
Citation: Liao, Y.; Yu, N.; Yan, J. A

Navigation Path Search and

Optimization Method for Mobile

Robots Based on the Rat Brain’s

Cognitive Mechanism. Biomimetics

2023, 8, 427. https://doi.org/

10.3390/biomimetics8050427

Academic Editors: Heming Jia,

Laith Abualigah and Xuewen Xia

Received: 22 July 2023

Revised: 11 September 2023

Accepted: 11 September 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

A Navigation Path Search and Optimization Method for Mobile
Robots Based on the Rat Brain’s Cognitive Mechanism
Yishen Liao 1,2,3, Naigong Yu 1,2,3,* and Jinhan Yan 1,2,3

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
liaoyishen@emails.bjut.edu.cn (Y.L.); yjhcrossover@163.com (J.Y.)

2 Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China
3 Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China
* Correspondence: yunaigong@bjut.edu.cn

Abstract: Rats possess exceptional navigational abilities, allowing them to adaptively adjust their
navigation paths based on the environmental structure. This remarkable ability is attributed to the
interactions and regulatory mechanisms among various spatial cells within the rat’s brain. Based on
these, this paper proposes a navigation path search and optimization method for mobile robots based
on the rat brain’s cognitive mechanism. The aim is to enhance the navigation efficiency of mobile
robots. The mechanism of this method is based on developing a navigation habit. Firstly, the robot
explores the environment to search for the navigation goal. Then, with the assistance of boundary
vector cells, the greedy strategy is used to guide the robot in generating a locally optimal path. Once
the navigation path is generated, a dynamic self-organizing model based on the hippocampal CA1
place cells is constructed to further optimize the navigation path. To validate the effectiveness of the
method, this paper designs several 2D simulation experiments and 3D robot simulation experiments,
and compares the proposed method with various algorithms. The experimental results demonstrate
that the proposed method not only surpasses other algorithms in terms of path planning efficiency
but also yields the shortest navigation path. Moreover, the method exhibits good adaptability to
dynamic navigation tasks.

Keywords: navigation path; optimization; mobile robots; boundary vector cells; place cells

1. Introduction

Navigation has always been one of the most important research topics in the field of
mobile robotics. With the rapid development of sensor technology, computing power, and
algorithms, the navigation capabilities of mobile robots have been significantly enhanced.
However, the field of robot navigation still faces challenges such as low navigation efficiency,
accuracy, and adaptability to the environment. Overcoming these challenges requires
further research. Biological systems, through a long process of evolution, have developed
efficient, flexible, and highly adaptive navigation mechanisms [1]. Through the interaction
of mechanisms such as perception, memory, learning, and decision making, animals are able
to excel at navigation tasks in various complex environments. Studying animal navigation
abilities not only helps in deepening our understanding of biological mysteries but also
provides valuable insights and inspiration for the field of robotics [2]. Therefore, many
researchers have turned to the field of biomimicry, seeking inspiration to overcome the
limitations of existing navigation methods.

As mammals, rats also possess remarkable navigation abilities. When rats are tasked
with navigation in an unfamiliar environment, they rely on a series of perceptual, ex-
ploratory, and learning strategies to adapt to and address the navigation requirements of
the new environment [3]. Firstly, rats explore the environment and search for the navigation
goal. During this process, rats utilize their sensory systems and employ heuristic strategies
to gather crucial information about the environment [4]. For example, they tend to follow
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walls, seek out bright lights, or avoid hazardous areas. These heuristic strategies help rats
quickly acquire information about the environmental structure and safety, forming their
cognitive understanding of the environment’s layout and available paths. Performing navi-
gation tasks in an unfamiliar environment is a progressive adjustment and learning process,
and rats cannot discover the optimal navigation strategy through a few explorations alone.
However, rats possess learning capabilities and can gradually optimize their navigation
paths through interactions with the environment [5]. When rats find that the current navi-
gation path is not optimal, they may adjust their direction or adopt alternative strategies to
obtain shorter and more direct paths. Additionally, changes in the environment can lead
to the original navigation path being blocked or a shorter path appearing. In such cases,
rats can establish a new navigation path adapted to the updated environment [6]. These
adaptive and learning abilities enable rats to successfully cope with navigation challenges
in unfamiliar environments and gradually achieve efficient navigation.

To uncover the mechanisms underlying rat navigation abilities, physiologists have con-
ducted in-depth studies on the neural circuits, activity patterns of neurons, and interactions
between brain regions in the rat brain. They have found that the entorhinal-hippocampal
structure is a crucial brain region for rat positioning and navigation [7,8]. Specifically,
the entorhinal-hippocampal structure receives perceptual information from other brain
regions, such as visual, olfactory, and spatially relevant information [9]. The hippocampus
is primarily involved in the encoding and integration of spatial memory [10]. Within the
entorhinal-hippocampal structure, there are various types of neurons (spatial cells) that ex-
hibit specific firing patterns related to spatial locations, including place cells(PCs) [11], grid
cells(GCs) [12], boundary vector cells(BVCs) [13], and head direction cells [14]. Self-motion
information is believed to be input to the grid cell structure in the entorhinal cortex [15]
and projected through neural networks to the place cells in the hippocampal CA3 region,
enabling path integration [16]. During rat exploration, obstacles and boundaries in the
environment are primarily encoded by boundary vector cells in the entorhinal cortex. The
position information encoded by hippocampal CA3 place cells is then projected to hip-
pocampal CA1 place cells, facilitating the storage and memory of spatial information [17].
There are also complex networks of interactions among hippocampal CA1 place cells. These
interactions can be achieved through mechanisms such as neuronal firing and synaptic
plasticity, promoting self-organizing activity among place cells [18]. The self-organizing
characteristics of hippocampal CA1 place cells are believed to play a crucial role in opti-
mizing navigation paths. Through the self-organizing process, hippocampal CA1 place
cells can adjust their own activity patterns and location specificity based on the experiences
gained during rat exploration.

In summary, establishing a bionic navigation method based on the firing mechanisms
of spatial cells is crucial for achieving efficient navigation. Based on this, this paper proposes
a mobile robot navigation path search and optimization method inspired by the cognitive
mechanisms of the rat brain. The mechanism of this method is based on developing the
navigation habit, and it has made progress in the following aspects:

1. With the assistance of the boundary vector cells’ firing model, a navigation path search
method based on the greedy strategy is proposed. This method can guide the robot to
generate locally optimal paths based on the firing activity of boundary vector cells.

2. A dynamic self-organizing model based on hippocampal CA1 place cells is established
to further optimize the navigation path and improve navigation performance.

