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Abstract: Tuberculosis, caused by Mycobacterium tuberculosis, is a lethal infectious disease of significant
public health concern. The rise of multidrug-resistant and drug-tolerant strains has necessitated novel
approaches to combat the disease. Toxin–antitoxin (TA) systems, key players in bacterial adaptive
responses, are prevalent in prokaryotic genomes and have been linked to tuberculosis. The genome
of M. tuberculosis strains harbors an unusually high number of TA systems, prompting questions
about their biological roles. The VapBC family, a representative type II TA system, is characterized
by the VapC toxin, featuring a PilT N-terminal domain with nuclease activity. Its counterpart,
VapB, functions as an antitoxin, inhibiting VapC’s activity. Additionally, we explore peptide mimics
designed to replicate protein helical structures in this review. Investigating these synthetic peptides
offers fresh insights into molecular interactions, potentially leading to therapeutic applications. These
synthetic peptides show promise as versatile tools for modulating cellular processes and protein–
protein interactions. We examine the rational design strategies employed to mimic helical motifs,
their biophysical properties, and potential applications in drug development and bioengineering.
This review aims to provide an in-depth understanding of TA systems by introducing known complex
structures, with a focus on both structural aspects and functional and molecular details associated
with each system.
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1. Introduction

Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis, ranks
among the most lethal infectious diseases [1,2]. It holds a significant position on the list
of global public health concerns, with an annual death toll exceeding 1.5 million [3,4].
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains
of M. tuberculosis presents a formidable challenge to current treatment approaches [5,6].
This situation highlights the urgent need for innovative methods to combat the evolving
landscape of drug resistance. Furthermore, M. tuberculosis often exhibits drug tolerance,
allowing it to survive even under antibiotic therapy [7,8]. Thus, the development of
fresh strategies to address tuberculosis, rooted in emerging molecular mechanisms, is of
utmost importance.

Toxin–antitoxin (TA) systems were initially identified as compact genetic modules
typically located on plasmids. Their primary role was seen in safeguarding plasmids by
triggering cell death in individuals lacking the plasmid-borne TA encoding genes [9]. TA
loci are prevalent in prokaryotic genomes and have increasingly been associated with bacte-
rial adaptive responses, notably impacting the progression of tuberculosis infections [10,11].
Subsequent investigations unveiled the presence of TA loci on bacterial and archaeal chro-
mosomes, suggesting additional roles [12]. In times of stress, such as plasmid loss or
bacteriophage infection, antitoxins can rapidly degrade. This degradation activates toxins,
which selectively target crucial cellular processes, including DNA replication, cell wall
synthesis, cell division, and translation. Consequently, these processes become vulnerable
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to toxin influence, leading to growth inhibition and eventual cell demise [13,14]. The
growth inhibition inflicted by toxins can be countered by freshly synthesized antitoxins,
suggesting that TA system activation may aid bacterial survival during adverse conditions,
allowing them to persist until more favorable environmental conditions emerge [15,16].

The genome of M. tuberculosis strains is notable for harboring an unusually high
number of TA systems, with the laboratory strain H37Rv alone encoding over 100 such
modules, believed to play a role in its pathogenesis [17–19]. These systems consist of toxin–
antitoxin pairs organized into operons and distributed widely throughout the bacterial
genome [20,21]. Given the multitude of TA loci in the M. tuberculosis genome, several
critical questions arise regarding their functional diversity [22]. These inquiries delve
into understanding the mechanisms responsible for the proliferation of TA loci within the
genome and the intricate regulation of their activity within such a complex system [23,24].
Moreover, they extend to questions regarding potential functional redundancy, the advan-
tages these TA loci confer during infection, and the triggers that activate them [25,26]. It is
noteworthy that M. tuberculosis exclusively features type II TA systems, with no other TA
family identified within its genome [27,28]. This unique prevalence of type II TA systems in-
vites further exploration into their potential specialized roles and evolutionary significance
within the framework of M. tuberculosis.

