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Abstract: Differential evolution (DE) is a proficient optimizer and has been broadly implemented in
real life applications of various fields. Several mutation based adaptive approaches have been sug-
gested to improve the algorithm efficiency in recent years. In this paper, a novel self-adaptive method
called SaMDE has been designed and implemented on the mutation-based modified DE variants
such as modified randomized localization-based DE (MRLDE), donor mutation based DE (DNDE),
and sequential parabolic interpolation based DE (SPIDE), which were proposed by the authors in
previous research. Using the proposed adaptive technique, an appropriate mutation strategy from
DNDE and SPIDE can be selected automatically for the MRLDE algorithm. The experimental results
on 50 benchmark problems taken of various test suits and a real-world application of minimization of
the potential molecular energy problem validate the superiority of SSMDE over other DE variations.

Keywords: differential evolution; optimization; evolutionary algorithms; mutation; self-adaptive

1. Introduction

Optimization problems occur almost in each field of engineering and science branches.
In general, these problems may be classified as non-linear, non-convex non-continuous, non-
differentiable, or having several local optimum values and therefore solving these problems
is beyond the capacity of traditional methods due to their certain limitations. As a result, so
many evolutionary algorithms (EAs) like Particle swarm optimization (PSO), Differential
evolution (DE), Artificial Bee colony (ABC), Cuckoo Search (CS), Teaching Learning based
optimization (TLBO), Gray Wolf optimization (GWO), Reptile Search Algorithm (RSA),
Whale Optimization Algorithm (WOA), and Manta Ray Foraging Optimization (MRFO),
etc., have emerged during some past years to handle such complicated situations. The
prime benefit of EAs over the traditional system is that they only need the objective
function, whereas the other calculus properties like differentiability and continuity are not
necessarily important.

The Differential evolution algorithm (DE) [1] comes under the EAs categories and
has gained a reputation since the last few years as a highly capable and robust optimizer.
There are many reasons for its popularity among the researchers such as its compact
size, requirements of only few control parameters, easy implementation quality, quick
convergence rate, etc. Due to its many advantages, it has been frequently used to deal with
large scale, constrained, dynamic, multi-objective and multimodal optimization problems.

Despite many positive attributes, DE also has some deficiencies like population di-
versity and stagnation problems and consequently it does not work in many situations
or gives a slow convergence speed. Alot of research has been carried out in the past two
decades to reduce its deficiencies and make it a more efficient algorithm.

Initially Storn & Price [1] and Liu & Lampinen [2] have suggested that control param-
eters F and Cr should have a value between (0.5, 1) and (0.8, 1), respectively. Later, several
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studies have been carried out on the selection of suitable parameter settings for DE. A
decent literature survey for control parameters may be found in [3]. To keep away from the
manual tuning of parameters, researchers have suggested adaptive/ self-adaptive setting
of parameters, where the control parameters are changed vigorously based on the response
of the search space in place of taking a fixed value. A few works in the improvement of
adaptive/self-adaptive methods of control parameters values are suggested in [4-12].

Population initialization methods also play a significant part in enhancing the per-
formance of any population-based algorithm. Teo [13] proposed an exploring dynamic
self-adaptive populations method for DE. Rahnamayan et al. [14] suggested an opposition-
based method to initialize population for DE. Later, some noticeable works on population
initialization methods and population size adaptation have been completed in [15-21].

A crossover and selection operation-based modifications given in [22-24] are also
completed to enhance the performance of DE.

Other modifications include development of novel mutation techniques and their
adaptive/self-adaptive strategies. Some modified mutation based DE methods are Trigono-
metric DE (TDE) [25], donor mutation DE (DNDE) [26,27], DE with random localization
(DERL) [28], DE with hybrid mutation [29], DE with external archive (JADE) [30], DE with
neighborhood mutation (DEGL) [31], Proximity-based mutation operators for DE [32],
DE with modified random localization (MRLDE) [33], interpolation rules based muta-
tion [34], ranking based mutation strategy [35], DE with multiple mutation strategies [36],
iLSHADE [37], random perturbation based DE [38], IMODE [39], HiPDE [40], and so on.

Several research studies are carried out in the development of adaptive mutation strate-
gies. Some recent research regarding adaptive DE is as follows. Qin and Suganthan [41]
proposed SaDE to implement two mutation strategies DE/rand/1” and DE/current-to-best/1
simultaneously. In SaDE the trial vector was created by either success ratios based strategy
in the last 50 generations by using adaptive probability. Later, Qin et al. [42] extended this
work for four mutation strategies. In their proposed work, both control parameter values
and trial vector creation strategies are regularly self-adapted by learning from their prior
experiences of the solutions. In SaDE, an adaptive rule is proposed for updating the proba-
bility of each variant according to their corresponding success or failure in performance.

