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Abstract: Safety and reliability are vital for robotic fish, which can be improved through fault di-
agnosis. In this study, a method for diagnosing sensor faults is proposed, which involves using
Gramian angular field fusion with particle swarm optimization and lightweight AlexNet. Initially,
one-dimensional time series sensor signals are converted into two-dimensional images using the
Gramian angular field method with sliding window augmentation. Next, weighted fusion methods
are employed to combine Gramian angular summation field images and Gramian angular difference
field images, allowing for the full utilization of image information. Subsequently, a lightweight
AlexNet is developed to extract features and classify fused images for fault diagnosis with fewer pa-
rameters and a shorter running time. To improve diagnosis accuracy, the particle swarm optimization
algorithm is used to optimize the weighted fusion coefficient. The results indicate that the proposed
method achieves a fault diagnosis accuracy of 99.72% when the weighted fusion coefficient is 0.276.
These findings demonstrate the effectiveness of the proposed method for diagnosing depth sensor
faults in robotic fish.

Keywords: image fusion; lightweight AlexNet; particle swarm optimization; fault diagnosis; robotic fish

1. Introduction

After undergoing long-term biological evolution and natural selection, fish have de-
veloped remarkable abilities to swim rapidly and perform agile maneuvers in complex and
dynamic aquatic environments [1]. Taking inspiration from natural fish, robotic fish act as
a dedicated underwater vehicle platform offering diverse potential applications, whether
in a cooperative or noncooperative manner. These applications include ocean exploration,
seabed mapping, water monitoring, underwater pipeline tracking, and more [1,2]. Com-
pared to conventional propeller-driven underwater vehicles, robotic fish possess several
favorable characteristics. Firstly, their appearance and movement closely resemble real
fish, allowing effective deception and mimicry of the behavior of aquatic organisms. This
characteristic facilitates easier access and observation of underwater life while ensuring
minimal disturbance and impact on the natural environment during exploration or moni-
toring. Consequently, data collection becomes more reliable and representative. Secondly,
bionic robotic fish exhibit enhanced flexibility and mobility. By mimicking the body shape
and movements of real fish, they can navigate quickly through the water and perform a
variety of tasks in intricate or confined spaces [3]. Additionally, these robots replicate the
streamlined shape and efficient propulsion mechanism of real fish, resulting in superior
hydrodynamic performance and significantly improved energy efficiency.

Robotic fish are equipped with numerous and diverse sensors, such as depth sensors,
vision sensors, and inertial measurement units, to enable precise perception and intelligent
control [4]. However, if the sensors break down during operations, not only do their sensed
information become unreliable, but also the entire system may become paralyzed and may
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even cause safety accidents. To ensure the safe and reliable operation of robotic fish, it is
critical to promptly and accurately diagnose sensor faults.

Fault diagnosis is a critical task in various fields, and it can be achieved through dif-
ferent methods, such as signal analysis-based, model-based, and data-driven methods [5].
Recently, there has been a growing interest in intelligent data-driven fault diagnosis meth-
ods, driven by the development of deep learning algorithms [6]. Compared to manual
extraction, end-to-end deep learning methods have the ability to automatically extract
features of the data distribution, resulting in time-saving and efficient utilization of labor
resources [7-9]. To achieve high precision and fast fault diagnosis, Fang et al. [10] and
Chen et al. [11] used one-dimensionality convolutional neural networks (CNN) to extract
the multichannel features in order to effectively improve the accuracy of the diagnosis.
The former decreased the number of convolution kernels with the reduction in the convolu-
tion kernel size and the latter adopted dynamic convolution with separable convolution to
classify faults. Liu et al. [12] combined the advantages of long short-term memory (LSTM)
network with statistical process analysis to predict the fault of aero-engine bearing and
obtained ideal accuracy. Tang et al. [13] proposed signal embedding to solve the prob-
lem of transformer application in mechanical vibration signals, which has outstanding
performance in terms of diagnostic accuracy under unknown operating conditions in a
robustness way. Chen et al. [14] explored the compound fault of industrial robots and
proposed an efficient convolutional transformer. The proposed lightweight convolutional
transformer network enhanced the meta-learning method to achieve accurate compound
fault diagnosis with limited samples.

However, the methods above mainly focus on time domain features, neglecting the
spatial domain features. To improve the accuracy of fault diagnosis algorithms, researchers
have attempted to convert one-dimensional time series signals into two-dimensional im-
ages, and then extract spatial features from the images. For example, Wen et al. [15]
reshaped vibration signals into grey images and used LeNet-5 to classify images, leading
to significant improvements compared to fault diagnosis based solely on time domain
features. Yang et al. [16] adopted the Short Time Fourier Transform (STFT) to transform
the signal into the corresponding time-frequency map, which contains abundant feature
information. But STFT heavily relies on the window length selected and has significant
uncertainty. Xu et al. [17] proposed the generalized S-synchroextracting transform, a new
time—frequency post-processing algorithm to address this issue. Xun et al. [18] used the
Markov transfer field, which jointly improved deep CNN with a wide first-layer Kernel, im-
proving the sensitivity to spatial features. To further improve fault diagnosis performance,
Hou et al. [19] proposed a spatial domain image fusion method. Signals were converted
into Gramian angular summation field (GASF) images and Gramian angular difference
field (GADF) images using the Gramian angular field (GAF) method, and combined half to
half. This method achieved great results for fault location, but whether 0.5 is the optimal
weighted combination coefficient needs further discussion. Sun et al. [20] adopted continu-
ous wavelet transform to transform the nonlinear and non-stationary original vibration
signal into a time—frequency image, and then used an improved AlexNet model to diag-
nose faults. Amiri et al. [21] used the recurrence plots method to convert signal to image,
and derived the degree of determinism in the signal to detect series arc faults. The results
confirm its high accuracy, high speed, and low computing cost.