There are seven known classes of TA systems, each with a different mode of action
to inhibit the toxin [9,29]. Type I systems have a small anti-sense RNA antitoxin that
forms a duplex with the toxin’s mRNA to inhibit toxin production [30]. Type II systems
have a protein antitoxin that interacts with the toxin to form a complex in which the
toxin is inactive. They often act as auto-repressors of their own transcription [31]. Type
III antitoxins are RNAs that inactivate the toxin by forming a complex [27]. Type IV
systems are represented by the antitoxin, which suppresses the toxicity of the toxin by
stabilizing its targets [32–34]. Type V is represented by the GhoT-GhoS system, in which
the antitoxin inhibits the toxin by specific cleavage of its mRNA [35]. Type VI systems use
an antitoxin that serves as an adaptor protein to address the toxin to protease [36]. Type VII
antitoxins neutralize the toxin through post-translational modification of the toxin, such
as phosphorylation [37–40]. Among these TA systems, the virulence-associated proteins
(VapBC) system, which is the focus of this paper, belongs to the type II category and stands
out as one of the representative systems in this class [23,41]. The VapBC family is notable for
the inclusion of the VapC toxin, which features a PilT N-terminal (PIN) domain and exhibits
nuclease activity. Its cognate VapB protein acts as an antitoxin that inhibits the activity of
the VapC toxin [42,43]. The VapC toxin cleaves RNA to suppress metabolic activity as part
of a survival strategy, and this process requires the VapB antitoxin [21,44,45]. This also
implies that their toxic activity must be tightly regulated in order not to be detrimental for
bacterial survival [41,46].

The M. tuberculosis genome boasts an extraordinary proliferation of type II TA systems,
with the VapBC system being particularly prominent [23]. Within the realm of type II TA
systems, the toxins are characterized by their stability, often featuring antiparallel β-sheet
cores [44]. On the other side, the antitoxins are also proteins but tend to possess more
relaxed and flexible structures, rendering them susceptible to degradation [45]. Under
normal circumstances, the antitoxin effectively curbs the activity of the toxin by forming
a stable protein–protein complex. However, in the face of environmental stresses, this
intricate equilibrium between toxin and antitoxin is disrupted [21]. The antitoxin succumbs
to degradation under stress, thereby unleashing the free toxin to target its substrates,
consequently leading to the establishment of a bacteriostatic state [46].

Notably, the active sites of VapC toxins house several conserved acidic residues,
collectively forming a negatively charged cavity that facilitates coordination with diva-
lent metal ions such as Mg2+ and Mn2+ [47,48]. On the other hand, the VapB antitoxins
comprise two functional motifs: an N-terminal domain that binds to the promoter DNA
of the TA operon, and a C-terminal domain that engages with the cognate VapC toxin,
effectively nullifying its toxic impact [48]. These intricate interactions between toxins
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and antitoxins underscore the sophisticated regulatory mechanisms inherent to type II
TA systems, providing insights into the finely tuned responses of bacteria to diverse
environmental challenges.

In recent years, there has been a growing interest in utilizing peptides as a strategy to
interfere with TA systems, particularly as potential targets for antibacterial interventions.
TA systems are genetic modules present in many bacterial pathogens but notably absent in
eukaryotic cells [21,45,46]. This fundamental difference suggests that compounds derived
from TA systems could potentially offer reduced side effects in humans and increased
specificity in targeting bacterial pathogens. These innovative approaches offer exciting
prospects for the discovery of new antibacterial targets and the development of novel
mechanisms distinct from the antibiotics currently used to treat tuberculosis and other
bacterial infections. Researchers have been investigating the use of peptides that mimic
the structure of the TA interface [49,50]. By designing peptides that can effectively bind
to the binding interface of the TA complex, scientists aim to release the toxin, ultimately
leading to bacterial death. This approach is particularly appealing because peptides can be
customized to target specific bacterial pathogens, thanks to the unique structures of each
TA system in bacteria.

