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Abstract: Intelligent video surveillance plays a pivotal role in enhancing the infrastructure of smart
urban environments. The seamless integration of multi-angled cameras, functioning as perceptive
sensors, significantly enhances pedestrian detection and augments security measures in smart cities.
Nevertheless, current pedestrian-focused target detection encounters challenges such as slow detec-
tion speeds and increased costs. To address these challenges, we introduce the YOLOv5-MS model,
an YOLOv5-based solution for target detection. Initially, we optimize the multi-threaded acquisition
of video streams within YOLOv5 to ensure image stability and real-time performance. Subsequently,
leveraging reparameterization, we replace the original BackBone convolution with RepvggBlock,
streamlining the model by reducing convolutional layer channels, thereby enhancing the inference
speed. Additionally, the incorporation of a bioinspired “squeeze and excitation” module in the
convolutional neural network significantly enhances the detection accuracy. This module improves
target focusing and diminishes the influence of irrelevant elements. Furthermore, the integration
of the K-means algorithm and bioinspired Retinex image augmentation during training effectively
enhances the model’s detection efficacy. Finally, loss computation adopts the Focal-EIOU approach.
The empirical findings from our internally developed smart city dataset unveil YOLOv5-MS’s im-
pressive 96.5% mAP value, indicating a significant 2.0% advancement over YOLOv5s. Moreover, the
average inference speed demonstrates a notable 21.3% increase. These data decisively substantiate
the model’s superiority, showcasing its capacity to effectively perform pedestrian detection within an
Intranet of over 50 video surveillance cameras, in harmony with our stringent requisites.

Keywords: smart city; multi-surveillance; SE model; YOLOv5-MS; IoU loss; image augmentation

1. Introduction

Fueled by technological advancements and a growing emphasis on security awareness,
video surveillance has garnered extensive adoption across smart cities [1,2]. Nevertheless,
the abundance of surveillance images demands increased labor costs, a process that con-
sumes time and fails to ensure the precision of pedestrian identification. The integration of
intelligent target detection models rooted in deep learning into smart city contexts holds
promise for enhancing urban security systems [3], thereby reducing the property damage
and casualties caused by criminals with a lower cost and higher efficiency. This model
can be applied to 24 h pedestrian target detection in smart cities thanks to the creation of
a comprehensive dataset that enhances its adaptability to various scenarios. This model
also exhibits distinctive characteristics in nighttime recognition. By implementing this
approach, it becomes possible to alert security personnel only when a relevant target is
detected, thereby greatly improving their efficiency and ensuring the area’s security.

In smart city environments abundant with cameras, video capture devices are fre-
quently connected to the city’s intelligent system through 4G or 5G networks. This in-
tegration enables the smart city’s security monitoring management module to remotely
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access real-time video feeds, facilitating the vigilant monitoring of day-to-day security
threats within the urban environment. Nonetheless, numerous network factors necessitate
thorough consideration. As an illustration, within the context of our smart park experiment,
we deployed a total of 220 cameras. However, owing to the constraints related to hard-
ware performance and network bandwidth, conducting simultaneous experiments with all
220 cameras was not feasible. Consequently, we selected 50 cameras for real-time video
stream retrieval, which were then uploaded to the cloud for experimentation. Notably, our
findings indicate that this operation demanded a network bandwidth of up to 183 Mbps.
Extrapolating from this result, it became evident that to accommodate the retrieval of video
streams from all 220 cameras, a network bandwidth of approximately 805 Mbps would
be required. The substantial uplink speeds entail significant expenses, and a substantial
portion of the video streams end up as redundant resources. Consequently, we witnessed
the emergence of edge computing-driven target detection algorithms and hardware so-
lutions [4]. In recent times, Nvidia has unveiled a suite of edge computing-based target
detection computing platforms exemplified by Jetson Xavier, Jetson Nano, and Jetson
Xavier AGX [5,6]. However, a notable discrepancy arises between the cost and performance
of these computing platforms. Moreover, their capabilities are typically confined to manag-
ing a limited number of camera video streams. This limitation proves incongruent with
the demands of target detection across the expansive networks of large-scale cameras. The
exigency of addressing these challenges has spurred the necessity for a novel solution.
Within this paper, we introduce a groundbreaking scheme involving the incorporation of
high-performance CPUs and GPUs into the Intranet of the smart city infrastructure. Here,
the CPU is tasked with the efficient retrieval of multiple camera video streams through
multi-threading. In parallel, the GPU undertakes the computation of the target detection
model and subsequently transmits the computed results to the management system. This
methodology, which involves processing within the Intranet and subsequently uploading
the results to the extranet, offers a substantial reduction in network costs while enabling
concurrent detection across multiple video streams. Lastly, we undertake the optimization
of the Yolov5s model, customizing it to be better aligned with the demands of pedestrian
target detection in smart cities. This endeavor culminates in a well-balanced alignment of
accuracy, speed, and cost considerations.

