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Abstract: In this paper, a new hybrid Manta Ray Foraging Optimization (MRFO) with Cuckoo Search
(CS) algorithm (AMRFOCS) is proposed. Firstly, quantum bit Bloch spherical coordinate coding
is used for the initialization of the population, which improves the diversity of the expansion of
the traversal ability of the search space. Secondly, the dynamic disturbance factor is introduced
to balance the exploratory and exploitative search ability of the algorithm. Finally, the unique
nesting strategy of the cuckoo and Levy flight is introduced to enhance the search ability. AMRFOCS
is tested on CEC2017 and CEC2020 benchmark functions, which is also compared and tested by
using different dimensions and other state-of-the-art metaheuristic algorithms. Experimental results
reveal that the AMRFOCS algorithm has a superior convergence rate and optimization precision.
At the same time, the nonparametric Wilcoxon signed-rank test and Friedman test show that the
AMRFOCS has good stability and superiority. In addition, the proposed AMRFOCS is applied to the
three-dimensional WSN coverage problem. Compared with the other four 3D deployment methods
optimized by metaheuristic algorithms, the AMRFOCS effectively reduces the redundancy of sensor
nodes, possesses a faster convergence speed and higher coverage and then provides a more effective
and practical deployment scheme.

Keywords: manta ray foraging optimization; cuckoo search; AMRFOCS; benchmark function; three-
dimensional WSN; metaheuristic algorithm

1. Introduction

A wireless sensor network (WSN) is a wireless network composed of a set of sensor
nodes, which is applied to monitor and record all aspects of the region of interest [1].
WSNs have been widely used in disaster relief, public safety, smart-city construction [2],
agricultural monitoring and other fields [3,4]. One of the important problems in WSNs
is optimizing the deployment of sensor nodes, which determines the regional coverage,
overall network connectivity and network service quality of the WSN [5].

At present, the deployment of WSNs on a two-dimensional plane has been relatively
well studied, while three-dimensional deployment has been less researched. The 3D
deployment of wireless sensor networks is divided into two types: one is deployed in
the 3D space, and the other is deployed on the surface [6]. The coverage optimization
of wireless sensor networks on 3D surfaces has become a heated topic in wireless sensor
network research due to its complexity and practicality [7].

Recently, researchers have applied a variety of bionic metaheuristic swarm intelli-
gence algorithms to improve the performances of wireless sensor networks, including
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the extended coverage area, network lifetime, routing protocol, sensor random deploy-
ment, energy consumption model, etc. Table 1 specifically demonstrates the optimization
performance of swarm intelligence algorithms in wireless sensor networks in recent years.

The swarm intelligence (SI) category has received abundant attention recently [8]. SI is
a group-based algorithm driven by biological group behavior [9]. The diverse species in na-
ture exhibit unique behaviors and habits. Swarm intelligence algorithms are mainly based
on the foraging, communication and reproductive behaviors of biological organisms. Repre-
sentative examples of these behaviors include Particle Swarm Optimization (PSO) [10], Ant
Colony Optimization (ACO) [11], Cuckoo Search (CS) [12] algorithms, Artificial Bee Colony
(ABC) [13], the Grey Wolf Optimizer (GWO) [14], the Butterfly Optimization Algorithm
(BOA) [15], the Whale Optimization Algorithm (WOA) [16], Harris hawks optimization
(HHO) [17], Manta Ray Foraging Optimization (MRFO) [18], Jellyfish Search (JS) [19], the
Honey Badger Algorithm (HBA) [20], Sand Cat Swarm Optimization (SCSO) [21], the
Dandelion Optimizer (DO) [22], the Coati Optimization Algorithm (COA) [23], the Fire
Hawk Optimizer (FHO) [24] and the Sea-horse Optimizer (SHO) [25].

MRFO is a swarm intelligence algorithm proposed in 2020. Its inspiration comes from
the foraging behavior of manta rays, which simulates three different foraging strategies:
chain foraging, spiral foraging and flip-bucket foraging. In the foraging process, the
conversion of different foraging methods is formulated as a conversion based on global
and local optimization. MRFO has an excellent global optimization ability, as it has fewer
adjustable parameters, simpler implementations and lower computational cost. It has been
widely used in electrical engineering [26], civil engineering [27], image segmentation [28],
photovoltaic models [29], network engineering [30] and structural design [31].

Although MRFO has been applied in many fields, previous studies have shown that
its exploration ability is weak [32], and it is easy to stagnate the local optimum [33]. In order
to solve this problem, this paper improves MRFO and applies it to WSN node deployment
on a three-dimensional surface.

The structure of this paper is presented as follows: Section 2 focuses on the basic
algorithm. In Section 3, the approach is proposed. Section 4 describes the experimental
results and comparison of the CEC2017 and CEC2020 benchmark functions with AMRFOCS.
Section 5 is about the application of AMRFOCS in the development optimization of wireless
sensor nodes, and Section 6 contains conclusions and future work.

Table 1. The differences in the applications of different algorithms in WSNs.

Algorithm Application in WSNs Key Features Advantages Limitations

PSO [2] Coverage maximization,
network lifetime

Swarm-based optimization,
global search capability

Fast convergence, reduce costs,
coverage enhancement

Scale limitations, obstacles
not considered

CS [3] Node localization The flight characteristics of
the cuckoo

Better convergence,
calculation accuracy

Time consuming,
complex implementation

WOA [34] Coverage optimization Social Behavior of
humpback whales

High coverage, low
deployment cost 2D, convergence speed

GWO [35] Coverage optimization Group hunting behavior of
gray wolves

Easy implementation, high
search efficiency Time consuming, 2D

SSA [36] Network data aggregation Squirrel foraging behavior Low energy consumption,
high accuracy 2D, convergence speed

SMA [37] Node localization, 3D Behavior of slime mold Low complexity, high convergence CPU time, high memory

ABC [38] Routing protocol Honey bee behavior Reduced convergence delay, low
energy consumption

Time consuming, complex
implementation

HBA [39] Smart city Foraging behavior of
honey badgers

Low energy consumption,
high accuracy

Scale limitations, complex
implementation

BOA [40] Energy efficiency Behavior of butterflies Low complexity, high efficiency Complex implementation

ACO [40] Energy efficiency Foraging behavior of ants Low complexity High memory

PIO [41] Coverage optimization Pigeon homing behavior Better convergence, high efficiency 2D, time consuming
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2. Preliminary
2.1. Manta Ray Foraging Optimization