Gong et al. [43] proposed a strategy adaptation approach based on the probability
matching technique being fed by comparative fitness upgrading. They have also suggested
diverse categories of strategy adaptation methods in which a strategy parameter is utilized
to manage the selection of different strategies, and two straightforward strategy adaptation
approaches are employed to revise the parameter. Later on, Mallipeddi et al. [44] proposed
a new variant, EPSDE, with a collection of different mutation strategies and parameters. In
this variant each mutation strategy is started randomly, and any mutation strategy is stored
to the next generation for which the produced trial vector gives better fitness values than
its target vector. Otherwise, it is selected randomly from the preceding winning strategies
stored with identical probability. Some other strategy adaptation based DE variants are
SspDE [45], composite DE (CoDE) [46], MDE_pBX [47], ISADE [48], Adaptive DE [49],
and TS-MSCDE [50]. Various studies on the changes and applications of DE have been
conducted periodically. Several of these excellent studies are documented in [51-53].

Apart from modifications in basic operations, a lot of research has also been completed
to enhance the local search capability and introduce some additional features. Some of
these recently developed variants are LSDE [54], DEGOS [55], CJADE [56], PAIDDE [57],
TRADE [58] and so on.

In this study, a self-adaptive technique named as SaMDE has been developed in
an effort to continue boosting the performance of DE. This method integrates MRLDE,
DNDE, and SPIDE algorithms and takes advantage of all of their benefits in a single
location. The selection of these tactics is motivated by their performance. These tactics have
demonstrated excellent performance in the past, and we anticipate that their hybridization
will further improve the performance of the proposed scheme. SaMDE begins with the
provision of a systematic and superior way for selecting individuals for mutation operation
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by MRLDE, followed by the implementation of DNDE and SPIDE by the proposed self-
adapting technique. The advantage of this technique is that if one variant fails, the other
variant will automatically activate, and the algorithm will continue to run until the reaches
the desired outcomes.

The rest of the paper is organized as follows: In the second section, a brief description
of DE, MRLDE, DNDE, and SPIDE is offered. The SaMDE methodology is discussed
in Section 3. Section 4 defines the benchmark test tasks and potential energy problem.
In Section 5, the numerical and statistical results are analyzed and discussed. Section 6
concludes the entire investigation.

2. Background
2.1. Differential Evolution Algorithm

Similar to other EAs, DE also starts with a uniformly distributed set of solutions called
population within a bound domain [Xjs, Xupper]- Let at any generation g, the population set is

pl) = {Xi(g)|i =1,2,---, NP} where each Xi(g) = {xl.(‘g;.) :i=1,2...NP;j=1, 2,...d}
is a d-dimensional vector and NP is the size of population, then it can be initially generated
by Equation (1).

X = Xy + rand(0,1) x (Xupper — Xiou) (1)

Next, the evolution phase starts where new positions for each individual are generated
through mutation and crossover operation and then selection operation is applied to choose
the best fitted vector to the next generation population. A DE algorithm can be written
as DE/a/b/c, where a, b and c represent the number of vector differences, mutation and
crossover strategy, respectively. There are several mutation techniques for DE, however we
have utilized solely the DE/rand/1/bin strategy throughout this investigation. The mutation
and crossover strategies for DE/rand/1/bin are defined as below.

(8) (g+1)

Mutation: For any vector X;°’, the mutant vector M;

is generated through Equation (2).
METY = x18) L F o (xl) - x19) @)

where Xr(g ), Xs(g ) and Xt(g ) are three mutually different vectors randomly chosen from p)
(8)

;°". The vector X i(g ) is called as the base vector and F € (0,1] is a parameter

(g)).

which is used to control the amplification of the variation (ng ) X,
(g+1)

Crossover: Crossover operation is required to create a trail vector say U, = {u

different from X

(g+1) .
ij .
j=12,... d} by crossing the components of target vector Xl(g) = {x(gj) j=12,.. .d}

L

and mutant vector Ml-(gH) = {ml(:g].+l) j=12,.. .d} by Equation (3).

(g+1) ml%’TH) if rand;(0,1) < Cr(OR) j € randi(d)

L] (8)
1,]

u

®)

X otherwise
where Cr € (0, 1) known as the crossover parameter and randi (d) denotes the random
index j from {1, 2,.. .d} which insures that at least one component in the trail vector should
be chosen from the mutant vector.

Selection: This procedure selects the optimal vector from the target and trail vectors for
the next generation population based on their fitness value as determined by Equation (4).

g _ Ul i fun ) < fun(x) @
' X i(g ) else
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2.2. Mutation Based Modified DE Variants

The primary objective of the mutation operation is to provide a new position for every
randomly selected vector by adding it to the weighted difference of two different vectors.
The vector that must be perturbed is known as the base vector, while the other two are
known as the difference vectors. According to Kaelo and Ali [28], the newly created mutant
vector is dependent on the nature of the base vector; hence, a suitable selection of the base
vector may help to increase the convergence rate of the algorithm. Inspired by this concept,
we have previously presented three new modified DE variants, DNDE [27], MRLDE [33],
and SPIDE [34], in which the base vector is taken in an improved manner rather than
randomly from the population.

