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Abstract: The purpose of prosthetic devices is to reproduce the angular-torque profile of a healthy
human during locomotion. A lightweight and energy-efficient joint is capable of decreasing the
peak actuator power and/or power consumption per gait cycle, while adequately meeting profile-
matching constraints. The aim of this study was to highlight the dynamic characteristics of a bionic
leg with electric actuators with rotational movement. Three-dimensional (3D)-printing technology
was used to create the leg, and servomotors were used for the joints. A stepper motor was used
for horizontal movement. For better numerical simulation of the printed model, three mechanical
tests were carried out (tension, compression, and bending), based on which the main mechanical
characteristics necessary for the numerical simulation were obtained. For the experimental model
made, the dynamic stresses could be determined, which highlights the fact that, under the conditions
given for the experimental model, the prosthesis resists.

Keywords: design; biped walking; dynamic; stresses; digital image correlation; mechanical properties
of PLA; finite element analysis

1. Introduction

Over time, prostheses made to replace missing limbs, or to replace missing parts of a
person’s limbs, have kept pace with the evolution of technology. Currently, to manufacture
a prosthesis, the design is carried out down to the smallest detail of the parts used in the
assembly of the final product. According to the World Health Organization, approximately
0.5% of the global population uses or requires a prosthesis or orthosis. Of the 40 million
patients requiring specialist treatment globally, approximately two-to-four times as many
people attend services dedicated to orthotic treatment [1,2].

The goal of modern prostheses is to replicate [3] the function of the replaced limb or
organ in the most capable and discreet way possible. However, even the most advanced
transtibial prostheses available today only passively adjust the ankle position during the
swing phase of the gait, and return some of the user’s gravitational input [4,5]. To greatly
improve the quality of life of a transtibial amputee, new technologies and approaches must
be used to create a robotic ankle prosthesis that can perform similarly to, if not better than,
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the equivalent of the able-bodied human ankle. An example of a bionic prosthetic lower
limb was developed by the US Army through the Medical Research and Materiel Command
(USAMRMC) [6]. The project developed by USAMRMC is called SPARKy (Spring Ankle with
Regenerative Kinetics), and aims to bring full working ankle function to transtibial amputees,
especially those injured serving in the military who want to be able to return to active duty.

Another active transfemoral prosthesis that allows the reproduction of average walk-
ing at ground level is the Cyberlegs Beta-Prosthesis [7]. This prosthesis consists of an elastic
actuator in series with a parallel spring, to store energy captured during walking at the start
of a step, and release it during push-off, to provide extra energy [8]. Although it provides
power while walking, this system is heavy and bulky. In general, transfemoral prostheses
are passive and modular, and can generate articulated movement. In support of this idea
are the prosthetic systems developed by Staros SACH [9], Hafner ESR [10], Mauch [11],
and OttoBock emPOWER [12]. It has been shown that these passive propulsion systems are
not reliable long-term solutions [13]. We also note the following prostheses: the Vanderbilt
prosthesis that has a spring in the ankle, and works during plantar flexion in parallel with
the motors [14]; the CSEA knee, which is based on a friction clutch whose purpose is to
lock the various elastic elements, to develop angular torque depending on how the heel
is placed on the ground [15]; and the ETH/Delft knee, which combines actuator stiffness
with real joint stiffness [16].

These systems provide energy-efficient walking kinematics. The role of the springs is
to reduce energy consumption by reducing the holding torque. As a working principle,
the engagement of the spring depends only on the angle of the ankle. For this reason,
active ankle and knee actuation systems offer additional benefits. These benefits include a
reduction in the load on the unaffected leg, through the use of an electric ankle [17].

Active prosthetic systems [18,19] are kinematically and dynamically superior to pas-
sive systems [20–22]. However, they are taxing in terms of the electrical energy storage
capacity [23,24], which affects the operating autonomy [25].

We appreciate that there is a similarity regarding the concept described in [26], but in
our model, we make improvements related to the kinematic and dynamic models. From an
analytical–numerical point of view, the bionic prosthesis solution includes the operating
laws of the prosthesis, which respect the anatomy of a human leg.

The bionic prosthesis is made via a rigid body mechanism, equipped with electric
actuators to perform joint rotations [27–29]. The main challenges will be in the design and
realization of the joints and the skeleton.

The purpose of this work is to highlight the dynamic characteristics of a lower limb
prosthesis, as an alternative to existing passive or mixed systems. The proposed system has
been realized at the level of an experimental laboratory model, as can be seen in Figure 1.
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The prosthesis consists of a knee actuated via a servomotor, and an ankle also actuated
via a servomotor. The solution, to be developed in the future, is intended to be used as a
prosthesis for people whose lower limb (from the knee down) has been amputated, or to equip
a medium-sized humanoid robot. To set the prosthesis in motion, a system/frame was made
that also had a stepper motor for longitudinal movement. An actuation was also performed
on the two servomotors, with the help of a neural headset. The primary intention was to
create a prosthetic prosthesis that could be operated with the help of brain waves.

