
Citation: Guo, Y.; Wang, Y.; Meng, K.;

Zhu, Z. Otsu Multi-Threshold Image

Segmentation Based on Adaptive

Double-Mutation Differential

Evolution. Biomimetics 2023, 8, 418.

https://doi.org/10.3390/

biomimetics8050418

Academic Editor: Chaoran Cui

Received: 3 August 2023

Revised: 5 September 2023

Accepted: 6 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Otsu Multi-Threshold Image Segmentation Based on Adaptive
Double-Mutation Differential Evolution
Yanmin Guo 1, Yu Wang 1,*, Kai Meng 1 and Zongna Zhu 2

1 Shandong Research Institute of Industrial Technology, Jinan 250100, China; guoyanmin@sriit.cn (Y.G.);
mengkai@sriit.cn (K.M.)

2 School of Computer Science and Technology, Shandong University of Finance and Economics,
Jinan 250014, China; 15665756530@163.com

* Correspondence: wangyu@sriit.cn

Abstract: A quick and effective way of segmenting images is the Otsu threshold method. However,
the complexity of time grows exponentially as the number of thresolds rises. The aim of this study is
to address the issues with the standard threshold image segmentation method’s low segmentation
effect and high time complexity. The two mutations differential evolution based on adaptive control
parameters is presented, and the twofold mutation approach and adaptive control parameter search
mechanism are used. Superior double-mutation differential evolution views Otsu threshold picture
segmentation as an optimization issue, uses the maximum interclass variance technique as the
objective function, determines the ideal threshold, and then implements multi-threshold image
segmentation. The experimental findings demonstrate the robustness of the enhanced double-
mutation differential evolution with adaptive control parameters. Compared to other benchmark
algorithms, our algorithm excels in both image segmentation accuracy and time complexity, offering
superior performance.

Keywords: differential evolution; image segmentation; Otsu; threshold

1. Introduction

The technique of images segmentation involves breaking an image up into a number
of distinct, non-overlapping parts and extracting the desired, human-interest-centered
regions. From image processing to image analysis, it is a committed step that makes it
easier for following computer vision, etc. There are other widely used image segmentation
methods in addition to the Otsu threshold image segmentation method [1–3] in the field.
The maximum entropy method, for instance [4]. A well-known edge detection strategy for
extracting edge information from images is the Prewitt image segmentation technique [5].
This method identifies the edges in the image by detecting gradient changes and is based
on gradient calculation of the grayscale values of image pixels. The watershed image
segmentation method [6] is a region-based image segmentation method. In this method,
the image is considered as a terrain map, where the height represents the grayscale value of
the image. Image segmentation is achieved by finding watersheds, which divide the image
into different regions or sets of different regions. The advantage of this method is that it
can preserve areas with clear edges and rich textures in the image. However, there is also a
drawback of over segmentation for images with large uniform areas. The Canny image
segmentation method [7] is a classic edge detection algorithm that can accurately detect
edges in an image. This algorithm determines image edges by detecting gradient changes,
and improves the accuracy and continuity of edges through non maximum suppression,
dual threshold processing, and edge connectivity. The Sobel image segmentation method [8]
is a commonly used edge detection algorithm that is used to detect edges in images. The
Sobel operator is used to calculate the gradient value of image pixels to determine the
position and direction of the image. The Robert image segmentation method [9] is a
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classic edge detection algorithm that applies the Robert operator to convolution the image
and calculates the gradient values between adjacent pixels to determine the position and
direction of the edges. An image segmentation technique based on the Laplacian Gaussian
filter is the log image segmentation approach [10]. By applying Gaussian and Laplacian
filtering procedures to the image, this technique finds edges and other features in the
image. The threshold image segmentation approach is a common one in image processing
technology because of its benefits of simplicity, effectiveness, and strong robustness. Single-
threshold image segmentation and multi-threshold image segmentation are two common
threshold segmentation techniques. The threshold is determined using the Otsu threshold
segmentation technique. The time complexity grows exponentially as the number of
thresholds increases, as does the quantity of calculation.

One might think of the threshold image segmentation approach as an optimization
issue. Researchers are increasingly merging threshold image segmentation with intelligent
optimization algorithms as swarm intelligence optimization techniques grow over time.
For instance, based on the enhanced Firefly algorithm [11], better particle swarm opti-
mization algorithm [12], improved genetic algorithm [13], improved whale optimization
algorithm [14], and improved cuckoo algorithm [15]. You can use these clever optimization
methods to identify appropriate optimization objective functions. The Otsu method and the
maximum entropy method are common objective functions used in image segmentation.

Differential evolution [16] (DE) was proposed by Storn and Price in 1997. Because
of its small control parameters and strong robustness, differential evolution has been
widely concerned by researchers. The basic operations of differential evolution include
initial population, mutation, crossover and selection. As long as the population iteration
conditions are met, the population will iterate continuously to find the optimal solution.
Therefore, differential evolution is also a parallel search algorithm. In recent years, with the
in-depth innovation of research, more and more researchers found that control parameters
and mutation strategies are the main factors that affect the performance of differential
evolution. The key control parameters in differential evolution mainly include population
size NP, mutation operator F and crossover factor CR. Based on this, researchers continue
to study and find variants of differential evolution. In reference [17], AC Sanderson et al.
proposed an improved differential evolution (JADE) using a new mutation strategy of
selecting mutation vectors from an external archived population, and the control parameters
F and CR in the population obey Cauchy distribution and Normal distribution, respectively.
Ryoji Tanabe et al. [18] developed an improved differential evolution algorithm (SHADE)
based on JADE, which guides the selection of control parameters in subsequent iterations
through the number of successful individuals with historical mutations. The experimental
results showed that SHADE outperforms previous state-of-the-art DE algorithms on a large
number of benchmark problems. Wu Deng et al. [19] proposed a differential evolution with
a new hybrid mutation factor and adaptive control parameters. Experimental results show
that compared with other DE variants, the algorithm has better performance on the above
test functions.

The differential evolution algorithm (DE) is a population intelligent optimization
algorithm that searches for the optimal solution by simulating the process of natural evo-
lution. With the continuous deepening of research on differential evolution algorithms,
their application fields are gradually expanding. More and more optimization problems
are combined with differential evolution algorithms to solve the optimal solution, such as
scheduling problems [20], traveling salesman problems [21], and image processing [22].
In scheduling problems, differential evolution algorithms optimize scheduling strategies
and resource allocation to maximize work efficiency or minimize work time. Differential
evolution combined with scheduling problems can handle complex constraint problems
and quickly converge to find the optimal solution. The traveling salesman problem is a
classic combinatorial optimization problem that requires finding the shortest path so that
the traveling salesman can visit several cities and ultimately return to the starting city.
The differential evolution algorithm searches for the optimal solution by adjusting the
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arrangement order of cities, with the goal of minimizing travel and finding the optimal so-
lution for the shortest path. In this problem, differential evolution algorithm can efficiently
search for the global optimal solution. In image processing problems, differential evolution
algorithms are used for image registration, image segmentation, feature extraction, and
image enhancement.