As a structural biologist, the primary objective of this review is to offer an extensive
comprehension of the TA systems by presenting an exposition of six known complex struc-
tures (Figure 1A–F). Specifically, these structures encompass M. tuberculosis VapBC2 (PDB
ID 3H87) [51], M. tuberculosis VapBC5 (PDB ID 3DBO) [52], M. tuberculosis VapBC11 (PDB
ID 6A7V) [53], M. tuberculosis VapBC15 (PDB ID 4CHG) [54], M. tuberculosis VapBC26 (PDB
ID 5X3T) [49], and M. tuberculosis VapBC30 (PDB ID 4XGR) [50]. In addition to its structural
focus, this review offers a comprehensive exploration of the functional and molecular
intricacies associated with each TA system. This encompasses detailed investigations into
the configurations and binding modes of toxins and antitoxins, their respective functional
roles, and various potential applications. We aim for this comprehensive review of the
six known complex structures presented in this article to serve as a valuable resource for
researchers seeking a deep understanding of TA systems. Given that numerous review pa-
pers have already covered the general aspects of the VapBC system, our primary objective
in this paper is to place greater emphasis on the structural dimension of the VapBC system.
For instance, we refrain from revisiting discussions on common subjects such as the PIN
domain and active site, which comprises several acidic, negatively charged residues, and is
crucial for catalytic ribonuclease activity.
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VapB antitoxin are depicted in varying tones of green, while the structures of each VapC toxin are de-
picted in varying tones of purple. (A) Overall view of M. tuberculosis VapBC2 complex (PDB ID 3H87).
(B) Overall view of M. tuberculosis VapBC5 complex (PDB ID 3DBO). (C) Overall view of M. tuber-
culosis VapBC11 complex (PDB ID 6A7V). (D) Overall view of M. tuberculosis VapBC15 complex
(PDB ID 4CHG). (E) Overall view of M. tuberculosis VapBC26 complex (PDB ID 5X3T). (F) Over-
all view of M. tuberculosis VapBC30 complex (PDB ID 4XGR). (A,C,E): Hetero-octameric assembly;
(B,D,F): Hetero-tetrameric assembly.

2. Focused Overviews on Structural and Functional Aspects
2.1. VapBC2 System

The overall structure of VapC2 toxin has a characteristic sandwich-like topology,
which is typical of a canonical PilT N-terminus (PIN)-domain protein (Figure 2A) [55,56].
This structural framework unfolds through the coordination of five parallel β-strands
intertwined with a symphony of eight α-helices. A notable observation arises from the
complexities of the VapC2 dimer, where a subtle yet significant pseudo-twofold symme-
try prevails, albeit marked by subtle conformational nuances, as artistically depicted in
Figure 2B. However, a noteworthy aspect is that only one of the two VapC2 molecules
forming the dimeric arrangement binds to Mg2+. As a result, this indicates that one of the
toxin molecules assumes the role of a Mg2+-bound entity, while its dimeric partner remains
unbound to Mg2+.

Biomimetics 2023, 8, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 2. Unit structures belongs to M. tuberculosis VapBC2 system. Secondary structure nomina-
tions are displayed. (A) Overall architecture of VapC2 toxin. (B) Overall architecture of VapBC2 
complex in hetero-tetrameric assembly. This asymmetric unit consists of two VapB2 antitoxin mol-
ecules and two VapC2 toxin molecules. Coordinate Mg2+ ion is also indicated. (C) Overall architec-
ture of VapB2 antitoxin. 

A hetero-octamer is formed by two hetero-tetrameric units related by a twofold sym-
metry, and the majority of interactions between the units occur within the VapB2–VapB2 
dimeric interface (Figure 1A). The N-terminal β-strands of the two VapB2 molecules inter-
act, completing the RHH motif by forming a dimer. An antiparallel sheet is formed by the 
β-strands from each VapB2. Additionally, the C-terminus of the VapB2 binds two toxins 
together [51]. 

2.2. VapBC5 System 
The M. tuberculosis VapC5 toxin has a condensed α/β/α main domain (Figure 3A). 

This toxin also shows an additional feature-α clip structure constituted by two protruding 
α-helices (Figure 3C) [58]. The core domain, known for its compact nature, unfolds with 
elegance, encompassing a four-stranded parallel β-sheet (β2–β1–β3–β4) encircled by a del-
icate arrangement of five α-helices. The clip structure, consisting of α3 and α4, is con-
nected to the core domain by two flexible stretches that appear as coils. These segments 
likely confer the necessary flexibility for binding to the antitoxin [59–61]. 

