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Abstract: Bioinspired object detection in remotely sensed images plays an important role in a variety
of fields. Due to the small size of the target, complex background information, and multi-scale remote
sensing images, the generalized YOLOv5 detection framework is unable to obtain good detection
results. In order to deal with this issue, we proposed YOLO-DRS, a bioinspired object detection algo-
rithm for remote sensing images incorporating a multi-scale efficient lightweight attention mechanism.
First, we proposed LEC, a lightweight multi-scale module for efficient attention mechanisms. The
fusion of multi-scale feature information allows the LEC module to completely improve the model’s
ability to extract multi-scale targets and recognize more targets. Then, we propose a transposed
convolutional upsampling alternative to the original nearest-neighbor interpolation algorithm. Trans-
posed convolutional upsampling has the potential to greatly reduce the loss of feature information by
learning the feature information dynamically, thereby reducing problems such as missed detections
and false detections of small targets by the model. Our proposed YOLO-DRS algorithm exhibits
significant improvements over the original YOLOv5s. Specifically, it achieves a 2.3% increase in
precision (P), a 3.2% increase in recall (R), and a 2.5% increase in mAP@0.5. Notably, the introduction
of the LEC module and transposed convolutional results in a respective improvement of 2.2% and
2.1% in mAP@0.5. In addition, YOLO-DRS only increased the GFLOPs by 0.2. In comparison to the
state-of-the-art algorithms, namely YOLOv8s and YOLOv7-tiny, YOLO-DRS demonstrates significant
improvements in the mAP@0.5 metrics, with enhancements ranging from 1.8% to 7.3%. It is fully
proved that our YOLO-DRS can reduce the missed and false detection problems of remote sensing
target detection.

Keywords: bioinspired object detection; YOLOv5; multi-scale; attention mechanisms; transposed
convolution

1. Introduction

With the rapid development of bioinspired image processing and remote sensing
technology, remote sensing object detection technology has gradually become a hot spot
in current research. It is widely used in the fields of national defense, rescue [1], urban
construction, geologic disasters [2], and development. In remote sensing imagery, the task
of target detection is to detect and identify the precise location of specific categories of
targets, such as common aircraft, automobiles, oiltank, playgrounds, etc., in remotely
sensed imagery. For remote sensing images, the targets in these images are usually densely
distributed, have too many small-sized targets distributed at multiple scales, and can
be affected by factors such as the complexity of the detection background. Initially, fea-
tures were typically extracted by artificial means such as classical algorithms, such as
AdaBoost [3], SVM [4], HoGDetector [5], DMP [6], etc. However, these algorithms perform
poorly in complex settings, and the high algorithm complexity makes detection inefficient
and time-consuming.

Biomimetics 2023, 8, 458. https://doi.org/10.3390/biomimetics8060458 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8060458
https://doi.org/10.3390/biomimetics8060458
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0006-9895-7995
https://doi.org/10.3390/biomimetics8060458
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8060458?type=check_update&version=1


Biomimetics 2023, 8, 458 2 of 18

The convolutional neural network(CNN) based on deep learning [7] performed well in
the ImageNet image classification competition in 2012, which led to the rapid development
of convolutional neural networks. In target detection, the convolutional neural network is
the main direction of target detection. At present, there are two kinds of target detection
methods based on deep learning. One class is two-stage target detection methods based
on candidate frames, such as R-CNN [8], Fast R-CNN [9], Faster R-CNN [10], and Mask
R-CNN [11] algorithms, which are more complex in design, consume more resources,
and have slower detection speeds and do not meet the requirements of real-time detection.
Another is a single-level regression-based target detection algorithms representing the
SSD [12], Retina-Net [13], CenterNet [14], and YOLO [15–18] series. Compared with the
two-stage target detection algorithm, the single-stage target detection algorithm not only
has high detection accuracy but also greatly improves the detection speed, so it has been
more widely used.

In recent years, the YOLO series has become a representative algorithm in the field
of target detection with its fast, accurate, and mature engineering capabilities. The YOLO
family of algorithms has been repeatedly improved and optimized, and while it has
now evolved into YOLOv8, the YOLOv5 algorithm is the most widely used and mature
algorithm for both academic and industrial use.

