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Abstract: In-hand object pose estimation is challenging for humans and robots due to occlusion
caused by the hand and object. This paper proposes a soft finger that integrates inner vision with
kinesthetic sensing to estimate object pose inspired by human fingers. The soft finger has a flexible
skeleton and skin that adapts to different objects, and the skeleton deformations during interaction
provide contact information obtained by the image from the inner camera. The proposed framework
is an end-to-end method that uses raw images from soft fingers to estimate in-hand object pose.
It consists of an encoder for kinesthetic information processing and an object pose and category
estimator. The framework was tested on seven objects, achieving an impressive error of 2.02 mm and
11.34 degrees for pose error and 99.05% for classification.

Keywords: object recognition; kinesthetic; humanoid finger; inner-finger vision; deep learning

1. Introduction

Humans exhibit various manipulative behaviors with the ability to detect the inter-
action behaviors of handled objects and hands. Visual information provides rich global
features for humans to perceive objects’ shapes. However, without visual information,
humans can still assess object properties, such as size, shape, position, and orientation,
using the sense of touch alone [1]. There are many receptors in the skin at different depths
on human hands to perceive mechanical stimuli during the interaction. Those receptors,
cutaneous and kinesthetic, empower humans to feel objects relying on the sense of touch [2].
The cutaneous sense is the modality that depends on physical contact between skin and
objects and is better for feeling the object’s pressure, vibration, and temperature. In contrast,
the kinesthetic sense is the awareness of the position and movement of the body. It is better
to feel the object’s position and orientation from the receptors within the muscles, tendons,
and joints [3]. Inspired by the kinesthetic sense, we present a soft finger with an embedded
camera and a deep learning architecture for object recognition.

According to the structure of human hands, many methods have been proposed for
hand pose estimation (HPE) problems [4–6]. As the shape of an object and the configuration
of a hand (how many fingers are used to manipulate objects and the fingers’ positions)
are constrained by each other [7], some hand–object joint detection methods are proposed,
which are called hand–object pose estimation (HOPE) [8–10]. Like humans manipulating
objects with HOPE, object pose recognition is also a fundamental and challenging task
in robotics.

For a manipulation task, perception of the environment and objects is essential [11].
Vision sensors are standard solutions to perceive the environment, and many methods
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have been proposed for object localization and classification [12–15]. While deep learning
significantly improves performance in object recognition problems, the inevitable occlusion
is still challenging, especially in dexterous manipulation tasks. Even if we obtain an object
pose with high precision before manipulation, the pose during manipulation in the gripper
is still unknown due to the inherent uncertainties, tolerances, and noise in the robotic
system [16].

Inspired by the HOPE problem, we try to solve the robot gripper–object pose estima-
tion problem with gripper pose estimation. For fully actuated grippers, we can obtain the
joints’ angles of the gripper from motors and contact states from tactile and force sensors
and estimate object pose and category with that information [17–19]. For under-actuated
grippers, we need additional sensors to measure extra degrees of freedom (DoF), then esti-
mate object pose and category [20–22]. To measure the contact information, GelSight [23],
DIGIT [24], and FingerVision [25] are proposed. Those sensors consist of a transparent
hard layer and a thin elastic layer and predict object shape and contact force from the defor-
mation of the elastic layer. Limited by the thickness of the elastic layer, which is 2–3 mm,
the sensors’ deformation is small, limiting the measuring range and shape adaptation
during grasping.

Figure 1. Overview of the bio-inspired finger and framework. (A) The raw stimulus is encoded
with low-level processing and then transmitted to the central nervous system (CNS) for high-level
processing, such as object recognition. (B) The bio-inspired fingers with flexible skeleton and silicon
gel skin and a framework for object recognition: the raw images from fingers are encoded as latent
vectors and then used for auxiliary tasks such as pose estimation and object classification.