The main contributions of the paper consist of:

• The creation of a prosthesis of the lower part of the leg, an experimental model
operated with electric motors (brushless);

• creating a command and control system that allows the foot to be operated with the
help of a neural headset;

• creating the framework concept for the design of a foot prosthesis so that, in the later
stage of development, we can create a prosthesis that respects the real configuration of
the foot, and is capable of responding to real mechanical demands;

• creating the analytical model that describes the kinematic and dynamic operation of
such a prosthesis;

• the creation of the numerical model, which allows us to highlight the dynamic de-
mands of the prosthesis;

• obtaining the areas where tension concentrators appear, something that will be solved
via a new configuration/structure for the future prosthesis;

• highlighting the limitations of the experimental model created.

The training framework for the prosthetic system (bionic leg) was made in the Labora-
tory of the Materials Resistance Department of the POLITEHNICA University in Bucharest,
in collaboration with the Center of Excellence in Robotics and Autonomous Systems
(CERAS). The developed solution is an experimental model, validated in the research
laboratory. Although the analyzed system is a consumer of electricity, in the future, a
compartment for Li-ion batteries will be made in the calf, with the possibility of having a
portable battery on the operator.

The paper is structured as follows: Section 2 discusses how the instrumentation was
used to test the operation of the bionic foot assembly, in order to determine the correlation
between longitudinal axis displacement and vibrations in the foot and ankle area. Also
presents the results obtained analytically regarding the kinematics and dynamics of the
foot. Section 3 presents the results: experimental measurements, mechanical test results of
the test pieces and the numerical analysis, and describes the comparative analysis of the
results obtained experimentally, and those obtained from the numerical analysis. Section 4
presents the conclusions, and the potential options for further development.

2. Materials and Methods

The experimental tests carried out during this research consisted of the determination of
the material characteristics, the displacement along the longitudinal axis, and the vibrations at
two points on the foot. The experimental setup for testing the bionic leg is shown in Figure 2.

2.1. Materials Used

The component elements of the leg were fabricated using the method of 3D printing
from PLA (polylactic acid or polylactide) [30]. PLA is a bioabsorbable biopolymer produced
from non-toxic renewable raw material [31]. The solution chosen regarding the material
from which the leg is made, at this point in the research, also took into account the fact that
PLA is considered good for medical applications [32]. We make this statement because, at a
later stage of development, the bionic leg will come into contact with the human body. The
physical properties of PLA, according to [33], are shown in Table 1.
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Figure 2. The bionic leg experimental setup: 1. HBM’s WA200-series displacement sensor #260510079;
2. QuantumX CX22B-W computer S/N F0F9578297C8; 3. strain gauge MX840B S/N 0009E520A43;
4. Servomotor K-Power HBL090 ball joint; 5. K-Power HBL090 ankle actuator; 6. Accelerometer PCB
Piezotronics 356A43 S/N LW348378; 7. Raspberry Pi4 model B 4GB RAM; and 8. power supply;
9. Motor JGB37-520 (12 V, 1:90, 107 RPM).

Table 1. Physical and mechanical properties of PLA 1 [33].

Properties Unit PLA

g/cm3 1.21–1.25
σ MPA 21–60
E GPA 0.35–3.5
ε % 2.5–6

Σ * Nm/g 16.8–48.0
E * kNm/g 0.28–2.80
Tg ◦C 45–60
Tm ◦C 150–162

1—polymer density, σ—tensile strength, E—tensile modulus, ε—ultimate strain, Σ *—specific tensile strength,
E *—specific tensile modulus, Tg—glass transition temperature, and Tm—melting temperature.

The PLA used is soluble in chloroform, methylene chloride, etc., and degrades via
hydrolysis after exposure to a moist environment.

To validate the physical–mechanical properties, three types of samples were made,
to test the material under compression, stretching, and bending stresses (Figure 3). The
material characteristics can be found in Table 2.
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Table 2. The printing characteristics of the leg specimens and components are as follows.

Characteristics Unit

Layer height 0.15 mm
First layer height 0.2 mm

Perimeters 2 lines

Solid layers
Top 8 layers

Bottom 5 layers

Temperature
Nozzle 210 ◦C

Bed 60 ◦C

Infill
Fill density 30%
Fill pattern Gyroid

Max volumetric speed 15 mm3/s

After 10 samples were printed for each type of test, they were measured, and the
dimensions in Tables 3–5 were obtained.

Table 3. The specimen dimensions required for compression.

Properties Diameter, mm Height, mm

PLA 1 19.93 19.98
PLA 2 19.87 19.97
PLA 3 19.92 20.01
PLA 4 19.89 19.98
PLA 5 19.85 19.99
PLA 6 19.86 20.00
PLA 7 19.86 19.98
PLA 8 19.87 20.00
PLA 9 19.91 19.98

PLA 10 19.89 19.99
Average, mm 19.885 19.998

Coefficient of variation, % 0.139 0.062

Table 4. The specimen dimensions required for traction.

Properties Width, mm Thickness, mm

PLA 1 10.02 4.94
PLA 2 10.02 4.96
PLA 3 9.99 4.90
PLA 4 9.99 4.92
PLA 5 9.99 4.91
PLA 6 10.02 4.93
PLA 7 10.02 4.92
PLA 8 10.02 4.91
PLA 9 10.01 4.95

PLA 10 10.02 4.91
Average, mm 10.010 4.925

Coefficient of variation, % 0.141 0.398
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Table 5. The specimen dimensions required for bending.