2. Related Work

In recent years, numerous scholars have made significant advancements in deep-
learning-based object detection methods. Farhan Ullah et al. [19] proposed a cyber threat
detection system that combines migration learning and multi-model image characterization
in a hybrid approach. Du et al. [20] introduced BV-YOLOv5S, a modification of YOLOv5S,
to achieve real-time defect detection in road pits. Li et al. [21] developed a lightweight
convolutional neural network called WearNet. This network is designed to enable real-time
detection of scratches on sliding metal parts. Shen et al. [22] focused on enhancing cross-
scale detection in road object detection tasks using the YOLOv3 model. They employed
the K-means-GIoU algorithm to generate prior boxes and implement a detection branch
specifically for small targets. Wang Jian et al. [23] analyzed the challenges posed by high
resolution and complex backgrounds in UAV aerial images. To address these issues, they
proposed MFP-YOLO, a lightweight detection algorithm based on YOLOv5. This method
combines a multi-path inverse residual module and attention module. Additionally, it
utilizes a parallel deconvolutional space pyramid pool to extract scale-specific information,
thereby improving the detection performance of the algorithm. Furthermore, many scholars
have made significant breakthroughs in the field of remote sensing image object detection.
Using the YOLOv3 model, Qu et al. [24]. proposed an auxiliary network to improve
the recognition of objects in remote sensing images. The CBAM module is backward-
compatible to improve network performance and prevent the loss of crucial information
during training. Reference [25] proposed using DenseNet [26] to enhance YOLOv3 and to
improve the accuracy of remote sensing image detection by enhancing the structure in the
backbone. However, DenseNet’s structure is too complex and has too many parameters,
leading to a drop in detection speed. Reference [27] introduced lightweight enhancements
to the structure of YOLOv3 as well as an introduction to Res2Net [28] to improve the
accuracy and speed of remote sensing target detection. In reference [29], the PPM (pyramid
pooling module) [30] was added based on YOLOv4, and the Mish function was used to
override the original activation function, which improved the detection precision and
recall rate of aircraft and dockyards in remotely sensed imagery. Li et al. [31] proposed
the YOLOSR-IST model. Based on the YOLOv5 method, this model introduces coordinate
attention during the feature fusion process and integrates high-resolution maps.

However, these methods above do not give reasonable solutions for the problems of
false detection and missed detection that occur in remote sensing image target detection.
To address these challenges, we designed a remote sensing target detection algorithm
YOLO-DRS based on YOLOv5. Our work makes the following main contributions.



Biomimetics 2023, 8, 458 3 of 18

• Based on the original EMA attention, a new module LEC(LDW-EMA-C3) is proposed
for the fusion of a multi-scale lightweight efficient attention with the C3 structure
in YOLOv5, replacing the last two C3 modules of the backbone with LDW-EMA to
extract high-dimensional feature information at different scales.

• In the upsampling process of YOLOv5, the upsampling transposed convolution is
introduced to replace the original nearest-neighbor interpolation upsampling to reduce
the loss of the feature information of small targets in the upsampling process.

The rest of the paper is organized as follows: Section 3 introduces the YOLOv5 method.
Section 4 introduces the methods proposed. Section 5 introduces the experimental part.
Section 6 concludes with a summary of the paper.

3. The Basic Structure Of YOLOv5s

YOLOv5 is available in four different sizes based on depth and width: YOLOv5s,
YOLOv5m, YOLOV5l, and YOLOv5x. As the model depth deepens and the width increases,
YOLOv5 improves its detection accuracy, but the speed of detection decreases along with
it. In this paper, we have selected YOLOv5s version 6.1, which combines both detection
speed and accuracy advantages. YOLOv5s is mainly composed of four parts: input
module (Input), backbone network module (Backbone), feature fusion module (Neck),
and prediction module (Head). The overall architecture of YOLOv5s is shown in Figure 1.

The input side works as follows: first, a group of up to four images is scaled, aligned,
or cropped to form a single image after capturing the enhanced image mosaic data. Sec-
ondly, the YOLOv5 algorithm adjusts the black edge by equidistant scaling and filling the
smallest black edge with the smallest black edge, thus unifying the size of the image and
preparing the neural network model for training. Figure 2 shows the picture enhanced by
Mosaic4 data at the inputs.

Figure 1. Structure of YOLOv5s.