Bird swarm behavior is simulated via particle swarm optimization [23]. In the process
of segmenting a picture, each particle represents a potential segmentation scheme, and the
best segmentation outcome is sought by continual iteration. With the help of pheromone
propagation and reinforcement techniques, the Ant Colony algorithm [24] eventually
achieves the best segmentation outcomes by simulating the behavior of ants as they look
for food. The genetic algorithm [25] mimics the evolution process in nature by repeatedly
iterating the population through selection, crossover, and mutation operations, maintaining
its diversity and exploratory capacity through mutation, and finally discovering the best
answer. Due to its few control parameters, robustness, and difficulty finding optimal
solutions, the differential evolution method [26] performs well and offers advantages in
picture segmentation.

The differential evolution variant tested against pertinent benchmark functions per-
formed really well. Researchers are increasingly using differential evolution to enhance
and optimize image processing outcomes. To determine the ideal threshold and enhance
the performance of image segmentation, Sushi L. Kumar et al. integrated differential evo-
lution with the Otsu threshold segmentation method in reference [26]. The experimental
results demonstrate that the application of differential evolution to image segmentation can
significantly increase the segmentation quality when compared to the segmentation results
obtained using the conventional Otsu threshold segmentation method. However, the over-
all performance of differential evolution depends on the ability to balance global search
and local search. The reason for its greater impact is the selection of control parameters.
However, the above differential evolution proposed by Sushi L Kumar et al. is applied to
threshold image segmentation, with high time complexity and poor robustness. Unable to
meet the processing objectives of multi-threshold image segmentation. In reference [27], He-
len Vicente Humann Ayala et al. proposed an improved differential evolution (BDE) based
on the generation of beta distribution adaptive control parameters F and CR values. In each
iteration, the adaptive control parameters generate random F and CR values, enhancing the
random search ability of the algorithm and improving the performance of the algorithm.
Experimental results show that the improved differential evolution (BDE) is more effective
than the FODPSO algorithm. However, due to the fact that the BDE algorithm randomly
generates the values of control parameters F and CR, it cannot be ensured that the F and
CR values are suitable for the entire iterative process of the algorithm. Based on the above
algorithm. In this paper, a differential evolution based on adaptive double mutation is
proposed for image segmentation. The population is divided according to the fitness value,
and the double-mutation strategy is used to maximally balance the global search ability
and local search ability of the algorithm. In addition, the values of control parameters F
and CR are adaptively adjusted according to different stages of population evolution. The
improved differential evolution in this paper is applied to Otsu multi-threshold image
segmentation, and the maximum inter class variance method is regarded as the objective
function to find the optimal threshold. The experimental results show that the algorithm
is more accurate than other benchmark algorithms in image segmentation, with low time
complexity and strong robustness.

Here, is the rest of the essay: The related work, such as the traditional differential
evolution and Thresholding picture segmentation, are introduced in the second section.
The third section introduces the TRDE algorithm proposed in this article. The fourth
section introduces the experimental results, the fifth section is the analysis and research
discussion of the experimental results, the sixth section is the references and future work,
and the third part describes the improved double-mutation adaptive differential evolution
algorithm (TRDE).
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2. Related Work
2.1. The Classical DE Algorithm

Differential evolution is a population intelligent optimization algorithm. DE algorithm
includes the following four steps: population initialization, mutation operation, crossover
operation and selection operation. The following is the basic process of the DE algorithm:

(1) Population initialization

Randomly generate the initial population, initialize and generate NP individual vectors
in d-dimensional space, denoted as:

xi,g = (x1,g, x2,g, . . . , xd,g) i = 1, 2, . . . , NP (1)

Among them, NP is the population size, and g is the current evolutionary algebra.
The NP individual vectors generated in d-dimensional space are randomly generated, and
the specific formula is as follows:

xi,j = xL
i,j + rand(0, 1)× (xU

i,j − xL
i,j) (2)

In the above formula, xi,j represents the ith randomly generated individual, xU
i,j, xL

i,j
represents the Upper and lower bounds of the ith individual vector, rand(0, 1) represents a
random number generated within the range of (0,1).

(2) Mutation

The DE algorithm achieves individual vector mutation through differential strategy,
which is also the core idea of the DE algorithm. Randomly select several individual vectors
from the population for differential operation to generate differential vectors. Common
mutation strategies are as follows:

1. DE/rand/1:

vi,g = xr1,g + F× (xr2,g − xr3,g) (3)

2. DE/rand/2:

vi,g = xr1,g + F× (xr2,g − xr3,g) + F× (xr4,g − xr5,g) (4)

3. DE/best/1:

vi,g = xbest,g + F× (xr1,g − xr2,g) (5)

4. DE/best/2:

vi,g = xbest,g + F× (xr1,g − xr2,g) + F× (xr3,g − xr4,g) (6)

wherein xr1,g, xr2,g, xr3,g, xr4,g, xr5,g(r1 6= r2 6= r3 6= r4 6= r5) represent five randomly
selected individual vectors from the population that are different from each other, vi,g
represents the variation vector of the ith individual in the generated generation, and F is
the scaling factor.

(3) Crossover

Crossover operation is to cross the generated mutated individual vector with the
parent individual vector to generate an experimental individual vector. The commonly
used binomial cross operation in DE algorithm is as follows:

ui,j,g =

{
vi,j,g i f rand ≤ CR or j = jrand

xi,j,g otherwise
(7)

In the above formula, CR is the crossover operator, jrand is a random integer selected
from {1, 2, . . ., d} to ensure that the mutated individual has at least one individual compo-
nent inherited to the next generation, avoiding the same vector as the parent individual.
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(4) Selection

The selection operation in the DE algorithm adopts a greedy strategy, which selects the
individual vector with the best fitness value as the evolutionary offspring vector through
comparison. The specific formula is as follows:

xi,g+1 =

{
ui,g, i f f (ui,g) ≥ f (xi,g)

xi,g, otherwise
(8)

2.2. The Otsu Threshold Segmentation Method

The maximum inter class variance method [28] was proposed by Japanese scholar
Otsu in 1997. The basic principle of Otsu for image threshold segmentation is to divide the
image into background and target categories based on the grayscale characteristics of the
image, calculate the number of pixels in the image, and solve for the maximum variance
between the image target and background to achieve image threshold segmentation.

