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Abstract: Discoveries of two-dimensional (2D) materials, exemplified by the recent entry of MXene,
have ushered in a new era of multifunctional materials for applications from electronics to biomedical
sensors due to their superior combination of mechanical, chemical, and electrical properties. MXene,
for example, can be designed for specialized applications using a plethora of element combinations
and surface termination layers, making them attractive for highly optimized multifunctional com-
posites. Although multiple critical engineering applications demand that such composites balance
specialized functions with mechanical demands, the current knowledge of the mechanical perfor-
mance and optimized traits necessary for such composite design is severely limited. In response to
this pressing need, this paper critically reviews structure–function connections for highly mineralized
2D natural composites, such as nacre and exoskeletal of windowpane oysters, to extract fundamental
bioinspired design principles that provide pathways for multifunctional 2D-based engineered sys-
tems. This paper highlights key bioinspired design features, including controlling flake geometry,
enhancing interface interlocks, and utilizing polymer interphases, to address the limitations of the
current design. Challenges in processing, such as flake size control and incorporating interlocking
mechanisms of tablet stitching and nanotube forest, are discussed along with alternative potential
solutions, such as roughened interfaces and surface waviness. Finally, this paper discusses future per-
spectives and opportunities, including bridging the gap between theory and practice with multiscale
modeling and machine learning design approaches. Overall, this review underscores the potential of
bioinspired design for engineered 2D composites while acknowledging the complexities involved
and providing valuable insights for researchers and engineers in this rapidly evolving field.

Keywords: MXene; 2D materials; bioinspired design; nacre; biomimetic mineralization; multiscale
modeling

1. Introduction

As traditional engineering materials are quickly achieving their performance limits,
there is a pressing need for next-generation materials for a wide range of applications in
the biomedical, robotics, and aerospace fields. New demands include stretchable materials
for soft robotics and electronics [1,2], flexible materials for electromagnetic interference
shielding [3], high-density and mechanically robust energy storage devices [4,5], and
biocompatible and mechanically optimized biosensors [6,7]. These examples highlight the
multifunctionality requirements of next-generational materials. The critical functional focus,
such as biosensing, electromagnetic interference (EMI) shielding, or damage tolerance,
needs to be balanced with structural requirements of toughness and flexibility. Balancing
functional needs and structural requirements necessitates discovering new materials and
design traits.
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Recently, several classes of two-dimensional (2D) materials (both elemental and hetero-
nuclear) have been synthesized, including graphene, borophene, transition metal dichalco-
genides or TMDs, and MXenes. Each of these material classes has a unique combination
of mechanical, chemical, and electrical properties [8–13]. Significant effort has focused
on their processing and identifying appropriate applications for them [13,14]. Among
these material classes, MXenes is the most recent entry and has a general representation
of Mn+1XnTx (M = early transition metals, X = carbon or nitrogen, and T = functional
surface terminations). MXenes can exist in several forms through element permutations
and surface terminations and, thus, offer an exciting opportunity for a wide range of
applications [8,14–17].

Overall, the 2D materials from the early discovery of graphene to the new entry of
MXenes are attractive for multifunctional applications. They typically have a high in-plane
specific area and high in-plane stiffness but are relatively weak in shear and have low
out-of-plane stiffness and mechanical flexibility [18–22]. Their scalability beyond the lab
continues to challenge real-world applications from processing to mechanical robustness
aspects [19,23,24]. While there has been an immense focus on synthesizing such materials,
strategies for structural stability for designs have received far less attention.

Some proposed strategies for improving the mechanical robustness of 2D structures
have included using flexible substrates [20,25–27] and composite design [3,27–32]. Here,
we focus on layered composite design for multifunctionality, wherein the target is to
achieve mechanical robustness without sacrificing the primary benefit of the use of these
materials. Some examples of multifunctional benefits include providing an ultrathin layer
with high electrical conductivity in flexible electronics [3], providing a large surface area in
gas sensing [33], and incorporating impact resistance with electromagnetic shielding [34].
Such multifunctional designs require a high concentration of 2D materials and a careful
selection of design features to achieve the performance demands across applications.

Natural composites provide an excellent template of tightly balanced design traits opti-
mized over several millennia through evolutionary forces [35,36]. Bioinspired features have
guided the development of multiple engineered solutions in recent years [37–39]. In the
context of 2D natural systems, layered architecture with carefully designed interfaces is the
hallmark of many natural composites, allowing them to achieve strength and functionality
far exceeding their constituents [35,36]. For example, despite being made from more than
95% mineral, nacre achieves three orders of magnitude of higher fracture resistance than
its mineral phase through its unique brick-and-mortar organization and careful design of
organic–mineral interfaces [40,41]. Despite having 88 vol% mineral content, the exoskeletal
forewings of the diabolical ironclad beetle (Phloeodes diabolicus) achieve extreme toughness
through a combination of design features, including laminated microstructure, spatially
varying stiffness, and ellipsoidal geometry [42]. The ultrathin coating (≈70 µm) on the
dactyl club of mantis shrimps has 88 vol% densely packed hydroxyapatite nanoparticles,
but it achieves high toughness and impact resistance through an interspersed organic
matrix within its nanoparticles [43]. The geomaterial sheet silicates montmorillonite (MMT)
or nanoclay is another example of a 2D composite that has been extensively used for mem-
brane separation and as a flame retardant due to its increased thermal stability, hydration
swelling, and water dispersion properties [44–47].