The YOLOv5 backbone network consists mainly of the CSP, CBS, and SPPF structures.
The CSP structure mainly draws on the idea of the cross-stage network CSPNet [32], where
the input features are processed in two parts. The main part extracts features step by step
through convolution, normalization, and activation functions, and the branches simply
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adjust the channels through convolutional layers. By dividing the gradient information,
a large amount of redundant gradient information is eliminated. The CBS structure consists
of a convolution, Conv, a normalized BatchNorm [33], and an activation function, SiLU [34],
which is used to extract the features of the model. The SPPF structure serially passes
the input features through multiple 5 × 5 maximal pooling layers and then extracts the
stacked features via the CBS network structure, which can increase the receptive field of
the network and enhance the network’s characterization capability.

Figure 2. Mosaic4 Enhanced Image.

The feature fusion module (Neck) is mainly composed of feature pyramid network
(FPN) [35] and path aggregation network (PAN) [36] modules, which are responsible for
fusing the feature maps of various scales and then decoding and generating feature maps
containing more semantic information for input to the prediction module.

The YOLOv5s prediction module consists of three detection layers of different scales,
80 × 80, 40 × 40, and 20 × 20, which are used to predict the category and position
prediction of small, medium, and large targets. The category information of the objects
with the highest confidence scores is then output through post-processing operations, such
as the non-maximum suppression algorithm.

YOLOv5s loss functions include cls_loss, box_loss, and obj_loss. The cls_loss and
obj_loss are calculated using BCEWithLogitsLoss as shown in Equation (1).

C = − 1
n ∑

x
[ylna + (1− y)ln(1− a)] (1)

where x denotes the sample, y denotes the label, a denotes the predicted output, and n
denotes the total number of samples.

The box_loss is calculated via the IoU function [37]. The schematic and equations are
shown in Figure 3 and Equation (2). YOLOv5s version 6.1 uses CIoU loss, as shown in
Equation (3).

IOU =
A ∩ B
A ∪ B

(2)
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where A∩ B is the area of overlap between the real frame and the predicted frame, and A∪ B
is the total area between the two.

CIoU = 1− ρ2(A, B)
c2 + αv (3)

where ρ2(A, B) represents the Euclidean distance between the centers of the predicted
frame A and the real frame B, c represents the diagonal length of the smallest rectangle
containing A and B, α represents the weight parameter, and v is used as a measure of the
variability of the length, width, and height.

A B A
B

(a) (b)

Figure 3. IOU loss. (a) A ∩ B is the intersection. (b) A ∪ B (Equal to A) is the union.

4. Proposed Method

The overall architecture of our proposed YOLO-GCRS is shown in Figure 4. First,
the multi-scale feature information of the image can be fully extracted by the LEC module in
the backbone network part. Then, the loss of small target feature information is reduced by
the transposed convolutional upsampling method in the Neck section. Finally, the output
target and category information is carried out through the prediction header.

CBS

CBS

C3

CBS

C3

CBS

LEC

CBS

LEC

SPPF CBS

Trans

Concat

C3

CBS

Trans

Concat C3

CBS

Concat

C3

CBS

Concat

C3

Detect

Detect

Detect

Backbone

Neck Head

Input

Output

Figure 4. Structure of YOLO-DRS. (Trans is transposed convolution).
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4.1. The LEC Module

With the development of deep convolutional neural networks, the attention mech-
anism has attracted great interest from the computer vision research community. The
flexible structural features of the attentional mechanism approach not only enhance the
learning of more discriminative feature representations but can also be easily inserted into
the backbone architecture of neural networks.

It is widely recognized that there are three main mechanisms of attention that have
been proposed, such as channeled attention, spatial attention, and both. As a representative
of channel attention, SE [38] explicitly models cross-dimensional interactions to extract
channel attention. The convolutional block attention module (CBAM) [39] builds cross-
channel and cross-spatial information with semantic interdependencies between spatial and
channel dimensions in the feature map. However, modeling cross-channel relationships
using channel dimensionality reduction may introduce side effects when extracting deep
visual representations. To solve these problems, Daliang Ouyang et al. proposed a new
Efficient multiscale attention (EMA) [40] module by modifying the sequential processing of
the CA [41] attention mechanism.

The general structure of EMA is shown in Figure 5. On the one hand, two coded features
are connected in the image height direction and made to share the same 1 × 1 convolution
without dimensionality reduction in the 1 × 1 branch by a similar process as CA. After de-
composing the output of the 1 × 1 convolutional into two vectors, two nonlinear Sigmoid
functions are used to fit a 2D binary distribution on the linear convolution. To realize
different cross-channel interaction features between two parallel routes in a 1 × 1 branch,
the two-channel attention maps within each group are aggregated together by simple mul-
tiplication. On the other hand, the 3 × 3 branch captures local cross-channel interactions
via 3 × 3 convolutional to expand the feature space. In this way, EMA not only encodes
inter-channel information to adjust the importance of different channels but also saves
precise spatial structure information into the channels.