For a pair digital image of M × N, where i is the grayscale value, L is the grayscale
level, and the range of grayscale values is [0, L − 1]. ni represents the number of pixels
with grayscale level i, and the probability of grayscale level i appearing in the image is
Pi, then:

Pi =
ni
N

, I = 0, 1, 2, . . . , L− 1 (9)

L−1

∑
i=0

Pi = 1 (10)

Based on the grayscale characteristics of digital images, the pixel points in the image
are divided into two categories: target and background using threshold s, Represented
by H0 and H1. The grayscale values between [0, s] are classified as H0, and the remaining
grayscale values between [s + 1, L − 1] are classified as H1. For the entire image, the
average grayscale value is:

Qs =
L−1

∑
i=0

iPi (11)

The mean of H0 and H1 is:

q0 =
s

∑
i=1

ipi
t0

(12)

q1 =
L−1

∑
i=s+1

ipi
t1

(13)

In the above formula:

t0 =
s

∑
i=0

pi (14)

t1 =
L−1

∑
i=s+1

pi = 1− t0 (15)

Based on the above formula, we can obtain:

qs = t0q0 + t1q1 (16)

The definition of inter class variance is as follows:

σ2
B = t0(q0 − qs)

2 + t1(q1 − qs)
2

= t0q2
0 + t1q2

1 − q2
s

= t0q2
0 + t1q2

1 − (t0q0 + t1q1)
2

= t0t1(q0 − q1)
2

(17)
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Through the above formula, we can see that the s value corresponding to the maximum
inter class variance is the optimal segmentation threshold.

2.3. Existing Problems in Research and Motivation for Improvement

The segmentation criterion for traditional Otsu is the largest variance between the
target and background of the picture, which divides the target and backdrop of the image
into two categories. However, the histogram of the segmented Grayscale typically does
not exhibit a bimodal form, making it challenging to obtain precise image segmentation
findings. To obtain the ideal threshold, many researchers treat threshold picture segmenta-
tion as an optimization problem and pair it with clever optimization methods. The control
settings and mutation approach in the traditional DE algorithm have the most effects on the
algorithm’s overall performance. In the DE algorithm, the important control parameters
are the scaling factor F and the crossover factor CR. The scaling factor F controls the mag-
nitude of differential evolution vector, which affects the convergence ability and Rate of
convergence of the algorithm. The crossover factor CR affects the probability of generating
a vector of experimental individuals in crossover operations to inherit genes from their
parents or mutated individuals. The second part is the improvement of mutation strategy,
balancing the global search ability and local search ability of the algorithm. To sum up,
this paper proposes an adaptive double-mutation differential evolution algorithm (TRDE),
which divides the population according to the fitness value of the population, adopts
corresponding mutation strategies for different sub-populations, and adaptively adjusts the
values of control parameters F and CR to adapt to different stages of population evolution.

3. The TRDE Algorithm

Researchers have enhanced and created variants of the DE algorithm based on it in
order to significantly balance the global and local search capabilities. There are primarily
two components in the DE algorithm that greatly influence how well it performs. The first
step is to adjust the values of the parameters F and CR. The scaling factor F determines the
size of the differential evolution vector and has an impact on the algorithm’s capacity for
convergence and rate of convergence. The possibility of creating a vector of experimental
individuals in crossover operations who would inherit genes from their parents or modified
individuals is influenced by the crossover factor CR. a variety of adaptive parameter control
DE algorithm versions, such as in reference [29]. A differential evolution algorithm based
on dual mutation strategy is proposed for image segmentation. The experimental results
show that this algorithm is competitive with other improved DE algorithms in terms
of optimization accuracy and convergence speed. Vladimir Stanovov et al. proposed a
method in reference [30] to adjust the values of control parameters F and CR based on
fitness values, and increase the biased Lemmer mean and LBR to improve its performance.
The experimental results show that the algorithm performance has been greatly improved.
The second part is the improvement of mutation strategy, balancing the global search ability
and local search ability of the algorithm. Regarding the improvement of mutation strategy,
there are also many variants of DE algorithm. For example, in reference [31], Wan-li Xiang
et al. proposed an enhanced DE algorithm (EDE), which uses a reverse learning strategy to
increase the diversity of the initial population, improves the mutation strategy on the basis
of JADE algorithm, and improves the overall performance of the algorithm. As mentioned
in reference [32], Ali Wagdy Mohamed proposed a mutation strategy based on triangular
mutation rules, which greatly balances the global detection ability and local search ability
of the population.

3.1. Dual Mutation Strategy

The main component of the DE algorithm is the mutation strategy, which can make
the population’s individual evolution vectors and orientations display diversity. Based on
the fitness scores of various population vectors, this article separates the population into
two subpopulations. Mutation strategy 1 is used for populations with high fitness values,
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while mutation strategy 2 is used for populations with low fitness values. In general, it
is simpler to locate the ideal solution close to people with high fitness values or those
with low principle fitness values. Consequently, the dual mutation technique can balance
population diversity and local search capability, speeding convergence.

After initializing the population, calculate the population fitness value, and divide the
population into two subpopulations based on the fitness value. Subpopulation 1 stores the
vector of individuals with high fitness values, while Subpopulation 2 stores the vector of
individuals with poor fitness values. Improved mutation strategy 1:

vi,g = xi,g + Fi × (xdbest,g − xr1,g) + Fi × (xr2,g − xr3,g) (18)

xdbest,g is a random selection of one of the top d% individual vectors from Subpopula-
tion1 as the basis vector. In this article, the selection of the d parameter adopts a linearly
decreasing function. The specific changes in parameter d are as follows:

di =
dmin

dmax
(1− gen

genertations
) + (

dmax − dmin

dmax + dmin
) (19)

This article set dmax = 0.8, dmin = 0.4, gen is the current population evolution alge-
bra, and generations is the total evolution algebra. The variation of d parameter shows a
decreasing trend with the increase of iteration times. As the number of iterations in the
population continues to increase, the fitness values of individual vectors in the population
continuously concentrate in a certain local region. Therefore, in order to improve the local
convergence ability of the population and find the optimal solution, in the later stage of
iteration, the selection of the optimal d% individual vector gradually decreases, acceler-
ating population convergence and enhancing convergence ability. Generally speaking,
individuals with high fitness values or poor principle fitness values are more likely to find
the optimal solution, while individuals with poor fitness values can enhance population
diversity. Therefore, the mutation strategy 2 proposed in this article is as follows:

vi,g = xi,g + Fi × (xr1,g − xr3,g) + Fi × (xr2,g − xr4,g) (20)

Based on the fitness value, randomly select four distinct integers r1, r2, r3, r4 in Sub-
population2, and generate a difference vector for mutation operation to improve popula-
tion diversity.