Those methods mentioned above use multi-sensors in fingers for joints and tactile
sensors in the fingertip for contact states and then estimate the objects’ poses and categories
with CAD models. In this article, we propose a soft, adaptive finger with an integrated
camera to infer the finger deformation during interaction with objects, as shown in Figure 1.
We mount the soft fingers on a gripper to enhance the adaption of the gripper and recognize
handle objects with their proprioceptive sensing. Our method uses raw images to estimate
objects’ poses and categories with a camera and unknown CAD models. Instead of a
two-stage method to recognize gripper state and object pose, our method is one-stage to
recognize handled objects’ poses and categories from the raw images. To simplify the
training and enhance the reusability, we split the method into two parts: a feature extractor
for interaction information embedding and a post-processor for further manipulation tasks.
The feature extractor is an encoder–decoder architecture with ResNet block [26], and the
post-processor is a multilayer perceptron (MLP) for classification and regression. The main
contributions of this paper include the following: First, we design and fabricate a soft finger
with an integrated camera inside for proprioception. Second, we propose a frame to extract
and fuse the fingers’ data for objects’ states in a gripper. Finally, we test the effectiveness of
the proposed method and obtain high accuracy in pose estimation and classification.
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2. Materials and Methods
2.1. Design and Fabrication of the Soft Finger with Inner Vision

In our previous work [27], we leveraged the soft finger with an AruCo marker inside
to sense contact force and torque, which encodes the deformation of the finger. In this
study, we introduce several improvements to the finger design, as shown in Figure 2:

• Added silicone skin on the finger to isolate the outside environment for a clear background.
• Added an LED light for illumination as the skin blocked the outside light.
• Removed the AruCo marker and used the finger’s skeleton as a deformation feature.

Figure 2. The soft finger’s design and fabrication. (I) The fabrication process of the silicone skin;
(II) attaching the skin to the basic finger skeleton; (III) the integrated finger with an LED and an
inner camera.

As shown in Figure 2, this new design finger contains a finger skeleton with black
skin, a base frame, an LED light, and a camera. The finger skeleton was fabricated with
vacuum molding using polyurethane elastomers (Hei-cast 8400 from H&K). The three com-
ponents were mixed in a 1:1:0 proportion to achieve 90A hardness with robust performance
according to previous experience. Alternatively, other fabrication methods, such as fused
deposition modeling (FDM) or stereolithography (SLA), could be cheaper. The size of
the skeleton is 50 mm in bottom side length and 120 mm in height. The skin is made of
Smooth-On EcoflexTM 00-30 silicone rubber, and we added black pigment to change the
color to block the ambient light effectively. Moreover, the silicone skin’s thickness is 3 mm,
fabricated individually, and attached to the finger skeleton with an adhesive Valigooor

V-80. The white LED light has enough luminous flux for the camera’s exposure. The chosen
camera is Chengyue WX605 from Weixinshijie, with a 640 × 360 resolution at 330 fps, and
the lens is manually adjustable. When grasping objects, the deformed finger could be
captured by the camera and encoded as the interaction information. Therefore, we use this
proposed finger to recognize the outside object.

2.2. Framework for Handled Object Recognition with the Soft Finger

In this section, we present a framework illustrated in Figure 3 to extract kinesthesia
features and estimate the object state handled by the gripper. This framework contains two
parts: an encoder–decoder architecture for feature extraction and two auxiliary multilayer
perceptrons (MLP) for estimating the object’s pose relative to the gripper’s coordinate
system and category, respectively. The input of the framework is two fingers’ inner images
and the gripper configuration.



Biomimetics 2023, 8, 501 4 of 15

Figure 3. The architecture of the proposed framework: it takes two resized grayscale images and a
gripper configuration as inputs and predicts the 6D pose and category of the object.