The Manta Ray Foraging Optimization (MRFO) algorithm is a new population-based
swarm intelligence optimization algorithm used to simulate animal foraging behaviors
and characteristics. The main inspiration of this algorithm is the special and manifold
foraging behavior of manta rays. In order to distinguish their different behaviors, they
are described as chain foraging, spiral foraging and flipping foraging. In particular, if
the physical space of the manta ray motion corresponds to the search space of the MRFO
algorithm, the position xd

i (t) of the manta ray is the solution in the searching region, and
the place xd

best(t) of the optimal food source is the optimal solution in the search region.
During the cyclone foraging stage, the manta ray swims forward spirally. According to

the value of the convergence factor (C) (the ratio of the number of iterations to the maximum
number of iterations), it is decided to choose the best position obtained at present, which
is helpful for development or to choose the reference random position, which is helpful
for exploration:

β = 2er1
TMax−t+1

TMax · sin(2π · r1) (1)

xd
i (t + 1) =

{
xd

best + r · [xd
best(t)− xd

i (t)] + β · [xd
best(t)− xd

i (t)] i = 1
xd

best + r · [xd
i−1(t)− xd

i (t)] + β · [xd
best(t)− xd

i (t)] i = 2, . . . , N
(2)

where β is the weight coefficient, TMax is the maximum number of iterations and r1 is a
random number in [0, 1]:

xd
rand = r · (Upd − Lowd) + Lowd (3)

xd
i (t + 1) =

{
xd

rand + r · [xd
rand(t)− xd

i (t)] + β · [xd
rand(t)− xd

i (t)] i = 1
xd

rand + r · [xd
i−1(t)− xd

i (t)] + β · [xd
rand(t)− xd

i (t)] i = 2, . . . , N
(4)

where xd
rand denotes an arbitrary position in the searching region and Upd and Lowd are

the upper and lower limits of the dth dimension, respectively.
In the chain foraging stage, the position of the manta ray individual is updated

according to the previous individual position and the optimal food source position:

α = 2 · r ·
√
|log(r)| (5)

xd
i (t + 1) =

{
xd

i + r · [xd
best(t)− xd

i (t)] + α · [xd
best(t)− xd

i (t)] i = 1
xd

i + r · [xd
i−1(t)− xd

i (t)] + α · [xd
best(t)− xd

i (t)] i = 2, . . . , N
(6)

where xd
i (t) presents the position of the ith individual at time t in the dth dimension, r is

a random vector within [0, 1] and a is a weight coefficient. The position update of the ith
individual is determined by the position xd

i−1(t) of the (i − 1)th current individual and the
position xbest(t) of the food.

In somersault foraging, the new positions can be represented as

xd
i (t + 1) = xd

i (t) + S · r ·
(

xd
best(t)− xd

i (t)
)

, i = 1, . . . . . . , N (7)

where S = 2 and S is the somersault factor, which determines the search range of each flip.

2.2. Cuckoo Search Algorithm

The main inspiration for the Cuckoo Search (CS) algorithm comes from the interesting
parasitic brooding behavior of cuckoos. In order to describe the Cuckoo Search algorithm,
the following three idealized rules are used: First, each cuckoo lays an egg in a nest at a
time, and the nest is randomly selected. Second, the nest with high-quality eggs is retained
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as a continuous generation; that is, the optimal solution is retained. Third, it is assumed
that the existing host nest is invariable, and the host discovers the eggs laid by the cuckoo
with a probability of 0 ≤ P ≤ 1 and then throws away the eggs or discards the existing nest.

The parasitic nest of cuckoo eggs represents the solution of the search space, and the
location of the parasitic nest represents the fitness value of the solution. In the optimization
process of CS, parameter P affects the transition between local development and global
search. The nest location update mechanism conforms to the Levy flight, and the equation
is updated as follows:

xt+1
i = xt

i + α⊗ Levy(λ) (8)

where xt
i represents the position of the ith bird nest in the kth generation nest, ⊗ represents

point-to-point multiplication, a represents the step length control quantity and Levy(λ) is a
random search path.

3. The Proposed Method

In MRFO, the transition of the different foraging modes of manta rays is only de-
termined by the comparison of random numbers. The imbalance between exploration
and exploitation greatly affects the performance of the algorithm. In order to enhance
the performance of MRFO, this paper improves it from two aspects: First, the dynamic
disturbance factor strategy is introduced to balance exploration and development to ensure
accuracy, and the AMRFO algorithm is proposed. Secondly, the CS algorithm is mixed
on the basis of AMRFO, and the exploration ability of CS is used to enhance the global
convergence ability of the algorithm and to avoid low efficiency and the local optimum.

3.1. Dynamic Perturbation Factor Strategy

In the original MRFO algorithm, the excess of the exploitation and exploration of
cyclone foraging is determined by the comparison between the random number (rand) and
the convergence factor (C) (the ratio of the number of iterations to the maximum number of
iterations). When the random number is less than the convergence factor, the manta ray
carries out the global search and expands the exploration range. When the random number
is greater than the convergence factor, the manta ray performs a local search to improve the
efficiency of the local search. However, the disadvantage is that the early and late decline in
the convergence factor is the same, resulting in the inability to perform a local search better
in the early stage and the inability to perform a partial search more effectively in the later
step, which will lead to disadvantages in handling actual optimization problems. In most
cases, it cannot be guaranteed that the global optimal solution can be obtained at the end of
the convergence; there will be premature convergence, and the model will fall into a local
optimum later. The convergence factor is generally improved from linear to nonlinear so
that the previous convergence factor can be smoothly decreased and the global exploration
capability can be augmented. The steep decline at the later stage enhances its local mining
capacity. In this paper, a new dynamic factor strategy will be introduced to improve its
accuracy. The perturbation factor P is shown in Equation (9), and the updated parameter
M is shown in Equation (10):

P = randn ·
(

sinω(
π

2
· t

tmax
) + cos(

π

2
· t

tmax
)− 1

)
(9)

M = a · (2× rand− 1) + P (10)

where randn represents a random number that obeys a Gaussian normal distribution; ω
represents a constant that determines the peak position of the perturbation factor; and M is a
part of the position update, which balances the global search and local exploitation in cyclone
foraging. Figure 1 shows that M changes with the increase in the number of iterations. It
can be embraced from the comparison in the figure that when ω = 3, the amplitude of the
disturbance factor is large and stable, and it is also verified in subsequent experiments that it
can improve the performance of the algorithm.
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3.2. Hybrid CS with AMRFO

All population-based metaheuristic algorithms such as MRFO and CS essentially
solve optimization problems by maintaining a compromise between development and
exploration. In MRFO, chain foraging and flip-bucket foraging update the position of the
search agent around the optimal position, focusing on the development performance of
the algorithm. However, the special features of spiral foraging are used to improve global
exploration. CS has a special flight strategy that cannot easily fall into the local optimum
and has a strong global search ability. CS is embedded into AMRFO to further optimize
the algorithm’s performance, prevent the model from falling into the local optimum and
improve the convergence rate and preciseness.