Properties Width, mm Thickness, mm

PLA 1 19.90 4.96
PLA 2 19.94 4.91
PLA 3 19.86 4.99
PLA 4 19.90 4.96
PLA 5 19.86 4.97
PLA 6 19.96 4.97
PLA 7 19.88 4.95
PLA 8 20.01 4.91
PLA 9 19.93 4.98

PLA 10 19.89 4.94
Average, mm 19.913 4.954

Coefficient of variation, % 0.238 0.548

2.2. The Technology for Making the Leg

The component elements of the bionic prosthesis after the design phase were processed
in a specific language for the PRUSA i3 MK3 3D printer (Figures 4 and 5).
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As already stated, the purpose of the research is to determine the resistance capacity of
a prototype foot made using additive technology (3D printing from PLA) to withstand the
dynamic demands produced by its movement, according to an imposed law. The component
parts of the foot are the sole (Figure 6a), the lower leg (Figure 6b), and the knee (Figure 6c).
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From a constructive/assembly point of view, we have the following:

1. Sole:

a. The foot (monobloc piece made from PLA);
b. The motor attachment bushing, positioned next to the ankle (aluminum);
c. Fixing screws between the bushing and the foot (steel);
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2. Calf:

a. The gamba (monobloc part made of PLA);
b. The sole drive actuator (considered aluminum);
c. Actuator mounting bolts (steel);
d. The motor mounting bush, positioned next to the knee (aluminum);
e. Clamping screws between the bushing and the shank (steel);

3. Knee:

a. The knee (monobloc piece from PLA);
b. The calf actuator (considered aluminum);
c. Actuator mounting bolts (steel).

The inside of the calf and foot were printed with 30% infill, and the outer walls were
printed with 1 mm thickness. Due to this aspect, the two components were geometrically
modeled separately. Figure 7 shows the outside of the calf (transparent) printed with 100%
fill, and the inside (opaque) printed with 30% fill.

Biomimetics 2023, 8, x FOR PEER REVIEW 8 of 34 
 

 

1. Sole: 
a. The foot (monobloc piece made from PLA); 
b. The motor attachment bushing, positioned next to the ankle (aluminum); 
c. Fixing screws between the bushing and the foot (steel); 

2. Calf: 
a. The gamba (monobloc part made of PLA); 
b. The sole drive actuator (considered aluminum); 
c. Actuator mounting bolts (steel); 
d. The motor mounting bush, positioned next to the knee (aluminum); 
e. Clamping screws between the bushing and the shank (steel); 

3. Knee: 
a. The knee (monobloc piece from PLA); 
b. The calf actuator (considered aluminum); 
c. Actuator mounting bolts (steel). 
The inside of the calf and foot were printed with 30% infill, and the outer walls were 

printed with 1 mm thickness. Due to this aspect, the two components were geometrically 
modeled separately. Figure 7 shows the outside of the calf (transparent) printed with 100% 
fill, and the inside (opaque) printed with 30% fill. 

 
Figure 7. The calf geometry, with a separately molded interior. 

The movement of the experimental model is to be controlled with the help of an in-
terface (neural helmet) that reads and interprets brain impulses. As the interface is in the 
design and testing phase, in this phase, there is no problem with stepping on an obstacle, 
so the forces that apply to the experimental model are weight and inertial forces. 

2.3. Methods 
2.3.1. Kinematics 

To estimate the forces in the leg joints, linear motion laws for the rotation angle of the 
output shaft were imposed on the actuators. Thus, in an interval of 5 s, the shaft of each 
servomotor rotates by an angle of 20 degrees. The resulting kinematics are simple if a 
schematization is adopted, as in Figures 8 and 9. According to this schematization, the 
velocities and accelerations of the prosthesis components are determined. 
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The movement of the experimental model is to be controlled with the help of an
interface (neural helmet) that reads and interprets brain impulses. As the interface is in the
design and testing phase, in this phase, there is no problem with stepping on an obstacle,
so the forces that apply to the experimental model are weight and inertial forces.

2.3. Methods
2.3.1. Kinematics

To estimate the forces in the leg joints, linear motion laws for the rotation angle of
the output shaft were imposed on the actuators. Thus, in an interval of 5 s, the shaft of
each servomotor rotates by an angle of 20 degrees. The resulting kinematics are simple if
a schematization is adopted, as in Figures 8 and 9. According to this schematization, the
velocities and accelerations of the prosthesis components are determined.
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The calf is marked with 1, the sole with 2, the joint between the knee and calf with
A, and the joint between the calf and sole with B. The global system is denoted

(
xg, yg

)
,

and the local systems related to the calf and sole are denoted (x1, y1) and (x2, y2) (Table 6).
Between the line of the calf joints, for the considered vertical position, there is an angle of
α = 2.628◦.

Table 6. The calf and sole mass characteristics.

Leg Component
The X-Coordinate of the

Center of Mass Relative to
the Local Frame (mm)

The Y-Coordinate of the
Center of Mass Relative to

the Local Frame (mm)
Mass (kg)

Calf 0.72 100.45 0.757
Sole 36.39 33.60 0.167
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The position vector of the joint in B is given by the following vector relation:

→
r B = −L1 · sin(ϕ1 − α) ·

→
i g + L1 · cos(ϕ1 − α) ·

→
j g, (1)

where (ϕ1 − α) is the angle between the vertical and segment AB, measured clockwise;
L1 = 204 mm is the length of segment AB.

