method employs a cascaded CNN referred to as DW-
Net [100]. Cascaded CNNs connect multiple CNNs sequentially to learn hierarchical
visual features. Unlike GANs for generative modeling or ensembles that combine different
models, cascaded CNNs break down difficult vision tasks into smaller problems that can
be solved efficiently in a pipeline. As an advantage, they can scale to very deep networks.
However, it can be resource-intensive to train each CNN individually, and errors may
propagate across the entire network. The DW-Net model provided by Xu et al. comprises
two sequential stages. The initial stage produces a preliminary segmentation map, while
the subsequent refinement stage enhances the map’s accuracy. Their proposed approach
enhances the reliability of identifying the defects by employing the DW-Net architecture
with its dual-stage segmentation process. The cascaded neural network’s ability to generate
refined segmentation maps ensures that subtle structural variations and anomalies within
the fetal heart can be accurately determined. However, the dataset used for training and
evaluation was still relatively small as it included 895 images from only healthy fetuses,
and the apical four-chamber view was studied. In another study, Xu et al. developed a
cascaded U-Net (CU-Net) that uses two branch supervisions to improve boundary clarity
and prevent the vanishing gradient problem as the network gets deeper. It also benefits
from connections between network layers to transfer useful information from shallow to
deep layers for more precise segmentation. Additionally, their SSIM loss helps maintain
fine structural details and produce clearer boundaries in the segmented images [101].

A recent study has introduced the multi-feature pyramid U-net (MFP-Unet), a novel
deep-learning architecture for automated segmentation of the left ventricle (LV) in 2D
echocardiography images [102]. MFP-Unet blends the U-Net and feature pyramid network
(FPN) architectures to improve segmentation accuracy. Object recognition and image
segmentation tasks are the focus of FPNs. FPNs enhance feature representation by creating
a multi-scale hierarchy of feature maps through lateral connections and top-down pathways.
This allows the network to collect both fine-grained and high-level contextual input, which
ultimately enhances the network’s accuracy when detecting objects of varying sizes. This
capability can be especially beneficial for medical images. For example, in identifying fetal
heart defects in echocardiographic images, FPNs can assist by effectively detecting complex
cardiac structures, ranging from subtle anomalies to the broader context of anatomical
features. Their multi-scale approach is crucial in recognizing localized abnormalities and
holistic heart structures. However, the FPN’s computational complexity and memory
requirements may serve as limiting factors. Furthermore, the utilization of MobileNet,
U-Net, and FPNs demonstrated a 14.54% increase in IoU compared to using only U-Net,
when applied to the segmentation of a cardiac four-chamber image [103].

The proposed MFP-Unet model achieved an average DSC of 0.953 in a public dataset,
outperforming other state-of-the-art models. The main innovation in this work is the com-
bination of multi-scale feature pyramids with U-Net to enhance segmentation robustness
and accuracy, along with “network symmetry and skip connections between the encoder-
decoder paths” [102]. Skip connections are essential in neural networks because they help
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overcome training challenges, facilitate information flow, handle different scales of features,
and promote faster convergence. Because of their small dataset of only 137 images, an
augmentation method was used in this study. The researchers created 10 slightly different
versions of the images by applying the elastic deformation method. Consequently, the
augmentation of the image quantity by a factor of ten yielded a total of 1370 images. Each
of these augmented images would be considered a new data point for training the neural
network. By applying elastic deformation to the images, they introduced variations in
the shape and appearance of the heart structures in the echocardiographic images. This
augmentation technique helps the neural network learn to be more robust to different
shapes and conditions it might encounter in real-world echocardiographic data. It is a
common practice in deep learning to use data augmentation to artificially increase the size
and diversity of training datasets when the original dataset is limited in size.

Table 6. Overview of key sections in fetal echocardiography. A summary of the purposes of different
views of the fetal heart that are used in a standard fetal echocardiography procedure [104–106].