3. Two-dimensional simulation experiments and three-dimensional robot simulation
experiments demonstrate the advantages of the proposed method in terms of naviga-
tion path length and path planning efficiency (the number of explorations required to
find the optimal navigation path). Furthermore, the method exhibits strong adapt-
ability to environmental changes and navigation tasks. When navigation tasks or the
environment changes, it can discover a new path faster than other algorithms.

The following sections are organized as follows: Section 2 describes related research in
the field of navigation. Section 3 presents the detailed principles of the proposed method.
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Section 4 describes the experiments and results. Finally, Sections 5 and 6 provide the
discussion and conclusions of this paper.

2. Related Works

The path planning and navigation of mobile robots have been widely studied, and
classic path planning methods mainly include the A * algorithm [19], the Rolling-Window
RRT algorithm [20], etc. However, these types of algorithms have a strong dependence
on heuristic functions and parameter selection, and do not have good adaptability to
dynamic navigation tasks. In recent years, research on spatial navigation methods based
on biomimetic cognitive mechanisms has gained increasing attention from researchers,
primarily in two research directions. The first direction is biomimetic environment map
construction and navigation. This research aims to construct environmental cognitive maps
based on the operating principles of the rat brain and then perform path planning and
navigation based on cognitive maps. Yu et al. simulated the computational models of four
types of spatial cells in the entorhinal-hippocampal structure using a unified computational
mechanism, enabling the construction of environmental cognitive maps and navigation
based on these models [21]. Liu et al. proposed a self-organizing learning framework
based on episodic memory for robot experiential learning, cognitive map construction, and
navigation [22]. However, although map-based path planning and navigation methods are
widely used in practical applications, they often tend to be more engineering-oriented and
lack biomimetic fidelity to the real navigation abilities of biological systems.

Another direction focuses on the development of navigation habits based on biomimetic
cognitive mechanisms. This research aims to develop navigation models that guide robots
to explore their spatial environment and gradually acquire navigation habits. As the num-
ber of times the robot explores the environment increases, it can spontaneously learn and
plan paths for specific navigation tasks. These methods directly target specific navigation
tasks, eliminating the need to explore the entire environment for the purpose of construct-
ing a cognitive map. Furthermore, these navigation methods align more closely with the
characteristics of animal navigation. Oudeyer et al. [23] proposed an intelligent adaptive
curiosity-driven learning theory that enables robots to explore without prior knowledge
and gradually achieve environmental cognition. Ruan et al. [24] constructed an environ-
mental cognition model based on the theory of curiosity-driven learning and implemented
path planning for mobile robots. Research on the development of navigation habits based
on biomimetic cognitive mechanisms can be traced back to 2009 when Kulvicius et al. [25]
used a simple feedforward neural network to establish connections between hippocampal
place cells and action neurons. They employed the Q-learning algorithm to adjust the
neural network and achieve goal-directed navigation for agents. Subsequently, Frémaux
et al. [26] utilized spiking neural networks as the connection structure between place cells
and action neurons, incorporating spike-timing-dependent plasticity (STDP) learning rules
to adjust the network’s connection weights, thus improving the speed of the navigation
model in discovering the navigation goal. To enable intelligent agents to navigate efficiently
to dynamic reward locations, Zannone et al. [27,28] introduced the sequential neuromodu-
lation mechanism of acetylcholine and dopamine into the STDP learning rule, enhancing
the adaptability of the model. However, research on the neural mechanisms that support
dynamic adjustment of navigation paths with environmental changes is still limited in
the aforementioned methods. Therefore, DeepMind developed a deep learning network
based on LSTM (Long Short-Term Memory) networks and applied it to pathfinding tasks in
virtual maze environments, achieving vector-based navigation encoded by grid cells [29].
This model can discover shortcuts in the environment and exhibits good generalization,
flexibility, and adaptability. However, this model requires significant training time and a
large-scale neural network, making it less suitable for mobile robots.
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3. Materials and Methods
3.1. Overall Operation Mechanism of the Method

This subsection provides a detailed introduction to the navigation path search and
optimization method based on the rat brain’s cognitive mechanism. It consists of four
main components: spatial localization, environment exploration, navigation path search,
and navigation path optimization. Firstly, the robot is allowed to explore the environment
freely in order to find the navigation goal. Once the robot discovers the navigation goal,
the greedy strategy is employed to search for the navigation path. In this stage, boundary
vector cells play a crucial role in recognizing the environment boundaries and obstacles.
Finally, the dynamic self-organizing computational model of hippocampal CA1 place cells
is used to optimize the navigation path. This model can adaptively adjust the navigation
path based on the environmental structure. Spatial localization serves as the foundation
for the entire process. Grid cells and hippocampal CA3 place cells integrate self-motion
cues to obtain the robot’s position information within the environment [30]. The overall
operational mechanism of the method is illustrated in Figure 1.
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3.2. Navigation Path Search Method Based on Boundary Vector Cells and Greedy Strategy

This paper employs a greedy strategy to guide the robot in searching for a navigation
path. Due to the presence of numerous obstacles in the environment, the robot needs to
possess obstacle-avoidance capabilities. The recognition function of the boundary vector
cell can assist the robot in avoiding collisions with obstacles and finding shorter paths
toward the goal. The boundary vector cell exhibits a Gaussian-tuned response to the
presence of obstacles, reaching its peak at preferred distances and orientations [31]. The
firing rate of the boundary vector cell, denoted as FBVC, is mathematically expressed
as follows:

FBVC = g(d, θ)δθ (1)
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In Equation (1), δθ represents the angular range of the boundary vector cell’s receptive
field. g(d, θ) describes the relationship between the firing rate and the angle and distance,
and its mathematical expression is as follows:

g(d, θ) ∝
exp
[
−(d− dbvc)

2/2σ2
rad(dbvc)

]
√

2πσ2
rad

×
exp
[
−(θ − φ)2/2σ2

ang

]
√

2πσ2
ang

(2)

In Equation (2), dbvc and φ represent the preferred distance and preferred direction
of the boundary vector cell, respectively. d represents the distance between the robot and
the obstacle, and θ represents the actual bearing angle of the obstacle relative to the robot.
σrad and σang represent the distance tuning factor and angle tuning factor, respectively, and
they are both constants. When using a greedy strategy, the robot selects the next movement
direction based on its current position and the activity of the boundary vector cell. Let rt
denote the position of the robot in the environment at time t. The mathematical expression
for the robot’s position at the next time rt+1 is as follows:

rt+1 = rt + [v·cos(αt), v·sin(αt)] (3)

In Equation (3), v represents the robot’s movement speed. αt denotes the angle of the
next movement direction, determined by the greedy strategy and the firing activity of the
boundary vector cell. Firstly, discretize all obstacles in the environment and define the set
of discretized obstacle positions as OBS. The mathematical expression is as follows:

OBS =
{

obs1, obs2, . . . , obsk
}

(4)

When the robot detects an obstacle in its movement direction, the boundary vector
cells generate firing activity. In this case, the greedy strategy will provide two possible
movement directions for the robot, denoted as αpos and αneg, as shown in Figure 2.