In the domain of deep learning, two fundamental types of target detection models
exist. The first type entails a network model that performs region proposals prior to
carrying out target detection. This approach is distinguished by networks with an
exceptional detection accuracy, albeit at the expense of a slower computing speed, for
example, Mask R-CNN [7], Fast R-CNN [8], and Faster R-CNN [9,10]. The second type
is a single-stage detection model, which operates with a single neural network from
input to output. This approach ensures swift inference without the need for generating
candidate frames. For example, YOLO [11–15] and SSD [16,17]. This paper employs
the YOLO-based target detection algorithm to achieve real-time target detection across
multiple cameras. In the context of a smart city, objects situated farther from the camera
encompass smaller pixels. Additionally, smart cities host a wealth of information and
are prone to greater occlusions. Consequently, target detection within the smart city
domain represents a significant and valuable research endeavor.

When delving into target detection within urban environments, some scholars have
undertaken improvements to existing detection models. Bodla et al. [18] elevated the count
of prediction frames by adapting the target prediction frame fraction strategy, thereby
enhancing the performance concerning occluded targets. However, the potential for better
generalization remains a point of consideration. XUE et al. [19] introduced an innovative
real-time pedestrian detection algorithm, the multimodal attention fusion YOLO. This
algorithm adeptly adjusts to pedestrian detection efficacy during nighttime using the
Darknet53 framework. It establishes a loss function, alongside generating anchor frames
through the application of the K-means algorithm. The outcomes of their study underscore
the method’s effectiveness, as it achieves a notable enhancement in pedestrian detection.
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PUSTOKHINAIV et al. [20] put forth a strategy that merges Faster-RCNN with a hybrid
Gaussian model within intricate backgrounds. This approach aims to eliminate the impact
of video backgrounds on images, elevate the image resolution, and ultimately, enhance the
overall effectiveness of detecting pedestrian targets. Nonetheless, this approach encounters
challenges linked to substantial model sizes and extended training periods. HSU et al. [21]
pioneered a ratio-aware mechanism to fine-tune the aspect ratio of images, effectively
addressing false target pedestrian detections through the segmentation of the initial image.
This method notably enhances the accuracy of target pedestrian detection. However, chal-
lenges persist, particularly in rectifying instances of occluded and overlapping pedestrians
that result in both missed detections and erroneous identifications.

In summary, substantial progress has been achieved in pedestrian target detection
within urban environments. However, the majority of research efforts have been directed
towards enhancing model performance through scaling up the model’s size [22]. This
approach, while seeking improvement, introduces challenges such as a sluggish detection
speed, extensive model scale, and elevated hardware costs, leading to diminished practical-
ity. Within this paper, we address and rectify these challenges, delving into the YOLOv5
model, while concurrently aligning with our specific requirements. Our investigation
culminates in the creation of the YOLOv5-MS target detection model. By optimizing the
model’s BackBone structure, we manage to reduce its size, thereby bolstering the inference
speed. The integration of the SE module within the network enhances the detection accu-
racy. Furthermore, we employ the K-means technique to generate varied-sized prior frames
and amplify the performance using the Retinex image enhancement algorithm. Ultimately,
the incorporation of the Focal-EIOU loss calculation method strengthens the alignment
between the context of this experimental study and the YOLOv5 algorithm, leading to a
more seamless integration.

2. Models
2.1. Optimized Video Stream Acquisition Method

In the YOLOv5 model, images are acquired by simultaneously fetching multi-camera
video streams through multiple threads. Subsequently, the model proceeds to perform
inference by separately detecting each frame captured with the cameras. This approach
gives rise to several challenges: Firstly, when hardware capabilities fall short of fulfilling
real-time detection requirements, image detection may experience delays. As the backlog
of images accumulates, it could lead to target detection referring to images from hours
ago, consequently failing to uphold real-time detection standards. Secondly, excessive
image accumulation can strain memory resources, undermining the model’s stability.
Lastly, if a specific video stream experiences a prolonged delay, it might lead to automatic
disconnection from the model, thereby affecting the model’s detection process for that
particular camera. In light of the scenarios outlined above, when detecting numerous
camera images, this paper addresses these challenges through enhancements in camera
video image acquisition. By employing a multi-threaded strategy, each individual thread
undertakes the acquisition of a camera’s video stream. The role of each thread involves
a continuous extraction of the latest frames from its respective camera. This separation
ensures that during model image detection, a steady stream of the latest images is available.
Module separation enables the model to detect the most recent real-time images after
completing the previous round of image detection. This capability fulfills the real-time
target detection requirements of large-scale cameras. A visual representation of the video
stream reception method is depicted in Figure 1.

By employing this approach, the aforementioned challenges can be effectively miti-
gated, enabling the achievement of real-time processing for camera video streams even in
scenarios involving extensive detection. The detection performance of this method relies
on the capacity of the computer hardware. If it can detect every frame from 50 cameras
within 0.5 s, this means two real-time images per camera can be detected in one second.
The distinction between detecting thirty frames or only two frames in one second has a
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negligible effect on the results. As a result, in this experiment, the proposed method is
utilized to capture a wide array of camera streams, allowing the model to simultaneously
process up to 50 or even 100 camera streams at the highest level of efficiency.

Biomimetics 2023, 8, x FOR PEER REVIE 4 of 20 
 

 
Figure 1. Multi-camera video push flow to YOLOv5-MS. 