The law of variation of angle ϕ1 is ϕ1(t) = t, being the same as ϕ2, and
→
i g and

→
j g are

the vertices of the global coordinate system.
Via derivation with respect to time, the velocity results and the second-order derivative

give the expression of the acceleration. As the derivative of the angle is the angular velocity,
it is noted that it is constant over time: ω1 =

.
ϕ1 = 20 · π

180·5 . For simplification, we write
ϕ = ϕ1 = ϕ2; consequently, ω1 =

.
ϕ1 = ω2 =

.
ϕ2 = ω.

The vector expressions for velocity and acceleration are as follows:

→
v B = −L1 ·ω1 · cos(ϕ1 − α) ·

→
i g − L1 ·ω1 · sin(ϕ1 − α) ·

→
j g, (2)

→
a B = L1 ·ω2

1 · sin(ϕ1 − α) ·
→
i g + L1 ·ω2

1 · cos(ϕ1 − α) ·
→
j g, (3)

For the center of mass of the calf, the position relative to the local system is given by

→
r CM1 = xCM1

→
i 1 + yCM1

→
j 1, (4)

Using the relationship between the mobile and the fixed system’s calf-related feeders,

→
i 1 =

→
i g · cos(ϕ− α) +

→
j g · sin(ϕ− α), (5)

→
j 1 = −

→
i g · sin(ϕ− α) +

→
j g · cos(ϕ− α), (6)

which results in the position vector with respect to the fixed system:

→
r CM1 = (xCM1 cos(ϕ− α)− yCM1 sin(ϕ− α))

→
i g+

+(xCM1 sin(ϕ− α) + yCM1 cos(ϕ− α))
→
j g

, (7)

The acceleration of the center of mass is obtained via differentiating twice with respect
to time:

→
a CM1 = ω2(−xCM1 cos(ϕ− α) + yCM1 sin(ϕ− α))

→
i g+

+ω2(−xCM1 sin(ϕ− α)− yCM1 cos(ϕ− α))
→
j g

, (8)

For the center of mass of the sole, we determine the position vector from the following
relationship:

→
r CM2 =

→
AB +

→
BCM2 =

= −L1 · sin(ϕ1 − α) ·
→
i g + L1 · cos(ϕ1 − α) ·

→
j g + xCM2

→
i 2 + yCM2

→
j 2

, (9)

The coordinate system related to the sole, with the pourers
→
i 2 and

→
j 2, is rotated

relative to the fixed coordinate system by the angle ϕ1 + ϕ2 = 2ϕ. The connection between
the mobile and the fixed systems is given by the following relations:

→
i 2 =

→
i g · cos(2ϕ) +

→
j g · sin(2ϕ), (10)

→
j 2 = −

→
i g · sin(2ϕ) +

→
j g · cos(2ϕ), (11)
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Substituting vertices into the position vector relation of the center of mass CM2, we obtain:

→
r CM2 = (−L1 · sin(ϕ− α) + xCM2 cos(2ϕ)− yCM2 sin(2ϕ)) ·

→
i g+

+(L1 · cos(ϕ− α) + xCM2 sin(2ϕ) + yCM2 cos(2ϕ)) ·
→
j g

, (12)

By deriving the speed results with respect to time, and by deriving twice, the accelera-
tion is obtained. The vector expressions with respect to the global system are:

→
v CM2 = ω(−L1 · cos(ϕ− α)− 2xCM2 sin(2ϕ)− 2yCM2 cos(2ϕ)) ·

→
i g+

+ω(−L1 · sin(ϕ− α) + 2xCM2 cos(2ϕ)− 2yCM2 sin(2ϕ)) ·
→
j g

, (13)

→
a CM2 = ω2(L1 · sin(ϕ− α)− 4xCM2 cos(2ϕ) + 4yCM2 sin(2ϕ)) ·

→
i g+

+ω2(−L1 · cos(ϕ− α)− 4xCM2 sin(2ϕ)− 4yCM2 cos(2ϕ)) ·
→
j g

, (14)

Figure 10 and Table 7 show the coordinate systems used for the sole. The system
(x2, y2) is the system bound to the sole, and the coordinate systems (xs1, ys1) and (xs2, ys2)
are the coordinate systems of the sole-bound accelerometers, which have their origins at
the acceleration measurement points.
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Table 7. The accelerometer positions relative to the sole-bound system.

Position Coordinate x2 (mm) Coordinate y2 (mm)

Position 1—on the axis of the joint 0 0
Position 2—in the front part of the sole 105 35.51

Accelerometer measurement directions:

• In position 1, they are overlapped with the axes of the coordinate system linked to the sole;
• In position 2, the measurement directions are rotated by 9.88◦ trigonometrically.

Substituting the moving vertices of the coordinate system related to the base into the
acceleration relation of point B results in the following expression:

→
a B = −L1 ·ω2

1 · sin(ϕ + α) ·
→
i 2 − L1 ·ω2

1 · cos(ϕ + α) ·
→
j 2, (15)

This expression could also be found through directly writing the acceleration with respect
to the system connected to the sole, knowing the direction (AB) and the module

(
L1 ·ω2

1
)
.