As for spatial domain features recognition, several CNN-based methods have been
proposed for the recognition of spatial domain features, such as AlexNet [20], DenseNet [22],
ResNet [23], and so on. Though they have achieved excellent recognition results, they were
difficult to apply in practice due to the high time costs and great computing resources.
Therefore, scholars conducted research on lightweight network. For instance, Sun et al. [20]
replaced the global average pooling (GAP) layer with the fully connected layer, which
realizes the improvement of the traditional AlexNet model and the reduction in parameters.
Liu et al. [24] replaced large convolution kernels with small convolution kernels to reduce
network parameters in AlexNet, which saved model training time significantly. However,
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these methods targeted three-channel RGB images for local parameter reduction, leaving
room for optimizing global parameter reduction for single-channel images.

Although the methods above have significant advantages in terms of accuracy, they
require a large amount of computation, and some new methods have started to emerge aim-
ing to reduce the model complexity, such as Inception [25], MobileNet [26], ShuffleNet [27]
and so on.

In order to diagnose fault more accurate and faster, the Gramian angular field fusion
with particle swarm optimization and lightweight AlexNet (GAFF-PSO-AlexNet) method
was proposed to diagnose faults. The main contributions of this article are summarized
as follows:

(1) The one-dimensional time series sensor signals are converted into two-dimensional im-
ages by using the GAF method. The GASF and GADF images are fused by weighted
fusion method to generate Gramian angular field fusion (GAFF) images, and the
particle swarm optimization (PSO) algorithm is used to optimize the weighted fu-
sion coefficient.

(2) Lightweight AlexNet is proposed to diagnose six sensor fault types. In order to use
fewer parameters and shorter running time, the channels of conventional layer and
nodes of fully connected layers are decreased to % compared with the original AlexNet.

2. Fault Diagnosis Method
2.1. Data Preprocessing
2.1.1. Signal to Image

The depth sensor data are one-dimensional time series signals that contain a large
amount of time domain information, but it is difficult to extract spatial information directly.
To take full advantage of spatial domain information, the GAF method is used to convert
one-dimensional time series sensor signals into two-dimensional images, which is shown
in Figure 1.
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Figure 1. Spatial domain image fusion.

The primary concept of the GAF method is to transform one-dimensional time series
signals in the Cartesian coordinate system to the polar coordinate system, followed by
using trigonometric functions to create a GAF matrix. This approach eliminates noise in
the time series via spatial transformation, and retains time information via vector inner
product. The GAF matrix has two types of images: GASF and GADF images. The GASF
images are the cosine of the summed angles, while the GADF images are the sine of the
subtracted angles. The mathematical representation of this approach can be explained as
follows [28]:
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We suppose that there is a one-dimensional time series signal denoted as S = s1, 55, ...,5N.
Firstly, we normalize S by rescaling the values such that it falls under the interval of [-1,1]
with the equation below:

< _ (si—max(S)) + (s; — min(S))
S max(S) — min(S) ’ @

where §; represents the normalized s;.

Secondly, rescaled signals can be encoded into polar coordinates. The value of the
time series is calculated as the angle and its corresponding timestamp is calculated as the
radius. The equation is as follows:

{ i = arCCOS(})’_;SGI% , 2

where ¢; indicates the polar of the polar coordinate, r; represents the radius of the polar
coordinate, t; is the time stamp, S indicates the normalization of S, and 7 is a scaling
coefficient to regularize the polar coordinate system.

Thirdly, GAF can encode the time series in two different ways. One is GASEF, using
cosine of the summed angles to mine the correlation between different moment points:

cos(¢r +¢1) ... cos(¢r+ )
cos(¢p +¢1) ... cos(¢p+ ¢n)

GASF =
®)

COS((Py;-f—(]bl) COS(<Pr;+<Pn)
TS VI—2I-3

The GADF images are similar to the GASF images except that the GADF images are
constructed using the sine of the subtracted angles as follows:

sin(p1 — 1) ... sin(¢P1 — ¢Py)
sin(¢p — 1) ... sin(¢Pp — Pn)
GASF = : : :

(4)

Sin((Pn_(Pl) Sin(¢n—¢n)
VTS5 TR

The GASF images and the GADF images have two significant advantages. Firstly,
polar coordinates contain absolute time series relationships because they convert time-
varying signals into angular values. Secondly, the original value and angular information
can be preserved in the diagonal value, which ensures that the GAF method retains all the
information about the one-dimensional time series sensor signals.