By employing this approach, the aforementioned challenges can be effectively miti-
gated, enabling the achievement of real-time processing for camera video streams even in 
scenarios involving extensive detection. The detection performance of this method relies 
on the capacity of the computer hardware. If it can detect every frame from 50 cameras 
within 0.5 s, this means two real-time images per camera can be detected in one second. 
The distinction between detecting thirty frames or only two frames in one second has a 
negligible effect on the results. As a result, in this experiment, the proposed method is 
utilized to capture a wide array of camera streams, allowing the model to simultaneously 
process up to 50 or even 100 camera streams at the highest level of efficiency. 

2.2. YOLO Basic Principle 
The primary aim of this research is to achieve pedestrian target detection within 

smart cities to enhance urban security. With the deployment of the model at the edge, real-
time responsiveness is of paramount importance. Furthermore, considering potential ex-
tended operational durations, both the model’s mean average precision and stability 
emerge as vital considerations. The Yolo series effectively satisfies these prerequisites. The 
YOLO model idea is to treat the detection of objects as a regression problem and predict 
the input images as detection frames and target class probabilities using a neural network. 
The YOLOv1 model is the initial version of the whole YOLO series. The idea is first to 
transform the image into having a 448×448 resolution and divide it into 7 × 7 cells, predict-
ing the confidence and category scores of the boxes based on the position and content of 
each cell. 

YOLOv5 is a contemporary and GPU-optimized target detection model. Within the 
current YOLOv5 framework, distinct variants exist, namely YOLOv5s, YOLOv5n, 
YOLOv5l [23], YOLOv5m, and YOLOv5x [24]. Among this array of network models var-
ying in size, YOLOv5s stands out due to its purposeful network simplification, which is 
tailored for edge deployment to facilitate real-time target detection. Furthermore, 
YOLOv5s boasts notable advantages, including a heightened detection stability, accuracy, 

Figure 1. Multi-camera video push flow to YOLOv5-MS.

2.2. YOLO Basic Principle

The primary aim of this research is to achieve pedestrian target detection within smart
cities to enhance urban security. With the deployment of the model at the edge, real-time
responsiveness is of paramount importance. Furthermore, considering potential extended
operational durations, both the model’s mean average precision and stability emerge as
vital considerations. The Yolo series effectively satisfies these prerequisites. The YOLO
model idea is to treat the detection of objects as a regression problem and predict the input
images as detection frames and target class probabilities using a neural network. The
YOLOv1 model is the initial version of the whole YOLO series. The idea is first to transform
the image into having a 448 × 448 resolution and divide it into 7 × 7 cells, predicting the
confidence and category scores of the boxes based on the position and content of each cell.

YOLOv5 is a contemporary and GPU-optimized target detection model. Within
the current YOLOv5 framework, distinct variants exist, namely YOLOv5s, YOLOv5n,
YOLOv5l [23], YOLOv5m, and YOLOv5x [24]. Among this array of network models vary-
ing in size, YOLOv5s stands out due to its purposeful network simplification, which is
tailored for edge deployment to facilitate real-time target detection. Furthermore, YOLOv5s
boasts notable advantages, including a heightened detection stability, accuracy, and simpli-
fied deployment. Its performance surpasses those of YOLOv5n, YOLOv7, and YOLOv8
in specific scenarios, rendering it an optimal selection for undertaking comprehensive
inspections using large-scale camera systems. YOLOv5s comprises three primary com-
ponents: the Neck, the Backbone, and the prediction. The effective interplay between
these distinct modules contributes to its commendable performance. YOLOv5 introduces
several enhancements, encompassing Mosaic data augmentation at the input stage along
with adaptive anchor frame computation [25]. The Backbone component incorporates
the focus and CSP_X structures, while the Neck segment integrates the CSP2 structure,
all working cohesively to amplify the amalgamation of network features [26]; the use of
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spatial pyramidal pooling to fuse different sensory fields; the CIOU loss is utilized as the
loss function of the bounding box [27]; and the overlapping targets are improved via NMS
non-maximal suppression [28]. The structure of YOLOv5 is shown in Figure 2.

Biomimetics 2023, 8, x FOR PEER REVIE 5 of 20 
 

and simplified deployment. Its performance surpasses those of YOLOv5n, YOLOv7, and 
YOLOv8 in specific scenarios, rendering it an optimal selection for undertaking compre-
hensive inspections using large-scale camera systems. YOLOv5s comprises three primary 
components: the Neck, the Backbone, and the prediction. The effective interplay between 
these distinct modules contributes to its commendable performance. YOLOv5 introduces 
several enhancements, encompassing Mosaic data augmentation at the input stage along 
with adaptive anchor frame computation [25]. The Backbone component incorporates the 
focus and CSP_X structures, while the Neck segment integrates the CSP2 structure, all 
working cohesively to amplify the amalgamation of network features [26]; the use of spa-
tial pyramidal pooling to fuse different sensory fields; the CIOU loss is utilized as the loss 
function of the bounding box [27]; and the overlapping targets are improved via NMS 
non-maximal suppression [28]. The structure of YOLOv5 is shown in Figure 2. 

 
Figure 2. YOLOv5 network structure. 