Exploring the structure–function relationship of these highly mineralized thin-layered
natural composites provides an excellent template for designing 2D-engineered composites.
With that aim, this paper reviews the structural organization and mechanics of highly min-
eralized layered natural composites to identify critical design traits governing their stiffness
and toughness. Following the above, we discuss the relevance of these bioinspired design
features for 2D-engineered composites and some exciting challenges and opportunities for
future work in 2D nanocomposite design.
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2. Highly Mineralized 2D Natural Composites

Classic examples of 2D natural composites with high mineralization (>80 vol%) include
nacreous shells, the exoskeleton of windowpane oyster (WO), and the thin outer coating
on the dactyl club of mantis shrimp (DCMS). Due to their superior mechanical properties,
specifically high toughness and low compressive to tensile strength ratios, the structural
organization and underlying mechanisms driving their behavior have been the focus
of intense investigations [35,36,41,48,49,49–52]. While the nacre and exoskeleton of WO
have layered organization, the DCMS structure is nanograined and possesses overlapping
features of relevance, such as high mineralization and mineral–polymer interactions, which
are responsible for their superior toughness under impact loading. Furthermore, as we
will discuss later, nanogranularity is an overlapping feature present not only in DCMS but
also within the tablets of nacre and WO. Hence, DCMS is also included in the discussion
below on natural systems of relevant layered composite design. Here, some key aspects of
the structural organization are briefly summarized to identify and compare their design
features for driving further discussions. Figure 1 shows the structural organization of the
three natural composites.

2.1. Structural Organization

Nacre is a classic example of a 2D layered structure and is present in the inner surface
of the exoskeletal of certain molluscan shells. It is primarily made from stiff mineralized
tablets (≈95 vol% aragonite or CaCO3) interspersed with soft organic polymer phases
(polysaccharide and hydrated protein) in a brick-and-mortar architecture [53,54]. Figure 1a
shows the hierarchical organization of nacre derived from molluscan shells. The “brick”
is the aragonite present as a continuous lamellar sheet of plate-like polygonal tablets 5
to 20 µm in diameter and 0.2 to 0.9 µm thick, with an aspect ratio of 8 to 14 [41,55–57].
Each tablet is “glued” to the adjacent tablets via a 20 to 50 nm intra-tablet organic “mortar”
layer [40,58]. The tablets are not single-crystal but instead are made from clusters of
“mesocrystal” comprised of polygonal aragonite nanograins 3 to 10 nm in size, again glued
using the interspersed polymer phase between the nanograins [59–62]. Multiple parallel
tablet–polymer zones are arranged in a staggered brick–mortar organization to achieve a
total thickness of 300 µm [40]. This tiled nacreous zone is sandwiched between mesolayers
20 µm thick, which is also made of a mineral phase CaCO3 with interspersed organic
phase [40,63,64]. The mesolayers are also called the growth band since they are believed
to originate during the growth phase due to the variation in the feeding and temperature
patterns, resulting in interruptions in the brick–mortar layering pattern.

The exoskeleton of WO (Placuna placenta) is another example of a highly mineralized
structure (≈99 wt% calcite or CaCO3), which can simultaneously achieve high optical
transparency, stiffness, toughness, and high-strain impact resistance [65,66]. Like nacre,
it has a lamellar organization made from mineral tablets and interspersed organics. The
tablets are elongated diamond-shaped calcite tiles (length 140 µm, width 6 µm, tip angle 10◦,
and thickness 0.3 µm) glued together by an ultrathin (≈2 nm) organic phase (Figure 1b). The
entire shell comprises 2000 such laminar layers, leading to a total thickness of approximately
500 µm. Many

(
106) pairs of screw-like connection centers are present within each layer to

provide growth pathways for biomineralization [67–69]. These connection centers also play
a significant role in energy dissipation via interlocking of tablets and localizing damage [65],
as discussed in later sections.

The outer coating of DCMS is another example of mineralized material (≈88 vol%
hydroxyapatite or HAP) designed for impact resistance [43,70,71]. Its structural architec-
ture differs from the tablet-like laminated organization of nacre and WO but shares with
them the nanogranularity feature present within the tablets of layered systems and here at
two different length scales (primary and secondary grains). The ultrathin (≈70 µm) outer
coating is made from dense packing of crystalline HAP nanoparticles or secondary grains
(≈65 nm) embedded in an organic matrix (polysaccharide and protein). The nanoparticles
are not single crystals [71] but instead consist of highly aligned primary grains (≈15 nm) of
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preferred orientation, separated from adjacent primary grains with low-angle grain bound-
aries [43]. The hydrated organic matrix interpenetrates the primary and the secondary
grains, similar to the organic material in inter- and intra-table regions of nacre and WO. The
grain boundaries and the organic phase provide pathways for energy dissipation and crack
localization, leading to extreme damage resistance under high impact [43,72], as discussed
in later sections.
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Figure 1. Structural organization of thin mineralized composite (a) nacre, (b) exoskeleton of win-
dowpane oyster (WO), and (c) outer coating on dactyl club of mantis shrimp (DCMS) showing
the mineral-organic organization at the microscale, underlying building block, and the nanounit
within the building block (macrostructure courtesy: nacre [73], windowpane oyster [66], and mantis
shrimp [43]).

2.2. Mechanical Response

The structural organization of the nacre, the exoskeleton of WO, and the outer coating
of DCMS show examples of highly mineralized composite made of nanogranulated miner-
als organized either in laminar tablets or in crystalline grain-like structure, interspersed
with soft organic materials. The above structural organization leads to their unique me-
chanical response. Figure 2a shows a schematic of the typical stress–strain response of
nacre and its constituents. Figure 2b shows values of some of the common mechanical
properties of these natural composites and their constituents.