2.1.2. Spatial Domain Image Fusion

In order to leverage the benefits of GASF and GADF images, the fusion of these two
images is a natural approach. The weighted fusion method is used to generate GAFF
images, which is a transparency fusion technique commonly used in image composition
and image matting domains. The fusion process is expressed mathematically as shown in
the following equation:

GAFF = A-GASF + (1—A) - GADF. (5)
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The proposed method involves the use of the GASF and GADF images to generate
the GAFF images. The GASF images are considered as the foreground images, with trans-
parency represented by A, while the GADF images are treated as the background images
with a transparency of 1 — A. The range of the transparency value is [0,1]. By fusing the
images at each pixel, the GAFF images contain information of both the GASF and GADF
images. When A = 0, the GAFF images only contain the GASF information, while a value of
1 for A yield only contains the GADF information. The optimal weighted fusion coefficient
A can be determined to achieve the ideal fault diagnosis performance.

2.2. Lightweight AlexNet

AlexNet, a model-based CNN which is both deeper and wider, was introduced by
Alex Krizhevesky and achieved outstanding performance in the ImageNet challenge for
visual object recognition in 2012 [29]. Due to its exceptional ability to perform nonlin-
ear fitting and automatic feature extraction, it has gained significant attention. However,
the AlexNet model has numerous parameters that need to be learned, requiring substantial
computational resources and extending model training time. To alleviate this complexity,
a lightweight version of the AlexNet model, called the lightweight AlexNet, has been
proposed, as illustrated in Figure 2. The proposed model aims to maintain efficient classifi-
cation capabilities for multiple and complex scenes while reducing model complexity.

9
B 1366 1366
ol 5% '»W % 3 6
st Y \13’
| N
@ @ q>+ q>+ \+ 6
AR
A
— 3&; o q o
<)
0&\‘\% OQ&\QOV .gQOO\x
© ’
L %ﬁﬁ —,bﬂ.Q X\
Input Convl Conv2 Conv3 Conv4  Conv5
FC1 FC2 FC3

Figure 2. Lightweight AletNet structure.

The lightweight AlexNet is structured similarly to the original AlexNet, consisting
of five convolutional layers, three max-pooling layers, and three fully connected layers.
The convolutional layers possess linearity and time-shift invariance properties and can
extract features at different scales by employing different sizes of convolutional kernels.
In this work, kernels of sizes (11 x 11), (5 x 5), and (3 x 3) were selected. Pooling layers,
also referred to as downsampling layers, compress the feature map, reduce feature dimen-
sionality, and avoid overfitting without increasing the learned parameters. Furthermore,
the fully connected layers in AlexNet use the dropout operation to set the output of hidden
layer neurons to 0 when the probability is less than a certain value, which is equivalent to
removing some neural nodes to prevent overfitting.

The primary distinction between the lightweight AlexNet and the original AlexNet lies
in the reduction in channels for convolutional layers and nodes for fully connected layers by
a factor of %, as indicated in Table 1. In the original AlexNet, the input images consist of red,
green and blue three channels, with the corresponding channel numbers for convolutional
kernels being 96, 256, and 384, and the number of nodes for fully connected layers being
4096. However, since GAFF images are single-channel grey images, such a large number
of channels are not necessary. Consequently, we decreased the channel numbers to 32, 86,
and 128, and the nodes to 1066, leading to a decrease in the model parameters.
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Table 1. Comparison of AlexNet and lightweight AlexNet.

AlexNet Lightweight AlexNet
Layer Channel Parameters FLOPs Channel Parameters FLOPs Rp Re
Nodes Nodes
Input 1 - - 1 - - - -
Conv1 96 11,712 75,480,768 32 3904 25,160,256 0.333 0.333
Max-pooling 96 0 677,376 32 0 225,792 - 0.333
Conv2 256 614,656 963,379,200 86 68,886 107,878,400 0.112 0.112
Max-pooling 256 0 389,376 86 0 130,806 - 0.336
Conv3 384 885,120 299,040,768 128 99,200 33,486,336 0.112 0.112
Conv4 384 1,327,488 448,561,152 128 147,584 49,840,128 0.111 0.111
Convb 256 884,992 299,040,768 86 99,158 33,486,336 0.112 0.112
Max-pooling 256 0 82,944 86 0 27,864 - 0.336
FC1 4096 37,752,832 75,497 472 1366 4,230,502 8,458,272 0.112 0.112
FC2 4096 16,781,312 33,554,432 1366 1,867,322 3,731,912 0.111  0.111
FC3 6 24,582 49,152 6 8202 16,392 0.334 0.333
Total - 58,282,694 2,195,753,408 - 6,524,758 262,442,494 0.112 0.120

The complexity of the model can be characterized by two key metrics: space complexity
and time complexity. The former is assessed by the total number of parameters in the
model, including the weights and biases across all layers, while the latter is reflected in the
computational demands of the model, typically quantified as the number of floating point
operations (FLOPS) required for training .