This section will now provide a concise description of these variants.

2.2.1. MRLDE

A modified version of the DERL algorithm was proposed in 2012 [33], and it is
known as modified randomized localization-based DE (MRLDE). The choice of random
vectors to carry out the mutation is the only distinction between MRLDE and DE. MRLDE

p(g) P(g) and P(g)

best’ * medium worst of size Ay,

divides the entire population into three segments, say,
A2 and Az by the fitness values and then select the vectors Xr(g) , Xs(g) and Xt(g) from the

Péfs)t, P;% A and P?El%))rst/ respectively, to run the mutation operation as defined in the DE
algorithm. The effectiveness of the algorithm has been implemented in some real-life
problems such as image enhancement [59], economy load dispatch problem [60] and noise

source identification [61].

2.2.2. Sequential Parabolic Interpolation Based DE (SPIDE)

The concept of selecting a base vector in this form is inspired by sequential parabolic
interpolation (SPI), a root finding approach for the equation g(x) = 0. If xq, x, and x3 are
three points with the function values q(x1), g(x2)) and g(x3), respectively, then the next root
estimation by the SPI method is given by Equation (5).

¥ = 1+ 1 (x1 — x2)*{q(x1) — q(x3)} — (1 — x3)*{q(x1) — q(x2)}
2 (x1 —22){q(x1) —q(x3)} — (21 — x3){q(x1) —q(x2)}

©)

In SPIDE, we replace x1, xp and x3 by Xr(g), X§g> and ng), respectively, in Equation (5)
and generate a new vector say Xg ) Next we select the base vector among Xg M or X t(bg )

by settinga probability (Ps) where X t(l? ) denotes the best vector among Xr(g ), ng ) and ng ).

As a next estimation root, X(Qg +1) gives a minimum fitness value than Xr(g ), Xs(g) and Xs(g)

and hence helps to increase the algorithm’s convergence speed. Refer to [34] to understand
more about SPIDE and its operation.

2.2.3. Donor Mutation Based DE (DNDE)
Fan et al. [26] suggested that the base vector can be taken as a weighted mean of

selected vectors ng ), ng ) and ng ). We have used this idea and selected the base vector
from these random vectors based on random localization approach [28] and weighted mean

as suggested by [26] and named this variant as ‘'DNDE’. In this approach, the weighted

vector Xz(ug s generated by convex combination of three randomly selected vectors X;g ),

ng) and Xs(g) by Equation (6).
XE =X 1 xE 4 x® ©)

Here v; = 1, 2, 3 are uniform random numbers in the range of (0, 1) and should satisfy
the condition }; v; = 1.
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Now similar to SPIDE, the base vector is selected among Xz(l,gﬂ) or Xt(f ) by setting a

probability (P;). In addition, [27] provides a comprehensive discussion of DNDE and its
efficacy. The SPIDE and DNDE pseudo codes are listed in Algorithm 1.

Algorithm 1 SPIDE and DNDE

Fori=1to NP do
Select three vectors X£g>Xs(g) and Xt(g) such that X£g> * Xs(g) #* Xt(g) #* Xi(g)

And find best vector Xt(g ) between these vectors by their fitness

/#xxxxxxbase vector by SPIDE sk /
Obtained X<Qg 1) by Equation (5)

if (rand (0,1) < Ps)
Xr(g) — X((ggﬂ)

Else

end if

/ /
/¥*****hase vector by DNDE ****** /
Obtained X1<§ +) by Equation (6)
if (rand (0,1) < Py)

Xﬁg) _ Xz(ugH)
Else
Xﬁg) _ Xt(};?)
end if
/ /
Perform mutation, Crossover and Selection
end for

3. Proposed Self Adaptive Approach (SaMDE)

As noted by numerous researchers, the mutation strategies are significantly reliant
on the problems under consideration. A substantial amount of time may be required
to solve a single problem by attempting numerous ways. This dilemma motivated us
to create a Self-adaptive mutation approach for DE (SaMDE) that can handle difficulties
more effectively.

Proposed SaMDE is a fusion of MRLDE, DNDE and SPIDE. As recommended by the
MRLDE method, the entire search space is initially partitioned into three sub-regions, and
then the DNDE and SPIDE algorithms are utilized adaptively. The proposed rule updates
the probability for mutation schemes based on their performance in any generation. Similar
to a concept described by Qin et al. [41,42] in SaDE, where probability rules are updated
based on the success and failure ratio of the variants, and then any variant is activated based
on its probability. Instead of random activation, the variant with the highest likelihood or
success rate will be activated in SaMDE.

In SaMDE, probabilities are initially assigned at random to each variant of DNDE
and SPIDE, and then the evaluation procedure begins for the variant with the highest
probability. This version shall be referred to as active variant.