2.3. Backbone Structure 
In complex settings, the diverse shooting angles of cameras capture pedestrians of 

varying sizes. Directly utilizing the YOLOv5’s algorithm Backbone, network extraction 
results in slowness and an increased likelihood of missing or misidentifying instances. 
Consequently, to enhance the recognition and detection of pedestrians spanning various 
target sizes, refinement is applied to the convolutional layer of the Backbone. Leveraging 
the reparameterization concept from RepVGG [29], the original convolution within the 
Backbone is substituted with RepvggBlock. This replacement effectively curtails the chan-
nel count within the convolutional layer. RepVGG builds upon the conventional VGG ar-
chitecture, while incorporating a residual structure [30]. It introduces varied training ap-
proaches based on distinct principles governing model training and inference phases. The 
fundamental notion driving RepVGG involves augmenting model performance by inte-
grating a multi-branch structure into the training network through structural reparame-
terization. 

The RepvggBlock encompasses Conv3 × 3 + BN (Batch Normalization), Conv1 × 1 + 
BN, and identity branches. These branches are assigned weights prior to their activation 

Figure 2. YOLOv5 network structure.

2.3. Backbone Structure

In complex settings, the diverse shooting angles of cameras capture pedestrians of
varying sizes. Directly utilizing the YOLOv5’s algorithm Backbone, network extraction
results in slowness and an increased likelihood of missing or misidentifying instances. Con-
sequently, to enhance the recognition and detection of pedestrians spanning various target
sizes, refinement is applied to the convolutional layer of the Backbone. Leveraging the repa-
rameterization concept from RepVGG [29], the original convolution within the Backbone
is substituted with RepvggBlock. This replacement effectively curtails the channel count
within the convolutional layer. RepVGG builds upon the conventional VGG architecture,
while incorporating a residual structure [30]. It introduces varied training approaches
based on distinct principles governing model training and inference phases. The funda-
mental notion driving RepVGG involves augmenting model performance by integrating a
multi-branch structure into the training network through structural reparameterization.

The RepvggBlock encompasses Conv3× 3 + BN (Batch Normalization), Conv1 × 1 + BN,
and identity branches. These branches are assigned weights prior to their activation
function application in subsequent network iterations. The RepvggBlock configuration
is illustrated in Figure 3.

The core idea of RepvggBlock is as follows:
(1) The convolutional layer and BN layer are fused. The parametric calculation of the

convolutional layer is shown in Formula (1), where W and B are the weights and biases,
respectively. The parameter operation of the BN layer is shown in Formula (2).

Y = W ∗ X + B (1)

Z = Y ∗ X̂−U√
σ2 + ϑ

+ β (2)
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where U and ϑ are the mean and variance, respectively, Y is a learnable parameter,
and β is the bias. By substituting the parameters in Formula (1) into Formula (2), the
convolutional and BN layers can be combined into one convolutional layer with the bias,
as shown in Formula (3).

Z =

(
W√

σ2 + ϑ
∗ γ

)
∗ X +

B−U
σ2 + ϑ

∗ γ + β (3)

(2) The convolutional kernel is transformed into a 3 × 3 scale size. Following the
initial step, the model branches into two: a 1 × 1 convolutional layer and an identity
branch. For 1 × 1 convolution, the convolution kernel evolves from a 1 × 1 configuration
to a 3 × 3 convolutional kernel, with the weight of the null convolution set to 0. In the
identity branch, a 3 × 3 convolution kernel is employed with the center weight set to 1 and
the remaining weights set to 0. This substitution is depicted in Figure 4. Ultimately, the
convolution structure of every branch in the model is transformed into a 3 × 3 convolution.
The corresponding weights and biases are subsequently aggregated, amalgamating the
branches into a unified 3 × 3 convolution.
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Following the principles of network structure reparameterization, the RepvggBlock
is skillfully crafted to leverage multiple branches, enhancing the model’s detection
efficacy during the training phase. Subsequently, these branches are consolidated into
a unified structure for inference, thereby boosting the model’s inference speed. This
characteristic aligns seamlessly with the detection requisites of multiple cameras within
a smart city context.

2.4. Squeeze-and-Excitation Model

In this study, upon the integration of the RepvggBlock module within the Backbone,
a notable observation emerges: although the detection speed experiences enhancement,
there is a simultaneous decline in detection accuracy. This outcome does not align favor-
ably with the developmental goals of enhancing security within smart city environments.
To further enhance the model’s accuracy while satisfying its speed requisites, this study
introduces an SE module based on the Backbone structure, aiming to optimize the overall
performance [31]. The SE module, which is short for Squeeze-and-Excitation, is a crucial
component in deep learning networks. It boosts the power of Convolutional Neural Net-
works (CNNs) by dynamically adjusting the feature maps during training. By learning how
to scale each channel, it helps the network focus on valuable information, improving the
performance in tasks like image classification and object detection. Through the incorpora-
tion of the SE module to refine functionality, the model achieves synergistic amalgamation.
This amalgamated model retains its capability to augment detection performance while
upholding a compact model size. This attribute aligns well with the demands of large-scale
camera detection within the context of this study.