Input Groups Re-weight

X Avg Pool

Y Avg Pool

Conv(3 x 3)

Concat Conv(1 x 1)

Sigmoid

Sigmoid

Re-weight GroupNorm Avg Pool Softmax Matmul

Avg Pool Softmax Matmul

Sigmoid

Output

C x H x W

C//G x H x W

C//G x 1 x W

C//G x H x 1

C//G x H x W

C//G x 1 x (W + H) 

C//G x 1 x W

C//G x 1 x W

C//G x H x W

C//G x 1 x 1 1 x C//G 

1 x H x W
C//G x 1 x 1 1 x C//G 

1 x H x W

Cross-spatial learning

C x H x W

Figure 5. Structure of EMA.

Furthermore, a cross-spatial learning strategy is proposed in the EMA article, which is
designed to encode global information and model long-range dependencies. For efficient
computation, the natural nonlinear function Softmax for 2D Gaussian mapping is used
at the output of the 2D global mean pooling (Avg Pool) to fit the linear transformation.
The first spatial attention map was derived by multiplying the output of the above parallel
processing with the matrix dot product operation. Similarly, 2D global average pooling is
utilized to encode the global spatial information in the branch to derive a second spatial
attention map that preserves the entire precise spatial location information. Finally, the out-
put feature maps within each group were computed as an aggregation of the two generated
spatial attention weight values. The sigmoid function captures pairwise relationships at
the pixel level and highlights the global context of all pixels. The final output of the EMA is
the same size as the input, which is efficient for stacking into modern architectures. The 2D
global pooling and Softmax function formulas are (4) and (5), respectively.

ZC =
1

H ×W

H

∑
j

W

∑
i

XC(i, j) (4)
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where H, W, and C represent the height, width, and dimension of the input feature
map, respectively.

So f tmax(zi) =
ezi

∑C
c=1 ezc

(5)

where zi is the output value of the ith node, C is the number of output nodes, and e is a
constant term.

In order to extract the multi-scale feature information in the complex background
without increasing the computation cost too much, first, in this paper, we propose a
lightweight convolutional block, LDW. Then, based on LDW, we propose a lightweight
multi-scale efficient attention mechanism module, LDW-EMA. Figure 6 and Figure 7 show
the detailed structures of LDW and LDW-EMA, respectively.

LDW(5 x 5) DW(3 x 3) DW(3 x 3) Conv(1 x 1) BatchNorm ReLU

LDW(3 x 3) DW(3 X 3) Conv(1 x 1) BatchNorm ReLU

Figure 6. Structure of LDW convolutional block (DW is depthwise convolution).

Groups Re-weight

X Avg Pool

Y Avg Pool

LDW(3 x 3)

Concat Conv(1 x 1)

Sigmoid

Sigmoid

Re-weight GroupNorm Avg Pool Softmax Matmul

Avg Pool Softmax Matmul

Sigmoid

Output

C//G x H x W

C//G x 1 x W

C//G x H x 1

C//G x H x W

C//G x 1 x (W + H) 

C//G x 1 x W

C//G x 1 x W

C//G x H x W

C//G x 1 x 1 1 x C//G 

1 x H x W
C//G x 1 x 1 1 x C//G 

1 x H x W

C x H x W

LDW(5 x 5) Avg Pool Softmax Matmul

C//G x 1 x 1 1 x C//G 

1 x H x W

New-Cross-spatial learning

Input

C x H x W

Figure 7. Structure of LDW-EMA.

The LDW convolutional block consists of Conv 1× 1, DW3× 3, BatchNorm, and ReLU
activation functions. DSC (Deep separable convolution) consists of Conv 1 × 1 and DW
3 × 3. DSC dramatically reduces the convolutional parameters. BatchNorm speeds model
convergence and improves the stability of the model. The ReLU activation function in-
creases network non-linearity and prevents the gradient from disappearing. In addition,
we use two DW 3 × 3 instead of one DW 5 × 5. This is because two DW 3 × 3 can achieve
the same effect as one DW 5 × 5 with smaller parameters.