3.2. Parameter Adaptation

The fixed values of the control parameters F and CR in the traditional DE algorithm
make it impossible for them to adapt to the algorithm’s needs at various phases of evolution.
As a result, adaptive parameter control techniques are being used by more and more DE
variations. In general, a DE algorithm should have strong global search capabilities, retain
population variety as much as feasible in the early stages of population evolution, and look
for the world’s best answer. In the later stage of population evolution, as the number of
iterations keeps rising, it becomes increasingly important to have strong local convergence
capacity and accelerate convergence.

The scaling factor F in the DE algorithm is closely related to the Rate of convergence,
which controls the amplitude of the difference vector. In the early stages of population
evolution, a larger value of the scaling factor F is beneficial for maintaining population
diversity and ensuring that the algorithm searches throughout the entire solution space. As
the number of iterations continues to increase, in the later stage of evolution, the optimal
solution of the individual vector gradually concentrates in a certain local region. It is
necessary to gradually reduce the value of F and strengthen the local convergence ability of
the algorithm. The crossover factor CR affects the probability of experimental individuals
generated by crossover operations inheriting genes from mutated individuals or parent
individuals. Generally speaking, in the early stages of algorithm evolution, to ensure the
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algorithm’s global search ability, the CR value is small. In the later stage of algorithm
evolution, in order to improve the local search ability of the algorithm with a larger CR
value, combined with changes in the fitness value of individual vectors in the population,
this paper proposes adaptive parameter control as follows:

Fi = Fmin − ln(
Fmax

Fmin
)× (

gen
generations

)
2

(21)

where gen represents the evolutionary algebra of the current population, and generations
represents the total number of iterations, Fmax represents the maximum value for setting
the scaling factor, Fmin represents the minimum value for setting the scaling factor, This
article set Fmax = 0.7, Fmin = 0.2.

The changes in the scaling factor F proposed above show a decreasing trend, which is
consistent with the convergence characteristics of differential evolution.

CRi = (1− CRmin

CRmax
)× (

gen
generations

)
2
+ ln

CRmax

CRmin
× (

CRmin

CRmax − CRmin
) (22)

where gen represents the evolutionary algebra of the current population, and generations
represents the total number of iterations, CRmax represents the maximum value for setting
the crossover factor, and CRmin represents the minimum value for setting the crossover
factor. In this article, set CRmax = 0.9, CRmin = 0.1. The change in CR in the above
formula shows a monotonic increasing trend, which greatly balances the contradiction
between population diversity and Rate of convergence. From the test results, it can be
seen that the improved adaptive control parameter method has advantages over other
benchmark algorithms.

3.3. Pseudo Code of TRDE

1:
Initialize population p individuals and calculate their fitness values, NP = 30, gen = 1,
generations = 100;

2: for gen = 1 to generations do
3: for i = 1 to NP do
4: F = Fmin − ln( Fmax

Fmin
)× (

gen
generations )

2

5: CR = (1− CRmin
CRmax

)× (
gen

generations )
2
+ ln CRmax

CRmin
× ( CRmin

CRmax−CRmin
)

6: Implement mutation in Equations (18) and (20);
7: Implement crossover in Equation (7);
8: Implement selection in Equation (8);
9: end for
10: gen = gen + 1;
11: end for

4. Experiment
4.1. Benchmarking Datasets and Benchmarking Algorithms

Better adaptive double mutation; in this work, the segmentation performance of the
differential evolution (TRDE) method is evaluated using five thresholds between [2,6]
and eight test images from the Berkeley database, along with the other five benchmark
algorithms. The JADE method with archive operations, the SHADE algorithm, which is an
improvement of JADE, the BDE algorithm, the HSDE algorithm with adaptive parameter
control [33], and the SAF-DE algorithm [34] are some of the benchmark algorithms utilized
in this article.

The population size NP in this article is universally fixed to 30 and the maximum
number of iterations is set to 100 in order to guarantee the validity of the experimental
results. The TRDE algorithm and five other benchmark algorithms are each run 30 times
for the chosen 8 test images. Finally, the experimental impact of picture segmentation is
assessed using evaluation indicators. Figure 1 illustrates the picture segmentation outcomes
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of the TRDE method for 8 photos and 5 thresholds within the range of [2,6]. Additionally,
three comparing methods (BDE, JADE, and SAF-DE) were chosen at random for this study
in order to display the segmented picture findings in Figures 2, A1 and A2.
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Figure 2. (a) Represents the original image and (b) the segmented image with TRDE, (c) the Canny
image segmentation method, (d) the Sobel image segmentation method, (e) the Robert image seg-
mentation method, and (f) the Prewitt image segmentation method.

This article not only compares the improved TRDE algorithm with five other bench-
mark algorithms applied to Otsu threshold segmentation, but also compares the TRDE
algorithm with other image segmentation methods (Prewitt, Sobel, Canny, Robert) for
image segmentation, and uses evaluation indicators for quantitative statistics.
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4.2. Common Image Segmentation Quality Evaluation Standards

In this study, we used benchmark techniques for image segmentation as well as the
improved adaptive double-mutation differential evolution. According to references [35,36],
we discovered that the structural similarity (SSIM) and the peak signal-to-noise ratio
(PSNR), as well as the standard deviation of fitness value and the running time of the
algorithm, are the most frequently used image segmentation quality evaluation criteria.

(1) Structural Similarity (SSIM)

Digital images have certain similar features in space, and each pixel has correlation
between them. Namely, structural similarity, by comparing structural information, further
examining the distortion of the image. SSIM is a measure of image distortion based on
human visual characteristics, defined as follows:

SSIM(x, y) =
(2µxµy + C1)(2σx,y + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(23)

In the above formula, µx and µy represent the mean of x and y, respectively, while
σx and σy represent the variance of x and y. C1 and C2 are two positive constants. The
value range of SSIM is 0 to 1. In practical operation, it is necessary to first unify the image
and also perform grayscale processing on the image. Usually, the larger the SSIM value,
the higher the structural similarity between two images. The SSIM value of the same two
images is equal to 1.

