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Abstract: Correct modelling and estimation of solar cell characteristics are crucial for effective
performance simulations of PV panels, necessitating the development of creative approaches to
improve solar energy conversion. When handling this complex problem, traditional optimisation
algorithms have significant disadvantages, including a predisposition to get trapped in certain
local optima. This paper develops the Mantis Search Algorithm (MSA), which draws inspiration
from the unique foraging behaviours and sexual cannibalism of praying mantises. The suggested
MSA includes three stages of optimisation: prey pursuit, prey assault, and sexual cannibalism. It
is created for the R.TC France PV cell and the Ultra 85-P PV panel related to Shell PowerMax for
calculating PV parameters and examining six case studies utilising the one-diode model (1DM),
two-diode model (1DM), and three-diode model (3DM). Its performance is assessed in contrast to
recently developed optimisers of the neural network optimisation algorithm (NNA), dwarf mongoose
optimisation (DMO), and zebra optimisation algorithm (ZOA). In light of the adopted MSA approach,
simulation findings improve the electrical characteristics of solar power systems. The developed MSA
methodology improves the 1DM, 2DM, and 3DM by 12.4%, 44.05%, and 48.88%, 28.96%, 43.19%, and
55.81%, 37.71%, 32.71%, and 60.13% relative to the DMO, NNA, and ZOA approaches, respectively.
For the Ultra 85-P PV panel, the designed MSA technique achieves improvements for the 1DM, 2DM,
and 3DM of 62.05%, 67.14%, and 84.25%, 49.05%, 53.57%, and 74.95%, 37.03%, 37.4%, and 59.57%
compared to the DMO, NNA, and ZOA techniques, respectively.

Keywords: Mantis Search Algorithm; PV panel characterisation; PV model parameters optimisation;
root mean square error minimisation

1. Introduction
1.1. Motivation and Incitement

The utilisation of renewable energy resources is gaining prominence as a result of
growing fuel costs and global warming. Due to its low maintenance requirements, environ-
mental friendliness, and widespread availability, solar energy has become progressively
more popular as a steady and trustworthy source of clean energy in recent years.

Solar energy is used for numerous purposes other than just producing electricity,
including water heating, farming, household appliances, automobile battery charging,
lighting, rooftops, and agriculture. However, operations for large-scale power generation
have been significantly hampered by the unpredictable nature of solar energy. To enhance
dynamic energy management and grid operations in emergency situations, simulation
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investigations using accurate models of solar PV systems must be conducted [1]. A mathe-
matical model with real-time voltages and currents and accurate parameters can produce
accurate results and boost system performance.

Researchers have examined a variety of techniques in recent years to precisely estimate
the PV model’s characteristics. These techniques can be categorised into three main groups:
analytical approaches, deterministic approaches, and meta-heuristic approaches [2]. The
foundation of analytical approaches is the analysis of mathematical equations in accordance
with the features of the issues. Hence, these techniques are simple to use but may diminish
the accuracy of the solution because of the value of arbitrarily specified points and the
required hypotheses [3].

1.2. Literature Review

The deterministic approaches, in contrast to the analytical technique, typically use
gradient-based techniques, such as the Lambert W-functions [4] and Newton–Raphson [5],
which are susceptible to starting values and easily caught in local optima. In recent years, a
variety of meta-heuristic methods have been used to resolve PV model parameter estimate
issues in order to get around these shortcomings [6], such as the improved shuffled complex
evolution algorithm (ISCE) [7], the fireworks algorithm (FA) [8], the Ant Lion Optimizer
(ALO) [9], the artificial bee colony (ABC) [10], the flower pollination algorithm (FPA) [11],
the chaotic whale optimisation algorithm (CWO) [12], and JAYA [13]. Even though many
meta-heuristic approaches have produced results that are generally adequate, there is still a
lot of opportunity for improvement in terms of the reliability, accuracy, convergence speed,
and complexity of tuning parameters for competitive meta-heuristic algorithms to solve PV
parameter estimation.

The solar model parameters have been determined using the enhanced Harris–Hawk
algorithm (CCNMHHO) by Liu et al. [14]. The moth flame method (MFO) has been applied
to the parameter identification of PV modules by Zhang et al. [15]. The additional mecha-
nism improved local mining capabilities and global convergence, resulting in exceptional
performance in the 1DM and 2DM PV models. An enhanced augmented mutation HHO
has been suggested by Ridha et al. [16], in order to generate a model that is more effective
and stable and to accurately determine the parameters of the PV system. The algorithm’s
convergence can be accelerated by the suggested approach. In [17], the adversarial-based
exploratory technique with the chaotic drift mechanism has been merged into HHO to
enable them to appropriately analyse the solar cell simulation parameters of the 1DM,
2DM, and solar models of PV modules. Additionally, they confirmed the technique’s
efficacy in identifying crucial factors under various lighting and temperature conditions.
The improved Ant Lion Optimizer (IALO), suggested by Wu et al. [18], has been introduced
for parameter evaluation. IALO had successful outcomes with the photovoltaic model. In
order to assess the unknown parameters for 1DM and 2DM, Chen et al. [19] suggested an
improved sine–cosine technique called ISCA. Even though nature-inspired metaheuristics
and their variations outperform deterministic methods in terms of solution quality and
speed, they have a number of disadvantages. For instance, the technique’s convergence
speed could be improved. In addition, the method is somewhat specialised, and its high
performance is only limited to specific types of optimisation problems, which restricts its
application areas. For the purpose of finding the unknown parameters of various solar
models and optimising the optimal parameters of photovoltaic models in various situations,
Merchaoui et al. [20], ref. [21] suggested an adaptive variational particle swarm optimisa-
tion (PSO) algorithm. In order to choose the best design options, Ridha et al. [22] offered a
thorough review based on multi-objective optimisation and multi-criteria methodologies
for stand-alone PV system design. In [23], the evaluation of the characteristics of solar cells
and PV modules has been determined using orthogonal learning (OL) and generalised
opposition-based learning (GOBL) techniques. An enhanced technique based on the salp
swarm algorithm has been proposed by Abbassi et al. [24], which applies an opposition-
based learning approach to the parameter recognition issue associated with solar cells.



Biomimetics 2023, 8, 490 3 of 27

In [25], the Artificial Humming Bird Optimisation (AHBO) algorithm was proposed with
three objective functions, which are the root mean square error (RMSE), the Lambert W
function, and the iterate Newton–Raphson approach for the 1DM and 2DM models.