The minerals aragonite and calcite are brittle and orthotropic with elastic moduli
between 76 and 144 GPa and a low strain to failure of 0.05% [53,74–76]. Similarly, HAP
is brittle with a modulus of 40 to 150 GPa, the higher of the values reported for synthetic
crystals [77,78]. The organic polymers (polysaccharide and hydrated protein) have a
significantly lower modulus of 1 to 136 MPa depending on the strain rate, low strength of
0.6 to 1.5 MPa, and fracture toughness KIC of 0.43 (MPa

√
m) [53,79–81]. However, it shows

significant strain to failure (2 to 12%), deformation strengthening, and viscoelasticity [79–81].
In contrast to their constitute phases, all-natural composites offer a remarkable combination of
properties. Nacre has been the most widely studied material among the three systems. It has
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a tensile elastic modulus of 60 to 90 GPa comparable to its mineral phase and shows strain
hardening post-yield with large strain to failure (≈1 to 8%) [41,59,82–84]. The tensile strength
varies from 70 to 170 MPa with a work of fracture Wf between 350 and 1240 J/m3 [41,82,84].
Its fracture toughness KIC is reported between 4 and 10 (MPa

√
m) [84–86]. These properties of

nacre are in stark contrast to its primary constituent, aragonite, for which the Wf is 3000 times
lower, and σf and KIC are almost 20 to 30 times smaller [51,86].

Though limited experimental data are available for WO [65,66] and DCMS [70,87], they
show a similar trend as nacre, unique from their primary mineral constituent. Indentation
tests on freshly cleaved WO reveal a high elastic modulus of 70 GPa that is comparable
to the modulus of a single calcite crystal but a substantially increased plasticity with 55%
higher hardness (3.8 GPa vs. 2.5 GPa for calcite) and localized damaged response [65,66].
A theoretical calculation of interfacial energy dissipation in WO reveals interfacial fracture
toughness e1 of 100 J/m2, two orders of magnitude higher than its constituent mineral
crystal [65]. Unlike the nacre and exoskeleton of WO that fail under high strain rate
impact [36], DCMS coating can resist high-velocity impact [70,87]. It has a similar modulus
of 65 to 70 GPa as nacre and exoskeleton of WO [70,87]. These data show that the structure
is highly optimized for extreme toughness and fracture resistance, far higher than its
constituent materials.

The properties reported above have high sensitivity to hydration, as revealed through
testing of nacre. Figure 2a schematically shows the typical response under dry and hydrated
conditions, illustrating the hygromechanical sensitive response. Lower modulus and higher
failure strain correspond to a hydrated state of testing [56,84,88]. Hydrated nacre also
shows higher plasticity and viscoelasticity, observed through the hysteresis loops in tension
or material pile-up in indentation [83,89,90]. The property modification of nacre in the
presence of water can be attributed to multiple factors, such as the plasticizing effect of
bulk water presence in inter and intra-tablet mineral gaps and pores, a reduction of surface
energies through chemical absorption of water on mineral surfaces, and the stabilization
via hydrogen bonding of the organic phase [84,91,92]. These factors enable a gradual
stress transition from the organic phase to the tablet interfaces during sliding, resulting
in higher toughness [92]. Consequently, the properties of nacre, specifically its toughness
and high strain rate sensitivity, are highly influenced by its organic phase. The insets
(a-i) and (a-ii) of Figure 2a show the typical response of the organic phase. The tensile
curve shows high strain-rate sensitivity. The bending curve shows variable stiffness under
loading with saw-tooth-like patterns and energy dissipation upon unloading. Many of the
features of the response of hydrated nacre and other natural composites can be attributed
to the mechanical influence of the hydrated matrix explained above. However, other
features, such as its helical structure and sacrificial bonds, also play an essential role and
are discussed later.
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Figure 2. (a) Schematic views of stress–strain response of nacre under dry and hydrated conditions
based on properties reported in the literature and (b) summary of typical values reported for
constituent phases and corresponding natural composites (E = Elastic modulus, εf = strain to failure,
σt = tensile strength, Wf = work of fracture measured as the area under the stress–strain curve, and
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KIC = mode-I fracture toughness). The inset in (a) shows the response of the organic phase under
tensile (a-i) and bending (a-ii) loading, with some unique characteristics revealed, including strain-
rate sensitivity, saw-tooth pattern, and energy dissipation. These characteristics can be explained
through the presence of a hydrated matrix comprised of organic polymers with helical polymer
structures and sacrificial bonds (Figure (a-iii)). Data are taken from multiple sources: aragonite
and calcite [53,74–76], HAP [77,78], organic phase [53,79–81], nacre [59,82–84,86], WO [65,66], and
DCMS [70,87].

3. Design Features of Mineralized Composites for Stiffness and Toughness

Several design features lead to the extraordinary mechanical response of these highly min-
eralized composites, which can be assigned to three broad categories, namely (a) nanogranular
organization, (b) mechanical interlocking of tablet interfaces, and (c) interphase zone of organic
materials. These key design traits are discussed next, along with other mechanisms, such as
deformation twinning and aspect ratios of tablets, which influence the mechanical response.

3.1. Nanograin Architecture Drives Flaw Resistance

The nanogranular arrangement within the tablets is a crucial design feature of biomin-
eralized composites. In nacre, nanograins 3 to 10 nm in size are bonded together to form a
polygonal tablet [59,62]. The size of the granules can vary within a tablet, thereby control-
ling the density distribution of organic interphases and, consequently, inhomogeneity in
elastic modulus, leading to improved fracture response [62,93,94]. In the exoskeleton of
WO, the elongated diamond-shaped calcite tiles are also comprised of nanograins ≈ 50 nm
in size [66]. The coating of DCMS has a more apparent nanogranular organization than
that which occurs within the tablets of nacre and WO. The nanogranules are present as
secondary grains ≈ 60 nm in size and as aligned primary grains ≈ 15 nm in size, which are
organized within the secondary grains.

The nanoscale organization of natural materials has been explained through crack
tolerance design [95]. Using Griffith criteria and an idealized laminar architecture consisting
of staggered mineral tablets in a protein matrix, equations for the fracture response of the
mineral tablet were derived, as given by Equations (1) and (2). The fracture strength of the
tablet at failure (σf

m) is given by Equation (1), and the critical thickness (h∗) for its fracture
strength to be identical to the strength of the perfect crystal is given by Equation (2). The
value of h∗ is calculated as 30 nm for values γ = 1 J/m2, Em = 100 GPa, and assuming
σth = Em/30 [95].