Now, the active variant is assigned a positive rank if the trial vector created by this
technique is picked for the following generation; otherwise, a negative rank is assigned.
At the conclusion of a generation, all positive and negative ranks for the active variant are
added together. Let p; and p, represent the probabilities for DNDE and SPIDE, respectively,
and let RP and RN represent the total positive and negative rankings in any generation.
The probability is then updated based on the following rules:

Case 1: When p; > py, i.e., DNDE is active:

RP RN

PL=RPF+RN’ P>~ RPTRN @)
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Case 2: When py > py, i.e., SPIDE is active:

RP RN

P2=RP¥RN’ "'~ RP+RN ®)

These criteria assist in updating the probability of a self-adaptive procedure. If the
active version performs better in a generation, it will be used in the following generation as
well; otherwise, another variant will become the active variant. The updating criteria is
immediately influenced by the rejection and acceptance performance (or acceptance rate)
of trial vectors into the subsequent generation.

For example, if the acceptance rate for trial vectors generated by the active DE variant
is better than its rejection rate then it will imply that the total number of positive ranks is
higher than the total negative ranks. Therefore, the corresponding probability for the active
variant will be high giving it a chance to continue in the next generation.

Similarly, a higher rejection rate of trial vectors increases the negative ranks decreasing
the probability of the current active variant to be continued in the next generation. The
operation of SaMDE is also illustrated in Figure 1.

‘ Target Vector ‘ l [rial Vector ‘ [ Target Vector ‘ ‘ Irial Vector |

- Vol ettt [T/
Selection /' Selection
operation operation

U & U X, |U: | Us Une
RP+= | RP~+ RP++ RN+ RP++

Yes m No Yes ®

l No
Figure 1. Working structure of proposed Self Adaptive Approach.

RN++ RP+ | RP=+

It can also be noticed that for any generation, the total number of positive and negative
rank should be equal to the population size, i.e., RP + RN = NP
Hence the rules (7) and (8) may be further reduced as follows:

RP

Casel:plzﬁ,pzzl—m 9)
RP

Case?2: P2 = 3 pr=1—p (10)

Under the aforementioned rules, only the positive ranks of active variations should be
considered. This will also reduce the amount of time spent counting negative ranks.

By using SaMDE, the advantage of all three variants MRLDE, DNDE and SPIDE
are considered in a single algorithm. First of all, MRLDE provides a strategic method
for selecting the individuals for mutation which creates a platform for getting a fast con-
vergence speed. Secondly, DNDE and SPIDE are employed adaptively to make SaMDE
more efficient. By using the adaptive rule, the variant which gives successively better
performance obtains additional chances to be continued for the next generations. Hence if
any variant fails to solve a specific problem the other variant will be automatically activated
to solve it. However, a drawback of SaMDE is, if neither of the variants are able to solve a
specific problem, performance of SaMDE will naturally deteriorate. Next, the flowchart of
the suggested adaptive strategy and pseudo code for SaMDE is depicted in Figure 2 and
Algorithm 2, respectively.
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Algorithm 2 SaMDE

Set NP, F and Cg, p; and p;
Generate population PG = {X,-(g), i=1,2,.., NP}
Evaluate f(X;®’) and Sort whole population by their fitness i.e., Sort {f(X;®)}
Generate probability p; and p, randomly and set positive and negative rank RP = RN =0
while (Termination criteria is not satisfied) do
fori=1to NP do
Select 7, s and t by MRLDE for each i
Ifp1>p2
execute mutation and crossover by DNDE
if trial vector selected for the next generation
Increase a positive rank i.e., RP =RP + 1
else
Increase a negative rank i.e.,, RN = RN + 1
end if
else
execute mutation and crossover by by SPIDE
if trial vector selected for the next generation
Increase a positive rank RP = RP + 1
else
Increase a negative rank RN = RN + 1
end if
end if
end for
Update the population for the next generation, pstl = {Xi(g”) ,i=1,2,..NP}
Sort {f(X;8*1)}
Update p; and p; using Equations (7) and (8)

end while

Generate randomly population.
Generate p; and p>
Set RP and RN=0

v

=
[Divide population into 3 part by MRLDE |

[select X, X.and X, by MRLDE | [select X, X and X, by MRLDE |

v

[obtained mutant vector M, by DNDE_ |

[Obtained mutant vector M, by SPIDE |

[obtained trial vector U, ] [ovtained trial vector U |

X, =U, X, =X, Xy =U, @
v v
i=i+1 i=it+1
No + No
v

| Update population for next generation |

[Sum success and failure rate of active algorithm |

| Update p; and p for next generation l

Figure 2. Flow chart of SaMDE.
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4. Test Problems and Real-Life Application
4.1. Test Suit-1: Classical Benchmarks Problems

In the first test suite there are 15 traditional benchmark problems selected from various
literature [4,14,30,42,43]. All these problems are tested for dimension 30. The test functions
f1-f5, f14 and f5 are unimodal, f4 is a discontinuous function with one minimum, f7 is a
noisy function. The test functions fg—f13 are multimodal functions in which the number of
local minima increases exponentially with the problem dimension [4]. According to litera-
ture unimodal functions are important to check the exploration ability and convergence
rate of algorithms while multimodal functions are important to check the exploitation
ability of algorithm.