In many areas of research, the optimisation problem involves a single issue that has
more than one possible solution. Therefore, its goal is to identify the best choice from
all of the feasible options. The optimisation problems are generally divided into three
parts: the decision variables, constraints, and objective [26]. In this computational field,
problem-solving algorithms have been defined as deterministic or stochastic [27]. Stochastic
approaches tackle optimisation problems by investigating the resulting searching space
at random and applying arbitrary operators. Such approaches generate a group of viable
solutions to a certain problem before repeatedly enhancing them in order to arrive at a
suitable one [28,29]. In [30], an innovative metaheuristic algorithm called the Black Widow
Optimisation Algorithm (BWOA), which is inspired by the hunting behaviour of black
widow spiders, was designed for the parameter extraction of PV cells and panels. In this
study, two PV cells of amorphous silicon (aSi) and RTC France and two PV panels of PVM
752 GaAs and PWP201 were considered. It highlighted the effectiveness of the BWOA in
accurately determining the parameters, but this study was limited to the simplified 1DM
and 2DM only.

The optimal response to an optimisation problem is the global optimum. However,
there is no guarantee that the methods utilised will yield such an ideal result. Thus, the
solution generated by an optimiser for any particular issue is known as a quasi-optimal [31].
Metaheuristic strategies require being capable of executing and overseeing searches at
the global, as well as local levels, in order to organise a successful investigation in the
problem-solving domain. Globally, exploration contributes to an in-depth evaluation in the
area of problem solution, directing the focus away from the best local areas [32,33].

1.3. Contribution and Paper Organisation

Correct modelling and estimation of solar cell characteristics are crucial for effec-
tive performance simulations of PV panels, necessitating the development of creative
approaches to improve solar energy conversion. The investigated problem of the char-
acterisation of PV panel aims at finding the unknown model parameters regarding the
electrical equivalent circuits of PV systems. Three different models are usually generated
which are 1DM, 2DM, and 3DM. In this study, the Mantis Search Algorithm (MSA) is
presented for the PV parameter extraction issue. The proposed MSA is a unique nature-
inspired metaheuristic optimisation algorithm developed in [34], which uses the hunting
and sexual cannibalism behaviour of praying mantises. In order to further enhance the
exploration and exploitation operators, the newly developed MSA uses three optimisation
operators: searching for prey, attacking prey, and sexual cannibalism. Compared to several
metaheuristic algorithms, the proposed MSA can escape from the local optima and is easy
to implement. Moreover, it maintains population diversity throughout the optimisation
process, and it possesses a high capacity for balancing operators engaged in exploration
and extraction. Furthermore, it is able to solve the unimodal test functions because of its
powerful exploitation operator. The MSA is evaluated to analyse the parameter estima-
tion of photovoltaic modules. The outcomes illustrate the MSA’s ability to address the
estimation of photovoltaic modules with high efficiency.

The following are the primary contributions to this paper:
The MSA bio-inspired optimisation is established for the first time in the present

research, in accordance with the author’s knowledge, for properly obtaining the electrical
PV parameters.

The original MSA, including the pursuit of prey, attack prey, and sexual cannibalism,
is designed for estimating PV parameters and employed for two commercial PV systems of
RTC France PV cell and the Ultra 85-P PV panel.

Its usefulness is proven considering the 1DM, 2DM, and 3DM, by comparing it
to recent optimisation techniques, such as the neural network optimisation algorithm
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(NNA) [35], dwarf mongoose optimisation (DMO) [36], and the zebra optimisation algo-
rithm (ZOA) [37]. Additionally, the proposed MSA approach achieves effective superiority
and consistency when contrasted with other previously reported results.

This research is divided into five parts: Section 2 provides a mathematical explanation
of the 1DM, 2DM, and 3DM systems, whereas Section 3 demonstrates the designed MSA
process. In addition, Section 4 illustrates a detailed explanation of the obtained simulation
results via MSA, NNA, DMO, ZOA, and numerous documented approaches. Section 5
contains the paper’s concluding notes.

2. Problem Formulation of Solar PV Parameters Extraction

This part covers the computational modelling of photovoltaic panels, including 1DM,
2DM, and 3DM systems. A description of the objective function is then used to tackle the
parameter selection problem for the previously discussed PV systems [38].

2.1. PV Equivalent Circuit-Based on 3DM

The PV Equivalent circuit-based on 3DM is depicted in Figure 1 [39].
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Figure 1. Representation of the 3DM circuit.

The shunt resistance current (Ip) sign, photocurrent (Iph), diode current (Id), and output
current (I) are capable of being stated to be produced in the equation that follows [40]:

I = IPh − Ip − Id1 − Id2 − Id3 (1)

The shunt resistance current, Ip, might be calculated using the formula as follows:

Ip =
IRs + V

Rsh
(2)

Equation (3) develops the link between the output voltage, output current, and other
different factors within the 3DM through the use of the above equations.

I = IPh − Is1

[
exp

(
IRs + V
η1Vthr

)
− 1
]
− Is2

[
exp

(
IRs + V
η2Vthr

)
− 1
]
− Is3

[
exp

(
IRs + V
η3Vthr

)
− 1
]
− V

Rsh
− I

Rs

Rsh
(3)

where η1, η2, and η3 denote the ideality parameters of the diodes; Is1, Is2, and Is3 denote the
3D reverse saturation currents; and Vthr denotes the junction thermal voltage as specified
in Equation (4).

Vthr =
KB × T

qc
(4)

where KB stands for Boltzmann’s constant, qc stands for the electron charge, and T stands
for temperature in kelvin.

Equation (4) shows that there are nine variables (Is1, Is2, Is3, Iph, Rsh, Rs, η1, η2, and η3)
needed for extracting the 3DM [41].
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2.2. PV Equivalent Circuit-Based on 2DM

The 2DM is developed by simplifying the 3DM through deleting the third diode-
branch, as shown in Figure 2 [42].
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In accordance with this reduced form, Equation (5) develops the link between the
output voltage, output current, and other different factors in the 2DM through the use of
the preceding equations.

I = Iph − Is1

[
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(
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)
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(
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)
− 1
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− V
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− I

Rs

Rsh
(5)

Equation (5) shows that a total of seven parameters (Is1, Is2, Iph, Rsh, Rs, η1, and η2)
needed for extracting for 2DM.

2.3. PV Equivalent Circuit-Based on 1DM

As shown in Figure 3, the 1DM is created by simplifying the 2DM by removing the
second diode-branch. As a result, Equation (6) develops the following link between the
output current and other different parameters [43]:

I = IPh − Is1

[
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Equation (6) shows that a total of five parameters (Is1, Iph, Rsh, Rs, and η1) needed for
extracting for 1DM.
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2.4. Objective Model

Before developing goal functions which are suitable for various computations, it be-
comes crucial to test the output voltage and output current for every model. Consequently,
the function’s goal is to determine the variance between the experimental and calculated
currents within the constructed model [44]. Therefore, the minimisation of the RMSE is
modelled as follows:

RMSE =

√√√√ 1
P× N

(
PN

∑
K=1

(IK
cal(V

K
exp, x)− IK

exp)
2
)

(7)

where Vexp
K and Iexp

K are the measured voltage and current, respectively, and PN is
the total amount of measured points of data. In addition, the symbol (x) shows the PV
identifying variable issue, which is concerned with finding a solution that minimises the
RMSE function.