Section Description Purpose

Fetal Apical Four-Chamber Heart Section
View of the fetal heart from the apex,
capturing all four chambers (left and
right atria, left and right ventricles)

Assess size, structure, and function of
each chamber individually and

their alignment

Three-Vessel Catheter Section
Evaluates three major blood vessels in the

fetus’s chest area: aorta, pulmonary
artery, and superior vena cava

Assess size, position, and potential
abnormalities of these vessels

Three-Vessel Trachea Section
Evaluates aorta, pulmonary artery,

superior vena cava, and
trachea simultaneously

Detect abnormalities involving both
cardiovascular and respiratory systems

Right Ventricular Outflow Tract Section
Focuses on assessing the outflow tract of

the right ventricle connecting to the
pulmonary artery

Identify obstructions or malformations
affecting blood flow from the right
ventricle to the pulmonary artery

Left Ventricular Outflow Tract Section
Concentrates on evaluating the outflow
tract of the left ventricle connecting to

the aorta

Identify abnormalities or blockages
hindering the flow of oxygenated blood

from the left ventricle to the aorta

In a recent study protocol, Ungureanu et al. proposed a ML-based intelligent decision
support system to analyze first-trimester fetal echocardiogram videos and help sonogra-
phers detect fetal cardiac anomalies. The system will then be validated on new US videos,
with the primary outcome of improved anomaly detection in critical views of the heart by
less experienced sonographers. Secondary outcomes assessed will be the optimization of
clinical workflow and reduced discrepancies between evaluators. As a protocol, no results
are presented since the study has yet to be conducted. However, this approach can be
further investigated to help technicians in their diagnosis [105].

Yang et al. developed a DL-based classifier to identify ventricular septal defects. They
obtained 1779 normal and abnormal fetal US cardiac images in the five standard views of
the heart. They used five YOLOv5 networks as their primary model to classify images into
“normal” and “abnormal”. According to the study, their model reached an overall accuracy
rate of 90.67%. The performance of YOLOv5 was also compared to other mainstream
recognition models, such as Fast RCNN and ResNet50, and Fast RCNN and MobileNetv2,
and was found to be superior in terms of accuracy [107].

In addition to US image analysis, other approaches like cardiac QT signal processing
have been used but require further research and assessment [108]. In another study, Dong
et al. developed a DL framework comprising three CNN networks, namely, CNN, a deep-
CNN, and an aggregated residual visual block net (ARVBNet), which is able to detect key
anatomical structures on a plane. They aimed to build a fully automatic fetal heart US
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image quality control system. The model achieved the highest mean average precision
(mAP) of 93.52% [109].

In another study, researchers examined the effectiveness of HeartAssist, an AI-based
software designed to evaluate fetal heart health and identify any potential anomalies during
the screening process. The study discovered that the quantity and percentage of images
regarded as adequate visually by the expert or using HeartAssistTM were equivalent, with
a percentage of more than 87% for all cardiac views examined. This indicates that using a
program like HeartAssist to evaluate fetal cardiac problems during the second-trimester
ultrasonographic screening for abnormalities has many potentials [110].

The mentioned studies can be used with other models to achieve a fully reliable
automated system. For example, the work of Dong et al. [109], where they developed a
CNN-based framework, could be used to automatically assess the quality of fetal US cardiac
images before they are fed into the primary model for diagnosis. This helps ensure that
only high-quality images are used for diagnosis, which can further improve the accuracy
and reliability of the diagnosis.

3.2.2. Head and Neck Anomalies

The development of the fetal brain is the most essential process that takes place during
the 18–21 weeks of pregnancy. Any abnormalities in the fetal brain can have severe effects
on various functionalities of the brain, such as cognitive function, motor skills, language
development, cortical maturation, and learning capabilities [111,112]. Thus, a precise
anomaly detection method is of the utmost importance. Currently, US is still the most
commonly used method to initially examine the development of the fetal brain for any fetal
anomalies during pregnancy. During the 18- to 21-week pregnancy period, US imaging
is used to measure the cerebrum, midbrain, cerebellum, brainstem, and other regions of
the brain as part of the screening for fetal abnormalities [113,114]. To detect fetal brain
abnormalities, Sreelakshmy et al. developed a model (ReU-Net) based on U-Net and
ResNet for the segmentation of fetuses’ cerebellum using 740 fetal brain US images [115].