σf
m = αEm

√
γ

Emh
(1)

h∗ ≈ α2γEm

σ2
th

(2)

where h = thickness of mineral platelet, h∗ = critical thickness of mineral platelet, σf
m = frac-

ture strength of mineral platelet, σth = theoretical strength of perfect mineral crystal,
γ = surface energy of mineral (J/m2), Em = elastic modulus of mineral, and α ≈

√
π

for half-cracked platelet.
While the above method is a simplified analysis for an idealized tablet without ac-

counting for geometrical constraints or the strength contribution of the organic phase, it
explains the nanogranular organization as a means for improving crack tolerance. These
relationships also provide a method for comparing crack tolerance responses across natural
composites. For example, the nanograins in nacre (3 to 10 nm) are below the h* values,
which indicates its tablet design emphasizes toughness over maximizing strength. The
larger granules within the tablet of WO (≈50 nm) compared to a finer organization of nacre
(3 to 10 nm) and DCMS coating (15 nm) predicts that tablets of WO are the least resistant to
tablet cracking of these three material systems.
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3.2. Mechanical Interface Interlocking Increases Strength and Toughness

The mechanical interlocking of tablets may occur by several different mechanisms,
as depicted in Figure 3. These mechanisms include mineral bridges, nanoasperity, tablet
interpenetration, dilatational bands, tablet waviness, tablet curvature, viscoelastic glue, and
screw-like microscopic interconnects. These interlocking mechanisms improve structural
integrity and modify the composite mechanical response and are reviewed in multiple
sources [51,54,96–98].
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Mineral bridges (Figure 3a) are believed to be sites for mineralization during the
growth stage of tablets [80,99] and were among the early mechanisms identified for stiff-
ening in nacre-like materials [48,52,100]. Later experiments showed mineral bridge con-
centration was present only in the middle regions of tablets, limiting their role to adjacent
vertical stacks of tablets rather than the whole nacre level response [55]. Other research
instead identified alternative mechanisms such as nanoasperity [41,48] and tablet interpen-
etration for interlocking [101,102] (Figure 3b,c). Nanoasperity increases shear resistance
by increasing contact sites between adjacent tablets. It improves fracture toughness by
providing additional surfaces for energy dissipation [41,48] but only under small sliding to
about 15 to 20 nm [48,96]. The steady-state sliding post-hardening can also be explained
by the tablet sliding over the nanoasperities [41,48]. The sizeable nonlinearity and strain
hardening observed in nacre under tension and increased shear stiffness under sliding can
also be attributed to the formation and interconnection of multiple dilatational bands [41]
(Figure 3d). Mineral bridging, nanoasperities, and tablet interpenetration sites can con-
tribute to the increase in the pull-out force of the structure under sliding [51,52,100–102] but
cannot explain strain hardening, which was attributed to the presence of tablet waviness.
Tablets surfaces have waviness (Figure 3e) up to 200 nm in amplitude [56]. This wavi-
ness further improves physical interlocking, localizes damage, and increases surface areas
for energy dissipation, resulting in strain hardening and increased toughness [56,57,96].
Structural waviness for interlocking has also been observed in various other shell struc-
tures [97,103]. The polymer present in the interface and interphase regions acts as a
“viscoelastic glue” by adhering to interconnecting tablets [59,63,82,104] (Figure 3f). The
polymer phase is also responsible for the enhancement of a range of composite properties,
which are discussed comprehensively later.

Screw dislocation interconnects that provide biomineralization pathways during
growth are another mechanism identified for tablet interlocking in several laminated
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structures, including nacre and WO [65,65,67–69] (Figure 3g). These interconnects are
believed to interlock tablets and offer additional surfaces for energy dissipation, thus lo-
calizing damage and improving strength and toughness [65,66,69]. A theoretical analysis
of the effect on fracture energy dissipation in the presence of a pair of screw dislocations
was performed for the exoskeletal of WO [44] and is given by Equation (3). In simple
laminates, only eint mode of energy dissipation will exist, which is the energy dissipation
along adjacent mineral interfaces. For WO laminated structure with screw dislocations,
additional energy dissipation occurs due to the presence of an inelastic deformation zone
ahead of the crack tip (= tλinel

λ einel

)
, the formation of vertical surfaces along fracture lines

(= t
λecal), and the opening of surfaces along fracture lines (= λinel

λ einl) as represented in
Equation (3). The above theoretical analysis predicts the energy dissipation in the exoskele-
ton of WO having larger tablet surfaces as two orders of magnitude higher than simple
mineral laminated structures. In contrast, energy dissipation from screw dislocations will
be nominal in smaller tablet sizes, such as nacre [65].

e1 = eint +
tλinel
λ

einel +
t
λ

ecal +
λinel
λ

eint (3)

where eint = energy dissipation density of mineral layer (J/m2), einel = energy dissipation
density of mineral layer (J/m3), ecal = surface energy along the cleavage plane of calcite
(J/m2), t is the thickness of mineral layers (m), λ = spacing between two adjacent fracture
lines, and λinel = inelastic deformation zone (m).

3.3. Interpenetrated Organic Phases Provide Structural Integrity, Plasticity, and Toughness

The organic phase is mechanically weak compared to the mineral phase but shows
viscoelasticity, deformation strengthening, and significant strain to failure [79–81] (Figure 3).
Given its low strength and small volume contribution (<5 vol%), many of the earlier studies
focused primarily on the mineral phase, limiting the role of polymer interphases only as
“viscoelastic glue” for structural integrity and shear strength modifications [59,63,82,104].
Studies have now revealed a broad role of organic phases in natural composites, from
crystal formation to hygromechanical property modification [40,80,88,90,98,104–108]. For
example, the brittle response of nacre in the absence of hydration indicates that most of its
shear load is carried by the hydrated organic phase [82]. The presence of stiff and coiled
component chitin and folded structure of protein lustrin A, along with the presence of
nanopores 5 to 50 nm in diameter within the organic phase, can explain the adhesion,
stiffness, and large deformation of nacre [58,80,90,109].