(2) Peak signal-to-noise ratio (PSNR)

The peak signal-to-noise ratio (PSNR) is an objective standard for evaluating images,
typically used to measure the quality of compressed reconstructed images, measured in
decibels (DB). Due to the fact that PSNR is based on error sensitive image quality evaluation
and does not take into account the visual characteristics of the human eye, there may be
inconsistencies between measurement results and subjective perception. The definition of
PSNR is as follows:

PSNR = 10 log10
2552

MSE
(24)

MSE refers to the mean squared error of the original image and the segmented image.
The definition of MSE is as follows

MSE =

M
∑

i=1

N
∑

j=1
(x(i, j)− y(i, j))2

M× N
(25)

In the above formula, x(i, j) and y(i, j) represent the original image and the segmented
image, respectively, while MSE represents the average of the sum of squares of the pixel
values of the original image and the segmented image. Generally speaking, the higher
the PSNR value, the higher the similarity between the original image and the segmented
image, and the higher the segmentation quality of the resulting image.

The population size and number of iterations for the improved adaptive double-
mutation differential evolution (TRDE) and other benchmark algorithms (JADE, SHADE,
BDE, HSDE) in this study are set to the identical values. Run to get the segmented image
and ideal threshold for each test image. To assess its segmentation effect, we employ
the widely used evaluation criteria PSNR and SSIM for picture segmentation quality.
Standard deviation and the algorithm’s average execution time should be used to assess
the algorithm’s performance.

Figure 2 shows the segmentation results obtained by the TRDE image segmentation
algorithm and four other image segmentation methods. It can be seen that the TRDE
algorithm preserves as much structural information of the original image as possible by
selecting the optimal threshold, resulting in better image segmentation results. The images
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segmented by other edge detection algorithms may have noise or rough edges, and the
segmentation effect is shown in Figure 2.

5. Discussion and Analysis of Experimental Results
Result Analysis

This study selected test images from the Berkeley segmentation dataset with each
image size of 200,200, applied the TRDE algorithm and other benchmark algorithms to
image segmentation, and evaluated the segmented images using evaluation indicators
PSNR and SSIM. This study then conducted testing and analyzed experimental results.
Table 1 displays the obtained PSNR data, while Table 2 displays the SSIM results.

Table 1. PSNR metrics for the JADE, SHADE, TRDE, SAF-DE, BDE and HSDE.

Images K Mean PSNR Value

JADE SHADE TRDE SAF-DE BDE HSDE Rank

baboon 2 16.7378 15.9039 16.4391 15.6738 15.5456 15.7254 2
3 16.3789 16.0976 17.8936 16.0986 16.8789 16.7836 1
4 19.2585 18.3252 19.3562 19.0358 19.2329 19.0231 1
5 21.2548 20.1899 22.8248 21.9078 22.9806 21.4678 2
6 22.3584 20.3145 23.0254 21.3023 22.1759 21.3985 1

barbara 2 18.7526 16.5962 18.3695 18.2036 18.2684 18.3206 2
3 20.2562 19.3654 21.1485 20.3698 21.0369 21.0589 1
4 22.2562 19.2585 22.5895 21.1485 21.6584 21.8548 1
5 23.5412 20.6285 24.5621 22.6541 24.6254 22.1523 2
6 23.0956 20.6598 24.3564 23.4589 24.2136 23.6984 1

cameraman 2 15.3405 14.4698 16.4223 15.4242 15.1344 15.1144 1
3 18.6464 17.4566 18.7352 17.4547 17.4554 18.5468 1
4 19.6876 18.4645 20.4687 20.4564 20.4578 19.4527 1
5 21.2524 20.4546 22.4540 22.8676 22.4562 20.7462 2
6 20.4766 20.7862 22.6786 21.4545 22.4564 21.4532 1

lena 2 19.8757 18.4666 20.4566 19.4646 19.4534 19.6783 1
3 19.4587 18.4534 20.4782 19.7822 20.8786 19.4572 2
4 20.8677 19.4568 20.8778 20.7864 21.4564 20.7862 2
5 22.7862 21.7867 23.7676 22.2135 22.7824 21.4554 1
6 22.7862 21.8672 23.7867 22.7862 23.4278 22.7240 1

peppers 2 20.2542 19.4534 20.5538 20.1230 20.2013 20.4878 1
3 23.4564 22.4545 23.4776 23.1463 23.4564 23.4533 1
4 24.4548 23.5821 25.4867 25.4534 23.4534 24.4532 1
5 26.7863 24.4534 26.4564 27.4646 27.4564 25.1320 4
6 24.4364 23.4534 26.1355 26.5368 26.4533 25.3451 3

plane 2 17.1355 17.1355 17.1515 17.1235 17.1351 17.2433 1
3 18.3452 18.3456 18.3513 18.3153 17.3531 18.5678 2
4 23.3153 19.1355 24.1353 23.3158 24.3153 21.4564 2
5 23.3459 21.4648 25.3153 24.3531 24.3534 23.4556 1
6 23.3453 23.3483 23.4155 23.3453 23.1354 23.6833 1

saturn 2 17.4324 17.4564 18.3455 17.3431 17.3154 17.4545 1
3 19.3453 19.3453 20.4563 19.2112 19.2133 19.7896 1
4 21.5645 21.3453 22.2543 22.3543 22.1546 22.3453 3
5 22.4546 22.3122 23.4128 23.1234 23.3434 23.3456 1
6 22.4545 22.5456 23.3432 22.9256 22.1531 22.4547 1

woman 2 15.3123 16.5467 16.4565 16.4532 16.2135 16.4534 2
3 19.3434 18.4564 19.5369 19.4512 19.3155 19.4829 1
4 21.3453 20.4565 21.3355 21.1233 21.3541 21.1442 3
5 22.3468 21.3446 22.1238 21.3453 21.1243 21.7978 2
6 21.8786 21.4678 22.3431 20.3453 21.2154 21.7828 1
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Table 2. SSIM metrics for the JADE, SHADE, TRDE, SAF-DE, BDE and HSDE.

Images K Mean SSIM Value

JADE SHADE TRDE SAF-DE BDE HSDE Rank

baboon 2 0.64553 0.65347 0.68348 0.63453 0.63877 0.67865 1
3 0.74534 0.75866 0.75877 0.71238 0.78767 0.78324 3
4 0.83456 0.81234 0.83345 0.83455 0.81437 0.81537 2
5 0.86455 0.88434 0.91433 0.90453 0.87373 0.82245 1
6 0.94483 0.85665 0.94564 0.97684 0.94568 0.89786 2

barbara 2 0.38764 0.44678 0.45464 0.39448 0.38465 0.34646 1
3 0.54645 0.44455 0.57876 0.57864 0.57846 0.56776 1
4 0.70453 0.58886 0.71344 0.69874 0.71044 0.69854 1
5 0.84453 0.69456 0.87213 0.82465 0.85345 0.72453 1
6 0.80453 0.68764 0.89464 0.81345 0.88644 0.77646 1