Biomimetics 2023, 8, x FOR PEER REVIEW 5 of 23 
 

 

𝑔(𝑑, 𝜃) ∝ 𝑒𝑥𝑝[−(𝑑 − 𝑑௕௩௖)ଶ/2𝜎rad 
ଶ (𝑑௕௩௖)]ට2𝜋𝜎rad 

ଶ × 𝑒𝑥𝑝ൣ−(𝜃 − 𝜙)ଶ/2𝜎ang 
ଶ ൧ට2𝜋𝜎ang 

ଶ  (2) 

In Equation (2), 𝑑௕௩௖ and 𝜙 represent the preferred distance and preferred direction 
of the boundary vector cell, respectively. 𝑑 represents the distance between the robot and 
the obstacle, and 𝜃 represents the actual bearing angle of the obstacle relative to the robot. 𝜎rad and 𝜎ang represent the distance tuning factor and angle tuning factor, respectively, 
and they are both constants. When using a greedy strategy, the robot selects the next 
movement direction based on its current position and the activity of the boundary vector 
cell. Let 𝑟௧ denote the position of the robot in the environment at time 𝑡. The mathemati-
cal expression for the robot’s position at the next time 𝑟௧ାଵ is as follows: 𝑟௧ାଵ = 𝑟௧ + [𝑣 ∙ 𝑐𝑜𝑠(𝛼௧), 𝑣 ∙ 𝑠𝑖𝑛(𝛼௧)] (3) 

In Equation (3), 𝑣 represents the robot’s movement speed. 𝛼௧ denotes the angle of 
the next movement direction, determined by the greedy strategy and the firing activity of 
the boundary vector cell. Firstly, discretize all obstacles in the environment and define the 
set of discretized obstacle positions as 𝑂𝐵𝑆. The mathematical expression is as follows: 𝑂𝐵𝑆 = {𝑜𝑏𝑠ଵ, 𝑜𝑏𝑠ଶ, … , 𝑜𝑏𝑠௞} (4) 

When the robot detects an obstacle in its movement direction, the boundary vector 
cells generate firing activity. In this case, the greedy strategy will provide two possible 
movement directions for the robot, denoted as 𝛼௣௢௦ and 𝛼௡௘௚, as shown in Figure 2. 

 
Figure 2. The diagrams illustrating the angles 𝛼௣௢௦ and 𝛼௡௘௚. 

The function 𝑓(𝛼)  is defined to represent the absolute difference between 𝛼  and 𝛼௢௕௝. Its mathematical expression is as follows: 𝑓(𝛼) = ห𝐷𝑒𝑙𝑡(𝛼, 𝛼௢௕௝)ห (5) 

In Equation (5), “Delt” represents the calculation of the difference between two an-
gles, and 𝛼௢௕௝ represents the azimuth angle of the goal relative to the robot. Based on this, 
the mathematical expressions for 𝛼௣௢௦ and 𝛼௡௘௚ are as follows: 𝛼௣௢௦ = 𝑎𝑟𝑔 𝑚𝑖𝑛஽௘௟௧(ఈ,ఈ೚್ೕ)∈(଴,గ) 𝑓(𝛼) (6) 

𝛼௡௘௚ = 𝑎𝑟𝑔 𝑚𝑖𝑛 ஽௘௟௧(ఈ,ఈ೚್ೕ)∈(ିగ,଴) 𝑓(𝛼) (7) 

Next, the calculation steps for determining the robot’s next movement direction 𝛼௧ 
are provided. Firstly, the angle selection function ℎ(𝛼, 𝛽) is defined, which represents the 
smaller value between the angle differences of 𝛼௣௢௦ and 𝛼௡௘௚with respect to 𝛼௢௕௝. The 
mathematical expression for ℎ(𝛼, 𝛽) is as follows: ℎ(𝛼, 𝛽) = ቊ𝛼௣௢௦   𝑓(𝛼௣௢௦) ≤ 𝑓(𝛼௡௘௚)𝛼௡௘௚   𝑓(𝛼௣௢௦) > 𝑓(𝛼௡௘௚) (8) 

Figure 2. The diagrams illustrating the angles αpos and αneg.

The function f (α) is defined to represent the absolute difference between α and αobj.
Its mathematical expression is as follows:

f (α) =
∣∣∣Delt

(
α, αobj

)∣∣∣ (5)

In Equation (5), “Delt” represents the calculation of the difference between two angles,
and αobj represents the azimuth angle of the goal relative to the robot. Based on this, the
mathematical expressions for αpos and αneg are as follows:

αpos = argmin
Delt(α,αobj)∈(0,π)

f (α) (6)

αneg = argmin
Delt(α,αobj)∈(−π,0)

f (α) (7)
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Next, the calculation steps for determining the robot’s next movement direction αt
are provided. Firstly, the angle selection function h(α, β) is defined, which represents the
smaller value between the angle differences of αpos and αneg with respect to αobj. The
mathematical expression for h(α, β) is as follows:

h(α, β) =

{
αpos f

(
αpos

)
≤ f

(
αneg

)
αneg f

(
αpos

)
> f

(
αneg

) (8)

The set of boundary positions is defined as BORDER, and the set of all previously
visited locations by the robot is denoted as PATH. Let rt+1(α) represent the next moment
position of the robot when it moves in the direction α. Next, we classify and discuss the
different cases for the values of αt. Since both the starting point and the target are within
the environment, the robot moving along the αobj direction will never collide with obstacles.

Therefore, the statement rt+1

(
αobj

)
/∈ BORDER always holds. When rt+1

(
αobj

)
/∈ OBS, it

means that the robot can move along the αobj direction without colliding with obstacles.
According to the greedy strategy, in this case, the robot will directly choose αobj as its

movement direction. On the other hand, when rt+1

(
αobj

)
∈ OBS, it implies that the robot

will collide with an obstacle if it moves along the direction αobj. In this situation, the
mathematical expression for calculating αt is as follows:

αt =

{
h(α, β) rt /∈ PATH AND rt+1(h(α, β)) /∈ PATH
ĥ(α, β) rt ∈ PATH OR rt+1(h(α, β)) ∈ PATH

(9)

In Equation (9), the function ĥ(α, β) represents selecting a value from αpos and αneg
that is not equal to h(α, β). Once the value of αt is determined, if rt+1(αt) ∈ BORDER, it
means that the robot will collide with the boundary if it moves in the selected direction
αt. In this case, the robot will return along the same path. It means that αt = π + αt−1 at
this time. Through these steps, the robot can progressively move towards the destination
guided by the greedy strategy, completing the path planning task.