Figure 4 shows some of these mechanisms, highlighting the important and broader
role of the organic layer. The intra-tablet distribution of the organic layer increases energy
dissipation pathways by crack deflection [51,110,111] (Figure 4a), thus affecting nacre
toughness. Nanogranularity and interspersed organic matrix within the tablet together
allow for nanograin rotation under load, increasing plasticity deformation and energy
dissipation paths for toughening of individual tablets [49,112] (Figure 4b). Nanogranularity
also increases energy dissipation and flow tolerance within tablets by creating a zigzag
path for crack motion [113] (Figure 4c). Other mechanisms contributing to toughening
and large strains of the tablets include varying density distribution of the interspersed
polymer for elastic modulus gradient [62,93,94] and anisotropic lattice distortion [114,115].
The “saw-tooth” pattern in pull tests reveals the presence of sacrificial bonds within the
organic layer (Figure 4d), which results in significant deformation and stiffening [88,90,108].
These bonds are reversible and, hence, also provide self-healing properties to some natural
composites [108]. Finally, various physiochemical interactions in the presence of water are
also said to be responsible for adhesion and hygromechanical sensitivity [116] (Figure 4e).
Increasing hydration results in polymer softening and provides increased plasticity and
viscoelasticity effects [117–120]. Similarly, a significant loss in toughness and tribological
wear is observed under lower levels of hydration [116,121]. Beyond the apparent impact
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of polymer plasticization, the presence of physicochemical interactions influences the
hygromechanical sensitivity in natural composites.
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tic glue include (a) pathway for viscoelastic energy dissipation, (b) nanograin rotation, (c) zigzag path
for crack, (d) sacrificial joints, and (e) physiochemical interactions of polysaccharide and proteins
structure in the presence of water. Arrows indicates primary force direction relevant to activate the
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3.4. Deformation Twinning Can Be Prominent for Damage Localization

Though less common than dislocation and grain boundaries, twinning is a defect in
crystalline structures like metals, allowing local plastic deformation [122,123]. Recently,
nanoscale deformation twinning has been identified as a damage localization mechanism in
some natural composites [103,124–127]. For example, nanoscale twinning 2 to 20 nm thick
was found within aragonite lamella of conch shells (Strombus gigas) and was recognized as
an essential mechanism for toughening and localization of damage [103]. A deformation
twin ≈ 50 nm thick was formed around the damage zone of indentation in the exoskeleton
of WO at the earliest deformation stage, causing damage localization at the early stages,
followed by other mechanisms such as interface opening and micro/nano cracking for
toughening [127]. Nanoscale twinning is also present in nacre, though it has a much lower
influence on mechanical response [127].

3.5. The Tablet Aspect Ratio Influences the Transition from a Tougher to a Stiffer Response

The tablet sizes and geometry vary among the different composites. Nacre tablets
are polygonal 5 to 20 µm in diameter with an aspect ratio (AR) from 20 to 100. Those of
the exoskeleton of WO are diamond-shaped with a maximum length of 140 µm and AR
of approximately 500, much higher than nacre. Finally, in the extreme case of DCMS, the
“tablets” reduce to nanoscale size. The aspect ratio is an essential feature of natural composites,
determining the relative contribution of different deformation mechanisms [57,95,128,129].
For example, larger aspect ratios and staggered alignment can increase strength at the cost
of ductility [129,130]. Screw-like interconnects can significantly increase strength for larger
tablets like WO but have a negligible effect on smaller tablets like nacre [65]. In contrast, larger
tablets are more susceptible to pull-out damage and fracture developing within their surface.
These, in turn, indicate that an optimal tablet size or geometrical features should be guided
by the functional demand of the composites and can be predicted by theoretical analysis of
idealized composites [95,118,131,132].

Based on the laminar model architecture consisting of staggered mineral platelets
in a protein matrix discussed earlier (Equations (1) and (2)) and assuming simple force
distribution between mineral and protein, a critical value of aspect ratio (AR∗) was derived
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for optimum strength and toughness [95]. The value is given by Equation (4) under the
simultaneous failure of the mineral and polymer phase, which shows that the optimum as-
pect ratio is inversely proportional to

√
h. It implied that thinner tablets need higher aspect

ratios for a similar stiffening effect. An optimum AR of approximately 25 was obtained for
typical values for mineral and organic constituents (σf

m = 1 GPa and τf
o = 40 MPa) [65]. Val-

ues higher than the optimum values will have higher stiffness at the cost of their toughness
and vice versa. A similar prediction was made for general 2D composites, where ductile
matrix deformation dominates at lower than a critical value of AR, while platelet fracture
mode results at larger values. The exact value of AR will depend on the tensile strength of
reinforcement [118].

AR∗ =
σf

m
τf

o
=

1
τf

o

√
πEmγ

h
(4)

where σf
m = failure stress of the mineral phase, τf

o = shear failure stress in the organic phase,
and Em and γ are as defined in Equation (1).

Based on the above theoretical analysis, the exoskeleton of WO with higher AR should
address higher stiffness applications. At the same time, a smaller AR of nacre or bone
should be designed for greater toughness. This prediction matches the understanding of
their comparative performance and application. As a further confirmation, the toughness
of nacre is three orders of magnitude larger than its mineral constituent, and that of the
exoskeleton of WO is only two orders of magnitude larger. Another tablet size-related
design feature is the thickness of the organic interphase between tablets. However, the
thickness of the organic phase cannot be treated independently; it depends on the volume
contribution of the organic phase and the size of the tablets. A smaller thickness (≈2 nm)
is present in the exoskeleton of WO, which has a relatively small volume contribution of
the organic phase (≈1%) and larger tablets. In comparison, a larger thickness (≈20 nm) is
present in nacre, which has a more considerable volume contribution of the organic phase
(≈5%) and smaller tablets. The discussion on the impact of various design features of
mineralized 2D composites on the mechanical response is summarized in Table 1.