cameraman 2 0.40456 0.45645 0.44545 0.43454 0.41343 0.3464 2
3 0.56864 0.54615 0.59456 0.58456 0.54565 0.64535 2
4 0.61534 0.65312 0.64631 0.68946 0.66464 0.70134 5
5 0.72125 0.70456 0.74568 0.74561 0.74564 0.74562 1
6 0.74565 0.74564 0.79563 0.79735 0.74564 0.77645 2

lena 2 0.64566 0.55445 0.65348 0.64556 0.64564 0.65434 2
3 0.84561 0.84676 0.86462 0.74678 0.84564 0.84896 1
4 0.86878 0.84345 0.87354 0.82345 0.86876 0.83455 1
5 0.90432 0.89456 0.88473 0.89845 0.89854 0.88456 5
6 0.88456 0.84562 0.90345 0.88456 0.86456 0.88455 1

peppers 2 0.49456 0.44564 0.55464 0.54564 0.54562 0.53245 1
3 0.53455 0.54545 0.54567 0.58765 0.5345 0.53452 2
4 0.53453 0.54534 0.54544 0.55433 0.53433 0.54524 2
5 0.53153 0.55343 0.54354 0.54533 0.51234 0.57866 3
6 0.56456 0.54534 0.56453 0.56467 0.56456 0.56465 5

plane 2 0.14564 0.18676 0.19564 0.15454 0.15464 0.14564 1
3 0.28666 0.24568 0.25466 0.24564 0.25645 0.22343 3
4 0.77456 0.42645 0.79465 0.74564 0.78678 0.47864 1
5 0.78456 0.74654 0.88456 0.85664 0.75566 0.74424 1
6 0.74568 0.74678 0.84568 0.78745 0.76456 0.74566 1

saturn 2 0.84566 0.84564 0.85475 0.85466 0.81564 0.85476 2
3 0.84564 0.85464 0.88766 0.84564 0.84564 0.84564 1
4 0.98764 0.84564 0.84564 0.86456 0.86456 0.84564 4
5 0.95434 0.84543 0.95443 0.94564 0.84564 0.84534 1
6 0.95343 0.95434 0.97163 0.93454 0.95464 0.94564 1

woman 2 0.36466 0.36866 0.36456 0.35646 0.36454 0.36456 3
3 0.46546 0.45464 0.46556 0.45646 0.45466 0.46456 3
4 0.45646 0.46456 0.48655 0.44568 0.44564 0.44566 1
5 0.55641 0.55464 0.55466 0.46466 0.56456 0.56466 4
6 0.56567 0.53245 0.74313 0.66466 0.67645 0.54566 1

These two evaluation indicators need to be considered together to evaluate the seg-
mentation effect of an image. The larger the PSNR value and SSIM value, the better the
segmentation effect of the image. The smaller the value, the worse the segmentation effect.
Table 1 shows the peak signal-to-noise ratio (PSNR) calculated by the TRDE, JADE, SHADE,
BDE, and HSDE algorithms for 8 test images at different thresholds. From Table 1, we can
see that the segmentation performance of the TRDE algorithm is overall superior to other
benchmark algorithms, with the PSNR values of the vast majority of segmented images
ranking first. For Baboon images, when the thresholds are 3, 4, and 6, the PSNR values
of image segmentation rank first. For camera images, only when the threshold is 5, the
PSNR values of image segmentation rank second, and the rest of the PSNR values rank
first. For pepper images, when the thresholds are 2, 3, and 4, the PSNR values of image
segmentation rank first. For Saturn images, when the thresholds are 2, 3, 5, and 6, the
PSNR values of image segmentation rank first. However, there are very few cases where
the quality of image segmentation is poor. For example, when the pepper image threshold
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is 5, 6, the PSNR value of image segmentation ranks third and fourth. This is because the
essence of differential evolution is a random algorithm, which may lead to poor image
segmentation results.

Table 2 compares the segmented picture’s Structural Similarity Index (SSIM) to the
effects of other benchmark algorithms JADE, SHADE, BDE, and HSDE on image segmenta-
tion. All SSIM scores for the Barbara image rank top for the 8 test images that were chosen.
At thresholds of 3, 4, and 6, the TRDE algorithm performs the best image segmentation for
the Lena image. According to the experimental findings, the TRDE algorithm successfully
segments the great majority of images.

In comparison to other picture segmentation techniques, Table 3 displays the TRDE
algorithm’s findings for the Structural Similarity Index (SSIM). The results of the TRDE
algorithm applied to picture segmentation are shown in Table 4 along with comparisons to
other image segmentation techniques. In contrast to standard SSIM, MS-SSIM evaluates
the final assessment result by comparing the similarity of images at several scales and
weighting the similarity at various scales. This paper presents an improved differential
evolution technique for threshold image segmentation, which chooses an optimal threshold
to preserve as much of the structural information of the original image as possible after
segmentation. Due to the possible presence of noise or rough edges in the images segmented
by edge detection algorithms, the structural similarity between the segmentation results
and the original image may decrease. Therefore, the experimental results of the SSIM and
MS-SSIM indicators for the segmented images of the TRDE algorithm in Tables 3 and 4 are
higher than those of the other four edge detection methods (Prewitt, Sobel, Canny, Robert).

Table 3. SSIM metrics for the TRDE, Canny, Prewitt, Robert and Sobel methods.

Images Average SSIM Values of TRDE and Other Segmentation Methods

TRDE Canny Prewitt Robert Sobel

baboon 0.29329 0.00431 0.00075 0.00013 0.00363
barbara 0.33279 0.01241 0.01124 0.01231 0.00224
cameraman 0.61859 0.12219 0.11320 0.13265 0.10808
lena 0.42494 0.01050 0.00564 0.01130 0.00046
peppers 0.35451 0.01830 0.00462 0.00232 0.00124
plane 0.63998 0.00572 0.00525 0.00348 0.00839
saturn 0.73260 0.53086 0.50650 0.50648 0.49680
woman 0.39927 0.01021 0.00432 0.01436 0.00868

Table 4. MS-SSIM metrics for the TRDE, Canny, Prewitt, Robert and Sobel methods.