3.3. The Proposed AMRFOCS

To express the proposed algorithm more clearly, Algorithm 1 gives the pseudo code of
the proposed AMRFOCS, and Figure 2 is the workflow chart of the proposed AMRFOCS
algorithm.

Algorithm 1: AMRFOCS

1. Input: The number of generations (T), size of the population (N), and the upper and lower bounds Up
and Low.
2. Output: Optimal solution xbest.
3. Initialize the population and parameters α, β, S, P, M, ω
4. Compute the fitness of every initialized agent and sort all agents according to their fitness values.
5. while t < T do:
6. if rand < 0.5 then
7. if |M| < 1 then
8. Update xi based on Equation (4).
9. else if then
10. Update xi on the usage of Equation (9).
11. end if
12. else if then
13. Update xi on the usage of Equation (6)
14. end if
15. for i = 1:N do
16. Update xi based on Equation (7).
17. if f (xi(t + 1)) < f (xbest) then
18. xbest = xi(t + 1)
19. end if
20. end for
21. Sort the new population according to fitness.
22. t = t + 1
23. end while
24. return
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3.4. The Computational Complexity of AMRFOCS

One of the main metrics of the optimization algorithm is the execution time. The
modifications of AMRFOCS include the dynamic perturbation factor and the hybridizing
of CS. When the population size, the dimension of the optimization problem and the
maximum number of iterations are set to N, D and T, respectively, the complexity of
AMRFOCS can be calculated in the following ways: The complexity of the initialization
phase is O(N × D), the complexity of the dynamic disturbance factor is O(N) and the
complexity of the algorithm update solution is O(N×D). When performing T iterations, the
total time complexity of AMRFOCS is O(N × D + T× (N + N × D + N × D + N × D)) =
O(N× (D + T + 3× T×D)), which is higher than the O(T×N×D) of the original MRFO.

4. Experimental Results and Discussion

In this section, in order to evaluate the performance of the proposed AMRFOCS and
verify its effectiveness, two highly respected function families are used: thirty CEC 2017
and ten CEC 2020 benchmark functions. The improved AMRFOCS is compared with
other well-known optimization algorithms in multiple dimensions. Information about the
benchmark function is shown in Tables 2 and 3. The environmental conditions of all the
simulation experiments involve Intel® Core™ i7-9700 CPU @ 3.00 GHz, 16 GB RAM, the
Windows 10 operating system and the MATLAB 2021b platform.
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4.1. Comparison of AMRFOCS with Other Algorithms on CEC2017
4.1.1. Analysis and Discussion of Results

In this section, AMRFOCS is compared with eight other metaheuristic algorithms,
including ACO [42], ABC [43], SMA [44], PSO [45], GA, DE [46], WOA [46] and MRFO [18].
In order to ensure the fairness and rigor of the experiment, parameters are set in each
selected algorithm, as shown in Table 4. Except for the parameters in Table 4, the other
parameters are consistent. Each algorithm was run independently 30 times with dimensions
of 30 and 50 and a population size of 50 and 30, and the maximum number of iterations
was set to 500. The results of 30 independent runs are listed in Tables 5 and 6.

Tables 5 and 6 show four indicators, namely the mean value (mean), standard deviation
(std), minimum value (min) and maximum value (max), as well as the sort value of the
algorithm. In addition, at the 5% significance level, the Wilcoxon rank-sum test [47] is
used to affirm whether AMRFOCS has a significant contribution to other algorithms. “-”
represents “not applicable”, which means that the best algorithm cannot be statistically
compared with itself in the rank-sum test [39]. Tables 5 and 6 give the algorithm’s ranking
in different test functions and the p-value of the rank-sum test. The table’s bold data are the
eight algorithms’ optimal minimum values (maximum values, mean values or standard
deviation). Additionally, the last row of Tables 5 and 6 lists three symbols (+/−/=) to show
the number of functions whereby AMRFOCS has a superior (+) performance, the number
of functions whereby AMRFOCS has the same behavior as other algorithms (=) and the
number of functions whereby AMRFOCS is at a disadvantage.

Tables 5 and 6 show that AMROCS provides topnotch results in most functions,
especially when dealing with unimodal functions (F1, F3), multimodal (F5), mixed (F11,
F12, F13, F16, F19, F20 and F17) and combined functions (F20, F21, F24 and F28–F30).
Therefore, AMRFOCS has the smallest average rank ranking, with more than 32% of the
features in these tests achieving an optimal performance. This experimental result confirms
the effective exploration and utilization ability of the proposed AMRFOCS in exploring
and accurately utilizing the optimal solution and avoiding many local optimums in high-
dimensional combinatorial functions. The table also shows the p value of AMRFOCS and
the other algorithms, which confirms the significant difference between the AMRFOCS
proposed in this paper and other algorithms. Therefore, AMRFOCS is a faithful and
steady-going algorithm.

Table 2. CEC2017 benchmark functions summary [48].