The cerebellum is an essential part of the brain that plays a crucial role in motor control,
coordination, and balance. The fetal cerebellum can be seen and distinguished from other
parts of the brain in US images, which makes it relatively easy for technicians to examine
it during scans and, consequently, for researchers to employ DL-based models for the
segmentation of the obtained images. Moreover, ResNet is a popular model frequently used
for medical image segmentation, and it offers to skip connections to address the vanishing
gradient problem. More specifically, in deep networks, gradients that are used to guide the
weight information update for layers can become smaller and smaller as they are multiplied
at each layer, and they will eventually reach close to zero. This makes the network struggle
to learn complex patterns from images, which is essential in medical image processing.
Besides using ResNets, Sreelakshmy et al. also employed the Wiener filter, which reduces
unwanted noises in most US images. As a result, their ReU-Net model achieved 94% and
91% for precision rate and DICE, respectively. Singh et al. also used the ResNet model in
conjunction with U-Nets to automate the cerebellum segmentation procedure. However,
in this study, by including residual blocks and using dilation convolution in the last two
layers, they were able to improve cerebellar segmentation from noisy US images [116].

The subcortical volume development in a fetus is a crucial aspect to monitor during
pregnancy. Hesse et al. constructed a CNN-based model for an automated segmentation of
subcortical structures in 537 3D US images [117]. One important aspect of this research is
the use of few-shot learning to train the CNN using relatively few manually annotated data
(in this case, only nine). Few-shot learning is a machine learning paradigm characterized
by the training of a model to perform various tasks using a very restricted amount of data.
This quantity is often significantly smaller than what is typically required by conventional
machine learning approaches. The basic goal of few-shot learning is to make models flexible
and capable of doing tasks that would otherwise need extensive labeled data collection,
which can be either time-consuming or expensive.



Biomimetics 2023, 8, 519 17 of 31

Cystic hygroma is an abnormal growth that frequently occurs in the fetal nuchal area,
within the posterior triangle of the neck. This growth originates from a lymphatic system
abnormality, which develops from jugular-lymphatic blockage in 1 in every 285 fetuses [118].
The diagnosis of cystic hygroma is made with an evaluation of the NT thickness. Studies
have also shown the connection between cystic hygroma and chromosomal abnormalities in
first-trimester screenings [119]. In this concern, a CNN model called DenseNet was trained
by Walker et al. on a dataset that included 289 sagittal fetal US images (129 images were
from cystic hygroma cases, and 160 were from normal NT controls) in order to diagnose
cystic hygroma in the first-trimester US images. The model was used to classify images
as either “normal” or “cystic hygroma”, with an overall accuracy of 93% [120]. Several
studies have shown the advantages of DenseNet models over ResNet architectures in terms
of achieving higher performance while requiring less computational power, along with
parameter efficiency and enhanced feature reuse [121–123].

To perform US in order to look for abnormalities in the brains of prenatal fetuses, the
standard planes of fetal brain are commonly used. However, fetal head plane detection
is a subjective procedure, and consequently, prone to errors and mistakes by technicians.
Recently, a study was conducted to automate fetal head plane detection by constructing a
multi-task learning framework with regional CNNs (R-CNN). This MF R-CNN model was
able to accurately locate the six fetal anatomical structures and perform a quality assessment
for US images [124]. Similarly, Qu et al. proposed a method using differential CNNs for
accurately identifying the six fetal brain standard planes. Unlike traditional CNNs that
process each image independently, a differential CNN takes two input images and computes
the element-wise difference between the corresponding pixels. This difference map, the
differential image, is fed into the network for further processing. Large databases are
necessary for researchers in this field, but they can also cause overfitting and other model
limitations. The researchers used a dataset of images comprising 155 fetal images, which
is a relatively small dataset. However, the researchers used several data augmentation
methods, including rotation, flipping, and scaling, to increase the size of the training dataset
to 30,000 images and to prevent the model from overfitting [125].

Lin et al. made a model that was trained on 1842 2D sagittal-view US images. It was
made to find nine intracranial structures of the fetus, including the thalami, midbrain,
palate, fourth ventricle, cisterna magna, NT, nasal tip, nasal skin, and nasal bone [126].
The study used both standard and non-standard sagittal-view ultrasound images. The
researchers also used an external test set of 156 images from a different medical facility to
assess the generalization, robustness, and real-world application of their fetus framework.
This enabled them to evaluate how well the model performed beyond its initial training
data, verifying that it could manage a wide range of clinical scenarios, patient demographics,
and equipment variances. Unlike the Lin et al. model, which was also used for non-standard
planes, the Xie et al. model was trained only on standard planes, which makes it prone
to misjudgments if non-standard planes are presented. Additionally, this model only
indicates that the cases are normal or abnormal, and lacks specificity regarding a clear and
comprehensive diagnosis, which is necessary [127].