The structure of the VapB5 antitoxin reveals the absence of certain residues within 
the N-terminal segment, responsible for DNA binding (Figure 3B). VapB5 adopts a helical 
conformation, comprising two α-helices, namely α1 and α2, interconnected by an elon-
gated and pliable loop. Notably, VapB5 engages with VapC5 at a substantially expansive 
and profound interface, originating between the core domain and the clip structure (Fig-
ure 3C). 

Figure 2. Unit structures belongs to M. tuberculosis VapBC2 system. Secondary structure nominations
are displayed. (A) Overall architecture of VapC2 toxin. (B) Overall architecture of VapBC2 complex
in hetero-tetrameric assembly. This asymmetric unit consists of two VapB2 antitoxin molecules and
two VapC2 toxin molecules. Coordinate Mg2+ ion is also indicated. (C) Overall architecture of
VapB2 antitoxin.

The structure of the VapB2 antitoxin is comprised of an N-terminal β-strand and
three α-helices (Figure 2C). The N-terminal β1–α1–α2 region constitutes a ribbon–helix–
helix (RHH) domain, which is a common structural motif in transcription factors that
enables them to bind to DNA [57]. The long loop between α2 and α3 creates a flexible
hinge, and a part of this hinge, along with the C-terminal a3 and a4, forms the interface
with the toxin. In contrast to the toxin molecules, which have limited conformational
differences, the antitoxins have significantly distinct conformations due to their varied
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hinges (Figure 2B). Moreover, the Mg2+-unbound toxin is wrapped more tightly by its
proximal antitoxin than Mg2+-bound toxin is by the other antitoxin.

A hetero-octamer is formed by two hetero-tetrameric units related by a twofold
symmetry, and the majority of interactions between the units occur within the VapB2–
VapB2 dimeric interface (Figure 1A). The N-terminal β-strands of the two VapB2 molecules
interact, completing the RHH motif by forming a dimer. An antiparallel sheet is formed
by the β-strands from each VapB2. Additionally, the C-terminus of the VapB2 binds
two toxins together [51].

2.2. VapBC5 System

The M. tuberculosis VapC5 toxin has a condensed α/β/α main domain (Figure 3A).
This toxin also shows an additional feature-α clip structure constituted by two protruding
α-helices (Figure 3C) [58]. The core domain, known for its compact nature, unfolds with
elegance, encompassing a four-stranded parallel β-sheet (β2–β1–β3–β4) encircled by a
delicate arrangement of five α-helices. The clip structure, consisting of α3 and α4, is
connected to the core domain by two flexible stretches that appear as coils. These segments
likely confer the necessary flexibility for binding to the antitoxin [59–61].
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Figure 3. Unit structures belongs to M. tuberculosis VapBC5 system. Secondary structure nominations
are displayed. (A) Overall architecture of VapC5 toxin. (B) Overall architecture of VapB5 antitoxin.
A significant portion of the N-terminal region lacks electron density map, and only the region
that closely binds to the toxin can be observed. (C) Overall architecture of VapBC5 complex in
hetero-dimeric assembly. The dotted lines represent the clip structure, which consists of α3 and
α4 helices.

The structure of the VapB5 antitoxin reveals the absence of certain residues within
the N-terminal segment, responsible for DNA binding (Figure 3B). VapB5 adopts a helical
conformation, comprising two α-helices, namely α1 and α2, interconnected by an elongated
and pliable loop. Notably, VapB5 engages with VapC5 at a substantially expansive and
profound interface, originating between the core domain and the clip structure (Figure 3C).

The VapBC5 complex adopts a hetero-tetrameric arrangement facilitated by a twofold
axis within the crystallographic symmetry, thereby establishing a relationship between
two hetero-dimeric units (Figure 1B). Regarding its function, the VapC5 toxin has been
demonstrated to exhibit Mg2+-dependent activity in nuclease assays, implying the necessity
of Mg2+ ions for its enzymatic function. Empirical in vitro tests have substantiated that
VapC5 possesses the capability to cleave general 150-nucleotide RNA molecules [52].