Type No. Functions Range Fmin

Unimodal Function
F1 Shifted and Rotated Bent Cigar Function [−100, 100] 100
F2 Shifted and Rotated Sum of Different Power Function [−100, 100] 200
F3 Shifted and Rotated Zakharov Function [−100, 100] 300

Simple
Multimodal
Functions

F4 Shifted and Rotated Rosenbrock’s Function [−100, 100] 400
F5 Shifted and Rotated Rastrigin’s Function [−100, 100] 500
F6 Shifted and Rotated Expanded Scaffer’s F6 Function [−100, 100] 600
F7 Shifted and Rotated Lunacek Bi_Rastrigin Function [−100, 100] 700
F8 Shifted and Rotated Noncontinuous Rastrigin’s Function [−100, 100] 800
F9 Shifted and Rotated Levy Function [−100, 100] 900

F10 Shifted and Rotated Schwefel’s Function [−100, 100] 1000

Hybrid Functions

F11 Hybrid Function 1 (N = 3) [−100, 100] 1100
F12 Hybrid Function 2 (N = 3) [−100, 100] 1200
F13 Hybrid Function 3 (N =3) [−100, 100] 1300
F14 Hybrid Function 4 (N = 4) [−100, 100] 1400
F15 Hybrid Function 5 (N = 4) [−100, 100] 1500
F16 Hybrid Function 6 (N = 4) [−100, 100] 1600
F17 Hybrid Function 6 (N =5) [−100, 100] 1700
F18 Hybrid Function 6 (N =5) [−100, 100] 1800
F19 Hybrid Function 6 (N =5) [−100, 100] 1900
F20 Hybrid Function 6 (N = 6) [−100, 100] 2000
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Table 2. Cont.

Type No. Functions Range Fmin

Composition Functions

F21 Composition Function 1 (N = 3) [−100, 100] 2100
F22 Composition Function 2 (N = 3) [−100, 100] 2200
F23 Composition Function 3 (N = 4) [−100, 100] 2300
F24 Composition Function 4 (N = 4) [−100, 100] 2400
F25 Composition Function 5 (N = 5) [−100, 100] 2500
F26 Composition Function 6 (N = 5) [−100, 100] 2600
F27 Composition Function 7 (N = 6) [−100, 100] 2700
F28 Composition Function 8 (N = 6) [−100, 100] 2800
F29 Composition Function 9 (N = 3) [−100, 100] 2900
F30 Composition Function 10 (N = 3) [−100, 100] 3000

Table 3. The CEC2020 benchmark functions [49].

Type No. Functions Range Fmin

Unimodal Function F1 Shifted and Rotated Bent Cigar Function (CEC 2017 F1) [−100, 100] 100

Basic Functions
F2 Shifted and Rotated Schwefel’s Function (CEC 2014 F11) [−100, 100] 1100
F3 Shifted and Rotated Lunacek Bi_Rastrigin Function (CEC 2017 F7) [−100, 100] 700
F4 Expanded Rosenbrock’s plus Griewangk’s Function (CEC2017 F19) [−100, 100] 1900

Hybrid Functions
F5 Hybrid Function 1 (N = 3) (CEC 2014 F17) [−100, 100] 1700
F6 Hybrid Function 2 (N = 4) (CEC 2017 F16) [−100, 100] 1600
F7 Hybrid Function 3 (N = 5) (CEC 2014 F21) [−100, 100] 2100

Composition Functions
F8 Composition Function 1 (N = 3) (CEC 2017 F22) [−100, 100] 2200
F9 Composition Function 2 (N = 4) (CEC 2017 F24) [−100, 100] 2400

F10 Composition Function 3 (N = 5) (CEC 2017 F25) [−100, 100] 2500

Table 4. Parameter settings of different algorithms.

Algorithm Parameters Setting Value

ABC
a 1
k [1, 10]
p [−1, 1]

ACO

r 0.9
P 0.2
y [−5, 5]
s 0.1

DE
f 0.5
c 0.9

GA

l 20
g 0.9
c 1
s 0

SMA z 0.03

PSO
a 2.0
c 2.0

WOA b 1

MRFO S 2
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Table 5. Comparison of results obtained—CEC2017 benchmark functions (30D).

Function ABC [43] ACO [42] DE [46] GA SMA [44] PSO [45] WOA [46] MRFO AMRFOCS

F1

Min 1.0154 × 108 9.7148 × 1010 4.1095 × 106 4.8990 × 1010 1.5430 × 103 1.2997 × 107 5.9003 × 108 1.4427 × 102 3.1760 × 102

Max 8.3189 × 108 1.5513 × 1011 1.9979 × 107 1.0217 × 1011 2.2200 × 104 2.5143 × 107 5.9382 × 109 2.0702 × 104 1.9893 × 104

Mean 3.1937 × 108 1.2948 × 1011 1.1488 × 107 8.2198 × 1010 7.1400 × 103 1.9757 × 107 2.1909 × 109 5.1159 × 103 4.2103 × 103

Std 1.7466 × 108 1.3586 × 1010 4.4221 × 106 1.2920 × 1010 5.7760 × 103 2.6789 × 106 1.2084 × 109 6.2854 × 103 4.4114 × 103

Rank 6 9 4 8 3 5 7 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.4643 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F2

Min 1.3826 × 1039 3.0174 × 1042 3.7900 × 1020 2.6307 × 1039 3.9166 × 108 6.9869 × 105 1.8526 × 1024 5.0665 × 1031 6.2613 × 104

Max 2.7949 × 1044 1.8218 × 1055 1.1983 × 1026 2.7913 × 1052 2.6824 × 1014 2.6965 × 1022 3.3101 × 1035 6.1316 × 1042 3.3447 × 1014

Mean 1.1188 × 1043 6.7792 × 1053 7.1918 × 1024 1.2717 × 1051 1.7130 × 1013 8.9883 × 1020 2.1003 × 1034 2.9023 × 1041 2.5585 × 1013

Std 5.0853 × 1043 3.3270 × 1054 2.2580 × 1025 5.1032 × 1051 4.9641 × 1013 4.9231 × 1021 7.2555 × 1034 1.1238 × 1042 7.2185 × 1013

Rank 7 9 4 8 2 3 5 6 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.5137 × 10−2 5.4617 × 10−9 3.0199 × 10−11 3.0199 × 10−11 -

F3

Min 9.3798 × 104 1.6570 × 105 6.7056 × 104 1.5029 × 105 2.5152 × 103 9.7560 × 103 1.2175 × 105 3.2351 × 103 3.7305 × 103

Max 5.2367 × 105 5.3531 × 1010 1.4788 × 105 2.7782 × 106 2.8997 × 104 4.0783 × 104 4.5221 × 105 2.7003 × 104 1.8743 × 104

Mean 1.1306 × 105 1.9316 × 109 1.1091 × 105 4.0455 × 105 1.2249 × 104 2.1596 × 104 2.6893 × 105 1.1526 × 104 1.0662 × 104