The LDW-EMA is composed of four branches: the principal branch, the coordinate
branch, the 3 × 3 LDW, and the 5 × 5 LDW. Firstly, we used LDW 3 × 3 to replace the
initial Conv 3 × 3. Then, we added a new 5 × 5 LDW branch and merged features from
that branch with coordinate branch features for learning purposes. The new-cross-spatial
learning consists of coordinate branches, LDW 3 × 3 and LDW 5 × 5, which can efficiently
learn more multi-scale feature data.

Next, we fuse the proposed LDW-EMA with C3 of the YOLOv5 model Backbone
to form the new module LEC. The overall structure of the LEC is shown in Figure 8.
We replace the two C3 structures behind the Backbone layer with LEC, this is because
the deeper features of the model are more difficult to extract and require more attention
mechanisms to help, the shallow features can generally be extracted by the model more
easily and accurately.
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LEC LDW-
EMA CBS

Concat CBS

Bottle
Neck

CBS

Figure 8. Structure of LEC Module.

4.2. Transposed Convolution

The original upsampling process of YOLOv5 used the up-adoption method of nearest-
neighbor interpolation. In this method, upsampling is used where neighboring pixels
are filled with blanks. In high-altitude remote sensing images, because background in-
formation is too complex and small targets occupy too many pixel points, the upper-
most method of nearest-neighbor interpolation is equivalent to adding too much complex
background information.

Transposed convolution can dynamically learn network-based weighting parameters,
instead of fixing the use of a particular interpolation method when performing upsampling.
Back in semantic segmentation, features would be extracted with a convolutional layer
in the encoder, and then the original dimensions would be recovered in the decoder
to categorize each pixel in the original image, a process that also requires transposed
convolution. The classical methods are FCN [42] and U-Net [43].

The operation steps of transposed convolution can be divided into the following.

• Fill rows s-1 and column 0 between input feature mapping elements (where s denotes
stride to transform convolution).

• Fill k-p-1 rows and column 0 around the input feature map (where k denotes the
kernel_size size of the transposed convolutional and p is the padding of the transposed
convolution).

• Flip the convolutional kernel parameters up and down, left and right.
• Perform normal convolution operations (padding = 0, stride = 1).

The following assumes that the input feature map is of size 2 × 2 (assuming that the
input and output are single channels), and a feature map of size 4 × 4 is obtained after
convolution by transposition(kernel_size = 3, stride = 1, padding = 0, ignore bias). Figure 9
shows the detailed execution of transposed convolution.

2 3
1 3

0 1 1

0 1 0

1 0 1

0 1 1

0 1 0

1 0 1

Flip up and down, left and right

convolution kernel 

Input feature map

0 2 5 3

0 3 7 3

2 4 5 3

1 3 1 3

Ouput feature map

convolution operation

Figure 9. transposed convolution Computation Process.
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• First, fill s-1 = 0 rows and column 0 (equal to 0 without padding) between elements.
• Second, fill k-p-1 = 2 rows and columns around the feature map 0.
• Third, the convolutional kernel parameters are flipped up and down, left and right.
• Finally, perform normal convolutional (padding = 0, stride = 1).

The size of the feature map after the transposed convolution operation can be calcu-
lated by Equations (6) and (7).

Hout = (Hin − 1)× stride[0]− 2× padding[0] + kernel_size[0] (6)

Wout = (Win − 1)× stride[1]− 2× padding[1] + kernel_size[1] (7)

where stride[0] denotes stride in the height direction, padding[0] denotes padding in the
height direction, kernel_size[0] denotes kernel_size in the height direction, and index [1]
indicates width direction.

In this paper, we introduce the upsampling method of transposed convolution replac-
ing the original nearest-neighbor interpolation. The transposed convolution can reduce the
information loss when sampling small targets in the feature map as a way to solve problems
such as missed detection and false detection of small targets in remote sensing images.

5. Experiments

In this paper, the experimental environment is shown in Table 1.

Table 1. Experimental Environment Configuration.

Project Environment

Operating System Ubuntu
CPU E5-2680 v4
GPU GeForce RTX 3060

Memory 14 GB
Pytorch version 1.10.0

CUDA 11.1

5.1. Datasets

RSOD is the remote sensing dataset employed in the experiment. RSOD is a publically
available target detection dataset released by Wuhan University. There are four categories
in the dataset: aircraft, playground, overpass, and oiltank. RSOD is labeled according to
the PASCAL VOC dataset format.