Table 1. Summary of design rules of natural composites and their impact on common mechanical
properties. The arrows can be read as follows for a representative feature: as dimensions of nanograin
increase, it leads to a lowering in ductility, work of fracture, and fracture toughness.

Properties * Elastic
Modulus

(E)

Fracture Strain
(εf)

Tensile st.
(σf)

Work of
Fracture

(Wf)

Fracture
Toughness **

(KIC)Feature

Nanograin +
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4. Application of Bioinspired Design Rules for Engineered 2D Composites

The review above and Table 1 summarize the critical design features and structural orga-
nization of mineralized 2D materials to address mechanical demands for a tough armor-like
response. Many of the same design features are also optimized for other functional demands of
these structures, such as surface smoothness, iridescence, and optical transparency for parasitic
defense for most shells [66,133–135] and high strain impact resistance for hammer-like function
for DCMS [43,70]. In general, the bioinspired design space is exhaustive [36,136–140], with
many nature-mimetic designs engineered for a range of functional demands from damage
tolerance [140–147], tunable transparency [118,133,148], improved aerodynamics [138,149–152],
thermal management [118,149,153–155], and as a gas barrier [120].

Figure 5 shows a typical layered film and associated design parameters that can be
influenced by bioinspired parameters, including flake thickness, flake length, choice of a
polymer matrix, matrix thickness, flake–flake and flake–matrix interactions, and surface
design. The section below discusses these features in the context of bioinspired design and
related challenges, along with illustrating examples of 2D material-based composites with
those design features.
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Flake Geometry: To mimic tablet influence, balancing strength with toughness requires
control of aspect ratio. Tablets in natural composites are highly organized and uniform.
Tablets of larger AR > 100 provide stiffness, but such tablets negatively impact the tough-
ness. Flake sizes in 2D materials are highly dependent on process parameters and can
vary significantly for the same technique. For example, MXene/TAEA sheets processed
by layer-by-layer self-assembly resulted in AR 80 to 500 with improved electrochemical
performance [156]. In another study, acid etching resulted in MXene flakes with a much
higher AR of 6000 [157]. In a study on graphene, graphene flake was prepared by a non-
dispersive method in a slurry form, which can be used for creating high-concentration
graphene composite using 3D printing [158]. Cellulose nanocrystals (CNC) have been used
to stabilize graphene flakes, resulting in a layered graphene/CNC composite [159]. Another
graphene composite production resulted in conductive paper from multilayered graphene
flakes of 0.3 to 0.4 µm in polyvinyl alcohol (PVA) [160]. Multiple other layered nanocom-
posites have been produced [161–164], the discussion of which is beyond the scope of the
article. However, across all these different processes and 2D material types, controlling the
processing parameters for targeted flake geometry remains immature. Understanding the
impact of tablet size and aspect ratios is thus helpful in directing the research on MXene
and graphene formation toward targeted and uniform-sized flake processing.

Interface interlocks: Another bioinspired feature of significant influence is interface
interlock-induced strength enhancement. Many earlier mechanical strategies for creating
tablet connections in other materials have shown severe limitations. Methods like tablet
stitching and creating nanotube forests improve out-of-plane stiffness and pull-out forces
but lead to defects and damage within the original laminates due to the formation of stress
concentration sites [165–168]. Microcapsules between layers can also lead to surface rough-
ness for shear properties via interface interlocks [169]. Other interface mechanisms, such as
stitching via the formation of screw-like dislocation centers inspired by the exoskeleton of
WO, roughened interfaces, surface waviness, and other alternatives for interface design,
can impact response and could be explored via processing.
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Polymer interphases: Tablet interlock via polymer interphases, similar to the role of
organic polymers in natural composites, is another bioinspired strategy that could be em-
ployed for shear strengthening and improving toughness. The organic polymeric material
is crucial for the structural integrity, plasticity, and shear rigidity of the mineralized 2D nat-
ural composites through multiple mechanisms, as highlighted in Figure 4. Molecular bond
interconnections of 2D sheets with interphase polymer in a layer-by-layer deposition have
been utilized over the years to give a nacre-like interphase bonding [170–175]. Increased
stretchability in graphene-based composite was obtained by ionic bonding by adding Ca2+

ions [176,177]. Hydrogen bonding between the slightly hydrophobic amine-terminated
silane (SiH4) with oxygen atoms of chitosan increased the polymer’s cohesion to alumina
tablet for properties comparable to nacre [178]. A similar moisture-based actuation with
high electrical conductivity was also achieved in a homogenous MXene sheet utilizing the
hydrophilic nature of its surface termination layers [179].

Hence, multiple polymer interphase strengthening strategies have been well devel-
oped over the years for many different types of nanocomposites. Furthermore, multiple
synthetic and natural polymers are available to mirror the mechanical properties of the
organic phase. Some synthetic polymers used in the nacre-mimetic design include acrylic
foam tapes [139], PVA [180,181], poly-diallyl dimethylammonium chloride (PDDA) [182],
poly-methyl methacrylate (PMMA) [181,183], polyacrylic acid (PAA) [184], and polyelec-
trolyte multilayer (PEM) [185]. Natural polymers used include chitosan [178], silk fi-
broin [146,176,177,186,187], alginate, and CNF [180,188]. While many of these polymers
can capture the mechanical stiffness and viscoelasticity of the organic phase, a compre-
hensive public database of the electromechanical and thermal properties of these readily
available polymers could help identify the most suitable choice for a particular set of 2D
material applications.

5. Discussion and Future Outlook

The recent development of MXenes and other 2D materials provides many opportuni-
ties and challenges to move the field of multifunctional composites forward. The paper
focused on the highly mineralized structure of 2D natural composites as a pathway forward
for the bioinspired design of engineered 2D composites.