Images Average MS-SSIM Values of TRDE and Other Segmentation Methods

TRDE Canny Prewitt Robert Sobel

baboon 0.29904 0.00252 0.00176 0.00263 0.00634
barbara 0.33919 0.01056 0.01054 0.00547 0.31222
cameraman 0.60684 0.12314 0.11637 0.13835 0.11504
lena 0.42384 0.00861 0.00479 0.00835 0.00339
peppers 0.35338 0.01537 0.00054 0.00264 0.00203
plane 0.63590 0.00322 0.00384 0.00548 0.01415
saturn 0.72052 0.54405 0.51520 0.51948 0.51394
woman 0.38647 0.00535 0.01222 0.02372 0.01807

The similarity index (UQI) of the TRDE algorithm used for picture segmentation is
displayed in Table 5 along with comparisons to other image segmentation techniques. The
UQI score ranges from 0 to 1, and a greater number denotes a higher degree of similarity and
picture quality between the two photos. The UQI indicator thoroughly takes into account
the mean, variance, and covariance of each image in order to assess how similar and
high-quality each image is. Table 5 displays the experimental outcomes of the UQI picture
quality evaluation index. The table shows that the TRDE algorithm consistently performs
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well when compared to other picture segmentation techniques. The Canny algorithm,
for instance, places first and the TRDE method, second in photos such as Barbara and
Lena. In cameraman images, the TRDE algorithm ranks first. Overall, TRDE has strong
stability when applied to image segmentation algorithms, resulting in good segmentation
image quality.

Table 5. UQI metrics for the TRDE, Canny, Prewitt, Robert and Sobel methods.

Images Average UQI Values of TRDE and Other Segmentation Methods

TRDE Canny Prewitt Robert Sobel

baboon 0.0001246 0.0001007 0.0001474 0.0001175 6.2078237901 × 10−5

barbara 0.0001317 0.0001752 0.0001240 9.5289199533 × 10−5 7.0011508332 × 10−5

cameraman 0.0001796 0.0001611 0.0001006 9.8649176392e × 10−5 8.0869347378 × 10−5

lena 0.0001380 0.0001681 0.0001196 8.9136782626e × 10−5 6.3427345646 × 10−5

peppers 0.0001242 0.0001971 0.0001118 0.0001234 7.4385365087 × 10−5

plane 0.0001819 0.0001447 0.0001532 7.4707859548 × 10−5 5.1055016436 × 10−5

saturn 0.0001673 0.0001524 0.0002356 0.0001255 0.0001545
woman 0.0001307 0.0001239 0.0001501 9.6613189674 × 10−5 6.2780501489 × 10−5

Taking into account the experimental results in Tables 3–5, the quantitative results show
that the improved differential evolution algorithm (TRDE) applied to image segmentation
has better image segmentation quality, strong algorithm robustness, and fast convergence
speed compared to other image segmentation methods.

The enhanced adaptive double-mutation differential evolution (TRDE) and the other
five benchmark algorithms (JADE, SHADE, BDE, SAF-DE, HSDE) are shown in Table 6
along with their average running times. The TRDE algorithm’s average running time is
generally faster than other algorithms’ for photos of peppers and women. When the thresh-
old is 2 or 3, the TRDE algorithm’s average running time for plane images is marginally
greater than that of other techniques. Overall experimental findings demonstrate that this
method’s rate of convergence is quicker than that of the other five benchmark algorithms
(JADE, SHADE, BDE, SAF-DE, HSDE).

Table 6. Average execution time for JADE, SHADE, TRDE, SAF-DE, BDE and HSDE.

Images K Execution Times (s)

JADE SHADE TRDE SAF-DE BDE HSDE Rank

baboon 2 1.44564 1.46456 1.41345 1.67615 1.97935 1.45685 1
3 1.46766 1.48766 1.44564 1.84343 1.64564 1.44565 1
4 1.68786 1.44646 1.44866 1.64886 1.98676 2.24568 2
5 1.58675 1.44545 1.44564 1.77846 2.78678 2.86762 2
6 1.53436 1.45346 1.45334 1.45444 2.13454 2.34535 1

barbara 2 1.45341 1.43482 1.42345 1.74332 1.78734 1.45434 1
3 1.57863 1.48312 1.44563 1.85536 1.97883 1.44532 2
4 1.51456 1.41651 1.41616 1.85687 2.04564 2.54554 1
5 1.51536 1.45465 1.45443 1.95434 2.05446 2.34535 1
6 1.54533 1.44535 1.42463 1.94564 2.14534 2.34565 1

cameraman 2 1.48434 1.44535 1.44533 1.85433 1.85435 1.53155 1
3 1.55643 1.45645 1.54564 1.94564 1.94334 1.55334 2
4 1.54534 1.45465 1.45646 1.95645 2.35645 2.05645 2
5 1.76466 1.45666 1.58466 2.18466 2.15648 2.50546 2
6 1.66465 1.54566 157646 2.14564 2.24645 2.54564 2

lena 2 1.54646 1.55646 1.45645 1.85643 1.94566 1.54561 1
3 1.56448 1.54646 1.44665 1.74878 1.45648 1.45651 1
4 1.56468 1.56465 1.66466 1.95654 2.44564 2.44569 3
5 1.61235 1.54564 1.64566 2.3464 2.14564 2.46466 3
6 1.68645 1.53455 1.56464 2.45646 2.24345 2.45345 2
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Table 6. Cont.

Images K Execution Times (s)

JADE SHADE TRDE SAF-DE BDE HSDE Rank

peppers 2 1.95646 1.96456 1.84654 2.35465 2.86460 1.95640 1
3 1.46456 1.96465 1.86464 2.64564 2.36465 1.95643 2
4 2.05464 1.95465 1.45646 2.64565 2.64455 2.45662 1
5 2.31534 2.54344 1.94533 2.55345 2.41546 2.85606 1
6 2.53434 2.34533 2.13545 2.75345 2.45344 2.45647 1

plane 2 1.64646 1.45456 1.74538 1.87546 2.05445 1.55466 4
3 1.84645 1.54556 1.64560 1.91454 1.94564 1.54565 3
4 1.61556 1.54646 1.66456 1.95645 2.64665 2.53455 3
5 1.73453 1.54534 1.45343 2.04344 2.25434 2.35453 1
6 1.65546 1.54567 1.54564 2.06464 2.24567 2.44564 1

saturn 2 1.68645 1.54654 1.56488 1.98648 1.93543 1.55433 2
3 1.74545 1.68463 1.63543 2.13535 2.15343 1.83543 1
4 1.74564 1.64556 1.64564 2.16456 2.35645 2.55466 2
5 2.14564 1.75465 1.75463 2.16546 2.34566 2.64864 1
6 1.95465 1.84645 1.75646 2.25646 2.45643 2.75456 1

woman 2 1.95646 1.94543 1.85645 2.24564 2.46455 2.04645 1
3 2.54564 2.35645 2.35642 2.66465 2.25646 2.65646 1
4 2.98468 1.61556 1.54564 1.75648 2.46457 2.06456 1
5 1.68466 1.56464 1.58468 2.18678 2.17867 2.48442 2
6 1.78498 1.64848 1.54846 2.18468 2.58468 2.24564 1

Tables 1, 2, 6 and 7 illustrate the overall effectiveness of the enhanced adaptive double-
mutation differential evolution (TRDE) in this study. The usual segmentation quality
evaluation standards PSNR and SSIM are used to assess the segmented image. The im-
proved adaptive double-mutation differential evolution has greater performance than
previous benchmark algorithms, as can be observed from the experimental data listed in
the table. Tables 1 and 2 demonstrate that, when used for image segmentation, the method
has good segmentation capabilities. Table 6 demonstrates that the enhanced differential
evolution (TRDE) is more effective and has a faster Rate of convergence than previous
algorithms. Table 7 demonstrates the TRDE algorithm’s strong resistance to the Otsu
threshold image segmentation fitness function.