Based on the same dataset provided by Xie et al. [127], another study was conducted to
develop a computer-aided framework for diagnosing fetal brain anomalies. Craniocerebral
regions of fetal head images were first extracted using a DCNN with U-Nets and a VGG-
Net network, and then classified into normal and abnormal categories. In small datasets,
using VGG networks can lead to overfitting because of the large number of parameters
available in these models. However, they used this model on a large dataset of US images
and achieved an overall accuracy of 91.5%. In addition, the researchers implemented class
activation mapping (CAM) to localize lesions and provide visual evidence for diagnosing
abnormal cases, which can make them visually comprehensive for non-expert technicians.
However, the IoU value of the predicted lesions was too low, and thus, more advanced
object detection techniques are required for a more precise localization [128]. Furthermore,
Sahli et al. proposed a SVM classifier to categorize fetal head US images into two categories:
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normal and abnormal. However, their database included images of fetuses with the same
gestational age, which may limit the model’s generalization to diagnose fetal defects in
images from different gestational ages [129]. In another recent study, researchers used
43,890 neurosonography images of normal and abnormal fetuses to build a DL-based model
using the YOLOv3 architecture to find different patterns of fetal intracranial anomalies in
standard planes and make a diagnosis for congenital CNS malformations. Their model is
called the Prenatal Ultrasound Diagnosis Artificial Intelligence Conduct System (PAICS)
and is capable of diagnosing ten different types of patterns. The micro-average AUC
values for the PAICS range from approximately 0.898 to 0.981, indicating a high level
of accuracy [130]. Real-time detection for tasks similar to this is essential for immediate
diagnosis and decision making, especially if such models are eventually considered to be
used in hospitals. In this case, Lin et al. used YOLOv3, which is known for its speed and
efficiency in real-time object detection [131]. Unlike the previous study, which used CAM
to localize lesions following their classification, YOLOv3 can simultaneously classify and
localize anomalies in bounding boxes more accurately.

Other valuable information can be drawn from the segmentation of fetal head images
in obstetrics for monitoring fetal growth [132]. This information is valuable for the assess-
ment of fetal health. Everwijn et al. performed detailed neurosonography, including 3D
volume acquisition, on fetuses with isolated CHD starting at 20 weeks of gestation. They
used an algorithm to automatically evaluate the degree of fetal brain maturity and compare
it between the CHD cases and the control group. The CHD cases were further categorized
based on blood flow and oxygenation profiles according to the physiology of the defect.
Subgroup analyses were then conducted. The results showed a significant delay in brain
development in fetuses with CHD, especially those with transposition of the great arteries
(TGA), which is a congenital heart defect where the two main arteries leaving the heart
are switched (transposed), or intracardiac mixing, compared to the control group [133].
However, the study did not explain the reasons for these differences or whether they were
only due to decreased oxygenated blood flow to the fetal brain. The authors have previ-
ously published another study on this matter and concluded that, compared to healthy
control cases, fetuses with isolated congenital heart abnormalities had a slight delay in their
cortical development [134].

Biometric parameters such as head circumference [135], biparietal diameter, and
occipitofrontal diameter are commonly used in ultrasound examinations to assess fetal
skull characteristics such as shape and size [59]. Zeng et al. developed a very lightweight
DL-based model for a fast and accurate fetal head circumference measurement from two-
dimensional US images [136]. Using the same dataset as the previous study, Wang et al.’s
model achieved a DSC of 98.21% for the automatic measurement of fetal head circumference
using a graph convolutional network (GCN), exceeding other state-of-the-art methods
such as U-Net, V-Net, and Mask-RCNN [137]. Both of these studies used an augmentation
method to increase the number of images. One important difference between the two
studies was their efficiency in computation and memory demands. Lightweight DCNNs
demand less computational power and memory compared to GCNs.