In this paper, we present unique properties of the natural system different from its
dominant brittle mineral phase, emphasizing the role of their structural organization and
interspersed soft organic phase. We then provide a mechanistic basis for the superior
properties of the layered natural system and identify several underlying design rules
that determine the balance between toughness and stiffness (Table 1). Some key design
traits identified include (a) nanogranular organization, (b) mechanical interlocking of
tablet interfaces, (c) organic interphase zone, (d) tablet aspect ratio, and (e) hydration. For
example, a higher aspect ratio of the layered tablet increases the stiffness and negatively
impacts the ductility and fracture toughness.

Overall, the brick–mortar organization of nacre and WO provides one of the most
straightforward systems for replication compared to other more complex hierarchical
organizations, such as bone and plants [189]. However, translating bioinspired design
features to engineered systems offers many unique challenges and remains to be achieved.
For example, Figure 6 shows Ashby-style property space of strength and toughness for
a natural system and engineered 2D materials (MXene, graphene, and nanoclay) and
their composites. The figure highlights the large gap in the mechanical properties of
the engineered 2D systems compared to their bioinspired counterparts, which further
emphasizes the need for research and growth in that area.
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Some of these challenges in the context of structural design and processing are dis-
cussed in Section 4. These include (a) control over the lateral size of flakes thickness,
(b) improved understanding of the relative impact of mechanical interlocking mechanisms
such as screw connection vs. wavy interfaces, (c) challenges in processing controlled me-
chanical interfaces either mechanically or through surface functionalization, and (d) the
need for a public database of the electromechanical and thermal properties of readily
available synthetic and natural polymers. Identifying and overcoming these challenges can
enable achieving the theoretical limits of mechanical response in engineered 2D systems and
provide multifunctional capabilities far above those of more traditional materials. Below
are some perspectives on the future outlook for growth in the design and manufacturing of
bioinspired engineered 2D systems.

Atomic-Scale and Integration with Higher-Scale Simulation: With the rapid advance-
ment in processing, a large family of 2D materials has been synthesized for many different
applications [14,202–206]. Given the wide choice of homo- and hetero-nuclear 2D materials,
different types of surface termination layers, and novel synthesis pathways, there is a
tremendous opportunity for systematic integration of atomic-level simulation with exper-
iments to guide materials and process choices and provide an integrated development,
testing, and validation platform. Due to recent successes in the experimental realization of
various 2D materials, such simulations are currently very limited for most 2D materials
but show their predictive capability. Considering MXenes as an example, recent molecular
dynamics (MD) simulations on titanium-carbide (TiC)-based MXene predicted its tensile
elastic modulus between 500 and 600 GPa, the nonlinear transition at <1% strains, high
strain to failure (6 to 9%), and temperature and strain-rate sensitivity [157,192,207,208]. The
binding energy was obtained between 0.8 and 2 × 10−18 J [209]. Indentation experiments
on Ti3C2Tx revealed a lower elastic modulus of 300 GPa [157,192] than those predicted
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from these simulations. Such atomistic simulation studies need to be extended to create a
comprehensive database relating MXene compositions and surface terminations with its
electromechanical and electrochemical properties and explain the discrepancies between
atomistic predictions from in situ values. This database will enable improved modeling
fidelity and create a validated platform to guide developments and reduce the effect of
experimental unknowns (surface roughness, interface/interphase chemistry, lateral sizes,
thickness distributions, etc.) [210,211].

Furthermore, integrating atomic models with higher-order analysis is essential for
modeling larger realistic geometries and processing. Specifically, MD analysis can be
combined with multiscale continuum mechanics-based finite element analysis (FEA) to
address the size limitations of atomistic simulations and provide realistic properties. For
example, higher-order continuum analysis not only requires the stress–strain response
of 2D sheets but also needs a measure of interface strength (surface interaction energies,
frictional/shear response) to model slippage and adhesion between flake-to-flake and flake-
to-polymer surfaces. Such properties are complicated and time-consuming to measure
through experiments. Hence, integrated MD/FEA simulation will serve the dual purpose
of using realistic interactions and material properties along with bridging experimental
outcomes. Without such material-specific information, FEA application for 2D composite
design will be severely limited to elastic response and rigid contact interactions such as
those used in recent works [212–214].

Integration with Machine Learning: Machine learning (ML) is rapidly becoming an
impressive tool in the discovery and design of new materials, including composites [215–220].
Integration of ML with MD or FEA simulation is also emerging [221–224]. Learning from
the recent literature on composites, ML could facilitate the accelerated development of
2D materials-based polymer composites for targeted structural applications. For example,
an opportunity in such composite space is shown in Figure 7, where several regression-
based ML methods, including artificial neural networks (ANNs), as well as active-learning
methods, such as Gaussian process regression (GPR) (especially if the training dataset is
small), could be employed to understand better the correlation between input composite
features and elastic/failure structural properties (strength, toughness, moduli). Here,
input features could be described via a set of descriptors using intrinsic properties of 2D
materials (i.e., flakes), polymer and their interfaces (such as the mechanical response of
pristine systems, interface strength between the polymer and the 2D flakes), as well as
morphological properties (2D flakes concentration, some measure of dispersion quality,
orientational anisotropy, etc.). The trained models may assist in exploring and exploiting
multi-dimensional parameter space much more efficiently and help identify optimal input
features for a given structural requirement much faster. Overall, integrating multiscale
modeling (MD, FEA) and experimental data of synthesized 2D materials provides an
exciting opportunity for growth into physics-informed ML models.