For convolutional layers in AlexNet and lightweight AletNet, the parameters and
FLOPs can be calculated as follows:

{ P = kh : kw ' Cin * Cout + Cout (6)
Fe=2-ky-ky-Cip-Cout-H-W "~
where P. and F; refer to the parameters and FLOPs of the conventional layer, respectively.
Cin and C,yt indicate the channel numbers of the input and output to the conventional
layer, while kj, and k;, represent the height and width of the kernel. Additionally, H and W
denote the height and width of the output feature map.

For fully connected layers in AlexNet and lightweight AletNet, the parameters and
FLOPs numbers can be calculated as follows:

{ Py = Liy - Lout + Lout @)
Fy = 2Ly - Lout ’
where P; and F; indicate the parameters and FLOPs of fully connected layer, respectively.
Li, and L,y are channel numbers of input and output to fully connected layer.

For max pooling layers in AlexNet and lightweight AletNet, the parameters are zero
and the FLOPs numbers can be calculated as follows:

Fp:kh'kw'H'W'Cout- (8)

In order to determine the degree of reduction in total parameters and FLOPs, we
define the ratios Rp and Rp as follows:

ko ©)
Rp =14’

where P4 and Pp4 indicate the total parameters of AletNet and lightweight AletNet,
and F; 4 and F4 indicate the total FLOPs of above two networks, respectively. As we
can see in Table 1, the parameter ratio and the FLOPs ratio of the first conventional layer
and the last fully connected layer approximately equal to %, the parameter ratio and the
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FLOPs ratio of other conventional layers and the fully connected layers approximately
equal to §, the parameter ratio and the FLOPs ratio of max pooling layers approximately
equal to %, and the total parameter ratio and total FLOPs ratio are approximately equal to
%, which effectively reduces space complexity and time complexity.

However, while bringing advantages, lightweight AlexNet also brings risks associated
with reducing the channels and nodes, including, for example, feature representation
decreases, information loss and model under-fitting.

2.3. Weighted Fusion Coefficient Optimization

To improve the accuracy of fault diagnosis, we propose the utilization of intelligent
optimization methods to determine the optimal weighted fusion coefficient. This study
explores several heuristic swarm optimization algorithms, including Genetic Algorithm
(GA), Ant Colony Optimization (ACO), Whale Optimization Algorithm (WOA), Grey Wolf
Optimizer (GWO), and PSO, among others. These algorithms employ iterative computa-
tions and evaluation functions to efficiently search for the optimal value, making them
well-suited for tackling nonlinear optimization problems.

2.3.1. Optimization Algorithm Selection

According to recent research, it has been demonstrated that ACO, WOA and GWO are
specific variants of the PSO algorithm [30,31]. PSO is an evolutionary algorithm inspired
by the foraging behavior of bird flocks in search of food. It incorporates mechanisms
of individual improvement, population cooperation, and competition. The fundamental
concept of this algorithm is to consider particles as individual entities without volume
or mass. Each particle possesses two essential attributes: velocity and position. These
attributes are continuously adjusted throughout iterations, aiming to converge towards
the global optimum of the particle swarm as well as the particle’s historical optimum.
By evolving in this manner, the algorithm strives to discover improved values and enhance
overall performance.

GA is an optimization technique that emulates the principles of superiority and
inferiority in biological evolution. It possesses characteristics such as self-organization,
self-adaptation, and easy parallelism. The fundamental concept of GA is to transform
the task of finding an optimal solution into a process of crossover and mutation among
chromosomal genes. By applying the rule of superiority, the algorithm selects desirable
adaptation values while discarding inadequate data. This process of crossover and mutation
is repeated to progressively attain superior solutions. GA facilitates local information
sharing through chromosome cross-swapping, whereas PSO globally shares information to
guide all particles toward the global optimal solution.

In the context of the sensor fault diagnosis problem based on spatial domain image
fusion discussed in this paper, our primary focus lies on achieving accurate fault diagnosis.
The accuracy of fault diagnosis is directly influenced by the fusion coefficient, making the
selection of the optimization algorithm critical for finding the global optimal solution for
this coefficient. By maximizing the utilization of global information and minimizing the risk
of getting stuck in local optimum, the probability of obtaining a globally optimal solution
is enhanced. Considering the PSO algorithm’s advantages in terms of high utilization of
global information and low risk of falling into local optimum, it is the preferred choice for
this study.

2.3.2. PSO Mathematical Expression

In the context of the particle swarm optimization (PSO) algorithm operating in the real
number space, each potential solution within the search space can be conceptualized as
an individual particle maneuvering through the hyperdimensional landscape of the given
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problem [32]. The position of each particle is determined by the vector x; € R" and its
movement by the velocity of the particle v; € R", as shown in following equations:

Xi(t) = x;(t—1) +T(t), (10)

@(t) 5i(t—1)+§01'V1'(ﬁ,‘—f,'(t—1))...

+¢@2-12- (ﬁg — fi(t — 1)),
where ¢4, ¢, are two positive numbers and 71, 1, are two random numbers with uniform
distribution in the range of [0,1]. f; is a particle’s best position and p, is a global best
position. As we can see, the velocity update equation in Equation (11) has three major
components, which represents three properties as follows [33]:

(11)

ZaTi

(1) The first component is sometimes referred to as “inertia”, “momentum”, or “habit”. It
models the tendency of the particle to continue in the same direction it has been traveling.