2.2.1. Encoder–Decoder Architecture

Specific details of the encoder–decoder architecture are shown in Figure 4; the blue
block is the encoder, the green block is the decoder, and the yellow vector is the extracted
latent vector. The encoder–decoder architecture is a fully convolutional topology and takes
a resized grayscale image I = R1×320×320 as input. It extracts the features representing the
finger’s deformation and outputs an N-dimensional vector; the decoder reconstructs the
image from the feature vector.

Figure 4. The encoder–decoder architecture of the feature extraction: one resized grayscale image as
inputs and the same size image as output.

The basic blocks of the encoder–decoder architecture are 3× 3 convolution and ResNet
block for extracting features and 1 × 1 convolution for compressing features. The dense
layer is set to change the latent vector’s dimensions and explore the feature dimensions’
effect on recovering the image.
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Define the input as I, the encoder function as E, the latent vector as V, the decoder
function as D, and the output as Z. The encoder–decoder architecture can be described as

V = E(I), (1)

Z = D(V), (2)

(θ̂e, θ̂d) = arg
θe ,θd∈Θ

min Loss(Z, I) (3)

where θ̂e, θ̂d are the well-trained encoder and decoder parameters, and Loss is the loss
function between Z and I.

2.2.2. Pose Estimation and Classification

After extracting the latent feature V, we designed two MLP models to estimate the
object’s pose and category as shown in Figure 5. These two models have the same inputs,
and the output of the regression model is a 6D pose. In contrast, the output of the classifi-
cation model is seven classes with a softmax activation function. In this article, the input
vector is 129 dimensions, aggregating the two fingers’ feature V and gripper configuration.
In the follow-up work, we set the dimension of V as 64 and the dimension of the gripper
configuration as one since the gripper we used is one degree of freedom (DoF), so the input
vector is 64× 2 + 1 = 129 dimensions. The regression model consists of five hidden layers
with 200, 200, 100, 100, and 100 neurons, with an activation function rectified linear unit
(ReLu) [28] and batch normalization [29]. The classification model consists of three hidden
layers with 200, 200, and 100 neurons, with activation function ReLu.

Define two images taken from the inner cameras of the fingers as IL = RC×H×W ,
IR = RC×H×W with height H and width W, gripper configuration as Gc, regression model
as Fr, classification model as Fc, object 6d pose as Sp, and object category as Sc, and the two
MLP models are described as

VL, VR = E(IL), E(IR), (4)

Vaggregation = Func(VL, VR, Gc), (5)

Sp = Fr(Vaggregation), Sc = Fc(Vaggregation), (6)

Here, Func is a function to combine the vectors in order.

Figure 5. Two MLP models of object recognition. Left: a regression model for 6d pose estimation.
Right: a classification model for object categories.

2.3. Data Collection and Training Setups
2.3.1. Data Collection Setup

We built an experimental platform to collect training data efficiently for training the
framework above, as shown in Figure 6. The designed fingers are mounted on a DH-
Robotics AG-160-95 adaptive gripper to replace its tips, and we pasted AruCo codes on the
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fingers and grippers to represent their poses. An extra camera is mounted on an optical
breadboard to collect the AruCo marker poses, and two cameras in the fingers collect the
interaction deformations. The AruCo markers are 4 × 4 squares of 16mm width with
different indexes and are detected by OpenCV [30]. The outside camera’s resolution is
set at 1920 × 1080 to increase the detection success rate and precision of AruCo markers
detection. The inner camera’s resolution is 640 × 360 and resized to 320 × 320 to decrease
the model’s size and prediction time.

Figure 6. Date collection setup. Four markers are attached to the gripper, fingers, and object. An
outside camera monitors the four markers for the object’s pose; simultaneously, fingers’ deformations
are captured by two inner cameras.

Referring to article [31], we chose the McMaster dataset (https://www.mcmaster.com
accessed on 20 June 2023) as our test objects. In addition, we also chose three basic geometric
solids. All objects are resized to adjust the gripper width and 3D-printed for final usage
as shown in Figure 7. When collecting data, we set the gripper force mode and control
the gripper width to grasp the object, then leave the gripper static and shake the object
manually to collect the object poses. Due to the finger’s adaptation, the gripper width does
not need to precisely match the objects’ size, which is predefined at 15 mm. We collected
5000 samples for each object.