4.2. Test Suit-2: IEEE CEC2008 Functions

The second set consists of six shifted functions (SF1—SF¢) selected from the IEEE
CEC 2008 test suit [62]. This test suite was particularly planned to test the efficiency and
robustness of an algorithm on complex test problems.

A review of classical and CEC2008 benchmark functions is presented in Table 1.

Table 1. Benchmark functions with initial bounds and optimum value.

Table Initial Bound f(x*) Test Function Initial Bound f(x*)
f1: Sphere (—100; 100) 0 f12: Generalized Penalized-1 (=50, 5()) 0

fo: Schwefel’'s-222 (10, 10) 0 f13: Generalized Penalized-2 ~ (—50, 50) 0

f3: Schwefel’s 1.2 (—100; 100) 0 f1a: Exponetial (-1, 1) 0

fa: Schwefel’s-2.21  (—100; 100) 0 f15: Zhakarov (=5, 10) 0

f5: Rosenbrock’s (—30, 30) 0 SFy: Shifted Sphere (—100; 100) —450
fo: Step (—100; 100) 0 SE,: Schwefel’s 2.21 (—100; 100) —450
f7: Noise (—1.28, 1.28) 0 SF3: Shifted Rosenbrock (—100; 100) 390
fs: Schwefel’s2.26  (—500, 500) 0 SF4: Shifted Rastrigin (—5.12, 5.12) —330
fo: Rastrigin’s (—100; 100) 0 SFs: Shifted Griewank (—600, 600) —180
f10: Ackley’s (—32, 32) 0 SF¢: Shifted Ackley (=32, 32) —140
f11: Griewank (—600, 600) 0

4.3. Test Suit-3: IEEE CEC 2017 Functions

The IEEE CEC 2017 test suit is renowned as a set of extremely complex benchmark
functions. There is a total of 29 benchmark (C;—C3p) problems in the suit where one function
C; has been removed due to its high unstable nature. These functions can be classified in
four categories like Unimodel functions (C;—C3), Multimodel functions (C4—Cyg), hybrid
functions (C11-Cyg) and composite functions (Cz1—Csp). The bound for the variable for all
functions is (—100, 100) and the optimum value is 100 x i where ‘i’ is function number
from [1,30]. A detailed review and specification of CEC 2017 functions can be found in [63].

4.4. Real Life Application: Molecular Potential Energy Problem

The minimization of the potential energy problem of a molecule is a complex and
multimodal optimization problem that occurs in the chemical science field [27,64,65]. The
most challenging aspect of this problem is that the number of local minimizers grows
exponentially as the size of the molecule rises. Consequently, it becomes a difficult and
unsolved challenge for scientists and engineers from a variety of disciplines.

The mathematical model of a molecular having a linear chain of n-beads centred at x1,
Xp,....Xn in a 3D domain. The optimization model of molecular potential energy is given
as below: ]

Minimize F = ) F; (11)
i=1
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where F1, F», F3 and F4 are the potential forces due to bond length, bond angle, torsion
angles and interaction, respectively, and defined as below:

2
Fi= ¥ siipij—p))

(i.,j)€Kq )
h= X S%j(‘f’i,j - 47?])
(i,fj)€Ky (12)
FE= ) S?j(l + COS(391‘,]' — 9?]))
(ij)eKs ’

h= ¥ (%”)
(ij)eks \ 7

Here p; j¢; ; and 0; ; are bond length, bond angle and torsion angle between two, three
and four consecutive pairs ofbeads, respectively. sli,j, szi,j, and 3 i denotes bond stretching,
angle bending and the torsion force constant, respectively. K;, j = 1, 2, 3 denotes the set of
pair of atoms separated by j-covalent bonds.

As explained in [64], the final optimization function can be defined by Equation (13):

n—>32

, (-1
MinF = 2 1+ cos(36; ; + 13
= <( (363.143)) /10.60099896 — 4.141720682 cos(6; ;. 3) 13)

The optimization model in Equation (13) is a non-convex function and has several
local minimizers even for the small value of n. The number of local minimizers of the
function is 2" 3, and the doamin bound for 0;j; will be restricted in (0, 5).

5. Result Analysis and Discussion
5.1. Experimental Settings:

Experiments are conducted using a 64-bit equipped laptop of Dell company with a
2.6-GHz Intel Core i3 processor, 8 GB RAM, and Windows 10 operating system. Other
parameters settings were taken as suggested in various literature [27,33,34,42,43]:

e NP =100; D=230,50; F=0.5; Cr =0.9.