This expression is necessary for the interpretation of the experimental results, as it is
also valid for the coordinate system of sensor 1.



Biomimetics 2023, 8, 414 12 of 33

For point D, which is the second position of the accelerometer, the relationships are
similar to those of the center of mass. The position vector, velocity, and acceleration relative
to the fixed system are given by:

→
r D =

→
AB +

→
BC +

→
CD =

= [−L1 · sin(ϕ− α) + xD · cos(2ϕ)− yD · sin(2ϕ)]
→
i g+

+[L1 · cos(ϕ− α) + xD · sin(2ϕ) + yD · cos(2ϕ)]
→
j g

, (16)

→
v D = ω[−L1 · cos(ϕ− α)− 2xD · sin(2ϕ)− 2yD · cos(2ϕ)]

→
i g+

+ω[−L1 · sin(ϕ− α) + 2xD · cos(2ϕ)− 2yD · sin(2ϕ)]
→
j g

, (17)

→
a D = ω2[L1 · sin(ϕ− α)− 4xD · cos(2ϕ) + 4yD · sin(2ϕ)]

→
i g+

+ω2[−L1 · cos(ϕ− α)− 4xD · sin(2ϕ)− 4yD · cos(2ϕ)]
→
j g

, (18)

With respect to the local system of the sole, using relations (10) and (11), it follows that:

→
i g =

→
i 2 · cos(2ϕ)−

→
j 2 · sin(2ϕ), (19)

→
j g =

→
i 2 · sin(2ϕ) +

→
j 2 · cos(2ϕ), (20)

and the expression for the acceleration of point D relative to the system attached to the sole is:

→
aD = ω2[−L1 · sin(ϕ + α)− 4xD]

→
i 2 + ω2[−L1 · cos(ϕ + α)− 4yD]

→
j 2. (21)

This relationship can also be obtained from Euler’s formula written for the sole:

→
aD =

→
aB +

→
aDBn +

→
aDBt , (22)

where
→

aCDBn =
→
ω2 × (

→
ω2 ×

→
BD) has the direction BD, with the orientation from D to B and

the module BD ·ω2
2 =

√
x2

2D + y2
2D ·ω2, and

→
aDBt =

→
ε2 ×

→
BD = 0, because ω2 = ct.

Compared to the sensor-related system (xs2, ys2), which is rotated relative to the
system (x2, y2) with the angle β = 9.88◦, the acceleration becomes

→
aD = ω2[−L1 · sin(ϕ + α + β)− 4x2D · cos(β)− 4y2D · sin(β)]

→
i s2+

+ω2[−L1 · cos(ϕ + α + β) + 4x2D · sin(β)− 4y2D · cos(β)]
→
j s2

. (23)

In order to highlight the movement described by the above laws, three-way accelerom-
eters (PCB Piezotronics 356A43 S/N LW348378) were used. Accelerometers were attached
to the foot in two positions: on the sole, and on the axis of the calf–foot joint.

2.3.2. Dynamics

To determine the forces in the joints, we isolate the system (Figure 11). For each body,
we write the momentum theorem with respect to the fixed reference system, and the kinetic
momentum theorem with respect to the center of mass.
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For the calf (body 1), we obtain the following relations:

M1aCM1xg = HA + HB, (24)

M1aCM1yg = VA + VB + G1, (25)

d
dt
(
KCM1z1

)
= 0 = MCM1

( →
HA

)
z1
+ MCM1

( →
VA

)
z1
+ MCM1

( →
HB

)
z1
+

+MCM1

(→
VB

)
z1
+ MmA + MmB

, (26)

where M1 is the mass of the calf, G1 is the weight of the calf, aCM1xg and aCM1yg are the
components of the acceleration of the center of mass (relation (8)), and MmA and MmB are
the motor moments in the joints, which produce the movement.

The moment about the center of mass of the force HA is determined via

→
MCM1

( →
HA

)
=

→
CM1 A×

→
HA =

∣∣∣∣∣∣∣
→
i 1

→
j 1

→
k 1

x1A − x1CM1 y1A − y1CM1 0
HAx1 HAy1 0

∣∣∣∣∣∣∣, (27)

with the component along the Oz axis being

MCM1

( →
HA

)
z1

= (x1A − x1CM1)HAy1 − (y1A − y1CM1)HAx1 =

= y1CM1HAx1 − x1CM1HAy1 = HA(y1CM1 cos(ϕ− α) + x1CM1 sin(ϕ− α))

, (28)

Similarly, the components of the other moments result in the following:

MCM1

( →
VA

)
z1

= y1CM1VAx1 − x1CM1VAy1 =

= VA(y1CM1 sin(ϕ− α)− x1CM1 cos(ϕ− α))

, (29)
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MCM1

( →
HB

)
z1

= (x1B − x1CM1)HBy1 − (y1B − y1CM1)HBx1 =

= HB((y1CM1 − y1B) cos(ϕ− α) + x1CM1 sin(ϕ− α))

, (30)

MCM1

(→
VB

)
z1

= (x1B − x1CM1)VBy1 − (y1B − y1CM1)VBx1 =

= VB((y1CM1 − y1B) sin(ϕ− α)− x1CM1 cos(ϕ− α))

, (31)

For the calf (body 2), we obtain the following relations:

M2aCM2xg = −HB, (32)

M2aCM2yg = −VB + G2, (33)

d
dt
(
KCM2z2

)
= 0 = MCM2

(
−
→
HB

)
z2
+ MCM2

(
−
→
VB

)
z2
−MmB, (34)

where M2 is the mass of the calf, G2 is the weight of the calf, and aCM2xg and aCM2yg are the
components of the acceleration of the center of mass (relation (14)).