Std 1.0781 × 104 9.7489 × 109 1.9454 × 104 5.1915 × 105 6.1721 × 103 7.2295 × 103 6.3779 × 104 6.3253 × 103 3.6521 × 103

Rank 6 9 5 8 2 4 7 3 1
p-value 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 NaN 1.2118 × 10−12 1.2118 × 10−12 NaN -

F4

Min 5.8946 × 102 1.0314 × 104 4.8507 × 102 8.8614 × 103 4.7389 × 102 4.0953 × 102 6.3226 × 102 4.7040 × 102 4.1566 × 102

Max 8.2750 × 102 6.5144 × 104 5.6890 × 102 4.5406 × 104 5.2629 × 102 5.3342 × 102 1.3639 × 103 5.2245 × 102 5.2182 × 102

Mean 7.1050 × 102 4.2604 × 104 5.3124 × 102 2.5276 × 104 4.9765 × 102 5.0183 × 102 9.3728 × 102 4.9125 × 102 4.9033 × 102

Std 5.9761 × 101 1.2617 × 104 1.8107 × 101 9.5705 × 103 1.4174 × 101 2.3918 × 101 1.8251 × 102 1.8396 × 101 2.4232 × 101

Rank 6 9 5 8 3 4 7 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 6.7220 × 10−10 3.0199 × 10−11 3.0317 × 10−2 1.3345 × 10−1 3.0199 × 10−11 3.0199 × 10−11 -

F5

Min 7.1654 × 102 9.5422 × 102 6.9318 × 102 9.3910 × 102 5.8094 × 102 6.2262 × 102 7.5584 × 102 6.0248 × 102 5.9751 × 102

Max 7.8028 × 102 1.2844 × 103 7.5963 × 102 1.1767 × 103 7.5104 × 102 7.7320 × 102 1.0409 × 103 7.7262 × 102 7.5371 × 102

Mean 7.5297 × 102 1.1637 × 103 7.2788 × 102 1.0489 × 103 6.2679 × 102 6.9384 × 102 8.4935 × 102 6.9020 × 102 6.6148 × 102

Std 1.5245 × 101 7.3984 × 101 1.2938 × 101 6.2624 × 101 3.1612 × 101 3.4506 × 101 6.8712 × 101 4.6749 × 101 4.3148 × 101

Rank 6 9 3 8 1 5 7 4 2
p-value 3.3386 × 10−3 3.0199 × 10−11 7.9782 × 10−2 3.0199 × 10−11 1.6980 × 10−8 7.6183 × 10−1 7.0881 × 10−8 4.0772 × 10−11 -

F6

Min 6.0000 × 102 6.9858 × 102 6.0322 × 102 6.8868 × 102 6.0060 × 102 6.4167 × 102 6.5717 × 102 6.0133 × 102 6.0349 × 102

Max 6.2288 × 102 7.6250 × 102 6.1152 × 102 7.4279 × 102 6.1350 × 102 6.6457 × 102 6.9289 × 102 6.5316 × 102 6.5961 × 102

Mean 6.0000 × 102 6.2900 × 101 6.0631 × 102 7.1490 × 102 6.0340 × 102 6.5720 × 102 6.7537 × 102 6.2528 × 102 6.2502 × 102

Std 2.7437 × 1000 1.2400 × 101 1.8413 × 100 1.2006 × 101 2.4610 × 100 5.6088 × 100 9.1749 × 100 1.2338 × 101 1.4127 × 101

Rank 1 7 3 9 2 5 8 4 6
p-value 6.3560 × 10−5 3.0199 × 10−11 1.3289 × 10−10 3.0199 × 10−11 4.4440 × 10−7 7.3803 × 10−10 5.4941 × 10−11 9.9186 × 10−11 -

F7

Min 9.6084 × 102 3.1096 × 103 9.3278 × 102 2.2940 × 103 8.0722 × 102 9.3742 × 102 1.1594 × 103 8.5152 × 102 8.5189 × 102

Max 1.0117 × 103 3.8617 × 103 9.9053 × 102 3.4478 × 103 9.7487 × 102 1.1843 × 103 1.4545 × 103 1.2944 × 103 1.2630 × 103

Mean 9.9282 × 102 4.2000 × 101 9.6627 × 102 2.8176 × 103 8.6422 × 102 1.1061 × 103 1.2986 × 103 1.0147 × 103 1.0224 × 103

Std 1.2683 × 101 1.2200 × 101 1.2768 × 101 2.9262 × 102 3.9480 × 101 5.0331 × 101 6.7914 × 101 1.2166 × 102 1.1825 × 102

Rank 3 4 2 9 1 5 8 6 7
p-value 8.5338 × 10−1 3.0199 × 10−11 4.5146 × 10−2 3.0199 × 10−11 2.4386 × 10−9 2.6015 × 10−8 4.9752 × 10−11 3.0199 × 10−11 -

F8

Min 8.7478 × 102 1.2947 × 103 1.0047 × 103 1.1921 × 103 8.6985 × 102 9.0755 × 102 9.3940 × 100 8.7562 × 1002 8.8855 × 102

Max 1.0846 × 103 1.4828 × 103 1.0568 × 103 1.3960 × 103 9.7051 × 102 1.0308 × 103 1.1676 × 103 1.0159 × 103 1.0030 × 103

Mean 8.9952 × 102 5.2300 × 101 1.0304 × 103 1.2837 × 103 9.1685 × 102 9.5942 × 102 1.0438 × 103 9.4463 × 102 9.3939 × 102

Std 6.9538 × 100 1.0200 × 101 1.2740 × 101 5.3439 × 101 3.1005 × 101 3.4689 × 101 4.8060 × 101 3.3363 × 101 2.8957 × 101

Rank 2 5 6 9 1 7 8 4 3
p-value 3.0199 × 10−11 3.0199 × 10−11 4.5043 × 10−11 3.0199 × 10−11 2.0023 × 10−6 8.8830 × 10−1 3.8202 × 10−10 3.0199 × 10−11 -

F9

Min 7.0032 × 103 1.9054 × 104 2.0538 × 103 1.4697 × 104 1.9214 × 103 5.1607 × 103 6.7932 × 103 6.3749 × 103 1.9424 × 103

Max 1.6985 × 104 4.7601 × 104 4.5199 × 103 3.0143 × 104 1.0980 × 104 9.6916 × 103 3.2571 × 104 1.2225 × 104 8.5475 × 103