3. Developing MSA for Best Extraction of PV Parameters

The three basic stages of MSA are mathematically represented in this section. The
location of mantises denotes population initialisation in the first step. The second step
reflects the exploration phase, the third the exploitation phase, and the fourth the discussion
of sexual cannibalism.

Before initiating the optimisation procedure, the following parameters are set to
the MSA; these parameters are T is maximum iteration; A is length of an archive, N is
population size, p is probability to exchange between the exploitation and exploration
stages, a is strike’s failure probability, ρ is gravitational acceleration rate of the mantis’s
strike, P is the recycling factor to trade off between spearers and pursuers, and Pc is used
to estimate the sexual cannibalism percentage. Finally, the flowchart of MSA is given in
Figure 4.

3.1. Initial Population

Every mantis in MSA represents a potential solution to an optimisation problem. A
two-dimensional matrix x of size N solutions (mantises) × D (dimensional search space)
can be created. Furthermore, as described in Equation (1), a vector containing an arbitrary
initialisation within the lower and upper borders of the optimisation problem can be used:

→
x

t
i =

→
x

l
+
→
r × (

→
x

u
−→x

l
), (8)

where
→
x

t
i is the location of each Mantis i at function assessment t;

→
x

l
, and

→
x

u
illustrate

the lower and upper boundaries for the j-dimension, respectively; and
→
r is a vector

that contains numbers randomly generated between 0 and 1, in accordance with the
uniform distribution.

3.2. Exploration Stage

In MSA, Lévy flight and the normal distribution are integrated to cover both short
and large step sizes that represents the seeking of the MSA predators to look for prey away
from their hiding places. Lévy flights are, in general, random walks whose step length
is derived from the Lévy distribution, generally in terms of a simple power-law formula
L(x) ∼ |x|−1−β where 0 < β ≤ 2 is an index. A simplified form of the Lévy distribution
can be expressed mathematically as:

L(x, γ, φ) =

{ √
γ

2π exp(−γ/(2x− 2ϕ)) 1
(x−ϕ)1.5 i f 0 < ϕ < x < ∞

0 i f x < 0
(9)
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where φ > 0 is a minimum step and γ is a scale parameter. As γ→∞, the model is clearly
altered to:

L(x, γ, φ) =
1

x1.5

√
γ

2π
(10)Mathematics 2021, 9, x FOR PEER REVIEW 7 of 29 
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This is a specific case of the generalised Lévy distribution.
This hybridisation between the normal distribution and Lévy flight allows to simulate

the actions of pursuers as they look for their prey as follows:

→
x

t+1
i =


→
x

t
i +

→
τ1 × (

→
x

t
i −
→
x

t
a) + |τ2| ×

→
U × (

→
x

t
a −

→
x

t
b), i f r1 ≤ r2

→
x

t
i ×
→
U + (

→
x

t
a +

→
r3 × (

→
x

t
b −

→
x

t
c))× (1−

→
U), otherwise

(11)
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where
→
x

t+1
i and

→
x

t
i denote, respectively, the location of ith solution (mantis) at function

evaluation t + 1 and t. Moreover, the symbol |τ2| represents a random number using the
normal distribution with a mean of 0 and a standard deviation of 1, while the symbol

→
τ1

manifests a numerical vector created using the Lévy flight approach. Furthermore, r1 and r2
illustrate numbers randomly created using the uniform distribution between 0 and 1, while
→
r3 is a vector including numerical values randomly created using the uniform distribution

in the range (0, 1).
→
x

t
a,
→
x

t
b, and

→
x

t
c manifest solutions drawn randomly from the existing

population, such that
→
x

t
a 6=

→
x

t
b 6=

→
x

t
c 6=

→
x

t
i , whereas

→
U represents a binary vector created

using the following formula:
→
U =

{
0
→
r4 <

→
r5

1 otherwise
, (12)

where
→
r4 and

→
r5 manifest a vector including numerical values randomly created using the

uniform distribution in the range (0, 1). Each jth dimension of the two mentioned vectors in

are compared to each other, and consequently, the jth element in the binary vector
→
U will be

set to 0, if the prior vector has a smaller value, otherwise, it will be set to 1.
While remaining on the ground or concealed in the woods, the ambuscade mantis

waits for prey to approach within striking distance. The following formula can be used to
simulate this behaviour mathematically:

→
x

t+1
i =

→
x

t
i + α× (

→
x

t
ar −

→
x

t
a) (13)

where α is a variable that regulates the mantis’ head position to allow it to cover the

ambuscade distance, and
→
x

t
ar is a solution vector representing the ith mantis position, which

is picked from the archive randomly. The variable α can be formulated mathematically, as
depicted in the following equation:

α = cos(πr6)× µ (14)

where r6 illustrates number randomly created using the uniform distribution between 0 and
1, and µ represents a distance factor that can be calculated as depicted in the next equation:

µ =

(
1− t

T

)
(15)

where T manifests the highest number of function assessments.
The prey may come into the mantis’s range of attack as it moves quickly around the

surrounding areas in search of food. The behaviour of getting the prey to the ambuscade
distance can be calculated using the following equation:

→
x

t+1
i =

→
x

t
ar + (2× r7 − 1)× µ× (

→
x

l
+
→
r8 × (

→
x

u
−→x

l
)) (16)

where r7 illustrate numbers randomly created using the uniform distribution between 0 and
1;
→
r8 is a vector includes numerical values randomly created using the uniform distribution

in the range (0, 1).
The distance between the invisible locations and the prey is long, as depicted in

Equation (7) at the start of the optimisation process. This distance steadily decreases when
the current iteration is increased, because the prey is transferred in the mantis’s direction.
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The following mathematical formulation describes how mantises and their prey engage in
ambuscade behaviour:

→
x

t+1
i =


→
x

t
i + α× (

→
x

t
ar −

→
x

t
a), r9 ≤ r10

→
x

t
ar + (2r7 − 1)× µ×

(
→
x

l
+
→
r8 × (

→
x

u
−→x

l
)

)
, otherwise

(17)

where r9 and r10 illustrate numbers randomly created using the uniform distribution
between 0 and 1 to accomplish a trade-off in behaviour between mantises’ ambuscade
and prey.