From relations (32) and (33), we obtain the force components in joint B, HB, and VB:

HB(ϕ) = −M2aCM2x =

= −M2ω2(L1 · sin(ϕ− α)− 4xCM2 cos(2ϕ) + 4yCM2 sin(2ϕ))
, (35)

VB = −M2aCM2y + G2 =

= −M2ω2(−L1 · cos(ϕ− α)− 4xCM2 sin(2ϕ)− 4yCM2 cos(2ϕ)) + G2
, (36)

and from relation (34), the motor moment in joint B is given by

MmB(ϕ) = MCM2

(
−
→
HB

)
z
+ MCM2

(
−
→
VB

)
z
=

= HB(ϕ)(−y2CM2 cos(2ϕ)− x2CM2 sin(2ϕ))+

+VB(ϕ)(y2CM2 sin(2ϕ)− x2CM2 cos(2ϕ))

, (37)

From relations (24)–(26), we obtain the components of the connecting force in joint A,
and the motor moment from this joint:

HA(ϕ) = M1aCM1xg − HB = M1aCM1xg + M2aCM2xg

= M1ω2(−xCM1 cos(ϕ− α) + yCM1 sin(ϕ− α))+

+M2ω2(L1 · sin(ϕ− α)− 4xCM2 cos(2ϕ) + 4yCM2 sin(2ϕ))

, (38)

VA(ϕ) = M1aCM1yg −VB − G1 =

= M1ω2(−xCM1 sin(ϕ− α)− yCM1 cos(ϕ− α))+

+M2ω2(−L1 · cos(ϕ− α)− 4xCM2 sin(2ϕ)− 4yCM2 cos(2ϕ))−
−G1 − G2

, (39)
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MmA(ϕ) = −MCM1

( →
HA

)
z1
−MCM1

( →
VA

)
z1
−MCM1

( →
HB

)
z1
−

−MCM1

(→
VB

)
z1
−MmB =

= −HA(ϕ)(y1CM1 cos(ϕ− α) + x1CM1 sin(ϕ− α))−
−VA(ϕ)(y1CM1 sin(ϕ− α)− x1CM1 cos(ϕ− α))−
−HB(ϕ)((y1CM1 − y1B) cos(ϕ− α) + x1CM1 sin(ϕ− α))−
−VB(ϕ)((y1CM1 − y1B) sin(ϕ− α)− x1CM1 cos(ϕ− α))−
−HB(ϕ)(−y2CM2 cos(2ϕ)− x2CM2 sin(2ϕ))−
−VB(ϕ)(y2CM2 sin(2ϕ)− x2CM2 cos(2ϕ))

, (40)

2.3.3. Equipment Used in the Determination of Mechanical Characteristics

In order to determine the mechanical characteristics, two pieces of equipment were used;
namely, the INSTRON 8872 universal testing machine (Figure 12), and the Dantec image
correlation system (Figure 13). All the mechanical tests were performed at 1 mm/min.
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The characteristics of the INSTRON 8872 are shown in Table 8.

Table 8. Specimen dimensions required for bending.

Characteristic Unit Value

Distance between columns mm 455
Distance between the lower

and upper tank mm maxim 820

Force cell kN ±25
Piston stroke mm ±50 (100)

Sample holder system hydraulic

The specifications of the image correlation system are shown in Table 9.

Table 9. Specimen dimensions required for bending.

Characteristic Unit Value

Rooms buc 2
Resolution Mpx 5
Sensor size 2/3′′

Frame rate Hz Up to 560
Communication USB 3.0

Figure 14 shows the tested samples.
The specific deformations were taken from the application of the image correlation

method, and the values of the normal stresses appearing during the tensile and compressive
stresses were determined via the following relationship:

σ =
F
A

, (41)

where F is the axial force applied to the specimen; and A is the cross-sectional area of
the specimen.

For the three-point bending test, the formulas used to calculate the normal stress and
the specific strain were as follows:

σ =
1.5 · s
b · h2 , (42)

ε =
d · h · 6

s2 , (43)
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where s is the distance between the supports (support span); d is the sample arrow; b is the
width of the sample; and h is the thickness of the specimen.
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2.3.4. Simulation via the Finite Element Method

ANSYS software was used for finite element modeling. The modeling was performed
for a transient regime, using the Transient Structural module.