Mean 1.1643 × 104 3.7500 × 104 2.7952 × 103 2.4068 × 104 5.2442 × 103 7.6564 × 103 1.3059 × 104 9.7479 × 103 5.1747 × 103

Std 2.3773 × 103 5.9949 × 103 6.0699 × 102 4.0708 × 103 2.2777 × 103 1.1944 × 103 5.8199 × 103 1.3856 × 103 1.6948 × 103

Rank 6 9 1 8 3 4 7 5 2
p-value 3.6897 × 10−11 3.0199 × 10−11 4.1178 × 10−6 3.0199 × 10−11 6.5204 × 10−1 6.0459 × 10−7 4.1997 × 10−10 1.4643 × 10−10 -

F10

Min 8.4132 × 103 9.7867 × 103 7.7355 × 103 8.1999 × 103 3.0770 × 103 4.6398 × 103 5.0641 ×103 3.6012 × 103 2.5686 × 103

Max 9.8864 × 103 1.1866 × 104 9.3152 × 103 1.0092 × 104 6.3150 × 103 7.0070 × 103 8.6416 × 103 7.2093 × 103 7.7606 × 103

Mean 9.2739 × 103 1.0854 × 104 8.7408 × 103 9.4494 × 103 4.6711 × 103 5.7831 × 103 6.9687 × 103 4.7415 × 103 5.1107 × 103

Std 2.8525 × 102 3.4400 × 103 3.7295 × 102 4.5335 × 102 7.2820 × 102 6.1827 × 102 9.2541 × 102 7.1060 × 102 9.3500 × 102

Rank 7 9 5 8 1 3 6 2 4
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 9.2344 × 10−1 8.1465 × 10−5 1.0702 × 10−9 1.6132 × 10−10 -

F11

Min 5.5276 × 103 1.3745 × 104 1.1986 × 103 7.5074 × 103 1.1490 × 103 1.2088 × 103 2.6028 × 103 1.1349 × 103 1.1368 × 103

Max 1.6185 × 104 2.8377 × 105 1.2875 × 103 5.8373 × 104 1.3760 × 103 1.3374 × 103 1.3561 × 104 1.3641 × 103 1.2840 × 103

Mean 1.0463 × 104 6.3637 × 104 1.2488 × 103 2.8766 × 104 1.2660 × 103 1.2665 × 103 7.0216 × 103 1.2207 × 103 1.2037 × 103

Std 2.6622 × 103 5.2876 × 104 2.1263 × 101 1.2367 × 104 5.2560 × 101 2.9995 × 101 2.9811 × 103 5.8135 × 101 4.4210 × 101

Rank 7 9 2 8 5 4 6 3 1
p-value 3.0199 × 10−11 3.0199 × 10−11 2.0681 × 10−2 3.0199 × 10−11 2.2658 × 10−3 3.0059 × 10−4 3.0199 × 10−11 3.0199 × 10−11

F12

Min 2.2161 × 108 1.4479 × 1010 1.2600 × 106 5.2363 × 109 4.8730 × 105 2.1766 × 106 3.3151 × 107 2.8406 × 104 7.3759 × 104

Max 9.3358 × 108 3.9797 × 1010 1.0749 × 107 2.6238 × 1010 8.5280 × 106 4.2295 × 107 8.9433 × 108 2.3103 × 106 1.5100 × 106

Mean 4.5281 × 108 2.6199 × 1010 4.3229 × 106 1.5373 × 1010 2.9180 × 106 1.6871 × 107 2.8065 × 108 4.6619 × 105 3.5144 × 105

Std 1.5863 × 108 6.5010 × 109 2.4314 × 106 5.1740 × 109 1.9490 × 106 1.0816 × 107 2.2948 × 108 5.0090 × 105 3.1390 × 105

Rank 7 9 4 8 3 5 6 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 5.5727 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F13

Min 1.1452 × 104 9.2894 × 109 4.2655 × 103 4.2862 × 109 9.4720 × 103 3.6456 × 105 4.6561 × 105 1.3532 × 103 1.5607 × 103

Max 2.6848 × 107 4.8535 × 1010 2.2415 × 104 2.8201 × 1010 7.1220 × 104 4.7730 × 106 8.7062 × 106 5.9713 × 104 6.2857 × 104

Mean 1.7766 × 104 2.2200 × 103 9.2416 × 103 1.3551 × 1010 3.5200 × 104 1.0753 × 106 2.9308 × 106 1.6871 × 104 1.9422 × 104

Std 7.5745 × 103 1.2200 × 102 3.7397 × 103 5.5841 × 109 2.5470 × 104 7.7927 × 105 2.3216 × 106 1.5084 × 104 1.8341 × 104

Rank 4 5 1 9 6 7 8 2 3
p-value 3.0199 × 10−11 3.0199 × 10−11 5.1060 × 10−1 3.0199 × 10−11 7.6588 × 10−5 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F14

Min 9.6728 × 104 5.2670 × 106 1.4663 × 103 1.7641 × 106 9.4450 × 103 4.9433 × 103 4.7043 × 104 2.9000 × 103 2.8036 × 103

Max 1.0616 × 106 1.8985 × 108 1.5120 × 103 1.2344 × 108 1.9580 × 105 2.0460 × 105 1.3090 × 107 5.4617 × 104 4.0539 × 104

Mean 2.0324 × 105 7.3300 × 101 1.4927 × 103 2.5264 × 107 1.0290 × 105 4.4592 × 104 3.3724 × 106 1.6243 × 104 1.1884 × 104

Std 5.5827 × 104 7.3300 × 102 9.1438 × 100 2.5037 × 107 5.2110 × 104 4.6969 × 104 2.9973 × 106 1.4535 × 104 9.1818 × 103

Rank 7 5 1 9 6 4 8 3 2
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 7.7725 × 10−9 1.6813 × 10−4 3.0199 × 10−11 6.6955 × 10−11 -
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Table 5. Cont.