Table 7. Standard deviation of the fitness value (k = 2, 3, 4, 5, 6).

Images K Standard Deviation of Fitness Value

JADE SHADE TRDE SAF-DE BDE HSDE Rank

baboon 2 0 0.03543 0 0.012354 0 0.04564 1
3 0.01453 0.03453 0.00434 0.00564 0.00478 0.04698 1
4 0.04552 0.04678 0.00135 0.04345 0.04544 0.01045 1
5 0 0.04538 0.00456 0.00879 0.06453 0.03455 2
6 0.01345 0.04344 0.00345 0.00456 0.03455 0.00134 2

barbara 2 0.03464 0.14563 0 0.04538 0.05464 0.08687 1
3 0.05464 0.34575 0.04564 0.05456 0.35644 0.15312 1
4 0.04568 0.34565 0.03456 0.04564 0.24564 0.07875 1
5 0.05468 0.37545 0.03436 0.04565 0.45344 0.07645 1
6 0.04567 0.56542 0.01345 0.08785 0.04634 0.03785 1

cameraman 2 0.05464 0.04564 0.00154 0.03456 0.01456 8.61 ×
10−6 2

3 0.00785 0.04564 0.00325 0.00453 0.04534 0.00354 1
4 0.56546 0.45687 0.57544 0.64843 0.68454 0.69434 3
5 0.01587 0.03455 0.00534 0.00045 0.01543 0.02543 2
6 0.00854 0.02345 0.00454 0.03446 0.04566 0.00456 1
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Table 7. Cont.

Images K Standard Deviation of Fitness Value

JADE SHADE TRDE SAF-DE BDE HSDE Rank

lena 2 0.05464 0.34564 0.00546 0.54644 0.14545 0.05944 1
3 0.05466 0.45664 0.02365 0.14665 0.37869 0.66780 1
4 0.15646 0.24564 0.02654 0.06544 0.53565 0.06656 1
5 0.07456 0.14646 0.06545 0.04545 0.15765 0.05687 4
6 0.04383 0.11346 0.02456 0.00767 0.04564 0.01546 2

peppers 2 0.01646 0.34377 0.01343 0.24668 0.05445 0.14546 1
3 0.04566 0.15464 0.00645 0.14566 0.14566 0.06456 1
4 0.05430 0.16464 0.03434 0.06458 0.14645 0.04555 1
5 0.04455 0.17354 0.01544 0.35434 0.04556 0.05462 1
6 0.04645 0.08783 0.02345 0.07376 0.55388 0.03453 1

plane 2 0.04345 0.34564 0.00876 0.27866 0.38686 0.06778 1
3 0.03324 0.23453 0.00454 0.00876 0.34535 0.15434 1
4 0.08554 0.15464 0.03545 0.04535 0.12455 0.15344 2
5 0.04445 0.25435 0.04561 0.03456 0.25464 0.0345 3
6 0.04565 0.45345 0.06771 0.06452 0.04562 0.0545 5

saturn 2 0.03245 0.04545 0 0.04355 0 0.03454 1
3 0.04564 0.05464 0.04554 0.04565 0.54434 0.04543 2
4 0.09754 0.14564 0.04544 0.15465 0.04564 0.05445 1
5 0.14455 0.09787 0.05644 0.04564 0.24564 0.15444 2
6 0.02453 0.24534 0.00454 0.05645 0.14534 0.07456 1

woman 2 0.15654 0.15767 0.00112 0.15642 0.00456 0.14567 1
3 0.05464 0.15644 0.05244 0.35644 0.34564 0.00025 2
4 0.05456 0.45644 0.04567 0.25465 0.05464 0.23457 1
5 0.05784 0.15644 0.01544 0.00042 0.00645 0.05434 2
6 0.04544 0.15464 0.04244 0.15464 0.01544 0.09798 2

6. Conclusions

The adaptive double-mutation differential evolution method (TRDE) for picture seg-
mentation is proposed in this research and employs Otsu as the goal function. In addition,
compare this approach to five other benchmark algorithms (JADE, SHADE, BDE, SAF-DE,
and HSDE), compute PSNR and SSIM values for the segmented images, determine the
average algorithm running time, and thoroughly evaluate the technique’s performance.
According to the experimental findings, the TRDE algorithm performs the best overall
inside the [2,6] threshold range. Finally, the robustness of the method to the fitness function
of Otsu threshold image segmentation was tested using the standard deviation of fitness
values.

In future work, we will carry out studies from two aspects, improving different
mutation strategies and optimizing the impact of adaptive control parameters on threshold
selection for differential evolution. On the other hand, different threshold segmentation
techniques are used to determine the optimal threshold.
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Figure A1. (a) Represents the original image, (b) segmented image with two thresholds, (c) seg-
mented image with three thresholds, (d) segmented image with four thresholds, (e) segmented im-
age with 5 thresholds, (f) segmented image with six thresholds (BDE). 

  

Figure A1. (a) Represents the original image, (b) segmented image with two thresholds, (c) segmented
image with three thresholds, (d) segmented image with four thresholds, (e) segmented image with
5 thresholds, (f) segmented image with six thresholds (BDE).
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Figure A2. (a) Represents the original image, (b) segmented image with two thresholds, (c) seg-
mented image with three thresholds, (d) segmented image with four thresholds, (e) segmented im-
age with 5 thresholds, (f) segmented image with six thresholds (JADE). 

  

Figure A2. (a) Represents the original image, (b) segmented image with two thresholds, (c) segmented
image with three thresholds, (d) segmented image with four thresholds, (e) segmented image with
5 thresholds, (f) segmented image with six thresholds (JADE).
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Figure A3. (a) Represents the original image, (b) segmented image with two thresholds, (c) seg-
mented image with three thresholds, (d) segmented image with four thresholds, (e) segmented im-
age with five thresholds, (f) segmented image with six thresholds (SAF-DE). 
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