3.2.3. Respiratory Diseases

The development and function of the lungs are crucial for the well-being and survival
of fetuses. Malformations caused by underdevelopment or abnormalities inside the lung
structure will lead to serious health issues and even death in newborns. For example,
neonatal respiratory morbidity (NRM), such as respiratory distress syndrome or transient
tachypnea of the newborn, is often seen when a fetus’ lungs are not fully developed, and it
is still a major cause of morbidity and death [138]. Immature fetal lungs are closely linked to
the respiratory complications experienced by newborns [139]. In addition, fetal lung lesions
are estimated to manifest in around 1 in 15,000 live births, and are believed to originate
from a range of abnormalities associated with fetal lung airway malformation [140]. In this
case, the random undersampling with AdaBoost (RUSBoost) model was developed using
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extracted features from fetal lung images to predict NRM. However, locating regions of
interest within the included images was manually performed, which is time-consuming
and should be automated for use in clinics. This model was able to accurately predict NRM
in fetal lung images. Small sample sizes and single-source datasets were also some of its
limitations [141]. Du et al. conducted research comparing fetal lung texture using US-based
radiomics technology in 548 pregnant women with gestational diabetes mellitus (GDM),
pre-eclampsia (PE), and normal pregnancies at different gestational ages. Their model
could differentiate fetal lung images associated with GDM/PE from normal cases [142].

There is a limited number of studies on using ML and DL models in lung malfor-
mations affecting fetuses. Owing to the importance of these conditions, more studies are
needed to explore the potential of ML and DL in this area of medical image analysis.

3.2.4. Chromosomal Abnormalities

Chromosomal disorders are frequently occurring genetic conditions that contribute
to congenital disabilities. These disorders arise due to abnormalities in the structure or
number of chromosomes in an individual’s cells, leading to significant health challenges
and impairments present from birth. There are, however, various ways to detect them early
on in the pregnancy. The ones that we are concerned with here are those evaluations that
help us detect genetic disorders from US images. These include the following:

• NT measurement, which measures the thickness of the fluid-filled space at the back of
the fetus’s neck.

• Detailed anomaly scan, a thorough US examination that checks for any structural
abnormalities in fetuses.

• Fetal echocardiography, which focuses on evaluating the fetal heart structure and
function to detect cardiac anomalies.

• Nasal bone (NB), whose absence is a valuable biomarker of Down syndrome in the
first trimester of pregnancy.

In addition to the mentioned procedures, another technique that can be used to detect
chromosomal disorders from US images is the measurement of fetal facial structure. Certain
facial features can indicate the presence of certain genetic conditions [143]. For example,
during a US screening, a technician will carefully examine the fetus’s facial structure for
any abnormalities or distinctive features that may suggest a chromosomal disorder. For
example, some common facial features of Down syndrome include a flat nasal bridge,
upward-slanting eyes, and a small mouth. These features may be visible during a US and
can raise the likelihood of a chromosomal disorder [144].

Tang et al. developed a two-stage ensemble learning model named Fgds-EL that uses
CNN and RF models to train a model to diagnose genetic diseases based on the facial
features of the fetuses. This study used 932 images (680 were labeled normal, and 252 were
diagnosed with various genetic disorders). To detect anomalies, the researchers extracted
key features from a fetal facial structure, such as the nasal bone, frontal bone, and jaw.
These are specific locations where genetic disorders such as trisomy 21, 19, 13, and others
can be identified. The CNN was trained to extract high-level features from the facial images,
while the RF was used to classify the extracted features and make the final diagnosis. The
proposed model achieved a sensitivity of 0.92 and a specificity of 0.97 in the test set [145].

NT is the term used to describe the sonographic appearance of an accumulation
of fluid under the skin of the fetus’s neck at around 11–13 weeks into the pregnancy
(Figure 8b). Current research suggests that this measurement is crucial in assessing the risk
of chromosomal abnormalities.
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Currently, an NT measurement of 3.5 mm is considered an indication for invasive
testing, often followed by chromosomal microarray analysis. In addition, fetal chromosomal
abnormalities are not always accompanied by abnormal fetal karyotypes [146]. In this vein,
one study found that when NT thickness is between the 95th centile and 2.5 mm, there is a
potential existence of chromosomal abnormalities [25]. However, based on the quantitative
results of another study, researchers concluded that the NT cut-off for invasive testing
could be 3.0 mm instead of 3.5 mm [147].