3.3. Dynamic Self-Organizing Model of Hippocampal CA1 Place Cells

However, the navigation paths obtained from the greedy strategy tend to be more
curved and further optimization is required. After the hippocampal CA1 place cells store
the navigation paths, they can adaptively adjust the paths based on the environmental
structure. This adjustment is achieved through the self-organizing mechanism of the place
cells. Let the i-th place cell be denoted as ei =

{
βi, pi}, where pi =

(
pi

x, pi
y

)
represents the

center coordinates of the firing field. βi represents the orientation angle of the agent at pi,
initially set as the angle between the line connecting the firing field centers of adjacent place
cells ei and ei+1 and the positive x-axis. The update in the position of the i-th place cell’s
firing field center at time t is denoted as ∆pi(t) =

(
∆pi

x(t), ∆pi
y(t)

)
, and the correction

to the orientation angle is denoted as ∆βi(t). The relevant mathematical expressions are
as follows:

∆pi
x(t) = pi

x(t) + τdicos
(

βi(t) + ϕi

)
(10)

∆pi
y(t) = pi

y(t) + τdisin
(

βi(t) + ϕi

)
(11)

∆βi(t) = Delt
(

βi+1(t), βi(t)
)

(12)

In Equations (10)–(12), τ represents the relaxation factor, di represents the distance
between the firing field centers of place cells ei and ei+1 at the initial time, and ϕi represents
the difference between βi and βi+1 at the initial time. After obtaining the correction values,
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the firing field centers and orientation angles can be adjusted. The mathematical expression
for the correction of the firing field center coordinates is as follows:

pi(t + 1) = pi(t) + δ
(

pi+1(t)− ∆pi(t)
)

(13)

pi+1(t + 1) = pi+1(t)− δ
(

pi+1(t)− ∆pi(t)
)

(14)

The mathematical expression for head orientation angle correction is as follows:

βi(t + 1) = βi(t) + δ∆βi(t) (15)

βi+1(t + 1) = βi+1(t)− δ∆βi(t) (16)

In Equations (13)–(16), δ represents the correction gain. However, in practical physical
environments, there are often many obstacles, so the optimization process of the path also
needs to consider the influence of obstacles. Therefore, in this study, the path optimization
process is divided based on the firing mechanism of boundary vector cells. Let li

min(t)
represent the shortest distance between the firing field center of the i-th place cell and the
obstacles at time t. Its mathematical expression is as follows:

li
min(t) = min

(∥∥∥pi(t)− obsk
∥∥∥) (17)

During the process of optimizing the navigation path, when the firing field center of
a particular place cell gradually approaches an obstacle and the distance between them
becomes sufficiently small, the firing field center of the place cell will be fixed. Let Pf ix(t)
represent the set of place cells with fixed firing field centers at time t. When t = 0,
Pf ix(t) =

{
p0(t), pNhpc(t)

}
. The mathematical expression for the update of Pf ix(t) with

increasing iterations is as follows:

Pf ix(t + 1) = sort
(

Pf ix(t) ∪
{

pi∈i f ix (t + 1)
})

(18)

i f ix =
{

li
min(t + 1) ≤ lth

∣∣∣li
min(t + 1)− li

min(t) < 0
}

(19)

In Equations (18) and (19), “sort” represents sorting the elements in the set in ascending
order, and lth represents the threshold for the shortest distance criterion. Through the afore-
mentioned steps, the navigation path can be segmented and corrected, ensuring efficient
target-oriented navigation in environments with obstacles. The operational mechanism of
segmented correction for the navigation path is illustrated in Figure 3.
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3.4. Proof of Convergence of the Self-Organizing Computational Model

To demonstrate the theoretical correctness of the self-organizing computational model,
we demonstrate the convergence of the model. The proof process is as follows. Firstly,
the total energy function at time t is defined as E(t), and its mathematical expression is
as follows:

E(t) = Ex(t) + Ey(t) (20)

In Equation (20), Ex(t) and Ey(t) represent the components of energy E(t) along the
x-axis and y-axis, respectively. It is evident that the convergence or divergence of Ex(t) is
consistent with Ey(t). Therefore, it is sufficient to prove the convergence of Ex(t) as t→ ∞
to establish the convergence of E(t). The mathematical expression for Ex(t) is as follows:

Ex(t) = Ei+1→i
x (t) + Ei−1→i

x (t) (21)

In Equation (21), Ei−1→i
x (t) and Ei+1→i

x (t) represent the sum of energy functions along
the x-axis from the (i − 1)-th and (i + 1)-th place cells to the i-th place cell, respectively.
Their mathematical expressions are as follows:

Ei−1→i
x (t) = ∑

Nhpc
i=2

(∥∥∥pi
x(t)− ∆pi−1

x (t)
∥∥∥)2

(22)

Ei+1→i
x (t) = ∑

Nhpc−1
i=1

(∥∥∥pi+1
x (t)− ∆pi

x(t)
∥∥∥)2

(23)

As the starting and ending points of navigation are fixed, the energy values of the
first and last place cells do not change. Let Ci

i−1 = pi−1
x (t) + di−1cos

(
βi−1(t) + ϕi−1

)
and

Ci
i+1 = pi+1

x (t)− dicos
(

βi(t) + ϕi
)
. In this case, the mathematical expressions for Ei−1→i

x (t)
and Ei+1→i

x (t) are transformed as follows:

Ei−1→i
x (t) = ∑

Nhpc
i=2

(∥∥∥Ci
i−1 − pi

x(t)
∥∥∥)2

(24)

Ei+1→i
x (t) = ∑

Nhpc−1
i=1

(∥∥∥Ci
i+1 − pi

x(t)
∥∥∥)2

(25)

Next, the change in Ei−1→i
x (t) at time t, denoted as ∆Ei−1→i

x (t), is calculated Each
iteration process is essentially the displacement of the node towards the point of minimum
energy, which is the expectation of all points in the set. The mathematical expression for
∆Ei−1→i

x (t) is as follows:

∆Ei−1→i
x (t) =

(∥∥∥Ci
i−1 − Exp

(
Ci

i−1

)∥∥∥)2
−
(∥∥∥Ci

i−1 − pi
x(t)

∥∥∥)2
(26)

In Equation (26), “Exp” represents the expectation function. Since Ci
i−1 is a constant

value, we have Exp
(
Ci

i−1
)
= Ci

i−1. As the energy function is defined based on the relative
positions of the points rather than their absolute coordinates, the absolute position of
the firing field center of the place cell does not affect the change in the energy function.
Assuming pi

x(t) = 0, the mathematical expression for ∆Ei−1→i
x (t) can be transformed

as follows:
∆Ei−1→i

x (t) = −
(

Ci
i−1

)2
(27)

Similarly, the mathematical expression for ∆Ei+1→i
x (t) can be transformed as follows:

∆Ei+1→i
x (t) = −

(∥∥∥Ci
i+1 − pi

x(t)
∥∥∥)2

= −
(

Ci
i+1

)2
(28)

From Equations (27) and (28), it can be concluded that ∆Ei−1→i
x (t) ≤ 0 and ∆Ei+1→i

x (t) ≤ 0.
According to Equation (21), it follows that the change in the energy function along the x-axis,
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∆Ex(t) ≤ 0. By following the same steps, it can be shown that the change in the energy function
along the y-axis, ∆Ey(t) ≤ 0. Therefore, as t→ ∞ , the energy function E(t) converges.