For MRLDE, A1 = 20, A, =40 and Az =40 [33].
For SPIDE and DNDE, Pg = 0.1, P4 = 0.1 [27,34].
Max NFE = 10,000 D for all functions.

Total Run = 50.

5.2. Performance Evaluation of SaMDE over DE, SPIDE, DNDE, MRLDE
5.2.1. Results Analysis in Terms of Average Error and Standard Deviation:

The experimental results for traditional functions (f1_f15) and the shifted function
(SF1—SFg) are presented in Table 2. When many algorithms can obtain the global optima,
then only intermediate solutions for the function are presented.

From Table 2, it is clear that all modified variants give superior performance over basic
DE for all functions, except DNDE in case of function f4. SaMDE has obtained best results in
case of all functions except 03 functions f», f5 and fg where MRLDE is in the leading position.
MRLDE obtained the second best position on 09 functions while SPIDE obtained the second
position in the case of 03 functions f4, f7, f9. Similarly, DNDE also obtained the second position
in the case of 03 functions f1, f13 and SF,. In case SF1, both SitMDE and DNDE gives equal
accuracy and obtains the first position. Similarly, SaMDE, MRLDE and gives DNDE equal
performance on SF4. In the case of SFs, all four variants give equal performances.

A statistical analysis based on the mean difference of samples is also conducted in
Table 2. The symbols ‘+’, ‘—" and ‘=" show the performance of SaMDE as significantly
better, worse or equal, respectively, with its competitor. As per the last column of table, the
win/loss/tie performance of SaMDE is 21/0/0,20/0/1,18/0/3 and 17/2/2/ with respect
to DE, SPIDE, DNDE and MRLDE, respectively, x10~/x10*.
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Table 2. Comparison of SaMDE with DE, SPIDE, DNDE and MRLDE in terms of best, mean values and standard deviation (SD) at D = 30.
Numerical Results Statistical Significance
Fun Max-NFE Error
DE SPIDE DNDE MRLDE SaMDE 5/1 5/2 5/3 5/4

Best 1.17 x 10714 437 x 10736 1.56 x 10~4 1.13 x 10743 2.11 x 10757

f1 150 k Mean 403 x 10714 464 x 107 442 x 10742 1.17 x 10~42 475 x 1077 + + + +
SD 2.71 x 10714 5.50 x 10735 3.58 x 10~42 1.33 x 1042 2.23 x 10757
Best 9.21 x 10~ 1.21 x 102 6.83 x 10732 141 x 1074 3.56 x 10738

f2 200 k Mean 5.18 x 10~10 6.75 x 10724 7.05 x 10731 2.68 x 10~4 6.39 x 10738 + + + -
SD 3.46 x 10710 452 x 10724 2.81 x 10731 1.19 x 1074 3.52 x 10738
Best 9.82 x 10712 1.56 x 1036 1.09 x 10731 8.75 x 10738 1.71 x 10793

f3 500 k Mean 1.11 x 10711 2.30 x 10735 6.89 x 10730 2.72 x 107 5.43 x 1073 + + + +
SD 3.36 x 10712 3.28 x 10736 6.61 x 10730 1.91 x 107% 4.07 x 10761
Best 249 x 1079 1.22 x 10~% 9.87 x 10702 121 x 10728 2.67 x 10764

fa 500 k Mean 3.18 x 10701 2.61 x 10737 6.97 x 10701 3.21 x 10~% 430 x 10~%4 + + + +
SD 6.25 x 10701 299 x 10737 6.09 x 10701 2.34 x 107% 8.70 x 104
Best 1.16 x 10713 4.99 x 10~28 1.26 x 10~20 0.00 x 10+00 1.83 x 1030

f5 500 k Mean 3.32 x 10712 1.72 x 1028 5.07 x 10717 1.65 x 10730 2.13 x 10730 + + + -
SD 2.89 x 10712 1.22 x 1072 1.01 x 1016 8.15 x 10730 1.34 x 10_3
Best 1.69 x 10*03 4.80 x 10701 7.50 x 10+00 1.00 x 10*01 1.00 x 1000

fe 10k Mean 2.17 x 109 6.41 x 10701 9.50 x 10+00 1.08 x 10*01 1.10 x 10*00 + + + +
SD 2.49 x 10192 1.32 x 10*01 1.21 x 1079 4.00 x 10~9 4.89 x 10701
Best 2.89 x 10793 1.29 x 10~ 1.12 x 10~ 1.30 x 10703 1.81 x 10~ %

f7 300 k Mean 5.81 x 1093 147 x 10-9 5.13 x 1093 1.56 x 10703 3.08 x 10704 + + + +
SD 6.69 x 10703 3.51 x 107% 2.80 x 1070 1.89 x 10704 1.70 x 10704
Best 5.61 x 10+03 5.72 x 10%02 3.35 x 1092 2.17 x 10+92 2.36 x 1002