Then, utilising the recycling control factor, which separates the optimisation process
into portions and aids in examining the potential search space of an optimisation issue, the
behaviours of pursuers and spearers are incorporated into the suggested optimiser. This
factor is expressed numerically, as depicted in the next equation:

F = 1− t%(T/P)
T/P

(18)

where the symbol ‘%’ represents the modulus remainder operator and P represents an
integer that expresses the number of cycles that are utilised to create an exchange between
Equations (11) and (17).

3.3. Attacking the Prey: Exploitation Stage

When the target is too close, the mantis terminates its hunt by attacking it. It is thought
that the mantis can sense when it is appropriate to attack its prey. The mantis attacks its
prey using its front legs. The magnitude of the mantis strikes velocity when attacking prey
is calculated using the sigmoid curve with a constant value. The following equation can be
used to mathematically calculate the magnitude of a mantis’s front legs’ striking velocity
(vs) in the direction of its prey:

vs =
1

1 + elρ (19)

where ρ is a constant value evaluated in the succeeding experiments and denotes the gravi-
tational acceleration rate of the mantis’s strike. To manage the gravitational acceleration
rate, the symbol (l) is a number created between −1 and −2, and any value of l that is close
to −1 and −2 minimises and maximises the striking velocity magnitude close to 0 and 1,
respectively. The mantis recognises that it is not the right time to attack the prey when it vs
reaches a value of 0, but when it approaches a value of 1, it moves fast to attack the target
prey and eats it before it can flee. The formula below updates each mantis’ behaviour when
grabbing its prey:

xt+1
i,j = (xt

i,j + x∗j )/2.0 + vs × (x∗j − xt
i,j), (20)

where x∗j denotes the current location for the best solution obtained; xt+1
i,j signifies the

new position at function evaluation t + 1, for the mantis jth dimension of i; and xt
i,j de-

notes the prey’s location to minimise the distance between them and to accelerate the
attacking process.

The mantis must occasionally reverse its trajectory after a failed strike to succeed.
where the mantis modifies its direction in accordance with the movement of two mantises
chosen at random from the population, according to the formula shown in Equation (21).

xt+1
i,j = xt

i,j + r12 × (xt
a,j − xt

b,j), (21)

where the symbols (xt
a and xt

b) deonte two mantises randomly chosen to decide the current
mantis direction before striking again, while r12 illustrate numbers randomly created using
the uniform distribution between 0 and 1.
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If the mantis strike fails, the local optima has captured it. In order to leave the local
optima, individuals need to have strong exploitation and exploration skills. The algorithm
is updated so that the mantises might adopt better locations for striking their prey once
more in the following mathematical model, which prevents the algorithm from entering
the local optima.

xt+1
i,j = xt

i,j + e2l × cos(2lπ)×
∣∣∣∣xt

i,j −
→
x

l
ar,j

∣∣∣∣+ (2r13 − 1)× (xu
j − xl

j) (22)

where r13 illustrate numbers randomly created using the uniform distribution between 0
and 1. Equation (14) is employed with a failure probability in the suggested algorithm for
the sake of preventing becoming stuck in local minima and to speed up convergence to the
best solution.

The probability formulated in Equation (23) drops gradually with increased current
function assessment, to reduce the exploration process and gradually increase the exploita-
tion operator to speed up convergence to the near-optimal solution.

Pf = a× (1− t
T
) (23)

where a is a pre-determined value that regulates exploration and exploitation operations
and ranges from 0 to 1. A low value for this parameter decreases exploration while
increasing exploitation. Within MSA, Equations (20) and (21) are randomly switched, and
Equation (22) is applied following Equation (20), in accordance with the probability covered
in Equation (20). r4 is a number created at random for each dimension in the updated
solution, and it is constant for all dimensions in each solution, while r2 is a random number
in the range [0, 1] for each solution.

3.4. Sexual Cannibalism

Sexual cannibalism occurs in praying mantises when the females consume the males
either during or right after copulation. Female praying mantises lure males to their positions
as the first action in this behaviour, which is mathematically recreated in line with the
following formula:

→
x

t+1
i =

→
x

t
i +
→
r 16 × (

→
x

t
i −
→
x

t
a), (24)

where
→
x

t
i signifies the praying mantises female,

→
x

t
a manifests a solution that is chosen from

the population randomly to characterise the male drawn using the female for reproducing
and it is being eaten, and

→
r 16 manifests a vector including numerical values randomly

created using the uniform distribution in the range (0, 1) to stand for the attraction variable.
In contrast to virgin females, who are more likely to draw male attention, mated

females only sometimes attract males. Typically, this probability, designated Pt, is expressed
mathematically as follows:

Pt = r17 × µ (25)

where Pt means the probability of mating between the females and males, r17 illustrates a
number randomly created using the uniform distribution between 0 and 1.

The male then mates with the female using the genetic operators’ uniform crossover
operator to create a new offspring, as expressed in the following equation:

→
x

t+1
i =

→
x

t
i ×
→
U +

(
xt

11 +
→
r 18 × (−→x

t
11 +

→
x

t
i)

)
× (1−

→
U), (26)

where
→
r 18 represents a vector including numerical values randomly created using the

uniform distribution in the range (0, 1); and xt
11 signifies the value of the lth dimension.
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The following mathematical equation can represent the female that eats the male during or
after mating:

→
x

t+1
i =

→
x

t
a × cos(2πl)× µ, (27)

where
→
x

t
a represents the male, and the usage of the term (cos (2πl)) is to allow the female

flexibility, during the eating process, to turn the male around, and µ is the eaten part from
the male.

In the MSA, the search mechanisms are designed to balance exploration and exploita-
tion in order to efficiently search the solution space. By combining these search mechanisms,
MSA aims to achieve a balance between exploration and exploitation. The random search
and global search mechanisms promote exploration by diversifying the population and
exploring new regions, while the local search mechanism focuses on exploitation by refin-
ing promising solutions. The adaptive search mechanism dynamically adjusts the balance
between exploration and exploitation based on the algorithm’s performance, ensuring an
efficient search process that can effectively explore and exploit the solution space. From
the flowchart, the yellow diamond indicates the adaptive control between exploration and
exploitation characteristics where A probability (p) of 50% is utilised to exchange between
the exploration and exploitation stages.

4. Simulation Results

This part studies the RTC France PV cell and the Ultra 85-P PV panel employing the
proposed MSA technique. The primary test investigation uses a commercially available
silicon solar RTC France cell that works at 33 degrees Celsius and exhibits a sun radiance of
1000 W/m2. It has a short-circuited current, open circuit voltage, maximum point voltage,
and current of 0.7605 A, 0.5727 V, 0.4590 V, and 0.6755 A, respectively. Another test case is
utilised for additional practical validations of the proposed MSA technique in obtaining
1DM, 2DM, and 3DM models. The commercialised module Ultra 85-P from the Shell
PowerMax manufacturer is considered. This panel has a maximum output of 85 W at STC
with a tolerance of 5% and is made up of 36 monocrystal-line PV cells linked in series. This
module possesses a fill factor of 70.3% and an efficiency of 13.4%. This panel is 120.0 cm in
length, 52.70 cm in width, 3.40 cm in depth, weighs 7.5 kg, and is protected by a 20 A series
fuse. This module’s complete datasheet is available in [45].