(2) The second component of the velocity update equation is a linear attraction towards
the best position ever found by the given particle.

(3) The third component of the velocity update equation is a linear attraction towards the
best position found by any particle.

2.4. Fault Diagnosis Architecture

By synthesizing the strengths of spatial domain image fusion, lightweight AlexNet
and PSO, we propose a complete architecture for fault diagnosis, as shown in Figure 3.
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Figure 3. Fault diagnosis architecture.

The architecture begins with the construction of an image dataset by converting one-
dimensional time series signals into two-dimensional spatial domain images using the GAF
method. Afterward, the dataset is split into training, validation, and test sets. The training
set is employed to optimize the parameters of the lightweight AlexNet network. Then,
the validation set data are used to optimize the weighted fusion coefficients using the PSO
algorithm. Finally, the test set data are fed into the network parameter fault diagnosis
architecture, utilizing the optimal fusion coefficients and trained network parameters,
to evaluate the performance of the model.

3. Experiment

In order to verify the performance of GAFF-PSO-AlexNet method in practical scenar-
ios, validation experiments were designed on the robotic fish platform, and depth sensor
was selected for the research.

3.1. Data Collection

Our laboratory developed a robotic fish that imitates the structure of a shark in terms
of its streamlined shape, which helps to minimize water resistance [34]. Figure 4a depicts
the three-link posterior body of the robot, equipped with a lunate caudal fin for thrust
generation. The robot is also fitted with a pair of pectoral fins possessing two independent
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degrees of freedom for orientation and depth adjustment. The fore body of the robot is
made of the acrylonitrile-butadiene—styrene (ABS) copolymer, while the posterior body
is coated with shin, rendering it as water-resistant as possible. The final prototype of the
robot has dimensions of 48.3 cm in length (maximum, including caudal fin), 20.8 cm in
width (maximum, including pectoral fins), and 12.5 cm in height (maximum, including
dorsal fin), with an approximate weight of 1.35 kg.

Head and pectoral Decorate dorsal fin

fin cabin

Waist and tail drive cabin

"“’""Hl‘"lrh'hll!lkumn -

Controllable

pectoral fin Low drag caudal fin

(a)

(b)

Figure 4. Prototype of the developed robotic fish. (a) Top view of the robotic fish; (b) Bottom view of
the robotic fish.

An embedded control system based on the STM32F407 micro-controller is developed
to enable excellent underwater swimming performance of the robotic fish. The Central
Pattern Generator (CPG)-governed control strategy is employed to achieve various shark-
like movements, such as forward and backward swimming, turning, diving, and surfacing.
The robotic fish is powered by 7.4 V direct current batteries that provide operational
flexibility by freeing it from power cable constraints. To achieve intelligent perception
and precise control, it is equipped with various sensors such as Inertial Measurement Unit
(IMU), depth sensor, camera, and infrared sensor. Among these sensors, the depth sensor
is installed on the bottom surface of the robotic fish, as shown in Figure 4b, making it
more vulnerable to underwater obstruction collisions than other sensors installed inside
the robotic fish. Therefore, this study focuses on fault diagnosis of the depth sensor.

Aquatic experiments are conducted in a laboratory pool measuring 500 cm long, 400 cm
wide, and 120 cm high. To collect data automatically, a data collection system based on
the HC-12 wireless communication module is designed, as depicted in Figure 5a. The HC-
12 module operates at the 433 MHz frequency band and has a high transmitting power,
making it suitable for communicating with the robotic shark. The host PC is used for remote
control and monitoring of the robotic fish, and the robotic shark is responsible for sensor
data collection, swimming motion, and communication with the host PC. The collected
sensor information is recorded in a database.
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Figure 5. Data collection process and swimming motion of the robotic shark. (a) Schematic diagram

of data collection; (b) Top view of robotic shark swimming in pool under depth control; (c) Side view
of robotic shark swimming in pool under depth control.

Following the configuration of hardware and software, data are collected from the
robotic fish. The process begins with the robot fish in normal operation, and after a period
of time, the occurrence of sensor faults is observed. Depth control commands are sent
by the host PC, following which the robotic shark moves as per the control law. The top
view and side view of the robotic shark during the depth control process are shown in
Figure 5b,c, respectively. During this process, the host PC is sending port and the robotic
shark is receiving port. Real-time sensor information is recorded by the robotic shark on a
Secure Digital (SD) Card. Upon completion of all the motions, the robotic shark sends the
information in the SD card to the host PC. The host PC receives sensor data and records
them in a database with labels, while the robotic shark is sending port and the host PC is
receiving port during this process. In order to minimize the impact of different robotic fish
tasks on sensor fault diagnosis, the depth data are used for fault diagnosis by subtracting
the target depth value from the sensor’s depth value. Thus, the data collection work
is completed.