2.3. VapBC11 System

The crystallographic depiction of the VapBC11 system reveals distinct high-resolution
observations of both the N-terminal and C-terminal regions of the VapB11 antitoxin
(Figure 4A). The N-terminal domain of VapB11 constitutes the formation of a RHH DNA-
binding motif. By oligomerizing at the N-terminus, VapB11 establishes a dimeric configura-
tion. Further interaction predominates in the remaining C-terminal segment, encompassing
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α3 and α4, which engages with the VapC11 toxin (as illustrated in Figure 4B). When the
VapBC11 complex assembles, the activity of each toxin is counteracted by binding its cor-
responding antitoxin molecule. Notably, as VapC11 is recognized for its tRNA cleavage
capability, investigation into the binding kinetics of tRNA with immobilized VapC11 has
revealed a dissociation constant (Kd) of approximately 0.5 nM [53].
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are displayed. (A) Overall architecture of VapB11 antitoxin dimer. Location of RHH motif is denoted.
(B) Overall architecture of VapB11 complex homodimer. N-terminal β1–α1–α2 domain of VapB11
is responsible for DNA-binding, and C-terminal α3 and α4 helices are responsible for VapC11
toxin binding.

The interaction between VapB11 and VapC11 transpires with a 1:1 stoichiometry.
Within the crystallographic symmetry of VapBC11, the intertwining of VapB11 and VapC11
leads to the formation of a hetero-octameric complex (Figure 1C). In solution, it is observed
that two homodimers of VapB11, along with two homodimers of VapC11, interplay to craft
a hetero-octameric assembly [53]. Moreover, surface plasmon resonance experiments have
corroborated that VapB11 and VapC11 manifest interactions characterized by affinities
within the nanomolar range [53].

2.4. VapBC15 System

The VapBC15 M. tuberculosis complex structure consists of an 80-residue VapB15
antitoxin and a 132-residue VapC15 toxin. These co-expressed proteins combine to form a
hetero-tetrameric assembly. In the combined structure, each toxin monomer is bridged by
an antitoxin monomer (Figure 1D).

Within the dimeric arrangement of VapC15, an intriguing observation surfaces as
two pairs of metal ions are detected (Figure 5A). The VapC15 toxin monomer presents a
compact, globular structure encompassing an α/β/α fold, characteristic of PIN-domain
proteins [55,56]. Structural analysis of an architecture reveals a composition of 12 secondary
structure elements, specifically β1–α1–α2–β2–α3–α4–β3–α5–α6–β4–α7–β5. The pivotal
central domain of VapC15 encompasses a five-stranded parallel β-sheet, sequenced as β3–
β2–β1–β4–β5, flanked on one side by four α-helices (α1–α4) and on the other side by three
α-helices (α5–α7). The fundamental composition of each dimeric interface is predominantly
composed of the α3, α4, and α5 helices stemming from each monomer. Evidently, the
asymmetric unit of the hetero-tetrameric complex harbors two-metal coordination sites,
consisting of two Mg2+ sites and two Mn2+ sites.
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In contrast, when considering the VapB15 antitoxin within the VapBC15 homodimeric
complex, a significant portion of the protein remains invisible in the electron density map.
This obscured segment includes approximately 40 residues in the N-terminus and around
10 residues in the C-terminus (Figure 5B). Insight into this phenomenon is gleaned from
MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) analysis, which
elucidates that the protein underwent proteolysis during the crystallization process [54].
Consequently, the visualized region encompasses merely two short α-helices connected by
a connecting loop.

The active site composition of VapC15 incorporates the presence of Mg2+ and Mn2+

ions. To validate its metal-dependent RNase activity, VapC15 toxin was synthesized by
denaturing and refolding the VapB15 antitoxin within the VapBC15 complex. The structural
integrity of the VapC15 toxin was affirmed through circular dichroism spectra analysis [54].
In an in vitro ribonuclease activity assay utilizing agarose gel electrophoresis, the VapC15
toxin displayed catalytic proficiency in degrading RNA derived from a specific Escherichia
coli strain. However, when VapC15 was exposed to ethylene-diamine-tetra-acetic acid
(EDTA), a metal-chelating agent, its catalytic activity on the same RNA substrate was
nullified, providing conclusive evidence of its metal-dependent RNase activity [54].