Table 2 shows in detail the type and number of datasets.

Table 2. Distribution of Datasets.

Dataset Labeling Number of Images

aircraft 446
playground 189

overpass 176
oiltank 165

In addition, the sample RSOD dataset and dataset characteristics are shown in
Figures 10 and 11. As can be seen from Figures 10 and 11, the sample dataset has too
many small target sizes and complex background information and is characterized by
multi-scale distribution.



Biomimetics 2023, 8, 458 10 of 18

Figure 10. Sample Visualization of RSOD Dataset.

Figure 11. Label Information Distribution.

5.2. Evaluation Metrics
5.2.1. Precision

Precision is the rate of correct predictions among all results predicted for positive samples.

Precision =
TP

TP + FP
(8)
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where true positive (TP) means that the prediction is a positive example and the label value
is also a positive example, and false positive (FP) means that the prediction is a positive
example and the label value is a negative example.

5.2.2. Recall

Recall denotes the probability that of all the outcomes predicted to be positive samples,
it is really a positive sample.

Recall =
TP

TP + FN
(9)

where false negative (FN) indicates that the prediction is a negative example and the
labeled value is a positive example.

5.2.3. Mean Average Precision

The mAP represents the average precision (AP) averaged over all categories.

mAP =
1
N ∑ APi (10)

where N represents the total number of categories and APi represents the average precision
in category i.

mAP@0.5 denotes the average accuracy value of the IoU parameter when selected as a
0.5 threshold.

5.2.4. FLOPs

FLOPs (floating-point of operations) is the number of floating-point operations, under-
stood as the amount of computation, which can be used to measure algorithm complexity.

5.2.5. FPS

FPS is defined in the field of graphics as the number of frames transmitted per second
of the picture. The FPS unit is f rame/s.

FPS =
Frames
Time

(11)

In this experiment, the FPS on the GPU was selected as the criterion.

5.3. Network Training and Parameter Setting
5.3.1. Parameter Setting

In this paper, the detailed training parameter settings are shown in Table 3.

Table 3. Experimental Parameter Setting.

Parameters Value

weights yolov5s.pt
division ratio 7:2:1 (train:val:test)

optimizer SGD
batch size 16

epochs 100

Where yolov5s.pt comes from the pre-training weights learned from ImageNet migra-
tion, and the division ratio is the proportion of dataset division.
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5.3.2. Network Training

The loss function curve shows the results of network training in the most straight-
forward way. In this paper, the loss function consists of three main components: cls_loss,
box_loss, and obj_loss.

Lloss = Lcls + Lobj + Lbox (12)

where Lcls,Lobj and Lbox represent cls_loss, obj_loss, and box_loss, respectively.
Therefore, we can tell how well the network is trained by observing these three

types of loss function images. The loss function curves for each category are shown in
Figure 12. From the visualization results, it can be concluded that the YOLO-GCRS model
loss decreases with the increase in the number of iterations, and the loss value tends to be
stable and close to 0 after the number of iterations reaches 80, indicating that the model
training has reached the optimal effect.

(a) (b)

(c)

Figure 12. Loss Curve. (a) Box Loss. (b) Cls Loss. (c) Obj Loss.

5.4. Analysis of Results

In this paper, we have conducted extensive ablation experiments to demonstrate the
effectiveness and sophistication of the designed module. So, as you know, the ablation
experimental data were obtained on the validation set.

Firstly, we discuss the embedding location of the LDW-EMA module in the LEC
structure. We name the cases where LDW-EMA is added to the residual structure branch
of the LEC structure, the CBS branch, and both as LEC-top, LEC-bottom, and LEC-both,
respectively. Table 4 shows detailed experimental data on the different positions of LDW-
EMA in the LEC structure.



Biomimetics 2023, 8, 458 13 of 18

Table 4. Comparison of LEC Experiments at Different Locations.

Method Precision Recall mAP@0.5 FLOPs

YOLOv5s 0.930 0.939 0.950 15.8
+LEC-top 0.959 0.956 0.972 15.9

+LEC-bottom 0.962 0.925 0.970 15.9
+LEC-both 0.967 0.936 0.963 16.0

Overall, it is clear that the LEC-top is an optimal outcome across all metrics. In partic-
ular, LEC-top achieved the best results on mAP@0.5. Therefore, we finally chose LEC-top
as the structure of the LEC module.