The contacts used between these components are as follows:

• For the sole:

o A “frictionless” type for the contact between the foot and the clamping bush with
the servomotor;

o A “bound” type for the rest of the contacts;

• For the calf:

o A “frictionless” type for the contact between the calf and the clamping bush
with the servomotor in the knee, and for the contact between the foot actuation
servomotor and the calf;

o A “bound” type for the rest of the contacts;

• For the knee:

o A “frictionless” type for the contact between the knee and the calf actuation
servomotor;

o A “bound” type for the rest of the contacts.

Between the sole and the calf, and between the calf and the knee, respectively, “rev-
olute” connections were defined between the shafts of the actuators and the connecting
bushings. This type of link allows the imposition of boundary conditions on angular
displacements, angular velocities, or angular accelerations.

The finite element discretization, and a detail of the discretization in the knee area, are
shown in Figure 15. An average element size of 12 mm was used for the discretization, with
refinement on contact surfaces with an average size of 1 mm, resulting in 120,592 nodes
and 69,622 elements.
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Zero displacements were considered on the upper surface of the knee. In the “revolute”-
type links, angular displacements were imposed, according to the law presented in Figure 16.
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The mass forces due to the user’s weight were also taken into account, defining the
gravitational acceleration (Figure 17).
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The analysis was transient, with a time interval of [0; 5] seconds, and a minimum time
step of 10−4 s. The displacements were considered large, and the results were saved at each
time step.

3. Results
3.1. Experimental Measurements

To allow the realization of the movements of the leg prosthesis, it was equipped with
hardware, as follows: Raspberry Pi 4, two servo motors, a motor driver module, and an
external power supply (this variant being sufficient to demonstrate the concept of the
neural control of the prosthesis) and, for controlling the prosthesis with the power of the
mind, an EMOTIV Insight headset (Figure 1) was used (this being responsible for capturing
electrical signals from the brain, and converting them into specific commands, which could
later be used to control the bionic lower limb prosthesis). The testing of the implemented
system was carried out with a healthy male participant, who used the neural helmet to
train two commands necessary for the movement of the leg prosthesis. Compared to other
advanced headsets that contain many electrodes, the performance of the system is relatively
good in terms of the EEG signal obtained from the EMOTIV Insight Neuronal Headset,
because it provides the desired decoding and processing for the brain signals.

Figures 18 and 19 show the experimentally determined acceleration components, with
an acquisition frequency of 300 Hz, for the two accelerometers. Analytically determined
acceleration variations are also presented on the same graphs.
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3.2. Mechanical Test Results

Figures 20–22 show the characteristic curves for all ten specimens subjected to tension,
compression, and bending, respectively.
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Table 10 shows the main mechanical properties obtained via the tensile test.

Table 10. The mechanical characteristics of the tensile specimens.

Specimen ν
Longitudinal Modulus of

Elasticity, MPa
Drip Limit,

MPa
Breaking Limit,

MPa

PLA 1 0.304 1818.763 28.706 29.246
PLA 2 0.298 1677.115 22.027 22.425
PLA 3 0.322 1674.872 22.822 22.936
PLA 4 0.324 1766.250 22.910 23.044
PLA 5 0.303 1672.996 21.326 21.565
PLA 6 0.288 2317.956 22.678 24.460
PLA 7 0.370 1750.915 22.740 23.075
PLA 8 0.316 1687.123 22.895 22.988
PLA 9 0.316 1662.154 22.452 22.543

PLA 10 0.316 1671.644 23.414 23.607
Median 0.316 1769.979 23.197 23.589

Coefficient of variation, % 7.031 11.272 8.695 9.010

Following the compression test, a series of mechanical characteristics of PLA were
obtained, which are presented in Table 11.

Table 11. The mechanical characteristics of the samples subjected to compression.

Specimen ν
Longitudinal Modulus of

Elasticity, MPa
Drip Limit,

MPa
Breaking Limit,

MPa

PLA 1 0.293 700.948 13.685 14.466
PLA 2 0.273 733.401 12.845 14.634
PLA 3 0.360 692.464 13.831 14.645
PLA 4 0.279 710.637 12.513 14.488
PLA 5 0.293 705.894 13.683 14.583
PLA 6 0.306 700.088 13.390 14.385
PLA 7 0.287 701.966 13.525 14.537
PLA 8 0.311 716.933 13.552 14.440
PLA 9 0.290 715.457 13.134 14.315

PLA 10 0.307 730.164 13.555 14.546
Median 0.300 710.795 13.371 14.504

Coefficient of variation, % 8.141 1.873 3.121 0.731

As a result of the bending tests, the following mechanical properties of PLA were
obtained, as shown in Table 12.

Following the statistical analysis of the experimental results, we concluded that the
average values, regarding the mechanical characteristics of the material from which the
prosthesis was made (experimental model), were sufficient for the present study. In further
development, we will perform a statistical analysis regarding the behavior of the bionic
prosthesis in response to the different (real) demands that will be identified as reasonable
in the simulation of bipedal walking.



Biomimetics 2023, 8, 414 22 of 33

Table 12. The mechanical characteristics of the samples subjected to compression.