Identifying NT abnormalities can be a difficult task, and researchers have found that
the possibility of detecting fetal anomalies at the 11–13 week scan falls into the following
categories [148]:

1. Always detectable
2. Never detectable
3. Sometimes detectable

In terms of NT measurement, there are specific locations on the fetal head where
medical professionals look for abnormalities (Figure 8a):

1. Tip of the Nose
2. Nasal Bone
3. Palate
4. Diencephalon
5. Nuchal Translucency

By checking the mentioned locations, we can detect any abnormalities or variations
in the thickness of the NT during the fetal US. Thus, any abnormalities in these areas
can indicate potential genetic disorders or chromosomal abnormalities such as Down
syndrome, various types of trisomy, and Turner syndrome [149]. Additionally, NT image
segmentation using ML models has also shown to be effective for the early diagnosis of
brain anomalies [150].

Down syndrome is the most frequent chromosomal abnormality and the most frequent
cause of non-inherited mental retardation, characterized by a full or partial extra copy of
chromosome 21. Children with Down syndrome often experience slower growth and have
intellectual disabilities [151]. Thus, screening for trisomy 21 during the first trimester and
early second trimester of pregnancy is crucial, so that mothers with affected fetuses can
make informed decisions about their reproductive options as early as possible [152].

Most fetuses with trisomy 21 have a thicker NT and an absence of a nasal bone [153].
Babies born with trisomy 21 may have nasal bones that are underdeveloped or absent,
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resulting in a flat bridge. According to research, most fetuses with trisomy 21 lack a nasal
bone. As a result, trisomy 21 is more likely in cases where the nasal bone is missing [154,155].
Another study found that the nasal bone-to-nasal tip length ratio might also be a potential
marker for the diagnosis of trisomy 21 [156]. In a recently published paper, researchers
employed an adaptive stochastic gradient descent algorithm to study the connection
between NT thickness level and the potential existence of fetal anomalies. They collected
100 fetal US images to evaluate for anomalies. According to the authors, the accuracy of their
model achieved 98.64% precision for classifying anomalies linked with NT thickness [157].
The previously mentioned Lin et al. model was also capable of NT identification [126].

Tekesin et al. demonstrated how valuable first-trimester US scanning can be performed
by incorporating a detailed fetal anomaly scan into first-trimester screening algorithms,
which is conducive to an improvement in the detection of trisomy 18 and 13, triploidies,
and Turner syndrome [158,159]. Sun et al. developed a nomogram based on US images
of fetuses with trisomy 21 in this context. Since nomograms are used in cases where
multiple variables are available, they analyzed fetal profile images and identified facial
markers and NT thickness. Based on the extracted markers, the LASSO (least absolute
shrinkage and selection operator) method was used to make a prediction model for trisomy
21 screening in the first trimester of pregnancy. LASSO is a statistical method used for
regression analysis. It adds a penalty term to the ordinary least squares method to shrink
some of the coefficients to zero, effectively selecting the most critical variables and reducing
model complexity. The resulting LASSO model achieved high accuracy, with AUC values
of 0.983 and 0.979 in the training and validation sets, respectively [153]. The nomogram
method for detecting Down syndrome using US images is simple, understandable, and
does not need many data. It works well with limited resources and avoids overfitting
by automatically selecting markers. Neural network models are good at finding complex
patterns but need a lot of labeled data and computing power. This makes the nomogram a
good choice, especially when data are limited or interpretability is essential.

Tang et al. developed a fully automated prenatal screening algorithm called Pgds-
ResNet based on deep neural networks. Their model detected high-risk fetuses affected by
various common genetic diseases, such as trisomy 21, 18, and 13, along with rare genetic
diseases. Their dataset consisted of 845 normal images and 275 rare genetic disease images.
Their feature extraction process indicated that the fetal nose, jaw, and forehead contained
valuable diagnostic information [160]. However, their model was trained on a relatively
small dataset from a single data center. Moreover, it was primarily designed for genetic
abnormality screening rather than diagnosing specific conditions.