Table 1 shows the upper and lower limits for the unknown electrical parameters for
these two PV systems. The MSA method has been studied and employed to address
parameter extraction concerns using the 1DM, 2DM, and 3DM systems, in contrast to
recently developed optimisers of neural network optimisation algorithm (NNA) [35], dwarf
mogoose optimisation (DMO) [36,46,47], and zebra optimisation algorithm (ZOA) [37,48].
Each of the examined computations, MSA, NNA, DMO, and ZOA, are run with an identical
number of iterations (1000) and solutions (100). The settings of the MSA are stated in
Table A1 in the Appendix A.

Table 1. The margins range for the cell parameters.

Parameter
RTC France PV Cell Ultra 85-P PV Panel

Lower Upper Lower Upper

Is1, Is2, Is3 (µA) 0.00 1.00 0.00 10.00

IPh (A) 0.00 1.00 0.00 10.00

Rsh (Ω) 0.00 100.00 0.00 100.00

Rs (Ω) 0.00 0.50 0.00 2.00

η1, η2, η3 per cell 1.00 2.00 1.00 2.00
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4.1. First Test Investigation: RTC France Cell
4.1.1. Case 1: Application for 1DM System

The MSA, NNA, DMO, and ZOA techniques are employed to decrease the RMSE objec-
tive function for the 1DM model of a commercial RTC France silicon PV cell. Table 2 displays
the best outcomes for each algorithm for the five 1DM parameters that were unknown
during the experiment. The results demonstrate that MSA has excellent performance in
contrast to its peers, which are newly developed techniques, such as NNA, DMO, and ZOA.
The table demonstrates that MSA earned the best RMSE value of 9.9869 × 10−4 from the
comparison algorithms, which achieve RMSE values of 10.212 × 10−4 and 10.309 × 10−4

for DMO and ZOA, respectively. Moreover, excellent improvements, according to these
findings, have been obtained using the proposed MSA of 3.45%, 0.09%, and 4.35% with
regard to the DMO, NNA, and ZOA techniques, respectively.

Table 2. Electrical parameters attained by MSA, NNA, DMO, and ZOA for Case 1.

Applied Technique MSA DMO NNA ZOA

IPh (A) 0.7607755 0.7605558 0.7607653 0.7606034

Rsh (Ω) 0.0363771 0.0358427 0.0362887 0.0357996

Rs (Ω) 53.7185260 58.9141185 54.3393156 60.0352518

Is1 (A) 0.0000003 0.0000004 0.0000003 0.0000004

η1 1.4811836 1.4943328 1.4834317 1.4966056

RMSE 0.0009860 0.0010212 0.0009869 0.0010309

Difference compared to MSA - 3.52 × 10−5 9.15 × 10−7 4.48 × 10−5

Improvement - 3.45% 0.09% 4.35%

Furthermore, the convergence trends in this scenario for the MSA, NNA, DMO, and
ZOA approaches over the thirty simulated runs are depicted in Figure 5. As manifested in
the figure, in terms of identifying lower RMSE objective values, the MSA technique has a
higher rating than the others. It can also be noticed from the figure that the MSA method
starts discovering undertaking areas after only 170 iterations, and then it realises the best
solution. Comparing to the mean outcomes of the DMO, NNA, and ZOA techniques, the
improvements of the MSA technique are 12.4%, 44.05%, and 48.88%, respectively, which
support the superiority of the developed MSA for 1DM.
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Table 3 compares the proposed MSA technique to several optimisation tools for the
1DM system that have been published in the scientific literature. The optimisers in the
literature include GA with non-uniform mutation (NUM) [49], mutated BBO [50], teaching-
learning-based optimisation (TLBO) [51], improved differential evolution (DE) [51], Chaotic
PSO [51], artificial bee colonies (ABC) [52], harmony search-based algorithm (HSBA) [53],
grey wolf optimiser (GWO) [54], JAYA optimiser [55], and comprehensive learning PSO [56].
As shown, the MSA technique surpasses other methods in terms of getting the small-
est RMSE.

Table 3. Comparative assessment regarding MSA, NNA, DMO, and ZOA for Case 1.

Algorithms RMSE

MSA 0.0009860

DMO 0.0010212

NNA 0.0009869

ZOA 0.0010309

GA with NUM [49] 9.8618 × 10−4

Mutated BBO [50] 9.8634 × 10−4

TLBO [51] 9.8733 × 10−4

ABC [52] 10 × 10−4

Improved DE [51] 9.89 × 10−4

Chaotic PSO [51] 13.8607 × 10−4

HSBA [53] 9.95146 × 10−4

GWO [54] 75.011 × 10−4

JAYA [55] 9.8946 × 10−4

Comprehensive Learning PSO [56] 9.9633 × 10−4

4.1.2. Case 2: Application for 2DM System

The MSA, NNA, DMO, and ZOA techniques are employed to decrease the RMSE objec-
tive function for the 2DM model of commercial RTC France silicon PV cell. Table 4 displays
the best outcomes for each algorithm for the seven 2DM parameters that were unknown
during the experiment. The results demonstrate that MSA has excellent performance in
contrast to its peers, which are newly developed techniques such as NNA, DMO, and ZOA.
The table demonstrates that MSA earned the best RMSE value of 9.8271 × 10−4 from the
comparison algorithms, which achieve RMSE values of 9.98712 × 10−4, 10.287 × 10−4, and
10.02 × 10−4 for NNA, DMO, and ZOA, respectively. Moreover, excellent improvements,
according to these findings, have been obtained using the proposed MSA of 4.47%, 0.46%,
and 1.89% with regard to the DMO, NNA, and ZOA techniques, respectively.

Figure 6 shows the convergence trends for the MSA, NNA, DMO, and ZOA approaches
in this scenario over the thirty simulated runs. The MSA technique outperforms the others
in terms of identifying lower RMSE objective values. It can also be seen that the MSA
method starts identifying undertaking areas after only 300 iterations and realises the best
solution. Comparing to the mean outcomes of the DMO, NNA, and ZOA techniques,
the improvements of MSA technique are 28.96%, 43.19%, and 55.81%, respectively, which
support the superiority of the developed MSA for 1DM.
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Table 4. Electrical parameters attained by MSA, NNA, DMO, and ZOA for Case 2.