fs 500 k Mean 6.23 x 10*03 2.85 x 1070 6.98 x 10%02 1.82 x 10+03 6.36 x 10102 + + + +
SD 444 x 10792 1.74 x 1002 3.05 x 10792 1.44 x 10*03 3.31 x 1092
Best 8.59 x 10+01 8.67 x 10718 1.04 x 10714 1.39 x 10*01 0.00 x 10+00

fo 500 k Mean 9.32 x 10+01 9.54 x 10718 397 x 10714 1.61 x 10*01 0.00 x 10+00 + + + +
SD 5.39 x 10+%0 9.50 x 10~19 7.95 x 10714 2.31 x 10+%0 0.00 x 10+00
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Table 2. Cont.
Fun Max.NFE Error Numerical Results Statistical Significance
DE SPIDE DNDE MRLDE SaMDE 5/1 52 5/4

Best 1.83 x 10792 1.02 x 1079 516 x 10706 7.21 x 10797 1.02 x 10710

f10 50 k Mean 9.16 x 10702 1.45 x 1079 6.19 x 1079 8.02 x 10707 2.71 x 10710 + + +
SD 2.81 x 10702 3.54 x 10705 1.02 x 10796 1.12 x 10797 5.53 x 10~%
Best 221 x 10702 1.18 x 1079 9.75 x 10~ 11 1.76 x 1012 7.94 x 10717

fu 50 k Mean 5.35 x 10702 8.78 x 1079 1.75 x 1071 3.38 x 10712 2.94 x 10716 + + +
SD 1.94 x 10792 4.74 x 10~9 462 x 1011 291 x 10~ 11 1.81 x 10716
Best 2.11 x 10703 1.45 x 1079 474 x 10713 3.84 x 10713 1.18 x 10~

f12 50 k Mean 3.73 x 109 3.85 x 109 4.64 x 10713 823 x 10713 2.01 x 10717 + + +
SD 1.36 x 1079 251 x 10799 1.40 x 10713 6.72 x 10713 2.16 x 10717
Best 1.75 x 10792 6.93 x 10708 353 x 10713 7.33 x 10712 8.79 x 10~Y7

f13 50 k Mean 3.68 x 10702 1.93 x 10797 4.08 x 10712 1.41 x 10711 1.29 x 1016 + + +
SD 1.91 x 10792 7.73 x 10797 1.22 x 10712 111 x 10711 2.67 x 10716
Best 2.27 x 10706 238 x 10714 249 x 10716 1.08 x 10716 2.16 x 10719

f1a 50 k Mean 6.68 x 10706 467 x 10714 355 x 10716 2.24 x 10716 2.16 x 10719 + + +
SD 5.98 x 10706 1.33 x 10714 1.21 x 10716 1.24 x 10716 0.00 x 10+00
Best 2.74 x 10714 1.12 x 1073 845 x 10~4 3.58 x 10~# 1.85 x 10757

f15 150 k Mean 333 x 10714 2.02 x 10735 1.65 x 1042 451 x 1074 2.68 x 10757 + + +
SD 1.41 x 10714 1.07 x 1073 1.27 x 10742 3.68 x 1074 6.52 x 10757
Best 568 x 10714 0.00 x 10+00 0.00 x 10+00 0.00 x 10+00 0.00 x 10+00

SFy 150 k Avg 443 x 10713 227 x 10714 0.00 x 10*00 1.13 x 1014 0.00 x 10+00 + + +
SD 3.84 x 10713 278 x 10714 0.00 x 1000 227 x 10714 0.00 x 10%00
Best 2.16 x 10701 5.60 x 10702 2.65 x 10%90 3.89 x 10708 2.81 x 10708

SF, 150 k Avg 9.22 x 10+ 2.39 x 1079 4.55 x 10+ 4.45 x 1077 9.76 x 10798 + + +
SD 1.09 x 10*00 2.81 x 10701 1.64 x 10*00 8.27 x 10707 8.78 x 10708
Best 1.89 x 1001 7.48 x 10+00 291 x 10701 1.13 x 10798 3.24 x 10712

SF3 150 k Avg 1.95 x 1001 1.13 x 10" 9.80 x 10+00 4.34 x 107% 5.23 x 10710 + + +
SD 1.08 x 10*00 2.66 x 10%00 7.51 x 10+00 6.64 x 10706 422 x 10710
Best 1.64 x 10102 1.41 x 10+02 1.42 x 10*0! 9.01 x 10*01 1.29 x 10%%1

SF, 150 k Avg 1.73 x 10*02 1.60 x 10+02 2.83 x 10*01 1.13 x 10*02 1.71 x 1001 + + +
SD 7.22 x 1090 1.18 x 100! 2.15 x 1091 2.81 x 1001 4.09 x 1090




Biomimetics 2023, 8, 494 12 of 24

Table 2. Cont.