Theoretical Modeling: A simpler theoretical analysis using idealized geometry has
driven an understanding of design features for natural composites [57,95,128,129]. For
example, the presence of screw dislocation increases surfaces for energy dissipation [65],
and increasing tablet aspect ratios can predict the transition of the composite from low
tolerance to a stiffer response [57,95,128,129]. However, these models do not incorporate the
role of interfaces. Modifications to the existing theoretical models of natural composites or
new theory and model development to include polymer/mineral interface or interactions
could provide a more accurate prediction of their role in the mechanical response and
correspondingly guide future developments toward the bioinspired design of engineered
2D systems.

Surface Chemistry Control: Beyond simulation and theoretical modeling, the develop-
ment of new surface chemistries for precise control of molecular energy dissipation and
tunable and sacrificial bond interactions are needed to control interface interactions. For
example, incorporating small molecules during the exfoliation process of 2D materials,
altering their layering, or introducing different surface chemistries can impact interfacial
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behavior, including adhesion and separation energies. Another aspect of surface chemistry
control comes from environmental stability, especially in applications where surface oxida-
tion may adversely affect multifunctional performance. Humidity can lead to oxidation of
2D surfaces and degrade the mechanical properties of natural polymers [117–120]. Finding
pathways for stability against humidity damage becomes critical when using natural polymers
such as chitin and CNF. Stabilization methods could involve new interaction development via
chemical cross-linking, switching mechanisms, or thermal curing [118,225–229].

Biomimetics 2023, 8, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 7. Integrated platform for accelerated development of multifunctional 2D-engineered composite. 

Theoretical Modeling: A simpler theoretical analysis using idealized geometry has 
driven an understanding of design features for natural composites [57,95,128,129]. For ex-
ample, the presence of screw dislocation increases surfaces for energy dissipation [65], 
and increasing tablet aspect ratios can predict the transition of the composite from low 
tolerance to a stiffer response [57,95,128,129]. However, these models do not incorporate 
the role of interfaces. Modifications to the existing theoretical models of natural compo-
sites or new theory and model development to include polymer/mineral interface or in-
teractions could provide a more accurate prediction of their role in the mechanical re-
sponse and correspondingly guide future developments toward the bioinspired design of 
engineered 2D systems. 

Surface Chemistry Control: Beyond simulation and theoretical modeling, the devel-
opment of new surface chemistries for precise control of molecular energy dissipation and 
tunable and sacrificial bond interactions are needed to control interface interactions. For 
example, incorporating small molecules during the exfoliation process of 2D materials, 
altering their layering, or introducing different surface chemistries can impact interfacial 
behavior, including adhesion and separation energies. Another aspect of surface chemis-
try control comes from environmental stability, especially in applications where surface 
oxidation may adversely affect multifunctional performance. Humidity can lead to oxida-
tion of 2D surfaces and degrade the mechanical properties of natural polymers [117–120]. 
Finding pathways for stability against humidity damage becomes critical when using nat-
ural polymers such as chitin and CNF. Stabilization methods could involve new interac-
tion development via chemical cross-linking, switching mechanisms, or thermal curing 
[118,225–229]. 

6. Conclusions 
The emergence of 2D materials with exceptional property combinations has led to 

the rapid expansion in the use of 2D materials in various applications, from electronics to 
biomedical sensors, exhibiting their immense potential as versatile materials for future 
society. Despite tremendous interest in these materials systems, a comprehensive under-
standing of the underlying mechanical performance for multifunctional composite design 
using these 2D materials has been missing. Here, we have taken a pre-design approach, 
guided by natural design principles of similarly structured highly mineralized 2D natural 
materials, to address the challenges of 2D-based hierarchical composites for the compet-
ing requirements for strength, toughness, and surface interactions across various 

Figure 7. Integrated platform for accelerated development of multifunctional 2D-engineered composite.

6. Conclusions

The emergence of 2D materials with exceptional property combinations has led to
the rapid expansion in the use of 2D materials in various applications, from electronics
to biomedical sensors, exhibiting their immense potential as versatile materials for future
society. Despite tremendous interest in these materials systems, a comprehensive under-
standing of the underlying mechanical performance for multifunctional composite design
using these 2D materials has been missing. Here, we have taken a pre-design approach,
guided by natural design principles of similarly structured highly mineralized 2D natural
materials, to address the challenges of 2D-based hierarchical composites for the competing
requirements for strength, toughness, and surface interactions across various applications.
Some key outcomes and future opportunities examined in this study are listed below.

• We have elucidated fundamental design principles drawn from highly mineralized
2D natural composites such as nacre and windowpane oyster exoskeletons, offering
valuable insights for engineering superior 2D-based systems. The key design features
include the nanograin tablet architecture with an increased aspect ratio critical to
impacting strength at the cost of toughness. Other features include the presence of an
organic interphase zone and the tablet interface interactions among themselves and
with the organic phase;

• While highlighting the large gap in mechanical properties of the engineered 2D systems
from their bioinspired counterparts, we have discussed the challenges of translating the
bioinspired design features to engineered systems and highlighted the opportunities
for research and growth. Specifically, integrating atomic models with higher-order
continuum analysis is emphasized for modeling realistic geometries and interactions
to guide processing;
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• We have also highlighted the need for precise control of surface chemistries via process-
ing techniques such as layer-by-layer organization with the incorporation of special-
ized organic interphases between layers for tunable designs. Such surface chemistries
must be evaluated for their environmental stability, especially when natural polymers
are integrated into the design;

• Finally, we have emphasized the need for a physics-derived validated machine learn-
ing model integrated with atomistic and continuum mechanics outcome to efficiently
exploit the multi-dimensional parameter space and accelerate the design and develop-
ment of 2D-based composites for real-world applications.

Overall, unlocking the full potential for MXene and other 2D material systems at an
industrial scale requires careful consideration of the opportunities and challenges ahead,
as identified in the paper. The future also points to an integrated role of synthesis with
multiscale modeling and physics-derived machine learning approaches to pave the way
forward for enabling its rapid growth and widespread utilization of these remarkable
materials in practical, real-world applications.
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