3.5. Dynamic Navigation Tasks

When a robot is in a static environment, it only needs to explore the environment
and search for the navigation path. However, spatial environments or navigation tasks
are often constantly changing, requiring the robot to have strong adaptability. Changes
in the environment can occur in two main situations: (1) The original navigation path is
blocked due to the addition of obstacles in the environment. (2) As the robot progresses
along its pre-planned navigation path, obstacles that were previously detectable by the
robot may no longer be detected. This situation represents a reduction in obstacles in
the environment. Additionally, the navigation task itself may change, mainly involving
changes in the starting and ending points. When the navigation endpoint changes, the
robot needs to explore the environment again to search for a new navigation path. When
the navigation starting point or the environment changes, the robot only needs to search
for a new navigation path. The overall process of the navigation method is illustrated in
Figure 4, and the specifics of the proposed navigation method can be found in Algorithm 1.

Algorithm 1 The proposed navigation method

1: Initialize population and parameters
2: while not find the navigation goal do
3: while The maximum path has not been reached do
4: Update rt+1 = rt + [v·cos(αt), v·sin(αt)], the value of αt is randomly select
5: end while
6: end while
7: while not find the navigation goal do
8: Calculate the value of αobj
9: Calculate the firing rate of boundary vector cells using Equations (1) and (2)
10: if (the firing rate of boundary vector cells did not reach the threshold) then
11: Update αt = αobj
12: else
13: Calculate the value of αpos, αneg, and h(α, β) using Equations (6)–(8)
14: Update the value of αt using Equation (9)
15: end if
16: Update rt+1 = rt + [v·cos(αt), v·sin(αt)]
17: end while
18: while not reach the number of iterations for optimization do
19: Calculate li

min(t) = min
(∥∥∥pi(t)− obsk

∥∥∥)
20: if (li

min(t) ≤ lth and li
min(t + 1)− li

min(t) < 0) then
21: Update the elements in sets Pf ix and i f ix using Equations (18) and (19)
22: end if
23: Calculate the value of ∆pi

x(t), ∆pi
y(t), and ∆βi(t) using Equations (10)–(12)

24: Update the values of all path coordinates pi(t + 1) using Equations (13)–(16)
25: end while
26: Return the set of all path coordinates pi(t + 1) for the optimal navigation path



Biomimetics 2023, 8, 427 10 of 23

Biomimetics 2023, 8, x FOR PEER REVIEW 9 of 23 
 

 

navigation path. The overall process of the navigation method is illustrated in Figure 4, 
and the specifics of the proposed navigation method can be found in Algorithm 1. 

 
Figure 4. Operation process of the navigation method. 

Algorithm 1 The proposed navigation method 
1: Initialize population and parameters 
2: while not find the navigation goal do 
3:   while The maximum path has not been reached do 
4:     Update 𝑟௧ାଵ = 𝑟௧ + [𝑣 ∙ 𝑐𝑜𝑠(𝛼௧), 𝑣 ∙ 𝑠𝑖𝑛(𝛼௧)], the value of 𝛼௧ 𝑖𝑠 randomly select 
5:   end while 
6: end while 
7: while not find the navigation goal do 
8:   Calculate the value of 𝛼௢௕௝  
9:   Calculate the firing rate of boundary vector cells using Equations (1) and (2) 
10:   if (the firing rate of boundary vector cells did not reach the threshold) then 
11: Update 𝛼௧ = 𝛼௢௕௝ 
12:   else 
13: Calculate the value of 𝛼௣௢௦, 𝛼௡௘௚, and ℎ(𝛼, 𝛽) using Equations (6) to (8) 
14: Update the value of 𝛼௧ using Equation (9) 
15: end if 
16: Update 𝑟௧ାଵ = 𝑟௧ + [𝑣 ∙ 𝑐𝑜𝑠(𝛼௧), 𝑣 ∙ 𝑠𝑖𝑛(𝛼௧)] 
17: end while 
18: while not reach the number of iterations for optimization do 
19: Calculate 𝑙௠௜௡௜ (𝑡) =  min(ฮ𝑝௜(𝑡) − 𝑜𝑏𝑠௞ฮ) 
20: if (𝑙௠௜௡௜ (𝑡) ≤ 𝑙௧௛ and 𝑙௠௜௡௜ (𝑡 + 1) − 𝑙௠௜௡௜ (𝑡) < 0) then 
21: Update the elements in sets 𝑃௙௜௫ and 𝑖௙௜௫ using Equations (18) and (19) 
22:   end if 
23: Calculate the value of ∆𝑝௫௜ (𝑡), ∆𝑝௬௜ (𝑡), and  ∆𝛽௜(𝑡) using Equations (10) to (12) 
24: Update the values of all path coordinates 𝑝௜(𝑡 + 1) using Equations (13) to (16) 
25: end while 

Figure 4. Operation process of the navigation method.

4. Experiments and Results

In this section, we experimentally validate the navigation path search and optimiza-
tion method. The experiments include 2D navigation experiments, dynamic navigation
experiments, and 3D robot simulation experiments. The 2D simulation experiments are
conducted in the MATLAB environment, while the robot experiments are conducted in the
Webots simulation environment. The computer configuration used for the experiments is
as follows: Windows 11 operating system, Intel Core i7-11800H CPU, 16GB DDR4 memory,
and NVIDIA RTX 3060 graphics card. The parameter settings for the navigation method
are as follows: the robot’s movement speed v is set to 0.1 m/s, the correction gain δ is set to
0.5, and the threshold for the shortest distance criterion lth is set to 0.2 m. The experimental
parameters for the boundary vector cells are selected based on reference [32], and the
experimental parameters for the entorhinal-hippocampal spatial localization model are
selected based on reference [30].

4.1. 2D Navigation Experiments

In this section, we validate the performance of the proposed method through 2D
simulation experiments. Four different spatial regions are constructed for navigation
experiments, with each region having an area of 10 m × 10 m. Obstacles are set within the
spatial region and the starting point and goal for navigation are defined.