Figure 5 illustrates the incorporation of the SE module, specifically the channel atten-
tion module. The SE module aims to obtain more critical feature information utilizing a
weight matrix that gives different weights to different image positions from the perspective
of the channel domain. It is added to the original residual block via extra pathways. This
module employs a global pooling layer to calculate channel weights for the initial channels.
Subsequently, these calculated weights undergo refinement for each channel, involving a
sigmoid activation function and two fully connected layers. In the final step, the original
channels are multiplied by their respective channel weights. Subsequently, during network
training, the model’s detection performance is enhanced through gradient descent. The
squeezing operation is elucidated in Formula (4).

gc = Zs(uc)
H

∑
i=1

W

∑
j=1

uc(i, j), gεRc (4)

where Zs is the squeeze movements and u indicate the input. U∈R H ×W × C. c indicates
the channel. The excitation operation is shown in Formula (5).

t = Ze(g, W) = δ(Q2Sigmoid(Q1g)) (5)

where Ze presents the excitation operation; Q1, Q2 ∈ RC× C
r , r indicates the hyperparameter,

which is 16, indicating the dimension reduction coefficient of the first fully connected layer.
The scale operation is shown in Formula (6).

q = Zsc(uc, tc) = uc × tc (6)

where Zsc presents the scale operation.

2.5. YOLOv5-MS Structure

The network model structure of YOLOv5-MS is presented in Figure 6. To enhance the
model’s detection mAP and speed, YOLOv5s is subjected to the following improvements:
(1) incorporating an SE module into the model to enhance its feature extraction capabilities;
(2) substituting the original Conv convolution in the model with RepvggBlock to decrease
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the model’s complexity and increase its detection speed; (3) introducing a focus structure
to preserve essential information by reducing the dimensionality, thereby mitigating the
risk of model overfitting to some extent.
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3. Materials and Methods
3.1. Dataset

Twenty cameras are strategically chosen within the urban landscape, capturing dy-
namic pedestrian movements to construct the pedestrian dataset for a smart city. The image
acquisition process involves capturing a single frame from a live video stream at intervals
every 10 s. Image collection was orchestrated across various weather conditions, encom-
passing sunny, cloudy, nighttime, and rainy periods. This diverse approach was employed
to bolster the model’s robustness. The dataset configuration is depicted in Figure 7. The
image resolutions vary contingent on the camera specifications, with the camera models
encompassing gun and dome variants. Given the prevalence of images lacking pedestrian
information, a filtering process was necessary. Consequently, out of an initial pool of tens of
thousands, a total of 5546 city pedestrian images were successfully acquired. The division
between training and validation sets is at an 8:1 ratio.
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Figure 7. Sample dataset images. The first row shows three different types of weather in the city,
sunny, cloudy, and rainy. The second row shows three different times of day: daytime, evening,
and nighttime.

Figure 8 provides a visual representation of the dataset, depicting the size and distribu-
tion of the pedestrians. Figure 8a displays the distribution of the centroid of the pedestrian
detection frame after normalizing the image size. The figure reveals that pedestrians are
predominantly situated in the lower–middle portion of the image. Figure 8b portrays
details concerning the ratio of the object detection frame to the image size. Evidently, a
significant portion of the target pedestrians appear to be distant within the images, with the
majority being smaller targets. This insight from the dataset contributes to the refinement
of the network structure for optimal performance.

3.2. Retinex Enhancement Algorithm

During the process of image acquisition, the inherent device components and environ-
mental conditions can potentially result in image quality degradation. To tackle this issue,
Retinex image enhancement technology is implemented as a solution. This technology em-
ulates the human visual system by portraying the relative reflectance of objects in diverse
lighting contexts. Leveraging the concept of color permanence intrinsic to the human visual
system, the Retinex theory is strategically applied to address these considerations [32]. The
principle of the Retinex is shown schematically in Figure 9.
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The algorithm’s pivotal attribute lies in its adeptness at harmonizing color constancy,
edge enhancement, and dynamic range compression [33], breaking the limitation that
traditional linear or nonlinear can only be enhanced on one type of image feature. The
Retinex algorithm is calculated using Formulas (7)–(9).

Ri = logSi(x, y)− log[F(x, y) ∗ Si(x, y)] (7)

F(x, y) = Ke−(x2+y2/c2) (8)

x
F(x, y)dxdy = 1 (9)

where Ri(x, y) denotes the object image enhancement output with subscripts; i∈R, G, and
B, which represent the red, green, and blue three color bands, respectively; Ri(x, y) denotes
the distribution of the image S(x, y) in the spectral band; * is the convolution operation;
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and F(x, y) is the normalized surround function, which is the standard deviation of the
Gaussian function. The surround function is a key component of Retinex-based algorithms,
which aim to enhance the perceived quality of an image by adjusting the pixel values based
on their local context.

