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Figure S1. Dependencies of a normal force FN (a), contact area A (b), size of the contact in vertical 
Lvertical and horizontal Lhorisontal directions (c) and ratio Lvertical /Lhorisontal (d) on indentation depth d. 
Radius of a steel indenter R = 100 mm, elastomer thickness (TARNAC CRG N3005) h = 5 mm. 
Supplementary Video S5 is also available (presented data is similar to dependencies obtained with 
indenter R = 30 mm that are shown in Figure 3 in main article). 
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Figure S2. Time dependencies of the normal FN (a) and tangential Fx (b) forces, contact area A (c), 
average contact pressure <p> (d), averaged tangential stresses <τ> (e) and ratio Lvertical /Lhorisontal (f). 
Radius of the indenter R = 100 mm, elastomer thickness (TARNAC CRG N3005) h = 5 mm, 
indentation depth during tangential shift dmax = 0.3 mm, velocity of the indenter motion v = 1 μm/s. 
Supplementary Video S6 is also available (presented data is similar to dependencies obtained with 
indenter R = 30 mm that are shown in Figure 4 in main article). 
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Figure S3. Time dependencies of the normal FN (a) and tangential Fx (b) forces, contact areas A (c), 
average contact pressures <p> (d), tangential stresses <τ> (e) and ratios Lvertical /Lhorisontal (f). Radius of 
the indenter R = 100 mm, elastomer thickness (TARNAC CRG N3005) h = 5 mm, maximal 
indentation depth dmax = 0.3 mm, in the experiment according to scenario (A). Supplementary 
Video S7 is also available (presented data is similar to dependencies obtained with indenter R = 30 
mm that are shown in Figure 5 in main article). 
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Figure S4. Time dependencies of the normal FN (a) and tangential Fx (b) forces, contact areas A (c), 
average contact pressures <p> (d), tangential stresses τ (e) and ratios Lvertical /Lhorisontal (f). Radius of 
the indenter R = 100 mm, elastomer thickness (TARNAC CRG N3005) h = 5 mm, maximal 
indentation depth dmax = 0.3 mm, in the experiment according to scenario (B). Supplementary 
Video S8 is also available (presented data is similar to dependencies obtained with indenter R = 30 mm 
that are shown in Figure 6 in main article). 

 