. Max.NFE E Numerical Results Statistical Significance
un ax- Iror
DE SPIDE DNDE MRLDE SaMDE 5/1 5/2 5/3 5/4
Best 852 x 10714 0.00 x 10*00 0.00 x 10+ 0.00 x 10+ 0.00 x 10*00
SF5 150 k Avg 403 x 10718 0.00 x 10*00 0.00 x 109 0.00 x 10*9%0 0.00 x 10*00 + = = =
SD 279 x 10713 0.00 x 10+00 0.00 x 10+00 0.00 x 10+00 0.00 x 10+00
Best 9.12 x 10798 5.68 x 10714 2.84 x 10714 2.84 x 10714 2.84 x 10714
SFe 150 k Avg 1.01 x 107%7 9.09 x 1071 2.84 x 10714 2.84 x 10714 2.84 x 10714 + + = =
SD 242 x 10798 331 x 10714 0.00 x 10+ 0.00 x 10+ 0.00 x 10*0
+/—/= 21/0/0 20/0/1 18/0/3 17/2/2
p-value 0.000 0.000 0.000 0.001
Significance (at 5%) Yes Yes Yes Yes
‘+’,’—" and ‘=’ represent the proposed scheme is significantly better, worse or equal, respectively, when compared with the competitor.
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5.2.2. Result Analysis by Non-Parametric Statistical Tests

Three non-parametric statistical tests “Wilcoxon rank sum test’, ‘Friedman rank test’
and ‘Bonferroni-Dunn test’ [66] are used to check the significant difference between the
performances of the proposed variants. These results are tabulated in Tables 3 and 4.

Table 3. Wilcoxon Rank Sum Test Results for SaMDE versus DE, SPIDE, DNDE and MRLDE.

Algorithms IR* IR~  z-Value p-Value Sig at a = 0.05
DE 231 0 4.015 <0.001 +
SPIDE 210 0 3.920 <0.001 +

SaMDE vs. pNpE 171 0 3.724 <0.001 +
MRLDE 182 8 3.501 <0.001 +

Table 4. Friedman’s Ranks and Critical difference (CD) calculated by Bonferroni-Dunn’s Method.

Rank

DE

SPIDE DNDE MRLDE SaMDE CD (x=0.1) CD (x=0.05)

D =30

4.95

3.50 2.90 2.40 1.24 1.0935 1.2189

The Wilcoxon rank sum test results are given in Table 3. ZR* and R~ represent the
sum of ranks for positive and negative differences, respectively. A higher positive rank
sum shows the SaMDE over other algorithms. The z-value and corresponding p-value are
also given in Table 3. The significant level of difference is taken as « = 0.05. From this table,
it can be noticed that all variants obtained significantly better results in comparison to DE.
MRLDE gives better results than SPIDE whereas the performances of MRLDE and DNDE
are significantly equal. SaMDE gives the best performance in comparison to other variants.

Attending the results given in Table 4, the Friedman’s rank test and Bonferroni-Dunn’s
test are used to detect significant differences for the control algorithm SaMDE and the
results are presented in Table 4.

It can be noticed that SaMDE obtained the lowest mean rank among all other variants.
In Figure 3, Bonferroni-Dunn’s graphic demonstrates the difference between the rankings of
each algorithm. The algorithm with the lowest rank is considered as the control algorithm,
while the horizontal cut line represents the threshold for the control algorithm. This line is
drawn at a distance of the sum of the ranking of the control algorithm and the corresponding
CD calculated by the Bonferroni-Dunn method as shown in Table 4 for each « = 0.1 and
o = 0.05. The algorithms for which the rank bar exceeds this line are considered to have
a worse performance than the control algorithm. Hence, by using the application of the
Bonferroni-Dunn method, it can also be seen that only MRLDE is significantly acceptable
when compared to SaMDE.

5 ——

[CIRank
45 - -Sig Level 0.1
4 —Sig Level 0.05
35 e
3 —
(2]
=
S 25- -4 — -
o
2
15
1
05
0
DE SPIDE DNDE MRLDE SaMDE

Algorithms

Figure 3. Bonferroni-Dunn bar chart for DE, SPIDE, DNDE, MRLDE and SaMDE. The Bar represents
the algorithm’s rank and Horizontal cut lines represents the significant levels.
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5.2.3. Performance Evaluation of SaMDE by Convergence Curves

Convergence curves for DE, SPIDE, DNDE, MRLDE and SaMDE of selected functions
such as f1, f3, fa, f5, f10, f13, f15, SF2, SF3 and SF; are represented in Figure 4. The X-axis
and Y-Axis represents the NFE and its corresponding error value, respectively. By the
graphs it can be easily seen that SaMDE performs faster and confirms its robustness over

its parent variants.
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Figure 4. Convergence graphs for functions f1, f3, f4, f5, f10, f13, f15, SF2, SF3 and SFy.

5.3. Performance Evaluation of StMDE over Other Enhanced DE Variant