Upon Retinex application, as depicted in Figure 10, the image showcases a height-
ened emphasis on texture features, while discarding extraneous attributes. This approach
mitigates interference from irrelevant traits, allowing the model to concentrate on texture
features for an enhanced performance. However, during nighttime, the output image is
rendered in grayscale, which can impact the performance of the Retinex algorithm.
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3.3. Image Enhancement

The model’s training was hindered by the limited data collected under constrained
conditions, leading to potential underfitting or overfitting problems and significant
impacts on the accuracy. To counteract this limitation, image enhancement techniques
were employed to augment the dataset [34]. Primarily, denoising the images, which
often exhibit noise due to the image capture process, serves to enhance their quality.
Furthermore, to acknowledge the impact of real-world environmental conditions, image
enhancement involves adjustments to the brightness and contrast. This strategy equips
the model with the ability to adapt to diverse urban environments, bolstering its robust-
ness. Images undergo a cropping operation, a technique that generally amplifies the
model’s performance and facilitates reasonably accurate recognition even when images
lack comprehensive data information.

3.4. Loss Function

The performance of the model is directly influenced by the loss function. In YOLOv5,
the loss can be categorized into three components: Class_loss, Confidence_loss, and Loca-
tion_loss. Specifically, confidence loss is computed solely when a specific bounding box
lacks a target. Conversely, if a target is present, the ultimate loss encompasses the aggregate
of all the aforementioned components. Notably, the current default choice for position loss
in YOLOv5 is CIOU [35]. However, there are some problems with CIOU:
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• Under certain circumstances, it will make the proportional consistency parameter of
the aspect ratio of the predicted frame and the rear frame be 0, which makes the loss
function unable to make a practical judgment.

• When the length and width of the anchor box increase and decrease at the same time,
respectively, it will make the predicted box unable to fit the actual box effectively.

• The aspect ratio of the calculated box cannot effectively reflect the gap between the
anchor box and the existing box.

Focal-EIOU [36] is used in this experiment instead of CIOU, and Focal-EIOU is calcu-
lated using Formulas (10)–(12).

LEIOU = LIOU+Ldis + Lasp = 1− IOU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

c2
w

+
ρ2
(

h, hgt
)

c2
h

(10)

L f (x) =

{
∝ x2[2ln(βx)− 1], 0 < x ≤ 1; 1/e ≤ β ≤ 1
−aln(β)x + C, x > 1; 1/e ≤ β ≤ 1

, (11)

LFocal−EIOU = IOUγLEIOU (12)

where x denotes the difference between the actual values and predicted; β is used to control
the curve’s arc; e is a natural constant; γ is used to control the degree of outlier suppression;
and C is a constant. EOU improves CIOU by dividing the loss function into the distance,
direction, and IOU loss. Cw and Ch are the length and height of the minimum box covering
the actual box and anchor box, which solves the aspect ratio problem of CIOU.

Surveillance equipment is susceptible to various factors, including environmental
conditions and weather, which can lead to fluctuations in the image quality. For instance,
during the evening, the captured images might exhibit lower quality, with pedestrians’
silhouettes appearing unclear. Such scenarios can potentially lead to the model generating
false alarms and leaks. CIOU enables the swift identification of evident samples, but
falls short in recognizing challenging instances effectively. Hence, to enhance the model’s
pedestrian recognition accuracy, distinct gradients are assigned to the FocalL1 loss, as
depicted in Equation (8). A heightened gradient is established in regions with substantial
error rates, directing the model’s attention towards challenging samples. The ultimate
Focal EIOU loss is attained through the amalgamation of the EIOU loss and FocalL1 loss,
as demonstrated in Equation (9). This alignment renders Focal EIOU as a well-suited fit
for both the pedestrian scene within smart cities and the YOLO algorithm. Enhancing
the YOLOv5s model through the integration of this loss function will elevate the model’s
accuracy, while fortifying its robustness.

3.5. Evaluation Criteria

For the comprehensive evaluation of the model’s performance, Recall (R), precision
(P), and mean average precision (mAP) are the commonly employed metrics. Given
the experiment’s emphasis on the time taken for simultaneous detection using multiple
cameras, accomplishing this experimental scenario necessitates defining simultaneous
detection for the 50-camera setup. This involves summing the detection time for each
frame of this model and calculating the average time consumption across 100 inferences to
yield the final data results. The formulas for calculating the model evaluation indices are
represented by Formulas (13)–(15).

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)
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mAP =
∑N

j=1
∫ 1

0 PdR

N
(15)

where TP is the amount of correctly detected pedestrians; FP is the amount of incorrectly
detected pedestrians; FN is the number of missed pedestrians; and N denotes the category.

4. Results and Discussion
4.1. Experimental Environment

The authors used PyTorch deep learning framework based on Python language;
hardware environment: CPU is i7-13700k @5.40GHZ; GPU is Nvidia GeForce RTX 3070; OS
is Window11; Python version is 3.8. compiled by PyCharm; and Tensorboard was used to
visualize the experimental results. All the experimental results below were obtained using
the platform built above. Table 1 provides training parameters for the YOLO models used.

Table 1. Training parameters of models.

Parameters Items Value

Epoch 300
Batch size 16

Worker 8
Momentum 0.937

Initial learning rate 0.01
Input size 640 × 640

Weight decay 0.0005

4.2. Model a Priori Box Clustering

The size of the anchor box significantly influences the model’s performance and
convergence speed. An anchor box is a predefined bounding box with a specific size and
aspect ratio. These anchor boxes are used during object detection tasks. Anchor boxes were
placed at various positions within an image and at different scales and aspect ratios to help
the model detect objects of varying sizes and shapes. During training, the model learns
to predict the offsets and class probabilities associated with these anchor boxes. These
predictions enable the model to identify and locate objects in an image by matching the
anchor boxes with the detected objects based on their characteristics.