The depth sensor has a variety of fault types. In the experiment, we only considered
six types as shown in Table 2, and some other fault types were not considered due to
the limitation of the experimental conditions, such as those arising from poor generation
of signals from the robotic fish through to poor transmission of signals, and so on. Our
experiment included the normal type and five fault types, namely the depth sensor with
no output fault, the depth sensor with intermittent output fault, the depth sensor with
jumping output fault, the depth sensor with drifting output fault, and the depth sensor
with constant output fault. To avoid quantitative issues with the values and accelerate
the convergence of the neural network, the signals were normalized to the range of [0, 1].
Additionally, to eliminate the influence of unbalanced data, an equal number of samples
were selected for each type from the collected data. Finally, in order to make full use of
collected data, the ratio of 6:2:2 was used to divide the training set, validation set and test
set [35]. In practical applications, the data division ratio depends on the specific problem
and the size of the data.



Biomimetics 2023, 8, 489 11 of 20
Table 2. Sensor fault conditions.
Label Description
1 N Depth sensor is normal
2 F1 Depth sensor has no output fault
3 F2 Depth sensor has intermittent output fault
4 F3 Depth sensor has jumping output fault
5 F4 Depth sensor has drifting output fault
6 F5 Depth sensor has constant output fault

The Wilcoxon rank sum test is a nonparametric test method, the contribution of
which is to measure the distribution difference between two groups of data samples [36].
Without any special assumptions about the distribution of objective data, the Wilcoxon
rank sum test can be applied to some complicated distribution situations. Consequently,
the Wilcoxon rank sum test is used to measure the distribution difference between two
random types data. The hypothesis Hy is proposed that the two types data have the same
distribution at the significant level B.

If the hypothesis Hj is accepted, it means they are similar in the distribution of the
two types of data. In other words, once the hypothesis Hy is rejected, it means there is a big
difference in the distribution of the two types of data. We randomly selected one data type
in each fault data and performed the Wilcoxon rank sum test between two of the six fault
data, and the significant level of § = 0.005 was achieved. The result of the Wilcoxon rank
sum test is shown in Table 3.

Table 3. Result of the Wilcoxon rank sum test.

N F1 F2 F3 F4 F5
N 1 0 0 0 0 0
F1 0 1 0.0050 0 0.0021 0.1327
F2 0 0.0050 1 0 0.0251 0.0222
F3 0 0 0 1 0 0
F4 0 0.0021 0.0251 0 1 0
F5 0 0.1327 0.0222 0 0 1

As we can see, the Wilcoxon rank sum test value of normal data and other fault data
is 0, which indicates that they are more different from each other. The values of F1 and
F5, F2 and F5 are all greater than 8, which were tested as the same category and are easily
misclassified. The Wilcoxon rank sum test value of the F1 fault type and F2 fault type is
0.005, which is in a critical state. The values between the other fault types are less than §,
indicating that the data are significantly different from each other and the probability of
correct classification is relatively high.

3.2. Algorithm Implementation

After completing the data collection work, the next step is to use the proposed algo-
rithm to diagnose faults. The total fault diagnosis flowchart of spatial domain image fusion
with PSO and lightweight AlexNet is shown in Figure 6, which can be divided into the
following steps:

Step 1: The time series sensor signals collected from robotic fish in the depth control
are inputted to the GAFF-PSO-AlexNet fault diagnosis model.

Step 2: The sliding window method is used to segment the original signal into a series
of equal-sized sub-signals and regard each sub-signal as one sample, achieving the effect of
data augmentation.

Step 3: The time series sensor signals are converted into GASF images and GADF
images using the GAF method.
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Step 4:The GASF and GADF images are fused using Equation (5) to make full use of
the information in two types of images.

Step 5: The PSO algorithm is adopted to find the optimal weighted fusion coefficient Aop;.

Step 6: With the optimal weighted fusion coefficient, lightweight AlexNet is used to
diagnose fault types in the depth sensor.

Step 7: The result of fault diagnosis is output, including confusion matrix, accuracy,
precision rate, recall rate and F1-Score.

Input time series sensor signals

v

Data augmentation using sliding window method

v

Convert the time series signals into GASF and
GADF images

v

Fuse two types images using weighted fusion method

v

Find the optimal weighted fusion coefficient Aopr
using the PSO algorithm

v

Diagnose sensor faults using lightweight AlexNet
with optimal weighted fusion coefficient

v

Output the result of fault diagnosis

Figure 6. Total flowchart of GAFF-PSO-AlexNet.

In teh above Step 4, the PSO algorithm is employed to obtain the optimal weighted
fusion coefficient. In this process, the accuracy of the validation set in the lightweight
AlexNet is utilized as the fitness function, and the parameter to be optimized is the weighted
fusion coefficient. To perform the optimization, a pack of three particles is selected and the
maximum number of iterations is set to 60. The specific steps of the optimization process
are presented in Algorithm 1.

The proposed fault diagnosis method was implemented in a Python environment on a
computer equipped with an Intel 3.8 GHz Core i7-10700K CPU and NVIDIA RTX 3060 Ti
GPU with a memory capacity of 8 GB. The Pytorch framework was utilized for training,
validating and testing the GAFE-PSO-AlexNet network.