2.5. VapBC26 System

The VapBC26 complex from M. tuberculosis contains four VapB26 antitoxins and
four VapC26 toxins in a hetero-octameric assembly, as shown by the crystal structure
(Figure 1E). The flexible hinge loop of the antitoxin acts as a hooked arm, wrapping around
the toxin. In the structure of the VapBC26 homodimer, VapB26 binds to VapC26 along
the deep valley formed by four α-helices (α1–α4) of VapC26 (Figure 6A). The VapC26
toxin adopts an α/β/α sandwich fold composed of seven α-helices and five β-strands,
and the VapB26 antitoxin contains one β-strand and two α-helices with a topology of
β1–α1–α2. As such, the detailed unit structure shows a similar pattern to the previously
introduced VapBC systems in the previous subsection. However, in the study of the M.
tuberculosis VapBC26 system, a peptide-based antimicrobial agent was generated using
Mg2+-dependent RNase activity [49].
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Based on the interaction between VapB26 and VapC26, several peptides were designed
as potential inhibitors. These peptides were designed to mimic the binding interface of
VapB26 and VapC26. Theoretically, these peptides could compete with VapB26 and VapC26
for binding, and therefore prevent the formation of the TA complex [49]. If the peptides
bind with high affinity, the binding between VapB26 and VapC26 would be disrupted, and
free VapC26 would become more predominant, leading to increased RNase activity. In
fact, it has been confirmed that the ribonuclease activity of VapBC26 increases as a result of
peptide addition [49,62]. Effective peptides were those that mimicked the binding region of
VapC26, specifically the α3 and α4 helices (Figure 6B). It was found that VapBC26 exhibited
increased activity upon the addition of the α4-mimicking peptide, compared to the addition
of the α3-mimicking peptide [49]. Furthermore, modified peptides with a-helix stapling
showed highly enhanced activity and cell permeability [62].

In the investigation of the VapBC26 system, efforts focused on designing peptidemimet-
ics to target the VapC26 toxin and inhibit its interaction with the antitoxin VapB26 [49]. This
led to the discovery of an inhibitory peptidomimetic, ‘V26-SP-8’, which specifically targeted
the VapC26 α4 helix. ‘V26-SP-8’ was engineered from the initial peptide through hydro-
carbon α-helix stapling, resulting in enhanced VapC26 activity even at significantly lower
concentrations [62]. Circular dichroism spectroscopy confirmed the increased α-helical
propensity of ‘V26-SP-8’, and isothermal titration calorimetry determined a dissociation
constant (Kd) of approximately 604 ± 18.2 nM for the VapB26-’V26-SP-8’ interaction. NMR
spectroscopy revealed the binding mechanism between VapB26 and ‘V26-SP-8’. In experi-
ments with M. smegmatis, fluorescence-labeled ‘V26-SP-8’ demonstrated uptake by bacterial
cells and inhibited their growth effectively. Moreover, ‘V26-SP-8’ exhibited stability in
human and mouse blood/serum/plasma, with a half-life exceeding three hours [62].

2.6. VapBC30 System

The M. tuberculosis VapBC30 complex exists as a hetero-tetramer in solution and con-
sists of two tightly bound VapBC30 heterodimers (Figure 1F). Briefly, the VapC30 toxin
is characterized by a PIN domain motif. It has an α/β/α sandwich fold consisting of
four parallel β-strands in β4–β1–β2–β3 order with six α-helices (Figure 7A). VapB30 anti-
toxin offsets the enzymatic function of the cognate VapC30 toxin by forming the VapBC30
complex. Specifically, growth arrest or apoptosis effect caused by toxicity due to the expres-
sion of VapC30 was confirmed through bacterial cells [50]. The cells expressing VapC30 did
not grow, but cells co-expressing VapB30 and VapC30 grew well under the same conditional
as the control cells [50].
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Using the structural features of the binding interface of VapBC30, it was possible to
design a useful and effective antibiotic peptide. A certain peptide that includes the α1 helix
of VapB30 antitoxin can mimic the binding of the VapBC30 complex (Figure 7B), resulting
in the arrest of bacterial cell growth and eventually cell death [50,63]. The designed
candidate peptides were optimized through the use of α-helix stapling technique [64]. The
optimized peptides were able to successfully penetrate the bacterial cell membrane, and
their minimum inhibitory concentration values were less than 6.25 µM [63].