Figure 7. Test objects and their properties. (Left): 3D-printed objects. (Right): objects’ sizes and
weights.

https://www.mcmaster.com
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After collection, all poses are transferred to the gripper coordinate system for stan-
dardization. Define P = (x, y, z, rx, ry, rz) as a pose, where (x, y, z) is translation and
(rx, ry, rz) is orientation. Instead of using the object CAD model, we use the relative
change to represent the object’s pose without the object model. Define reference pose
P0 = (x0, y0, z0, rx0, ry0, rz0), current pose Pt = (xt, yt, zt, rxt, ryt, rzt) at time t, and the
translation matrix Mt = [R|T], so

Pt = P0Mt, (7)

and we use Mt to represent the current object pose.
The left superscript G and C represent the gripper and camera coordinate system

variables. G is the gripper coordinate system, and C is the camera coordinate. The in-camera
coordinate system, the gripper pose, gripper configuration, and object pose indicated by
the Aruco marker attached are CPO

t , gripper poses CPH
t , gripper joint poses CPJL

t and CPJR
t

in time t.
The transfer to gripper coordinate system is as follows:

CPO
t = CPH

t · GPO
t , (8)

GPO
t = [CPH

t ]−1 · CPO
t , (9)

GPO
0 = [CPH

0 ]−1 · CPO
0 , (10)

GPO
t = GPO

0 ·G Mt, (11)

In the gripper coordinate system, the object transfer pose GMt is

GMt = [GPO
0 ]
−1 · GPO

t

= [[CPH
0 ]−1 · CPO

0 ]
−1[[CPH

t ]−1 · CPO
t ] (12)

The collected dataset comprises seven objects and 5000 samples per object, each
consisting of two inner images, four poses from the outside camera, and the objects’
categories. The resolution of the inner images is the same and is 640 × 360, and resized to
320 × 320 for input, and the values are normalized to 0–1. The objects’ pose distributions
are shown in Figure 8.

Figure 8. Distribution of the dataset. All data are exhibited in the gripper coordinate system:
(A) translation distribution and (B) orientation distribution.
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2.3.2. Network Training Setup

To improve the reusability and expansibility of the network, we trained the encoder–
decoder reconstruction and the auxiliary tasks in two stages using the dataset collected in
the previous section.

In the first stage, the encoder–decoder reconstruction is self-supervised learning. The
dataset is randomly split into 8:2; 56,000 images are used for training, and 14,000 are used
for evaluation. It was trained with a batch size of 32 using an Adam optimizer with a
learning rate of 0.001 on mean squared error loss (MSELoss). The latent vector V is set to 8,
16, 32, 64, 128, and 256 to determine the best network configuration. The training epoch is
set to 200, and we save the weights with the lowest training loss.

We froze the encoder’s weights in the second stage and only trained the following
auxiliary tasks. For the regression model, we trained an MLP model for each object. Using
the split dataset above, 4000 samples are used for training, and 1000 are used for evaluation
for each object. The batch size is 32, the optimizer is Adam optimizer, and the learning rate
is 0.001. As the 6D pose consists of two parts, translation, and orientation, and we define
the training loss in Equations (13)–(15), where Lt is translation loss and Lr is orientation
loss. The hyper-parameters α and β are set to 0.01 and 10, while the translation unit is
millimeters and rotation is radians. The training epoch is set to 100.

Lt =
1
3

3

∑
n=1

(xt
n − x̂t

n)
2, (13)

Lr =
1
3

3

∑
n=1

(xr
n − x̂r

n)
2, (14)

L = αLt + βLr. (15)

For the classification model, we trained an MLP model for all objects together. Using
the split dataset above, 28,000 samples are used for training and 7000 for evaluation. The
batch size is 256, the optimizer is the Adam optimizer, the learning rate is 0.001, and the
training loss is cross-entropy loss. The training epoch is set to 100.