Biomimetics 2023, 8, 489 13 of 20

Algorithm 1 Framework of the PSO algorithm optimizing weighted fusion coefficient

Input: the maximum number of iterations N; the number of particles n; the weighted
coefficient upper bound A, and lower bound A,
Output: the optimal weighted coefficient A,
1: Initialize the parameters ¢1, ¢, 71, and 2
2: for each particle i

3: Initialize position X; and velocity V; for particle i
4:  Evaluate particle i and set p; = X;
5: end for
6: pg = minp;
7: while not stop
8: fori=1toN
9 Update the position and velocity of particle i
10:  Evaluate particle i
11: if fit(X;)<fit(p;)
12: pi = X;
13: if fit(p;)<fit(pg)
14 Pg = Pi
15 end for

16: end while
17: Save optimal weighted fusion coefficients Aop = pg
18: return Aop;

4. Result Analysis
4.1. Fault Diagnosis Performance

With the GAF method and the weighted fusion method, GASF images, GADF images,
and GAFF images can be obtained as shown in Figure 7. GAFF images fuse the information
of two types of images which enhanced expression of features. As we can see, F1 and
F2 have similar texture features, and F1 and F5 have similar block characteristics, which
increases the difficulty of fault diagnosis.

GADF

SN BN EEEE
N B ..
N EE EENE
IR EE EEEE
SN EE EEEE

GAFF i “, S EE EEEE

N Fl1 F2 F3 F4 F5

Figure 7. Result of signals converted into images using the weighted fusion method.

The PSO algorithm obtains the results of the optimal parameter by preserving the
position of the particle with the best fitness. In Figure 8, as we can see, the prediction
accuracy improves when the PSO iteration increases. When PSO iterates to the 34th
iteration, the optimal solution is found and the algorithm converges to the best classification
accuracy; the optimal weighted fusion coefficient is 0.276. Then, the test set data are input
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with the optimal weighted fusion coefficient, and the fault classification accuracy of robotic
fish depth sensor is 99.72%.

99.6 1

99.4 1

99.2 1

Accaury

99.0 1

98.8 1

98.6 1

0 10 20 30 40 50 60
Iteration

Figure 8. The prediction accuracy with the PSO algorithm.

The confusion matrix is a visualization method to represent the accuracy of a model.
The confusion of GAFF-PSO-AlexNet is shown in Figure 9.

Normalized confusion matrix

100
N
80
F1 4
2F2 60
=
2
= F3 - 40
F4
L 20
F54 00 00 00 00 00
' - - - : Lo

N F1 F2 F3 F4 F5
Predict label

Figure 9. The confusion matrix with the optimal weighted fusion coefficient.

Each column of the confusion matrix represents the prediction category and each row
represents the true attribution category. The shades of the legend color represent the accu-
racy; the diagonal and non-diagonal lines, respectively, represent the classification accuracy
rate and the misclassification rate. As we can see, the fault types are all correctly classified,
except the no output faults, 1.52% data are misclassified as the constant output fault.

An ideal fault diagnosis method should have high rate and high precision rate. Recall
rate is used to evaluate the coverage of all targets to be classified by the classifier, i.e., to
assess whether there are any missing alarms, and precision rate indicates how many of the
samples predicted to be a certain sample are really such samples, i.e., to assess whether
there is a false alarm. To achieve a balance between precision rate and recall rate, the
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F1-Score is adopted to measure the classification performance of the model, which can be
calculated as follows:
Precision - Recall

Fl-Score =2 x Precision + Recall (12)

In Table 4, as we can see, normal type and three fault types have a 100% F1-Score. Not
only do they have no missing alarm, but they also have no false alarm. It is proven that the
model has very good classification effect on the above four sensor types. F2 has a missing
alarm and F5 has a false alarm since some F2 samples were misclassified to F5 types, which
is consistent with the results of the Wilcoxon rank sum test.

Table 4. Fault diagnosis result with the optimal weighted fusion coefficient.

N F1 F2 F3 F4 F5 All
Precision rate (%) 100 100 100 100 100 98.04 99.67
Recall rate (%) 100 100 98.48 100 100 100 99.74
F1-Score (%) 100 100 99.23 100 100 99.01 99.71

In order to illustrate the superior discriminability of the features acquired by the GAFF-
PSO-AlexNet algorithm, we employed the T-distributed Stochastic Neighbor Embedding
(T-SNE) algorithm [37], which is a dimensionality reduction method that can reduce the
abstract features in a high dimensional space to a low dimensional space. The different
layers of features were reduced to visualize the features in the 2D embedding space,
as shown in Figure 10. As we can see, at the input layer, data from different fault types have
a significant overlap, making it difficult to distinguish between fault categories. As features
are extracted layer by layer, different types of fault data gradually separate, and data from
the same type of fault gradually cluster together. In the third fully connected layer, it can
be clearly seen that different types of fault data were separated in a two-dimensional space.