Function ABC [43] ACO [42] DE [46] GA SMA [44] PSO [45] WOA [46] MRFO AMRFOCS

F15

Min 2.0459 × 103 1.8897 × 109 1.5964 × 103 1.9734 × 108 1.9910 × 103 5.8591 × 104 8.3870 × 104 1.5717 × 103 1.5505 × 103

Max 5.5536 × 106 1.3480 × 1010 1.7114 × 103 6.2995 ×109 4.3310 × 104 3.3304 × 105 2.2859 × 107 4.0793 × 104 4.2819 × 104

Mean 8.8916 × 103 5.2400 × 103 1.6582 × 103 2.6018 × 109 2.4960 × 10 4 1.5894 × 105 2.1739 × 106 8.7091 × 103 1.1109 × 104

Std 3.1246 × 103 7.7000 × 102 2.5041 × 101 1.3775 × 109 1.4300 × 104 6.5396 × 104 4.2818 × 106 9.2998 × 103 1.2935 × 104

Rank 4 6 1 9 5 7 8 2 3
p-value 3.0199 × 10−11 3.0199 × 10−11 6.5183 × 10−9 3.0199 × 10−11 1.7836 × 10−4 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F16

Min 2.0452 × 103 5.8741 × 103 3.1551 × 103 4.8248 × 103 1.7720 × 103 2.7007 × 103 2.4831 × 103 2.1619 × 103 1.9438 × 103

Max 4.3828 × 103 1.3395 × 104 3.8340 × 103 1.1386 × 104 3.2970 × 103 3.5684 × 103 6.7716 × 103 3.2044 × 103 3.2119 × 103

Mean 4.0016 × 103 5.5600 × 103 3.5677 × 103 6.7991 × 103 2.5070 × 103 3.1605 × 103 4.2004 × 103 2.6004 × 103 2.4746 × 103

Std 2.2691 × 102 2.2000 × 102 1.8219 × 102 1.3622 × 103 3.3580 × 102 2.4959 × 102 8.2898 × 102 3.1577 × 102 2.7366 × 102

Rank 4 8 5 9 2 6 7 3 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 9.7052 × 10−01 1.2023 × 10−08 8.9934 × 10−11 3.0199 × 10−11 -

F17

Min 1.8441 × 103 4.6659 × 103 2.1103 × 103 3.3244 × 103 1.8040 × 103 2.0717 × 103 2.2412 × 103 1.7956 × 103 1.7925 × 103

Max 3.1530 × 103 3.4404 × 105 2.6988 × 103 3.2925 × 104 2.7230 × 103 3.3136 × 103 3.2823 × 103 2.6236 × 103 2.5946 × 103

Mean 2.9495 × 103 4.7341 × 104 2.4235 × 103 1.0638 × 104 2.2450 × 103 2.5941 × 103 2.7821 × 103 2.1502 × 103 2.1664 × 103

Std 1.6006 × 102 2.6600 × 103 1.4637 × 102 7.7982 × 103 2.1920 × 102 2.7539 × 102 2.7887 × 102 2.0232 × 102 1.8561 × 102

Rank 5 9 3 8 4 6 7 2 1
p-value 4.5043 × 10−11 3.0199 × 10−11 1.1077 × 10−06 3.0199 × 10−11 2.4157 × 10−2 7.6588 × 10−5 1.5581 × 10−8 2.3897 × 10−8 -

F18

Min 1.3677 × 105 4.1987 × 107 4.7817 × 103 1.4347 × 107 1.2430 × 105 9.9131 × 104 3.1313 × 105 4.1933 × 104 4.6072 × 104

Max 3.8236 × 107 1.5215 × 109 4.6879 × 104 5.1200 × 108 4.2940 × 106 3.3343 × 106 6.0586 × 107 1.3249 × 106 1.8493 × 106

Mean 3.0928 × 105 1.6000 × 103 1.8993 × 104 1.2777 × 108 1.4650 × 106 6.1749 × 105 8.8647 × 106 2.7455 × 105 2.8187 × 105

Std 9.6714 × 104 5.7300 × 102 1.0976 × 104 1.2244 × 108 1.2390 × 106 6.5543 × 105 1.3895 × 107 2.6898 × 105 3.7817 × 105

Rank 4 5 1 9 7 6 8 2 3
p-value 3.0199 × 10−11 3.0199 × 10−11 4.5043 × 10−11 3.0199 × 10−11 1.0105 × 10−8 1.5014 × 10−2 1.6132 × 10−10 8.1014 × 10−10 -

F19

Min 3.3711 × 103 2.4416 × 109 1.9460 × 103 1.3628 × 109 7.1370 × 103 1.4973 × 105 4.2547 × 104 1.9200 × 103 1.9943 × 103

Max 4.6006 × 105 2.3046 × 1010 1.9999 × 103 6.0346 × 109 5.6570 × 104 2.1529 × 106 3.1903 × 107 5.6153 × 104 4.9774 × 104

Mean 8.5326 × 103 3.3200 × 102 1.9642 × 103 2.9205 × 109 3.8150 × 104 8.7076 × 105 1.1132 × 107 1.1733 × 104 1.0513 × 104

Std 5.0755 × 103 1.2200 × 103 1.1177 × 101 1.1896 × 109 1.9450 × 104 5.4963 × 105 7.9663 × 106 1.4443 × 104 1.1281 × 104

Rank 4 5 1 9 6 7 8 3 2
p-value 1.6132 × 10−10 3.0199 × 10−11 5.5727 × 10−10 3.0199 × 10−11 8.6844 × 10−3 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F20

Min 2.1506 × 103 3.4140 × 103 2.6418 × 103 2.9675 × 103 2.2980 × 103 2.3455 × 103 2.5271 × 103 2.1960 × 103 2.1806 × 103

Max 3.3109 × 103 4.3081 × 103 3.0783 × 103 3.6499 × 103 2.7500 × 103 3.1023 × 103 3.3016 × 103 2.8994 × 103 2.9051 × 103

Mean 2.2816 × 103 3.2200 × 103 2.8286 × 103 3.3611 × 103 2.5160 × 103 2.7642 × 103 2.9118 × 103 2.4544 × 103 2.5069 × 103

Std 4.5941 × 101 4.2300 × 102 1.1178 × 102 1.5474 × 102 1.4400 × 102 2.0481 × 102 2.3447 × 102 1.8973 × 102 1.9487 × 102

Rank 1 9 5 8 2 6 7 3 4
p-value 4.9752 × 10−11 3.0199 × 10−11 7.3803 × 10−10 3.0199 × 10−11 1.3272 × 10−2 2.6784 × 10−6 1.3289 × 10−10 1.2023 × 10−8 -