The synthetically engineered peptide ‘V30-SP-8’ effectively penetrated M. smegmatis
cells and surpassed the efficacy of the antibiotic vancomycin. These methods, guided
by insights from M. tuberculosis TA systems, offer promise for the development of novel
antibiotics tailored to combat antibiotic-resistant strains of M. tuberculosis. Given the lack of
therapeutic agents targeting TA systems, the ‘toxin activation strategy’ holds potential for
innovative antibiotic development, particularly against M. tuberculosis [50,63].

3. Concluding Remarks

Bacterial TA systems consist of two main components: toxins and antitoxins. Toxins
target essential bacterial processes, while antitoxins neutralize their effects. These systems
are categorized into various types based on the nature of the antitoxin and its interaction
with the toxin. Type II TA systems, in particular, involve protein antitoxins that form com-
plexes with protein toxins. Importantly, these type II systems lack counterparts in humans
and are common in significant bacterial pathogens. This makes the protein products of
type II TA systems promising candidates for the development of new antibacterial drugs.
Extensive research has been conducted on the VapBC toxin–antitoxin systems in M. tubercu-
losis, and their crystal structures have provided valuable insights into their functions. The
VapC toxins have a unique sandwich-like structure, while VapB antitoxins often possess
DNA-binding motifs. The harmful effects of VapC toxins are due to their RNase activity,
which is effectively countered by the strong binding of VapB antitoxins.

This review focuses on early efforts in structure-based drug development, specifically
highlighting insights from the structural and biochemical aspects of type II TA systems.
Antibiotic candidates, in the form of α-helix peptidomimetics, have gained attention due to
their resistance against proteolytic degradation. Through stapling modifications of peptides,
improved α-helical content and enhanced cell permeability have been achieved. The uptake
of these peptides by cells was demonstrated, as they were completely removed from the
cell surface during fluorescence-associated cell sorting (FACS) experiments after trypsin
digestion. With the ongoing research into type II TA systems, including investigations
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into small molecule inhibitors, it is likely that new-generation antibiotics targeting these
systems will emerge in the near future.

Biomimetic peptides, designed through rational design based on the structure of
TA systems, have the potential to function as antibacterial agents [29]. In type II TA
systems, it is possible to artificially activate the toxin by designing inhibitors that disrupt
the interaction between the toxin and antitoxin (Figure 8). In this theory, the toxin within
the TA complex remains non-toxic because the antitoxin obstructs the catalytic active site
of the toxin. However, when an inhibitor interacts with its corresponding binding site,
it can detach the antitoxin, leading to toxin activation. Furthermore, when the binding
interface consists of α-helices, α-helix peptidomimetics are favored as antibiotic candidates
due to their superior resistance to proteolytic degradation. Additionally in these cases, the
application of stapling modifications to peptides can increase their α-helical content and
enhance cell permeability, making them advantageous [49,62].
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Figure 8. Schematic diagram of the therapeutic applications of biomimetic peptides in type II TA
systems are described. The purple represents the toxin, which inhibits cell growth or causes cell
death, while the green represents the antitoxin, which counters the toxin’s effects. In the absence of
specific stimuli or stress, toxins remain stable and inactive due to the presence of antitoxins. However,
a mimetic peptide can detach the antitoxin from the toxin, leading to cell death.

These designed peptides are based on unique TA complex proteins found only in
bacteria. Therefore, they are predicted to have fewer side effects in humans when developed
into drugs. Additionally, since the TA systems in specific bacteria vary structurally, it is
expected that they can target and eliminate only pathogenic bacteria, not harming beneficial
ones in humans. However, there is a concern that a moderate degree of toxin activation
might lead to the formation of persister or dormant cells, contributing to chronic infections.
Therefore, it is essential to develop strategies to control the dosage to prevent cells from
entering a dormant stage or render them susceptible to antibiotic drugs. As these challenges
are gradually overcome, we can anticipate the development of new-generation antibiotics
in the near future by targeting the TA system.
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