4.1.1. Path Search Experiment

First, the agent is allowed to explore the environment and search for the navigation
goal. The maximum path length for a single exploration process is set to 80 m. The motion
trajectories of the agent in the spatial regions are shown in Figure 5. The sequence from left
to right represents the increasing number of exploration attempts. The green and red circles
represent the starting and ending points of navigation, respectively. The black rectangles
represent obstacles, and the blue lines represent the movement paths of the agent in the
spatial regions. It can be observed that as the agent moves continuously, its trajectory covers
the entire spatial environment. When the robot reaches the navigation goal, it records its
own position as the position of the navigation goal.
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Figure 5. The motion trajectories of the agent in the spatial regions. In the figures, the green circle
represents the navigation starting point, the red circle represents the navigation endpoint, the black
wall represents the obstacle, and the blue line represents the robot’s motion trajectory.

Once the robot discovers the navigation goal, it uses the greedy strategy assisted by
the boundary vector cell to search for the navigation path. Figure 6 shows the variation
of the navigation path and the firing activity of the boundary vector cell during the path
search process in environment 1. From Figure 6, it can be observed that with the assistance
of the boundary vector cell, the agent is able to use the greedy strategy to search for the
navigation path.
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Figure 6. Experimental results of path searching process of the agent in environment 1. In the figures,
the green circle represents the navigation starting point, the red circle represents the navigation
endpoint, the black wall represents the obstacle, the blue line represents the robot’s navigation path,
and the columns represent successive time points during the simulation.

The red arrow in Figure 6 represents the αobj direction, and the green arrow represents
the next movement direction given by the path search algorithm. Time T1 and T4 represent
the moments when the agent first encounters an obstacle. The direction with the smallest
angle difference with αobj from αpos and αneg is selected as the next movement direction. In
the subsequent movement process, if the agent detects the boundary of the environment,
it returns along the same path, as shown in time T2 and T5 in Figure 6. Then, in time T3
and T6, the agent returns to the position where it first encountered the obstacle, selects
the other direction from αpos and αneg as the next movement direction, and continues to
search for the navigation path. If the boundary vector cell does not perceive any obstacles
in the movement direction, the agent directly selects αobj as the next movement direction,
as shown in time T7 in Figure 6. The path search is then performed in environments 2, 3,
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and 4, with the results shown in Figure 7. The experimental results demonstrate that the
proposed method can accurately search for the navigation path.
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Figure 7. Experimental results of path searching process of the agent in environment 2, 3, and 4.
In the figures, the green circle represents the navigation starting point, the red circle represents
the navigation endpoint, the black wall represents the obstacle, the blue line represents the robot’s
navigation path, and the columns represent successive time points during the simulation.

4.1.2. Path Optimization Experiment

However, from Figures 6 and 7, it can be observed that the navigation paths obtained
by the greedy strategy are somewhat curved and may not be optimal. Therefore, further
optimization is needed using the hippocampal CA1 place cells’ self-organizing model.
Figure 8 shows the results before and after navigation path optimization. The first row
represents the comparison of the paths before and after optimization, where the blue lines
represent the original paths and the pink dashed lines represent the optimized navigation
paths. The second row represents the firing rate map of the CA1 place cells before path
optimization, where brighter colors indicate a stronger firing activity of the CA1 place cells
in that area. The third row represents the firing rate map of the CA1 place cells after path
optimization.

Figure 9a shows the change in path length during the optimization process, and
Figure 9b presents the length statistics of the navigation paths before and after optimization.
From Figures 8 and 9, it can be seen that with an increasing number of iterations, the
optimized paths are significantly shorter compared to the original paths, validating the
effectiveness of the CA1 place cell self-organizing model for navigation path optimization.

4.1.3. Comparative Experiment

In order to further highlight the advantages of the proposed method, it is compared
with two classic path planning algorithms, the A * algorithm [19] and the Rolling-Window
RRT algorithm [20]. Due to the different operating mechanisms between these types of
algorithms and the navigation habit development algorithms, only the path length of the
algorithm is compared. To avoid randomness, each algorithm was run twenty times in
each environment and the average value was calculated as the experimental result. The
path length results are shown in Table 1. As it can be seen from the table, compared to the
A * algorithm and the Rolling-Window RRT algorithm, the proposed method generates the
shortest navigation path, verifying the effectiveness of the method.
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Table 1. Comparison results of path length with A* algorithm and Rolling-Window RRT algorithm.

Algorithm
Average Navigation Path Length (m)

Environment-1 Environment-2 Environment-3 Environment-4

A * algorithm 10.91 13.89 13.07 16.11
Rolling-Window

RRT 11.23 14.36 12.92 16.34

Ours 10.19 13.24 12.60 15.69

Then, in order to further highlight the advantages, it is compared with several naviga-
tion habit development algorithms, such as the Q-learning algorithm [25], the SARSA algo-
rithm [33], the Sn-Plast algorithm [28], and the Intelligent Curiosity Algorithm (IAC) [23].
These algorithms are all reinforcement learning algorithms that can guide the agent to
explore the spatial environment and develop navigation habits. The number of explorations
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in a single navigation habit formation process is set to 30, and the maximum path length
for a single exploration process is set to 80 m. The variation of path length with the number
of explorations is shown in Figure 10.
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From Figure 10, it can be observed that all algorithms are able to guide the agent in
developing navigation habits in the corresponding space. The SARSA algorithm has the
worst navigation performance, with a slower convergence speed and longer navigation
path lengths compared to the other algorithms. The Q-learning algorithm outperforms the
SARSA, Sn-Plast, and IAC algorithms in terms of navigation path length, but it discovers
the navigation goal slower than the Sn-Plast algorithm. However, although Sn-Plast can
discover the navigation goal faster, it fails to converge in a timely manner. This leads to
a situation where the goal is discovered in the current exploration process but cannot be
reached in the next exploration. On the other hand, the agent using the proposed method
can quickly converge once the target is discovered and navigate steadily to the goal in the
subsequent exploration tasks. Furthermore, the navigation paths formed by the proposed
method are also the shortest among all algorithms.

In order to further investigate the advantages of the proposed model in terms of
convergence speed and navigation path, comparative experiments were designed in terms
of the average length of navigation paths, the probability of convergence after discovering
the navigation goal, and the average number of explorations required to complete the
formation of navigation habits. To quantify the convergence performance of the model, the
following criteria are used: when the agent discovers the goal in the n-th exploration and is
able to discover the target in the n + 1 to n + 3 explorations, the model is considered to have
converged (indicating the formation of navigation habits). The probability of convergence
after discovering the target region, denoted as Pcon, is mathematically expressed as follows:

Pcon = Sumcon/Sum f ind (29)
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In Equation (29), Sum f ind represents the number of times the navigation goal is discov-
ered, and Sumcon represents the number of times the navigation goal is discovered and the
agent is able to navigate to the goal in the subsequent three exploration tasks. The average
length of navigation paths, denoted as Lavg, represents the average value of the exploration
path lengths for all the times the navigation goal is discovered, and it is mathematically
expressed as follows:

Lavg = ∑
Sum f ind
j=1 Lj/Sum f ind (30)

In Equation (30), Lj represents the exploration path length for the j-th time the navigation
goal is discovered. The average number of explorations required to complete the formation of
navigation habits represents the average number of explorations required for the algorithm to
converge, which reflects the speed of guiding the agent to discover the target region and the
convergence speed. Without loss of generality, each experiment is conducted 20 times, and
the experimental results of navigation for each algorithm are shown in Table 2.