Applied Technique MSA DMO NNA ZOA

IPh (A) 0.76078221 0.761086003 0.760790742 0.76087427

Rsh (Ω) 0.03665767 0.036452844 0.036596751 0.036829377

Rs (Ω) 55.12971603 56.0407128 53.33855515 50.98794622

Is1 (A) 2.43012 × 10−7 3.81141 × 10−7 1.84217 × 10−7 2.56794 × 10−7

η1 1.457158843 1.83357911 1.448493654 1.461518645

Is2 (A) 6.04558 × 10−7 2.38858 × 10−7 1.80839 × 10−7 1.16674 × 10−7

η2 1.996965209 1.458364626 1.589535404 1.777597367

RMSE 0.000982718 0.001028696 0.000987219 0.001001673

Difference compared to MSA - 4.60 × 10−5 4.50 × 10−6 1.90 × 10−5

Improvement - 4.47% 0.46% 1.89%
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Table 5 compares the proposed MSA technique to several optimisation tools for the
2DM system that have been published in the scientific literature. The other optimisers
are ABC [10], teaching–learning-based ABC [57], generalised oppositional TLBO [58],
TLBO [59], the cat swarm algorithm [60], the sine–cosine approach [19], and the flower
pollination algorithm [11]. As shown, the MSA technique surpasses other methods in
terms of getting the smallest RMSE. Despite the BWOA [30] deriving a lower RMSE of
0.0009773823, it achieved impractical electrical parameters of the 2DM equivalent circuit.
The reported ideality factor of the second diode was 2.4133546221726 [30], while the
acceptable boundaries of the ideality factor are practically identified to be in the range [1,2].
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Table 5. Comparative assessment regarding MSA, NNA, DMO, and ZOA for Case 2.

Algorithms RMSE

MSA 0.000982718

DMO 0.001028696

NNA 0.000987219

ZOA 0.001001673

BWOA [30] * 0.0009773823 *

ABC 1.28482 × 10−3

Teaching–learning–based ABC 1.50482 × 10−3

Generalised oppositional TLBO 4.43212 × 10−3

TLBO 1.52057 × 10−3

Cat swarm algorithm 1.22 × 10−3

Sine cosine approach 9.86863 × 10−4

Comprehensive learning PSO 1.3991 × 10−3

Flower pollination algorithm 1.934336 × 10−3

* indicates impractical solution.

4.1.3. Case 3: Application for 3DM System

The MSA, NNA, DMO, and ZOA techniques are employed to decrease the RMSE objec-
tive function for the 3DM model of commercial RTC France silicon PV cell. Table 6 displays
the best outcomes for each algorithm for the nine 3DM parameters that were unknown
during the experiment. The results demonstrate that MSA has excellent performance, in
contrast to its peers, which are newly developed techniques such as NNA, DMO, and ZOA.
The table demonstrates that MSA earned the best RMSE value of 9.833 × 10−4 from the
comparison algorithms, which achieve RMSE values of 10.05 × 10−4, 12.332 × 10−4 and
11.08 × 10−4 for NNA, DMO, and ZOA, respectively. Furthermore, outstanding improve-
ments of 20.26%, 2.19%, and 11.29% were realised using the proposed MSA for the DMO,
NNA, and ZOA procedures, respectively, according to these data.

Table 6. Electrical parameters attained by MSA, NNA, DMO, and ZOA for Case 3.

Applied Technique MSA DMO NNA ZOA

IPh (A) 0.760771771 0.760598554 0.760746273 0.760933659

Rsh (Ω) 0.036624048 0.035617495 0.037016425 0.035602637

RS (Ω) 54.85092436 71.78477566 58.21689511 56.95493745

IS1 (A) 2.47337 × 10−7 4.56677 × 10−7 5.28442 × 10−7 1.54528 × 10−7

η1 1.458909504 1.862177339 1.585110202 1.444120881

IS2 (A) 1.8128 × 10−7 4.77356 × 10−7 1.34494 × 10−8 4.93567 × 10−8

η2 1.982050848 1.685843012 1.289423782 1.699258208

IS3 (A) 2.8619 × 10−7 1.05595 × 10−7 1.01943 × 10−7 3.50553 × 10−7

η3 1.933021037 1.410321073 1.999680734 1.631958875

RMSE 0.000983323 0.001233216 0.001005292 0.001108423

Difference compared to MSA - 2.50 × 10−4 2.20 × 10−5 1.25 × 10−4

Improvement - 20.26% 2.19% 11.29%

Furthermore, the convergence trends in this scenario for the MSA, NNA, DMO, and
ZOA approaches over the thirty simulated runs with a maximum of 1000 iterations, as
depicted in Figure 7. As the figure shows, in terms of identifying lower RMSE objective
values, the MSA technique has a higher rating than the others. It can be noticed also from the
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figure that the MSA method starts discovering undertaking areas after only 420 iterations,
after which point it realises the best solution. Comparing to the mean outcomes of the
DMO, NNA, and ZOA techniques, the improvements of MSA technique are of 37.71%,
32.71%, and 60.13%, respectively, which support the superiority of the developed MSA for
1DM.

Mathematics 2021, 9, x FOR PEER REVIEW 17 of 29 
 

 

Figure 7. Mean convergence curves regarding MSA, NNA, DMO, and ZOA for Case 3. 

Figure 8a,b demonstrate the simulated and measured P-V and I-V characteristics for 

this model. It demonstrates that the MSA technique generated data are nearly identical to 

the experimental data, proving that the MSA technique successfully obtains the essential 

PV parameters. 

  
(a) I–V characteristic 

Figure 7. Mean convergence curves regarding MSA, NNA, DMO, and ZOA for Case 3.

Figure 8a,b demonstrate the simulated and measured P-V and I-V characteristics for
this model. It demonstrates that the MSA technique generated data are nearly identical to
the experimental data, proving that the MSA technique successfully obtains the essential
PV parameters.
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4.1.4. Statistical Assessment of MSA, NNA, DMO, and ZOA for Cases 1–3 (RTC
France Cell)

A statistical assessment of the RTC France cell’s MSA, NNA, DMO, and ZOA was
made for the three cases studied. Figure 9 describes the obtained RMSE over the thirty
separate applications regarding the MSA, NNA, DMO, and ZOA for Cases 1–3. Figure 9
depicts the values of the RMSE (objective score) related to each separate run. Therefore,
each bar colour under each algorithm stands for each objective score that is obtained by this
algorithm. Thus, the bars which are distinguished with lower lengths indicate the lower
values of the obtained objective regarding the applied algorithm, which is denoted by the
developed MSA for the three considered models.