In this study, the K-means algorithm was applied to our custom dataset, resulting in
nine sets of anchor boxes of varying sizes. Small-sized anchor boxes were utilized on larger-
scale feature mAP to detect small targets, while large-sized anchor boxes were employed
on smaller-scale feature mAP to detect larger targets. The allocation of the nine sets of
anchor boxes to the three different scales of detection feature layers in the YOLOv5-MS
model is presented in Table 2.

Table 2. Priori box data.

Scale Priori Framework

20 × 20 [42.22, 85.29] [45.36, 112.81] [63.04, 125.6]
40 × 40 [17.35, 47.73] [24.29, 63.40] [30.37, 87.94]
80 × 80 [6.66, 15.85] [9.65, 26.26] [13.33, 35.21]

4.3. Ablation Experiments

We employed a variety of strategies to improve the performance of the pedestrian
detection system in the smart city. The ablation experiments have confirmed the efficacy of
the aforementioned techniques (enhanced BackBone structure, Retinex image augmentation,
K-means, SE, and Focal-EIOU). In the table, “

√
” denotes the utilization of the mentioned

improvements, while “-” indicates that the technique was not applied. Simultaneously, the
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techniques mentioned above were employed in a non-sequential manner, as they pertain to
distinct modules and operated independently of one another. Model training commenced
only after the application of these techniques. We assessed the model’s performance
through the mAP parameter and the model’s inference speed, considering the practical
requirements of the smart city. The outcomes are detailed in Table 3.

Table 3. Ablation experiment results.

RepvggBlock Focal-EIOU K-Means Retinex SE mAP Speed

- - - - - 94.5% 0.529 s√
- - - - 93.9% 0.401 s√ √

- - - 94.6% 0.408 s√ √ √
- - 95.4% 0.406 s√ √ √ √

- 96.1% 0.411 s√ √ √ √ √
96.5% 0.416 s

4.4. Comparison Experiment

To further ascertain the model’s performance, the YOLOv5-MS model was subjected
to a comparison with YOLOv3-Tiny, YOLOv3, YOLO7, and YOLOv8s. The models were
evaluated using consistent hyperparameters and training parameters. This study aims
to identify a pedestrian target detection algorithm suitable for extensive camera usage
in smart cities, striking a balance between accuracy and speed. The mAP trends of the
five models over the initial 170 epochs are illustrated in Figure 11. All the models were
simultaneously evaluated for their inference time on the platform designed as described
above, while the ultimate outcomes are presented in Table 4. The results indicate that
YOLOv5-MS exhibits a commendable mAP and inference speed performance.
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Table 4. The comparison among different proposed models.

Model P R mAP Speed Parameter

YOLOv3-Tiny 92.1% 84% 90.8% 0.264 s 16.9 MB
YOLOv3 95.5% 94.1% 96.9% 0.975 s 117 MB
YOLOv7 95% 91.1% 95.5% 0.631 s 72 MB
YOLOv8s 94.6% 91.9% 95.6% 0.581 s 21.5 MB

YOLOv5-MS 95.9% 93.1% 96.5% 0.416 s 10.7 MB

4.5. Discussion
4.5.1. Ablation Experiments Discussion

Table 3 presents notable findings. When exclusively utilizing the RepvggBlock module,
the model’s mAP decreases in comparison to that of YOLOv5s, while its inference speed
increases. This trend suggests that the module enhances the model’s inference speed
at the expense of performance. However, upon integrating Focal-EIOU, the model’s
mAP shows an improvement without significantly affecting the inference speed. The
efficacy of the K-means clustering algorithm is also evident in this experiment, implying
that it successfully enhances the compatibility between Focal-EIOU and both the smart
city pedestrian scene and the YOLO algorithm, thereby improving the model’s overall
performance. The enhanced accuracy attributed to the Retinex algorithm can be attributed
to its capability to aid the model in focusing on texture features, which is a critical aspect
in the target detection of pedestrians within urban settings. The incorporation of the
SE attention module within the network has led to a 0.4% improvement in the mAP of
the model, signifying that this module successfully extracted pertinent information that
contributed to enhancing the model’s performance. The inference speed of YOLOv5-MS
outpaces that of YOLOv5s by 21.3%, showcasing the efficiency gained through these
improvements. Each of these enhancements collectively attests to the scientific validity and
effectiveness of the upgraded model.

Figure 12 displays the training progress of the YOLOv5-MS model over 300 epochs,
illustrating both a training loss curve and a validation loss curve. The horizontal axis
represents the epoch, while the vertical axis represents the corresponding loss value. It
is noticeable that the loss function of the training set steadily decreases over the epochs.
However, the confidence loss of the validation set begins to exhibit a gradual increase after
approximately 160 epochs. Moreover, the loss related to border regression starts to stabilize,
suggesting a potential tendency towards overfitting in the model. Consequently, training
could be halted around the 160th epoch.