Secondly, the activation function of LDW is discussed after determining the LEC
locational structure. This is because the activation function has an important influence on
the convergence and training effect of the model. We discuss the activation functions of
RELU, Mish, and SILU. Table 5 shows the results of detailed experimental data on different
activation functions in the LDW structure.

Table 5. Experimental Comparison of Different Loss Functions.

Method Precision Recall mAP@0.5 FLOPs

YOLOv5s 0.930 0.939 0.950 15.8
+LDW (ReLU) 0.959 0.956 0.972 15.9
+LDW (SiLU) 0.953 0.975 0.967 15.9
+LDW (Mish) 0.961 0.952 0.968 15.9

It can be seen that the model is able to obtain the highest mAP@0.5 when the LDW
module uses the ReLU activation function. Therefore, we choose ReLU as the activation
function of LDW.

Thirdly, the position of the sample on the transformation convolution is discussed.
The nearest-neighbor upsampling interpolation algorithm is replaced by a bottom-up trans-
posed convolution, including replacing the former, replacing the latter, and replacing all.
We named them Trans-first, Trans-second, and Trans-both. Table 6 shows the experimental
data of transposed convolution at different locations.

Table 6. Experimental Comparison of Transposed Convolution at Different Positions.

Method Precision Recall mAP@0.5 FLOPs

YOLOv5s 0.930 0.939 0.950 15.8
+Trans-first 0.963 0.939 0.961 15.8

+Trans-second 0.966 0.936 0.975 15.8
+Trans-both 0.959 0.971 0.971 15.8

For this experiment, we selected Trans-both as the transposed convolution structure.
This is the result of synthesizing Trans-both in precision, recall, and mAP@0.5. Although the
Trans-2 mAP@0.5 is not the best.

Next, we discuss various cases of EMA in relation to each other. Among them, LDW
(3 × 3) denotes the replacement of the convolutional of 3 × 3 branches in EMA with our
proposed LDW module. Table 7 shows the detailed data of the experiments for different
cases of EMA. It should be noted that these data all have the same structure as the LEC
except that the mechanisms of integrated attention are different.

Clearly, our proposed LDW-EMA performs well on precision, recall, and mAP0.5.
And the LDW-EMA achieves the highest value of mAP.
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Table 7. Experimental Comparison of Different EMA Attention Mechanisms.

Method Precision Recall mAP@0.5 FLOPs

YOLOv5s 0.930 0.939 0.950 15.8
+EMA 0.937 0.957 0.956 15.8

+LDW (3 × 3) 0.921 0.960 0.964 15.8
+LDW-EMA 0.959 0.956 0.972 16.0

We then compare the LEC module proposed in this paper with mainstream attention
mechanisms, such as CA, SE, and ECA [44]. We use the YOLOv5s base model in conjunction
with each attention mechanism separately. Notably, to ensure the same structure as the
LEC, we also integrated the various attentional mechanisms with the two C3 structures
at the back of the YOLOv5s backbone. Table 8 shows detailed experimental data for the
various different attentional mechanisms.

It is easy to find that LEC achieves the optimal result on the mAP0.5 metric, and col-
lectively, P and R also perform very well, which is sufficient to show that the LEC module
we designed embodies better than other mainstream attention mechanisms.

Table 8. Experimental Comparison of Mainstream Attention Mechanisms.

Method Precision Recall mAP@0.5 FLOPs

YOLOv5s 0.930 0.939 0.950 15.8
+C3CA 0.970 0.935 0.957 15.8

+C3ECA 0.950 0.940 0.955 15.8
+C3SE 0.990 0.923 0.968 15.8
+LEC 0.959 0.956 0.972 16.0

In addition, in order to visualize the practicality of the innovations in each module
of this paper, we conducted ablation experiments on the YOLO-DRS algorithm on the
validation set. Table 9 demonstrates the detailed data of the ablation experiments.

Table 9. Ablation Experiment.

Method Precision Recall mAP@0.5 FLOPs FPS/(frame/s)

YOLOv5s 0.930 0.939 0.950 15.8 76.8
+LEC 0.959 0.956 0.972 16.0 51.9

+Trans-both 0.959 0.971 0.971 15.8 69.7
YOLO-DRS 0.953 0.971 0.975 16.0 53.9

Analyzing the data in Table 9, the LEC and transposed convolution proposed show
a large improvement over the original YOLOv5s in P, R, and mAP@0.5.