3. Results and Discussion
3.1. Dimension of the Latent Vector

To find an optimal dimension of the latent space, we varied the dimension of the latent
vector and compared the reconstruction errors using the same training and validation
dataset. The dimension of the latent vector is set to 8, 16, 32, 64, 128, and 256, and the
corresponding results are shown in Table 1.

Table 1. Effect of the latent vector dimension.

Latent Vector Dimension
8 16 32 64 128 256

Normalized MSELoss 1.37 1.74 1.36 1.09 1.35 1
Parameters (M) 0.57 0.67 0.88 1.29 2.11 3.74

We scaled all losses such that the loss of 256-dimensional latent space was one. As the
dimension increases, the reconstruction loss decreases, and the number of parameters of the
model increases. To balance the precision and computational efficiency of the auto-encoder,
we chose the 64-dimensional latent space, whose loss is comparable to the 256-dimensional
space with only 24% of the number of parameters.

3.2. Quantitative Evaluation of Object Recognition

In this section, we report the accuracy of pose estimation and classification. The
translation error is measured by the Euclidean distance ‖pest − pgt‖2 between the esti-
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mated position pest = (x, y, z)est and the ground truth position pgt = (x, y, z)gt [32]. The
orientation error |α|, measured by an absolute angle error, is computed as

2 cos |α| = Tr(R−1
gt Rest)− 1, (16)

where Rgt and Rest are the estimated and ground truth rotation matrices, and Tr is the trace
of the matrix.

As shown in Figure 9, the translation and orientation errors are significantly different
for different objects. The mean translation error of each object is between 2.02 mm and
4.00 mm, and the mean orientation error is between 11.34 degrees and 31.87 degrees. Object
tube1 has the slightest translation error of 2.02 mm and the slightest orientation error of
11.34 degrees. The object cylinder has the most significant translation and orientation error
of 4 mm and 31.87 degrees. The decompositions of the errors are shown in Figure A1.

Figure 9. The histogram of pose estimation errors of each object. Translation error is the Euclidean
distance, and rotation error is the absolute orientation error |α|.

Despite lacking a standard experiment setup for in-hand object pose estimation, some
work has still been explored. The authors of [33] used RGB cameras and GelSights to
estimate in-hand object pose with 15 mm accuracy in position and 15 degrees accuracy in
orientation. The authors of [34] fused vision and tactile data to obtain 2.99 mm accuracy in
position and 8.074 degrees accuracy in orientation. The authors of [21] presented a method
based on a bootstrap particle filter to estimate the pose with 2.14−7.31 mm accuracy in
position and 0.812−3.392 degrees accuracy in orientation due to the ground truth not
detecting almost any rotation. Comparing the state-of-the-art methods, our method obtains
a comparable result with a small translation error.

The inner camera can only perceive the objects’ geometric shape and size as the
skin isolates the ambient environment. Objects with complex shapes provide abundant
shape features and improve the pose estimation accuracy. On the contrary, the geometric
shapes of tube4, cylinder, square prism, and triangular prism are more similar to a cylinder,
resulting in more significant orientation errors among the seven objects. Those objects are
symmetrical, but the features around the symmetry axis lack uniqueness, increasing the
difficulty of orientation estimation. The objects’ cross-section shape influences translation
error. The columnar objects (tube4, cylinder, and prisms) have a more significant translation
error due to their similar cross-section shape among the seven objects.

Objects’ geometric and texture features are essential elements, and the designed finger
is limited to obtain the texture as the black coat, influencing the pose estimation precision.
A prominent method to improve the precision is to add more features, such as mounting a
camera on the gripper or changing the transparent black skin to obtain image features. More
features increase the complexity of the device and algorithm but improve performance.
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As the objects have unique 3D shapes and sizes, we obtain a high classification accuracy
of 99.05%, as shown in Figure 10. With the proposed method, we can estimate the handled
object’s category with a high accuracy proprioceptive touch of the soft fingers.