Figure 13 displays a series of comparative plots for different scenarios, with the first
column depicting the inference results for the YOLOv5s model and the second column
presenting the inference results for the YOLOv5-MS model. The first row illustrates that in
unobstructed pedestrian scenarios, both the YOLOv5-MS and YOLOv5s algorithms perform
the proficient detection of pedestrian targets, with comparable confidence levels, ensuring
accurate detection. Moreover, YOLOv5-MS showcases a slightly superior confidence level
in detecting occluded targets. In the second row, YOLOv5-MS demonstrates the better
detection of small targets compared to that of YOLOv5s, although YOLOv5s excels in
detecting larger targets. The third row showcases a uniform performance between the two
models in detecting pedestrians during nighttime. Finally, in the fourth row, YOLOv5s
exhibits higher confidence in detecting conspicuous pedestrians in rainy conditions, while
YOLOv5-MS demonstrates a superior capacity to generalize the detection of multiple
small targets. Based on the observations above, it is evident that the predominant nature
of the pedestrian targets in this scenario involves small target detection. Therefore, a
model specialized in robustly detecting small targets should be utilized, rendering the
YOLOv5-MS model more suitable for this experimental setting. In summary, YOLOv5-MS
demonstrates a superior performance over that of YOLOv5s in detecting occluded or small
targets, but falls behind YOLOv5s in detecting larger targets.
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4.5.2. Comparison Experiments Discussion

The comparative experiments presented in Table 4 reveal an interesting trade-off
between the model’s mAP and its inference speed. This relationship is characterized
by an inverse correlation; when the weight is increased, the mAP value tends to rise
while the inference speed decreases, and conversely, when the weight is decreased,
the inference speed increases, but the mAP value tends to decline. In this experiment,
YOLOv3 exhibits a 0.4% higher mAP value compared to that of YOLOv5-MS. However,
YOLOv3 has a significantly larger number of parameters than YOLOv5-MS does, result-
ing in YOLOv3’s inference time being more than twice as long as that of YOLOv5-MS.
Specifically, using the YOLOv3 model, it requires 0.975 s to simultaneously process each
frame from 50 cameras. Conversely, when employing YOLOv5-MS, this processing time
is reduced to 0.416 s to achieve the same results. Consequently, if we utilize YOLOv5-MS
to detect 100 cameras with adequate hardware capabilities, it would take the same dura-
tion as YOLOv3’s 50-camera detection, while maintaining a comparable accuracy. This
translates to nearly halving the overall cost.

While YOLOv3-Tiny boasts an almost halved inference speed compared to that of
YOLOv5-MS, its mAP value falls short of our requirements. It is important to note that we
cannot indefinitely reduce costs without ensuring accuracy. Furthermore, when compared
to YOLOv7 and YOLOv8, they do not match YOLOv5-MS in terms of both speed and mAP.
YOLOv5-MS, on the other hand, achieves a remarkable feat by performing simultaneous
detection using 50 cameras in just 0.416 s, all while maintaining an impeccable accuracy.
This exceptional model performance positions it as the ideal choice for target detection
applications in smart cities.
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5. Conclusions

This paper introduces an advanced pedestrian target detection model, referred to as
YOLOv5-MS. It is built upon the YOLOv5 architecture and specifically designed for robust
pedestrian target detection within a smart city context. Initially, YOLOv5 serves as a foun-
dational framework, ensuring the efficacy of target detection performance. Subsequently,
optimization is applied to the acquisition of multiple video streams within the model.
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To further enhance efficiency, RepvggBlock is introduced into the BackBone segment, re-
placing the original convolutional layer, and thereby, expediting the model’s inference
process. To enrich the model’s capabilities, an SE attention module is integrated into the
network, enabling the extraction of more pertinent information from images and, conse-
quently, augmenting the overall model performance. This integrated approach ensures the
advancement of pedestrian target detection within the context of smart cities. The model’s
performance gains are also attributed to the integration of the K-means algorithm and
the Retinex image enhancement technique. Additionally, the adoption of the Focal EIOU
loss, replacing the previous CIOU loss, contributes to the model’s advancement. These
enhancements are methodically validated through ablation experiments. The experimental
outcomes demonstrate a notable enhancement of the model’s mAP by 2.0%, accompanied
by a substantial 21.3% improvement in inference speed compared to that of the original
model. Furthermore, the model’s superiority is highlighted by its outperformance when
compared to the performances of the other state-of-the-art models. These discoveries have
led to improved applications for pedestrian target detection using large-scale cameras in
smart city environments.

Nevertheless, there is untapped potential for further improvement in this model. In
the forthcoming research endeavors, we intend to explore the opportunities for optimizing
the model’s structure, while upholding the detection accuracy. This optimization aims to
enable simultaneous detection across a larger number of cameras, rendering the model
more suitable for pedestrian detection within complex urban environments. By fine-tuning
the model’s architecture, we aspire to bolster its applicability and performance in the
dynamic and intricate landscapes of smart cities. At the same time, we will focus on multi-
target model detection, a research direction that will empower us to address the diverse
challenges within smart cities with a combination of high accuracy and cost-effectiveness.
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