To further verify the effectiveness of our methods, we constructed six fault diagno-
sis methods based on ResNet, DenseNet, ShuffleNet, MobileNet, and Inception feature
extraction models and compared these methods with our method in terms of average
test accuracy, precision, recall and F1-Score on the robotic fish dataset. Table 5 shows the
performance comparison experimental results. As we can see, our method has the highest
accuracy, precision, recall and F1-Score, proving the superiority of the approach. ShuffleNet
and MobileNet have fewer parameters and FLOPs, but fault diagnosis accuracy is lower
than that of lightweight AlexNet.

Table 5. Performance comparison of different models with model parameters, FLOPs , accuracy,
recall and F1-Score.

Model Params (M) FLOPs (G) Acc(%) Pre(%) Rec(%) F1-Score (%)
ResNet 23.51 145.17 98.89 98.74 98.86 98.79
DenseNet 6.95 97.92 98.33 98.20 98.41 98.24
ShuffleNet 1.26 0.34 94.72 94.61 95.18 94.73
MobileNet 1.68 0.14 93.89 93.73 93.68 93.64
Inception 41.15 14.48 95.56 95.31 95.56 95.35

Ours 6.52 0.26 99.72 99.67 99.74 99.71
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Figure 10. Visualization of the features.

4.2. Comparison of AlexNet and Lightweight AlexNet

In order to evaluate the impact of lightweight AlexNet, we conducted a series of
experiments to compare the fault diagnosis accuracy and fault diagnosis time. Specifically,
we investigated the fusion coefficients in the range of [0, 1] with intervals of 0.05, and an-
alyzed the accuracy, training time, and loss function drop curves of both AlexNet and
lightweight AlexNet.

The effectiveness of fault diagnosis is primarily evaluated based on the accuracy
of correctly classified samples, and achieving high fault diagnosis accuracy is a crucial
objective. In this study, we conducted a comparative analysis of accuracy at different
weighted fusion coefficients, as illustrated in Figure 11. The average accuracy of AlexNet
and lightweight AlexNet were determined to be 97.30% and 96.38%, respectively, while
their maximum accuracy were reported as 99.44% and 99.17%, correspondingly. As we
can see, lightweight AlexNet has reduced accuracy compared to AlexNet, which is a
structural risk due to the reduced number of convolutional kernel channels and the reduced
number of nodes in the fully connected layer. Fortunately, the accuracy reduction is
not great. However, the lightweight AlexNet exhibited a much smaller model size and
faster computation speed, making it a more efficient alternative for fault diagnosis in
practical scenarios.
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Figure 11. Accuracy comparison between AlexNet and lightweight AlexNet.

In addition, we conducted a comprehensive analysis of the training time required
for AlexNet and lightweight AlexNet, both trained for 60 epochs. The experimental
results, as demonstrated in Figure 12, indicated that the mean running time for AlexNet
and lightweight AlexNet were 4182 s and 809 s, respectively. This substantial decrease
in running time highlights the time-saving benefits of employing lightweight AlexNet.
Despite the fact that the time complexity was reduced by a factor of %, as previously
mentioned, the actual training time only decreased by approximately % One possible
explanation is that the actual running time is influenced not only by the computational
load but also by the computer’s read /write speed.
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Figure 12. Time comparison between AlexNet and lightweight AlexNet.

Furthermore, we carried out an in-depth investigation of the performance of the pro-
posed fault diagnosis approach by comparing the error losses of AlexNet and lightweight
AlexNet, as depicted in Figure 13. The loss gradually reduces and reaches a near-zero
value with an increasing number of training sessions until convergence is achieved. The ex-
perimental results demonstrated that lightweight AlexNet achieved significantly faster
convergence than AlexNet, thus confirming the efficiency of the algorithm.
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Figure 13. Loss comparison between AlexNet and lightweight AlexNet.

In summary, the proposed lightweight AlexNet algorithm demonstrates its efficiency
with faster convergence speed. Despite its minor drawback in accuracy compared to the
traditional AlexNet, the PSO algorithm can be utilized to search for the optimal fusion
coefficient, compensating for the trade-off between accuracy and efficiency.

5. Conclusions

In this article, the GAFF-PSO-AlexNet method-based spatial domain image fusion
with PSO and lightweight AlexNet was proposed for robotic fish sensor faults to improve
classification accuracy and decrease diagnose time. The main contributions of this study are
summarized as follows. (i) The one-dimensional time series sensor signals are converted
into two-dimensional images by using the GAF method, GASF and GADF images are
fused by the weighted fusion method to generate GAFF images, and the PSO algorithm
is used to optimize the weighted fusion coefficient. (ii) Lightweight AlexNet is proposed
to diagnose fault types with lower time complexity and space complexity. These results
suggest that robotic fish sensor faults may be diagnosed with fewer parameters and shorter
running time, and the great potential of the proposed GAFF-PSO-AlexNet method in the
data-driven fault diagnosis field is shown.

As future work, more fault types need to be explored and the risks of the lightweight
AlexNet model need to be quantitatively analyzed. In addition, we are interested in
studying the deployment of the algorithms inside bionic robotic fish for real-time fault
diagnosis to improve its practicality, detecting the time of fault occurred and exploring to
diagnose fault in dynamic variable working conditions.
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