To detect trisomy 21, Zhang et al. constructed a CNN-based model using US images
from 822 fetuses (548 were from normal fetuses and 274 were from fetuses diagnosed with
trisomy 21). Their model was not only restricted to the NT thickness but successfully
detected trisomy 21 based on images from the fetal head region with an accuracy of 89%
in the validation set [161]. Nevertheless, one of the limitations of their model was that it
was only trained to diagnose trisomy 21. There are cases where the fetus presents with
more than one trisomy. Thus, developing a multi-task learning model for the simultaneous
recognition of various types of trisomy is necessary [162,163].

4. Discussion

Throughout this review, we examined some of the most recent methods for the de-
tection of fetal anomalies such as heart defects, chromosomal abnormalities, head and
neck malformations, and pulmonary disease (Figure 9). Along with anomaly detection,
ML-based models for biometric measurement and locating the most effective standard
planes were also reviewed (Table 7). While recent advancements hold promise, it is crucial
to recognize the challenges that slow down the development of clinically applicable models
in this domain.

Evolution of Fetal Tissue: One of the challenges in this field is the dynamic nature of
fetal tissue, especially the brain, which constantly evolves during gestation. This inherent
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variability poses difficulties in training models to make precise and accurate diagnoses
of abnormalities. Understanding the nature and patterns of this evolution is crucial in
addressing this challenge effectively.

Limited Labeled Datasets: The small number of publicly available, high-quality la-
beled datasets and a reliance on single-source datasets contribute to the issue of overfitting
in some models. To address this, various data augmentation techniques have been pro-
posed, including elastic deformation and the utilization of advanced models such as GANs,
diffusion models, variational autoencoders, and SVMNet [44,164]. Moreover, the applica-
tion of few-shot learning techniques, as demonstrated in the Hesse et al. study [117], can
be instrumental in enhancing the performance of models with limited data.

Quality of Ultrasound Images: Low-quality ultrasound images are a common issue
in many datasets. To address this, quality assessment models, as highlighted by Zhang
et al. [165], can be deployed to filter out subpar images, thus improving the overall dataset
quality. The real-time detection of abnormalities is also vital for clinical adoption but
remains an area that requires further exploration [166].

Transfer Learning for Resource-Scarce Regions: Countries with limited resources
face additional challenges in accessing AI models. A potential solution lies in the application
of transfer learning techniques [167,168]. These approaches involve amalgamating data
from resource-rich regions with smaller samples from resource-scarce regions, offering a
means to bridge the gap in healthcare accessibility.

Overfitting and Network Depth: Conventional deep neural networks encounter well-
known issues like vanishing gradients and overfitting as their depth increases. These
challenges can be mitigated through the incorporation of techniques such as regularization
parameter tuning and the strategic use of skip connections, as exemplified by ResNets. The
inclusion of skip connections not only alleviates the vanishing gradient problem but also
streamlines the training process by reducing the need for large training sets.

Multi-Scale Challenges in Image Analysis: The inherent variability in organ sizes
and scales within ultrasound images poses a significant hurdle. Traditional neural networks,
with fixed receptive field sizes, struggle to capture relevant information across diverse
dimensions. Researchers should consider the adoption of multi-scale architectures and
techniques to ensure comprehensive feature extraction and the accurate analysis of organs
of varying sizes within the same image.
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Table 7. A summary of all reviewed studies on fetal anomaly detection. Each entry provides
information about the employed methods, total number of images, key performance metrics, and
application domain.

Method Total Images Metrics Application Refs

GACNN + DANomaly 3196 85.00% Detection of heart defects [95]

Ensemble of NN 107,823 AUC: 99% Detection of heart defects [96]

SOLOv2 + CAM 319 DICE: 74.70–81.99% Segmentation of cardiac
four-chamber view [97]

U-Net + FCN 312
Heart: DICE: 90.2%

IoU: 0.822 Lung: DICE:
87.00% IoU: 0.770

Segmentation of views of the
lung and heart [98]

Mask-RCNN 1149 DICE: 89.70% IoU: 79.97% Detection of heart defects [99]

Cascaded DW-Net 895 DICE: 82.7% Segmentation of cardiac
four-chamber view [100]