Table 2. Statistical results of navigation experiments of various algorithms.

Environment Algorithm Lavg(m) Pcon

Average Number of
Explorations Required to

Develop Navigation Habits

1

Q-learning 13.12 83.8% 13.2
SARSA 14.78 70.5% 16.7

IAC 13.71 81.1% 15.9
Sn-Plast 15.06 71.5% 12.3

Ours 10.19 100% 8.4

2

Q-learning 17.96 85.4% 15.8
SARSA 19.10 58.9% 21.2

IAC 18.84 88.3% 16.4
Sn-Plast 19.35 70.9% 14.5

Ours 13.24 100% 10.1

3

Q-learning 15.81 77.4% 11.3
SARSA 15.98 69.2% 16.3

IAC 15.69 78.0% 14.6
Sn-Plast 16.73 74.4% 11.8

Ours 12.60 100% 9.8

4

Q-learning 19.60 82.8% 16.9
SARSA 20.11 69.5% 15.4

IAC 18.89 82.2% 13.6
Sn-Plast 19.62 74.5% 16.8

Ours 15.69 100% 11.4

The experimental results in Table 2 once again demonstrate that the proposed method
outperforms other algorithms in terms of the probability of convergence after discovering
the navigation goal, convergence speed, and navigation path length, confirming the su-
periority of the algorithm. Subsequently, an analysis and discussion of the experimental
results can be provided. For the various compared reinforcement learning algorithms, the
speed of developing navigation habits is influenced by two factors: firstly, the speed of
discovering the navigation goal, which refers to the efficiency of the agent in finding the
navigation goal in the environment; and secondly, the convergence speed after discovering
the navigation goal, which pertains to how quickly the agent can form a stable memory of
the optimal navigation path once the goal is found. However, for the proposed method, the
speed of developing navigation habits is solely determined by the speed of discovering the
goal. The proposed method is capable of converging immediately once the agent discovers
the goal, allowing for the rapid formation of stable navigation habits even during initial
encounters with the goal.
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4.1.4. Dynamic Navigation Experiments

The adaptability of the model to dynamic changes in navigation tasks is verified by
adding or removing obstacles on the original navigation path and changing the starting
and ending points of the navigation task. The behavior of the algorithm in response
to environmental changes and changes in navigation tasks is observed. The changes in
obstacles in the environment are primarily perceived through the boundary vector cell.
When the agent moves along the navigation path, if obstacles are detected in the direction
αt, the boundary vector cell indicates that obstacles have been added to the environment
and the agent needs to detour. If no obstacles are detected in the direction αobj, the boundary
vector cell indicates that obstacles have been removed from the environment. The firing
effects of the boundary vector cell sensing the changes in obstacles are shown in Figure 11.
The adjustment effect of navigation paths in dynamic navigation tasks is shown in Figure 12,
and the change in path length with exploration iterations is shown in Figure 13.
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From the experimental results, it can be observed that the proposed method exhibits
rapid adaptation to dynamic navigation tasks and is capable of adjusting to environmental
and task changes. Through the perception of boundary vector cells, the agent can detect
changes in obstacles and accordingly avoid new obstacles or find shorter navigation paths.
This ability is crucial for dealing with uncertainty and dynamic changes in real-world
navigation tasks, and provides strong support for the agent to demonstrate more powerful
navigation capabilities in practical applications.

Then, the average number of exploration iterations required to relearn navigation
habits in dynamic navigation tasks is compared among different algorithms, including
the proposed method and classical reinforcement learning algorithms. The experimental
parameters remain consistent with the previous experiments. The results are shown in
Table 3. From the table, it can be observed that the proposed method has the fastest
convergence speed. Moreover, when the navigation goal remains unchanged, the agent
only requires one exploration iteration to generate a new navigation path.

Table 3. Convergence speed of each algorithm in performing dynamic navigation tasks.

Algorithm
Average Number of Explorations Required to Redevelop Navigation Habits

Reduce Obstacles Add Obstacles Change Starting
Points Change Goals

Q-learning 15.2 13.3 9.8 14.1
SARSA 22.9 13.0 16.4 15.7

IAC 14.9 12.1 10.6 11.8
Sn-Plast 14.3 9.3 11.5 12.2

Ours 1.0 1.0 1.0 10.4
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Subsequently, the experimental results are analyzed and discussed. For the compared
reinforcement learning algorithms, it is necessary to explore the environment and develop
new navigation habits whenever there are changes in the environment or navigation tasks.
However, for the proposed method, it only needs to explore the environment again and
find the new navigation goal when the goal changes. In other cases, the agent can directly
search for a new navigation path guided by the greedy strategy, greatly improving the
speed of adapting to new environments or navigation tasks.

4.2. Robot Experiments on the 3D Simulation Platform

To further validate the effectiveness of the method, navigation experiments were
conducted using a robot platform in the Webots simulation environment. The robot
platform in the Webots simulation environment is illustrated in Figure 14. The Pioneer-3DX
robot was used as the experimental platform. This robot has omnidirectional mobility and
uses a wheeled chassis and electric drive system for motion control. Additionally, the robot
is equipped with various sensors, including a lidar for detecting obstacles and boundaries
of the environment, an IMU for obtaining the robot’s orientation information, and encoders
for measuring the robot’s linear velocity during motion.
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Figure 14. Physical structure diagram of the mobile robot.

The experiments are conducted in three different simulated environments, each with a
size of 10 m × 10 m. The environments are randomly set up with starting points, target
points, and obstacles such as walls and blocks. The parameters of the method are kept
consistent with the previous description. The next position coordinates for the robot are
calculated using the proposed method, and then the robot is controlled to move to the
specified positions, and guided to explore the environment. The motion trajectory of the
robot during the exploration of the environment is shown in Figure 15. Once the navigation
path is generated, the robot follows the trajectory to move towards the navigation goal, as
illustrated in Figure 16. Subsequently, following the design of the 2D experiment, the robot
is tasked with performing dynamic navigation tasks in the environment. The experimental
results are shown in Figure 17.
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circle represents the robot’s current position.
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Figure 17. Motion process of the robot completing dynamic navigation tasks. In the figures, the green
circle represents the navigation starting point, the red circle represents the navigation endpoint, the
black wall represents the obstacle, the blue line represents the robot’s original navigation path, the
yellow dashed line represents the new navigation path, and the pink cube represents new obstacles.