Moreover, our proposed YOLO-DRS algorithm improves 2.3%, 3.2%, and 2.5% on P,
R, and mAP@0.5, respectively, compared with the original YOLOv5s, and the GFLOPS
increases only by 0.2. Also, the FPS is within the real-time detection frame rate range. These
data fully prove that the proposed YOLO-DRS algorithm is very effective.

Lastly, in order to check the sophistication of the YOLO-DRS algorithm, we use
the same network metrics to compare it to the current state-of-the-art target detection
algorithms of the same class. Table 10 shows the detailed data of YOLO-DRS experiments
with different advanced algorithms.

It can be seen from Table 10 that our proposed YOLO-DRS achieves the best results on
the P, R, and mAP@0.5 metrics, which is sufficient to prove the speed and sophistication of
our proposed algorithms.
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Table 10. Experimental Comparison of Mainstream Algorithms.

Method Precision Recall mAP@0.5

YOLOv5s 0.930 0.939 0.950
YOLOv7-tiny 0.953 0.957 0.957

YOLOv8s 0.871 0.864 0.902
YOLO-DRS 0.953 0.971 0.975

5.5. Visualization Experiments

To more intuitively reflect the algorithm’s solution to the problem of detecting RSOD
datasets, we performed visualization and comparison experiments in a variety of scenarios.
Note that the image used for the visualization experiment is the RSOD test dataset.

Firstly, Figure 13 illustrates small-target missed detection and false detection.
Obviously, YOLO-DRS can solve the problem of small-target aircraft missed and false

detection and improve the detection accuracy of the model.
Secondly, Figure 14 demonstrates the average accuracy of detection of the target. It is

not hard to see that YOLO-DRS is able to achieve improved detection accuracy.

Figure 13. Small-target missed detection and false detection in complex backgrounds. The detection
results of YOLOv5s are shown on the left and the results of YOLO-DRS are shown on the right.

Figure 14. Detection accuracy of models in complex backgrounds. The detection results of YOLOv5s
are shown on the left and the results of YOLO-DRS are shown on the right.

Thirdly, Figure 15 illustrates the detection results of the target on multiple scales.
The background information in Figure 15 is complex and the aircraft types are char-
acterized by a multi-scale distribution. YOLO-DRS can greatly reduce the problem of
missed detection.
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Figure 15. Multi-scale small-target missed detection in complex backgrounds. The detection results
of YOLOv5s are shown on the left and the results of YOLO-DRS are shown on the right.

Finally, Figure 16 illustrates the detection of large scales with complex background infor-
mation. YOLO-DRS still performs well in detecting large-scale targets and is able to reduce
the problem of false detection of large-scale targets under complex background information.

Figure 16. Large-target false detection in complex backgrounds. The detection results of YOLOv5s
are shown on the left and the results of YOLO-DRS are shown on the right.

In conclusion, the YOLO-DRS proposed in this paper can solve the problems of low
average detection accuracy, false detection, and missed detection caused by the character-
istics of many small objects in remote sensing images, with multi-scale distribution and
complex background information.

6. Conclusions

Based on YOLOv5s, we propose YOLO-DRS, a lightweight remote sensing image
object detection algorithm that fuses multiple scales efficiently. Firstly, we propose an
efficient and lightweight multi-scale attention mechanism, LEC, that is able to capture
multi-scale target features under complex background information with little computational
overhead. Then, we introduce the transposed convolutional replacement nearest-neighbor
upsampling algorithm, which can dynamically learn the feature information and can reduce
the loss of target feature information during the upsampling process.

On the RSOD dataset, we obtained 97.5% mAP@0.5, an improvement of 2.5% over the
original YOLOv5s, and only an increase of 0.2 in FLOPs. In addition, YOLO-DRS improves
the mAP@0.5 metrics number by 1.8% and 7.3% compared to the state-of-the-art algorithms
YOLOv8s and YOLOv7-tiny, respectively. In summary, the YOLO-DRS algorithm is able
to solve the problem of low average accuracy of detection, false detection, and missed
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detection in remote sensing images due to the complex background information, many-
small-target multi-scale distribution, and other characteristics. Moving forward, we will
explore the study of pruning and lightweighting the model without degrading the detection
accuracy so that it can be better deployed for grounded applications.
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