U-Net + FPN Original: 137
Augmented: 1370 Average DSC: 95.3% Segmentation of cardiac

four-chamber view [102]

YOLOv5 1779 Overall accuracy: 90.67% Detection of ventricular
septal defects [107]

CNN + D-CNN +
ARVBNet

Original: 7032
Augmented: 12,542 MAP: 93.52% Fetal heart image quality

control system [109]

U-Net + ResNet 740 DICE: 91% Detection of fetal
brain anomalies [115]

U-Net + ResNet 734 DICE: 87.00% Segmentation of
the cerebellum [116]

U-Net + ResNet 537 DICE: 85–90% Segmentation of
subcortical structures [117]

R-CNN + Multi-task 1771 AUC: 98.89% Quality assessment for fetal
brain images [124]

Differential-CNN Original: 155
Augmented: 30,000 Accuracy: 92.93% Identification of fetal brain

standard planes [125]

CNN 1842 AUC: 99.6% Identification of
intracranial structures [126]

CNN 29,419
Segmentation: DICE: 94.1%;

Classification: Overall
accuracy: 96.3%

Detection of fetal
brain anomalies [127]

DCNN + U-Net + VGG 29,419 Overall accuracy: 91.5% Detection of fetal
brain anomalies [128]

SVM Classifier 86 Accuracy: 87.10% Classify fetal head US images [129]

YOLOv3 43,890 AUC: 89.8–98.1% Diagnose congenital CNS
malformations [130]

DenseNet 289 Overall accuracy: 93% Detection of cystic hygroma [120]

GCN Original: 1334
Augmented: 11,324 DICE: 98.21% Fetal head

circumference measurement [137]

Lightweight-DCNN Original: 1334
Augmented: 10,898 DICE: 97.61% Fetal head

circumference measurement [136]

RUSBoost 295 Accuracy: 81.18% Detection of lung
abnormalities: NRM [141]

SVM Classifier 548
Accuracy

(independent test set):
80.6–86.4%

Detection of lung
abnormalities: GDM/PE [142]
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Table 7. Cont.

Method Total Images Metrics Application Refs

Ensemble Learning 932 Sensitivity: 97% Detection of trisomy
21, 19, 13 [145]

Adaptive Stochastic
Gradient Descent 100 Precision: 98.64%

Detection of chromosomal
anomalies using

NT thickness
[157]

Nomogram 622 AUC: 98.3–97.9% Detection of trisomy 21 [153]

ResNet + VGG 1120
Sensitivity: Trisomy 21: 83%;
Trisomy 18: 92%; Trisomy 13:

75%; Rare disorders: 96%

Detection of trisomy 21, 18,
13, and rare genetic disorders [160]

CNN 822 Accuracy
(validation set): 89% Detection of trisomy 21 [161]

DAG V-Net
(deeply supervised

attention-gated)
1354 DICE: 97.93% Fetal head

circumference measurement [135]

MobileNet +
U-Net + FPN 677 IoU: 69.1% Segmentation of cardiac

four-chamber view [103]

Cascaded U-Net 1712 DICE: 86.6% Segmentation of cardiac
four-chamber view [101]

Feature Fusion GAN 1000 SSIM: 46.27% Segmentation of cardiac
four-chamber view [58]

ImageJ/Fiji Software 80 NA Detection of heart defects [150]

FCN 65 Pixel mean accuracy:
89.4% ± 11.4 Whole fetus [169]

5. Conclusions

In conclusion, the field of medical image analysis has made significant developments
in recent years, with the advent of advanced DL models and data processing techniques that
can significantly improve the quality of final models. Eventually, the developed models
should be able to outperform sonographers and technicians in terms of accuracy and
efficiency. These AI-driven models will not simply enhance the diagnostic process but also
enable more personalized treatment plans based on individual patient data. Furthermore,
the use of such models can reduce the workload of healthcare professionals, ultimately
leading to a more streamlined healthcare system globally. However, several challenges still
slow down progress in this area of research. As we mentioned, these challenges include
the difficulty of training accurate models for diagnosing evolving fetal brain abnormalities,
the lack of labeled ultrasound images for certain conditions, etc. Nevertheless, ongoing
research and the advent of newer, more robust algorithms provide hope for the future.
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