In Figure 15, the blue line represents the robot’s motion trajectory, the red region rep-
resents the navigation goal, and the green color represents the starting point. In Figure 16,
the sequence from left to right represents the robot’s movement from the starting point to
the navigation goal, and the red dashed circle represents the robot’s current position. In
Figure 17, the blue line represents the original navigation path, while the yellow dashed
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line represents the newly generated navigation path. From Figures 15 and 16, it can be
observed that as the robot explores the environment, it is able to discover the target and
generate the navigation path to guide itself towards the goal accurately. Figure 17 shows
that when there are changes in the environment, the robot can use its lidar to perceive the
changes and adjust the navigation path accordingly. When the navigation starting point
changes, the robot can directly use the proposed method to re-plan the navigation path.
Similarly, when the navigation goal changes, the robot can re-explore the environment and
re-plan the navigation path. The robot platform experiment further validates the navigation
performance of the proposed method and emphasizes its practical applicability.

5. Discussion

In this paper, a navigation path search and optimization method based on the rat
brain’s cognitive mechanism was established, which provides a possible explanation for
the navigation mechanism in the rat brain. The running steps of the method are as follows.
Firstly, the robot is allowed to explore the environment freely in order to find the navigation
goal. Once the robot discovers the navigation goal, the greedy strategy is employed
to search for the navigation path. In this stage, boundary vector cells play a crucial
role in recognizing the environment boundaries and obstacles. Finally, the dynamic self-
organizing computational model of hippocampal CA1 place cells is used to optimize the
navigation path.

From the previous section, it can be seen that the proposed model can demonstrate
excellent navigation performance. Firstly, in 2D navigation experiments, the proposed
method was compared with two classic path planning algorithms, the A * algorithm and the
Rolling-Window RRT algorithm. The experimental results show that the proposed method
generates the shortest navigation path. The main reason for this result is that these types
of algorithms have a strong dependence on heuristic functions and parameter selection,
and their path-planning length is also affected by the initial motion angle. However, the
proposed method does not require setting too many parameters, and can generate the
optimal navigation path regardless of the initial motion angle. Then, the proposed method
was compared with several navigation habit development algorithms. The experimental
results demonstrate that the proposed method outperforms other algorithms in terms of
the probability of convergence after discovering the navigation goal, convergence speed,
and navigation path length. The main reason for this result is that the proposed method
is capable of converging immediately once the agent discovers the goal, allowing for the
rapid formation of stable navigation habits even during initial encounters with the goal.
On the contrary, other navigation habit development algorithms require a learning process
when discovering the navigation target and cannot converge immediately.

However, spatial environments or navigation tasks are often constantly changing,
requiring the robot to have strong adaptability. Therefore, dynamic navigation experiments
were also designed to test the adaptability of the method. The experimental results demon-
strate that the proposed method has the fastest convergence speed. The other algorithms
need to explore the environment and develop new navigation habits whenever there are
changes in navigation tasks. However, the proposed method only needs to explore the
environment again and find the new navigation goal when the goal changes. In other cases,
the agent can directly search for a new navigation path.

To further test the method, navigation experiments were conducted using a robot
platform in the 3D simulation environment. The experimental results show that the pro-
posed method can drive real robots to perform excellent navigation. However, the robot
experiments conducted in this paper only involve driving the robot to move in 2D space,
and it is currently not suitable for higher-dimensional space navigation. Firstly, for nav-
igation, obtaining the robot’s position in the environment is the most important task. In
the proposed method, the entorhinal-hippocampal CA3 neural computing model is used
for positioning. It contains various firing models of spatial cells, such as hippocampal
CA3 place cells and grid cells. Secondly, in the path searching and optimization stages, the
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proposed method also uses the firing models of boundary vector cells and hippocampal
CA1 place cells. All the above spatial cells can only exhibit firing characteristics in 2D space
in current physiological research, and these spatial cells only have firing rate mathematical
models in 2D space. In fact, recent physiological research has found that grid cells in the rat
brain can exhibit firing characteristics in 3D space [34]. Therefore, constructing the mathe-
matical models of 3D spatial cells and applying them to navigation in high-dimensional
space will be the objective of future work.

In addition, although the proposed method can find short paths, it must be admitted
that sometimes the shortest path is not the least costly path. For example, a path that is not
the shortest can become the least costly path in a tailwind situation. Therefore, the optimal
navigation path needs to comprehensively consider various influencing factors, rather
than just the shortest distance [35]. In future work, this issue will be taken into account to
achieve more efficient navigation methods.

6. Conclusions

This paper proposes a navigation path search and optimization method for mobile
robots based on the rat brain’s cognitive mechanism, and the mechanism of this method
is based on developing a navigation habit. In order to validate the method, this paper
conducts a series of 2D and 3D robot simulation experiments. By comparing with various
other algorithms, the experimental results demonstrate the significant advantages of the
proposed method in terms of path planning efficiency and shortest navigation path. The
main conclusions are as follows:

• This study draws inspiration from the navigation abilities of rats. It successfully
applies the simulation of the interactions and regulatory mechanisms among various
spatial cells in the rat brain to search and optimize the navigation path of mobile
robots. This demonstrates the potential of the rat brain’s cognitive mechanism in
solving complex navigation problems.

• During the exploration phase, the use of a greedy strategy and the assistance of
boundary vector cells guide the robot to search for locally optimal navigation paths.
Subsequently, a dynamic self-organizing model based on hippocampal CA1 place
cells is constructed to further optimize the navigation paths and improve navigation
efficiency.

• The proposed method not only exhibits advantages in terms of navigation paths and
path planning efficiency but also demonstrates strong adaptability to environmental
and navigation task changes, allowing for the rapid generation of paths that adapt to
new navigation tasks.

However, the proposed method also has some limitations: 1. In physical environments,
robot motion often involves cumulative errors, which are not considered in the proposed
method and may affect the navigation performance due to imprecise localization. 2. If
the spatial environment is complex, the greedy search-based approach may not obtain the
globally optimal path for the current navigation task.

Therefore, future research directions include the following: 1. Applying the proposed
method to real robot systems and incorporating various kinds of external information
as input to improve robot localization during the robot–environment interaction process,
thereby enhancing the robustness of the model. 2. Exploring inspirations from cognitive
mechanisms in different animals and applying them to robot navigation, which can provide
new insights and methods for innovation in navigation algorithms.

In summary, the research findings of this paper lay the foundation for a robot nav-
igation method based on the imitation of the rat brain’s cognitive mechanism and have
significant implications for the field of mobile robotics.
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