Specimen Longitudinal Modulus of
Elasticity, MPa Drip Limit, MPa Breaking Limit, MPa

PLA 1 2181.526 41.781 48.424
PLA 2 2212.134 43.496 46.498
PLA 3 2112.032 40.056 47.331
PLA 4 2161.289 41.159 48.424
PLA 5 2234.892 43.913 50.014
PLA 6 2182.306 39.152 46.252
PLA 7 2170.113 44.762 49.596
PLA 8 2204.104 43.626 48.519
PLA 9 2163.171 38.326 42.939
PLA 10 2229.581 37.838 47.601
Median 2182.415 41.411 47.560

Coefficient of variation, % 1.809 6.033 4.253

3.3. The Results Obtained from the Analysis via the Finite Element Method

Figures 23–28 show the resulting displacements in the components made of PLA, for
the times of 0.833, 1.667, 2.5, 3.333, 4.167, and 5 s.
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Figures 29–34 show the equivalent stresses in the components made of PLA, for the
times of 0.833, 1.667, 2.5, 3.333, 4.167, and 5 s.
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Figure 34. Von Mises stress at 5 s.

The maximum equivalent von Mises stress is reached when the angle of inclination of
the calf to the vertical is maximum, i.e., 20◦. This value is reached on the inside of the calf
clamping yoke, in the area of contact with the servomotor clamping bush, in the knee joint.
Figure 35 shows a detail of the maximum stress area. The ultimate stress is lower than the
breaking strength of the PLA material.
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In the knee joint, the time variations in force and moment by components, expressed
with respect to the local system, are presented in Figures 36–39. The maximum stress is
observed when the leg and sole are rotated by 20 degrees, with the moment in the joint
reaching the maximum value of 717.05 N mm.
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For a more accurate calculation in the zone of maximum stresses, a simplified geometry
was used (Figure 40, with the coordinate system of the knee joint), via the sectioning of the
calf with a plane at a distance of 20 mm from the knee yoke.
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The geometry was finely discretized in the contact area between the actuator bushing
and the knee yoke, with 221,160 nodes and 135,931 elements (Figure 41).
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“Frictionless” contacts were defined between the clamping screws and the knee yoke,
and between the servomotor clamping bushing and the knee yoke, and “bound” contacts
were defined between the screws and the clamping bushing. In the lower part of the
structure, on the section plane, the nodes were considered blocked. The maximum force
and moment determined in the transient analysis were imposed on the inner cylindrical
surface of the clamping bush.

Figure 42 shows the von Mises equivalent stresses for the PLA component. A maximum
stress of 12.84 MPa is noted in the vicinity of the screw hole at the bottom of the knee yoke.
Below this area is the value of the voltage determined during the transient calculation.
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Figures 43 and 44 show the equivalent stresses in the servomotor mounting bushing,
and the knee yoke mounting bolts, respectively. It is noted that the maximum stress is
small compared to the yield stress of the two materials.
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4. Discussion

It is noted both from the experimental results, and from the finite element model, that
vibrations exist in the mechanical system when it is in motion. This aspect is due to the fact
that, at the initial moment, the leg is in static equilibrium, and when the actuators act, the
components must accelerate from zero rotational speed to the imposed speed of 0.069 rad/s.
This action produces vibration in the absence of torque control. Another solution is to use a
function for the displacement law that ensures acceleration and deceleration over a longer
period of time, with an intermediate interval of constant speed. As vibrations cannot be
eliminated, a future research direction would be to study the fatigue of PLA components.

From the analysis of Figures 18 and 19, in which the components of the accelerations
on the measurement directions of the accelerometers have been determined experimentally
and analytically, a good agreement is noted. For better control of the position of the leg
components, and to more easily compare experimental data with analytical or numerical
data, it is necessary to use angular displacement sensors (encoders).

Another future direction of interest is the obstacle approach. In this case, the forces
that apply to the leg structure can increase substantially. For this reason, we will introduce
an elastic joint system.

Regarding the elastic and mechanical characteristics of PLA, Figure 45 shows the values
of the transverse contraction coefficient for the tensile and compression tests. The transverse
shrinkage coefficient could not be obtained following the three-point bending test.
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Figure 46 shows the values of the longitudinal modulus of elasticity, determined as a
result of the three tests performed.
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The yield strength and fracture strength values, obtained via the mechanical tests
performed, are presented in Figures 47–49.
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One conclusion of the mechanical results is that, due to the way the prosthesis is printed
(the degree of filling), following the tests performed, the behavior of the material is different
depending on the type of request. Through analyzing the obtained results, it can be concluded
that the prosthesis withstands static and dynamic conditions without any problem.

Another conclusion would be that, instead of single-axis servomotors, we should use
dual-axis servomotors, which would allow a cylindrical joint on both sides of the yoke.
This will lead to an increased stiffness in the assembly. We will also further analyze the
possibility of creating a coaxial passive joint with the servomotor axis on the opposite side
of the yoke. These constructive variants will increase the rigidity of the system, reducing
the level of vibrations.

For a better replication of the lower limb, we will try to re-smooth the fingers of the
prosthesis (especially for the joint area near the toes), using the topology optimization
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method [29]. We will use attached springs, so that we can mimic their elasticity or stiffness,
which is necessary in order to be able to simulate bipedal walking.

To determine the effort in the prosthesis that we will make (based on the model
described), we will use a force sensor based on metal ionic composites (IP-MCs) [34], which
are smart transducers made of materials that bend in response to low-voltage stimuli, and
generate voltage in response to bending.
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