Figure 10. Confusion matrix for object classification.

3.3. Reusability and Expansibility of the Framework

As described in the framework, the encoder–decoder architecture reduces the tactile
feature dimensions and unites their format for different types of sensors. This makes the
tactile information compact and simplifies the processing flow. For other sensors such as
GelSight [23], BioTac (https://syntouchinc.com accessed on 19 October 2023) and magnetic
skin [35], the different sensing information can also be represented as a latent vector with a
convolutional neural network, graph neural network, or other methods according to the
data structure.

Then, the extracted tactile features are fused depending on the gripper configuration.
In this paper, the fusion features combine two-finger images and gripper configuration
and are an input of the auxiliary tasks. For an N-finger gripper, we first extract the tactile
information of each finger, then fuse each finger’s features and the gripper configuration,
such as joint rotation angles. The gripper configuration represents the joint’s spatial position
and can be described as a base pose and the DoF of each finger. As shown in this article, we
use AruCo markers to monitor the finger base pose and tactile features of the soft fingers to
represent the finger’s DoF, which is independent of hardware.

Finally, the fused features are used for downstream tasks. We demonstrate two basic
examples, pose estimation and classification of the handled object, and obtain sound results.
We can quickly adapt the frame to other tasks using the same fusion features. Benefitting
from the modular design of the framework, we can extract the tactile features independently,
fuse them according to the configuration of the hand, and feed them to different auxiliary
task models to complete manipulation tasks; this framework applies to scenarios with
multi-sensor, multi-gripper, and multi-tasking.

https://syntouchinc.com
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4. Conclusions

This paper presents a bio-inspired, soft proprioceptive sensor and a framework for
object pose estimation and classification. The proposed soft proprioceptive sensor can
be extended to different manipulators, providing extra shape adaptation and interaction
information. Based on this sensor, we propose an extendable architecture to extract the
tactile information and estimate the handled object’s state. This method achieves a high
accuracy of 2.02 mm in translation, 11.34 degrees in orientation, and 99.05% classification
accuracy for object classification with an unknown CAD model.

The interaction information is extracted from finger deformations when grasping
objects. The pure black skin on the soft finger loses texture features, and the skeleton
filters small shape features due to its smooth deformation, as shown in Figure A2. Those
properties limit the soft finger to perceiving small objects and distinguishing similar-shaped
objects. For unseen objects, our method can not be used directly. Current state-of-the-art
pose estimation methods can only handle previously trained objects [36]. Instead of
predicting pose directly, [36] proposed a learning-based method that finds corresponding
points between an unseen object and an RGBD image, which can be transferred to non-
learned objects. However, it depends on the object 3D model and the point cloud of the
scene. Our method does not need an object model and uses RGB images only, and it cannot
be transferred to non-learned objects easily. For an unseen object, we need to collect data
and train the MLP again.

Future work will explore the transferability of this method on different tactile sensors
and grippers. This framework provides a uniform feature extractor for different types of
tactile sensor information and an extendable structure for different grippers. Meanwhile,
more manipulation tasks can be involved with this method.
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Appendix A

Figure A1. Results of the pose estimation for test objects. Six rows correspond to positions and
orientations, and seven columns correspond to seven objects. The x-axis is the ground truth and the
y-axis is the predicted values.
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Figure A2. Examples of grasping objects: the left column is an outside image, the middle column is
the left inner image, and the right column is the right inner image. (a,b) are comparisons before and
after grasping a small wrench; (c) is a comparison grasping a bolt; (d) is a comparison grasping a
tapping. The deformation of the skeleton is slight after grasping a wrench, and the features of screw
threads in (c,d) are lost in the inner images.
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