As demonstrated, the MSA technique derives the maximum robustness, as it acquires
the smallest RMSE with smallest standard deviation. For the first case, the presented MSA
technique achieves the smallest standard deviation of 4.21 × 10−12, while the DMO, NNA,
and ZOA techniques obtain counterparts of 5.42 × 10−5, 5.24 × 10−4, and 7.5 × 10−4,
respectively. For Case 2, the demonstrated MSA approach obtains a standard deviation of
1.721 × 10−5, whereas the DMO, NNA, and ZOA procedures reach 1.8 × 10−4, 4.5 × 10−4,
and 9.53 × 10−4, respectively. Thus, on the basis of standard deviation, the provided
MSA approach outperforms the DMO, NNA, and ZOA procedures by 90.43%, 96.17%,
and 98.19%, respectively. In Case 3, the provided MSA approach generates a standard
deviation of 1.06 × 10−4, whereas the DMO, NNA, and ZOA procedures reach equivalents
of 1.97 × 10−4, 4.69 × 10−4, and 9.26 × 10−4, respectively. Therefore, on the basis of
standard deviation, the provided MSA approach outperforms the DMO, NNA, and ZOA
procedures by 46.03%, 77.1357%, and 88.53%, respectively.
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4.2. Second Test Investigation: Ultra 85-P PV Panel
4.2.1. Case 4: Application for 1DM System

For Case 4, the MSA, NNA, DMO, and ZOA techniques are employed to decrease
the RMSE objective function for the 1DM model of the commercial Ultra 85-P PV panel.
Table 7 displays the best outcomes for each algorithm for the five 1DM parameters that were
unknown during the experiment. The results demonstrate that MSA has excellent perfor-
mance in contrast to its peers, which are newly developed techniques such as NNA, DMO,
and ZOA. The table demonstrates that MSA earned the best RMSE value of 0.003563198
from the comparison algorithms, which achieve RMSE values of 0.003563424, 0.008172571,
and 0.013722439 for NNA, DMO, and ZOA, respectively. Moreover, excellent improve-
ments, according to the these finding, have been obtained using the proposed MSA of 56.4%,
0.01%, and 74.03% with regard to the DMO, NNA, and ZOA techniques, respectively.

Table 7. Electrical parameters attained by MSA, NNA, DMO, and ZOA for Case 4.

Applied Technique MSA DMO NNA ZOA

IPh (A) 5.227492636 5.209587967 5.227413736 5.180799436

Rsh (Ω) 0.011074354 0.010647702 0.011071209 0.010118476

Rs (Ω) 3.764442466 4.952758368 3.770662178 23.47359277

Is1 (A) 1.01117 × 10−5 1.64942 × 10−5 1.01497 × 10−5 3.1682 × 10−5

η1 1.56462094 1.624721679 1.565062489 1.711091626

RMSE 0.003563198 0.008172571 0.003563424 0.013722439

Difference compared to MSA - 0.004609373 2.26221 × 10−7 0.010159241

Improvement - 56.40% 0.01% 74.03%

Furthermore, the convergence trends in this scenario for the MSA, NNA, DMO, and
ZOA approaches over the thirty simulated runs with a maximum of 1000 iterations, as
depicted in Figure 10. As shown in the figure, in terms of identifying lower RMSE objective
values, the MSA technique has a higher rating than the others. The figure also shows that
the MSA method starts discovering undertaking areas after only 228 iterations, after which
point it realises the best solution.
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4.2.2. Case 5: Application for 2DM System

The MSA, NNA, DMO, and ZOA techniques for Case 5 are employed to decrease the
RMSE objective function for the 1DM model of commercial Ultra 85-P PV panel. Table 8
displays the best outcomes for each algorithm for the seven 2DM parameters that were
unknown during the experiment. The results demonstrate that MSA has excellent perfor-
mance in contrast to its peers, which are newly developed techniques such as NNA, DMO,
and ZOA. The table demonstrates that MSA earned the best RMSE value of 0.003621422
from the comparison algorithms, which achieve RMSE values of 0.011392079, 0.004672962,
and 0.013473226 for NNA, DMO, and ZOA, respectively. Moreover, excellent improve-
ments, according to these findings, have been obtained using the proposed MSA of 68.21%,
22.5%, and 73.12% with regard to the DMO, NNA, and ZOA techniques, respectively.

Table 8. Electrical parameters attained by MSA, NNA, DMO, and ZOA for Case5.

Applied Technique MSA DMO NNA ZOA

IPh (A) 5.225245297 5.192576302 5.217578751 5.17870078

Rsh (Ω) 0.011028319 0.01018628 0.010966592 0.010245894

Rs (Ω) 3.894603375 10.09141719 4.80950381 23.72714823

Is1 (A) 1.84526 × 10−7 4.1711 × 10−6 2.87875 × 10−5 1.87291 × 10−5

η1 1.995046933 1.602714205 2 1.716772886

Is2 (A) 1.06059 × 10−5 2.46318 × 10−5 5.64295 × 10−6 1.01294 × 10−5

η2 1.57035711 1.726106004 1.517105615 1.669564389

RMSE 0.003621422 0.011392079 0.004672962 0.013473226

Difference compared to MSA - 0.007770657 0.00105154 0.009851804

Improvement - 68.21% 22.50% 73.12%

Furthermore, the convergence trends in this scenario for the MSA, NNA, DMO, and
ZOA approaches over the thirty simulated runs with a maximum of 1000 iterations, as
depicted in Figure 11. The figures shows that, in terms of identifying lower RMSE objective
values, the MSA technique has a higher rating than the others. It also shows that the MSA
method starts discovering undertaking areas after only 450 iterations, after which point it
realises the best solution.
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4.2.3. Case 6: Application for 3DM System

The MSA, NNA, DMO, and ZOA techniques, for Case 6 are employed to decrease the
RMSE objective function for the 3DM model of commercial Ultra 85-P PV panel. Table 9 dis-
plays the best outcomes for each algorithm for the nine 2DM parameters that were unknown
during the experiment. The results demonstrate that MSA has excellent performance in
contrast to its peers, which are newly developed techniques such as NNA, DMO, and
ZOA. The table demonstrates that MSA earned the best RMSE value of 0.005391459 from
the comparison algorithms, which achieve RMSE values of 0.012520036, 0.007974089, and
0.012354068 for NNA, DMO, and ZOA, respectively. Moreover, excellent improvements,
according to the these findings, have been obtained using the proposed MSA of 56.94%,
32.39%, and 56.36% with regard to the DMO, NNA, and ZOA techniques, respectively.

Table 9. Electrical parameters attained by MSA, NNA, DMO, and ZOA for Case 6.

Applied Technique MSA DMO NNA ZOA

IPh (A) 5.211524612 5.20406249 5.207590683 5.206605809

Rsh (Ω) 0.010830847 0.010216306 0.010615902 0.010011148

Rs (Ω) 5.096501608 9.728685738 6.482032244 7.526568705

Is1 (A) 4.95291 × 10−6 1.46832 × 10−5 2.02445 × 10−11 5.96796 × 10−6

η1 1.592291062 1.639062307 1.945438395 1.845134969

Is2 (A) 7.29486 × 10−6 6.86358 × 10−6 5.17631 × 10−6 1.67964 × 10−5

η2 1.590393766 1.862699049 1.530454645 1.774759034

Is3 (A) 5.29217 × 10−6 2.044 × 10−6 3.01439 × 10−6 1.17361 × 10−6

η3 1.984877988 1.973364739 1.882800822 1.651100572

RMSE 0.005391459 0.012520036 0.007974089 0.012354068

Difference compared to MSA - 0.007128577 0.00258263 0.006962609

Improvement - 56.94% 32.39% 56.36%

Furthermore, the convergence trends in this scenario for the MSA, NNA, DMO, and
ZOA approaches over thirty simulated runs with a maximum of 1000 iterations, as depicted
in Figure 12. As shown in the figure, in terms of identifying lower RMSE objective values,
the MSA technique has a higher rating than the others. It also shows that the MSA method
starts discovering undertaking areas after only 300 iterations, after which point it realises
the best solution.

Mathematics 2021, 9, x FOR PEER REVIEW 23 of 29 
 

depicted in Figure 12. As shown in the figure, in terms of identifying lower RMSE objective 

values, the MSA technique has a higher rating than the others. It also shows that the MSA 

method starts discovering undertaking areas after only 300 iterations, after which point it 

realises the best solution. 

 

Figure 12. Mean convergence curves regarding MSA, NNA, DMO, and ZOA for Case 6. 

Figure 13a,b demonstrate the simulated and measured P–V and I–V characteristics 

for this model. It demonstrates that the MSA technique generated data are nearly identical 

to the experimental data, proving that the MSA technique successfully obtains the 

essential PV parameters. 

  
(a) I–V characteristic 

Figure 12. Mean convergence curves regarding MSA, NNA, DMO, and ZOA for Case 6.



Biomimetics 2023, 8, 490 22 of 27

Figure 13a,b demonstrate the simulated and measured P–V and I–V characteristics for
this model. It demonstrates that the MSA technique generated data are nearly identical to
the experimental data, proving that the MSA technique successfully obtains the essential
PV parameters.
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4.2.4. Statistical Assessment of MSA, NNA, DMO, and ZOA for Cases 4–6 (Ultra 85-P
PV Panel)

A statistical assessment of the Ultra 85-P PV panel’s MSA, NNA, DMO, and ZOA for
the Cases 4–6 was made. Figure 14 describes the obtained RMSE over the thirty separate
applications regarding MSA, NNA, DMO, and ZOA for Cases 4–6. As demonstrated, the
MSA technique derives the maximum robustness as it acquires the smallest mean value of
the RMSE over the thirty separate applications. For Case 4, the presented MSA technique
achieves the smallest mean RMSE of 0.003702, while the DMO, NNA, and ZOA techniques
obtain counterparts of 0.009755, 0.011266, and 0.023513, respectively. The provided MSA
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approach outperforms the DMO, NNA, and ZOA procedures by 62.05%, 67.14%, and
84.25%, respectively. For Case 5, the demonstrated MSA approach obtains the smallest mean
RMSE of 0.006614, whereas the DMO, NNA, and ZOA procedures reach 0.013098, 0.014244,
and 0.026398, respectively. The provided MSA approach outperforms the DMO, NNA,
and ZOA procedures by 49.05%, 53.57%, and 74.95%, respectively. In Case 6, the provided
MSA approach generates the least mean RMSE of 0.009312, whereas the DMO, NNA, and
ZOA procedures reach equivalents of 0.014788, 0.014874, and 0.023032, respectively. The
provided MSA approach outperforms the DMO, NNA, and ZOA procedures by 37.03%,
37.4%, and 59.57%, respectively.
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The time complexity of MSA refers to the computational resources required by the
algorithm to reach a solution. This complexity can be influenced by several factors, such
as the problem size, the number of iterations or generations, and the complexity of the
fitness evaluation function. Analysing the time complexity of MSA involves understanding
the number of fitness evaluations needed and how it scales with problem size, which is
tabulated for each model in Table 10. As shown, the complexity is increased by 40% when
the considered model is changed from the 1DM to the 2DM, and it is increased by 28.57%
when the considered model is changed from the 2DM to the 3DM.

Table 10. Time complexity of MSA in solving each PV model extraction problem.

1DM 2DM 3DM

No of solutions 100 100 100

No of iterations 1000 1000 1000

Dim 5 7 9

Complexity using
O notation O(500,000) × O(F(x)). O(700,000) × O(F(x)). O(900,000) × O(F(x)).

5. Conclusions

This study constructs a novel nature-inspired metaheuristic algorithm of MSA tech-
nique inspired by the hunting techniques of praying mantises and uses it to extract the
parameters of electrical 1DM, 2DM, and 3DM systems. The created MSA employs three
optimisation operators to represent exploration, exploitation, improving exploitation, and
exploration, namely hunting for prey, assaulting prey, and sexual cannibalism. In this
context, two commercial solar PV systems are handled: the RTC France PV cell and the
Shell PowerMax Ultra 85-P PV panel. The performance of the method is compared to newly
built optimisers of neural network optimisation algorithm (NNA), dwarf mongoose optimi-
sation algorithm (DMO), and zebra optimisation algorithm (ZOA). The robustness analysis
is executed by performing the MSA, NNA, DMO, and ZOA techniques for thirty separate
runs, and the indices of the best, mean, worst, and standard deviation are tabulated for the
three investigated models for all PV modules under study. The proposed MSA method
is intended to optimise the parameters for optimal value of RMSE accomplishments. In
comparison, the suggested MSA approach outperforms them in terms of superiority and
statistical robustness, with greater improvement percentages. The accurate solution of
PV cell/panel models provides additional support that the proposed MSA outperforms
recently reported optimiser tools in the literature. We recommend the variations in input
parameters, noise in the data, or uncertainties in the PV module characteristic are incorpo-
rated in future work. The efficient application of the MSA in this study can also be extended
to several other power system engineering problems, such as economic dispatch, combined
heat and power optimisation [61–63], and the integration of renewable sources [64], etc.
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Appendix A

The settings of the MSA are stated in Table A1 in the Appendix A.

Table A1. MSA settings in solving each PV model extraction problem.

Value Parameter Description

p = 0.5 A probability to exchange between the exploration and exploitation stages

A = 1.0 Length of the archive

a = 0.5 A probability of the strike’s failure

P = 2 A recycling factor to exchange between pursuers and spearers

alp = 6 The gravitational acceleration rate of the mantis’s strike

Pc = 0.2 The percentage of sexual cannibalism
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