F21

Min 2.4998 × 103 2.7335 × 103 2.4938 × 103 2.6432 × 103 2.3610 × 103 2.4422 × 103 2.5117 × 103 2.3667 × 103 2.3609 × 103

Max 2.5791 × 103 3.0507 × 103 2.5555 × 103 2.8797 × 103 2.4870 × 103 2.6160 × 103 2.7173 × 103 2.5234 × 103 2.5046 × 103

Mean 2.3037 × 103 2.9379 × 103 2.5278 × 103 2.7886 × 103 2.4090 × 103 2.5320 × 103 2.6246 × 103 2.4281 × 103 2.4234 × 103

Std 7.5583 × 101 7.9959 × 101 1.4103 × 101 5.9467 × 101 2.4530 × 101 4.4806 × 101 6.3342 × 101 4.2821 × 101 2.9822 × 101

Rank 5 9 4 8 1 6 7 3 2
p-value 4.5043 × 10−11 3.0199 × 10−11 2.3715 × 10−10 3.0199 × 10−11 6.7350 × 10−1 2.0338 × 10−9 4.0772 × 10−11 3.0199 × 10−11 -

F22

Min 2.3000 × 103 1.0306 × 104 2.3168 × 103 7.9256 × 103 2.3010 × 103 2.3236 × 103 2.8013 × 103 2.3000 × 103 2.3000 × 103

Max 1.0900 × 104 1.3120 × 104 2.3262 × 103 1.2211 × 104 7.7140 × 103 8.5579 × 103 1.0547 × 104 7.7688 × 103 6.4637 × 103

Mean 2.3128 × 103 4.3300 × 102 2.3211 × 103 1.0590 × 104 5.7980 × 103 5.9502 × 103 8.1343 × 103 3.1031 × 103 2.4397 × 103

Std 3.5097 × 100 2.3300 × 103 2.1808 × 100 8.8398 × 102 1.1790 × 103 2.1662 × 103 1.6086 × 103 1.8419 × 103 7.6001 × 102

Rank 3 8 1 9 4 6 7 5 2
p-value 3.3384 × 10−11 3.0199 × 10−11 8.4848 × 10−9 3.0199 × 10−11 5.4617 × 10−9 6.7220 × 10−10 9.9186 × 10−11 1.9568 × 10−10 -

F23

Min 2.8749 × 103 3.3073 × 103 2.8510 × 103 3.2778 × 103 2.7238 × 103 3.0471 × 103 2.9423 × 103 2.6967 × 103 2.7000 × 103

Max 2.9480 × 103 4.2982 × 103 2.9063 × 103 3.7566 × 103 2.8054 × 103 3.6307 × 103 3.3612 × 103 2.9593 × 103 2.8401 × 103

Mean 2.9172 × 103 3.8783 × 103 2.8843 × 103 3.5453 × 103 2.7566 × 103 3.3266 × 103 3.1063 × 103 2.7818 × 103 2.7615 × 103

Std 1.8843 × 101 2.3000 × 103 1.4124 × 101 1.3473 × 102 1.9185 × 101 1.5349 × 102 1.0442 × 102 4.5888 × 101 3.6622 × 101

Rank 5 9 3 8 1 7 6 4 2
p-value 4.9752 × 10−11 3.0199 × 10−11 3.8202 × 10−10 3.0199 × 10−11 4.2039 × 10−1 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F24

Min 3.0675 × 103 3.8413 × 103 3.0087 × 103 3.4658 × 103 2.8850 × 103 3.1984 × 103 3.0610 × 103 2.8646 × 103 2.8767 × 103

Max 3.1290 × 103 4.8371 × 103 3.0811 × 103 4.4138 × 103 3.0170 × 103 3.6435 × 103 3.4669 × 103 3.0880 × 103 2.9916 × 103

Mean 3.0956 × 103 4.3577 × 103 3.0513 × 103 3.7671 × 103 2.9420 × 103 3.3670 × 103 3.2159 × 103 2.9248 × 103 2.9276 × 103

Std 1.7187 × 102 6.3300 × 102 2.6623 × 102 2.3032 × 102 3.4050 × 101 1.1382 × 102 1.0195 × 102 4.3333 × 101 2.6834 × 101

Rank 6 9 4 8 3 7 5 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 6.6955 × 10−11 3.0199 × 10−11 3.9167 × 10−2 3.0199 × 10−11 3.3384 × 10−11 3.0199 × 10−11 -

F25

Min 2.8837 × 103 1.1399 × 104 2.8914 × 103 6.2271 × 103 2.8840 × 103 2.8864 × 103 3.0208 × 103 2.8836 × 103 2.8836 × 103

Max 3.0289 × 103 2.5458 × 104 2.9291 × 103 1.5988 × 104 2.9270 × 103 2.9518 × 103 3.2495 × 103 2.9429 × 103 2.9409 × 103

Mean 2.9808 × 103 1.8598 × 104 2.9018 × 103 1.1112 × 104 2.8957 × 103 2.9090 × 103 3.1302 × 103 2.8939 × 103 2.8984 × 103

Std 2.0681 × 101 4.2200 × 101 8.3757 × 100 2.4224 × 103 1.0550 × 101 2.0669 × 101 5.8141 × 101 1.5232 × 101 1.9458 × 101

Rank 6 9 1 8 4 5 7 2 3
p-value 3.0199 × 10−11 3.0199 × 10−11 3.8307 × 10−5 3.0199 × 10−11 5.6922 × 10−1 2.0023 × 10−6 3.0199 × 10−11 3.0199 × 10−11 -

F26

Min 2.8361 × 103 1.1704 × 104 5.3538 × 103 9.6453 × 103 4.4010 × 103 2.8905 × 103 4.1644 × 103 2.8000 × 103 2.8000 × 103

Max 6.1479 × 103 2.2693 × 104 6.0782 × 103 1.5103 × 104 5.2560 × 103 1.0225 × 104 1.0138 × 104 7.8492 × 103 7.7356 × 103

Mean 2.9114 × 103 3.4400 × 101 5.8138 × 103 1.2221 × 104 4.7580 × 103 7.3677 × 103 8.1429 × 103 5.1373 × 103 5.1514 × 103

Std 2.8268 × 101 2.5500 × 102 1.4751 × 102 1.2602 × 103 2.1090 × 102 1.9198 × 103 1.1711 × 103 1.4116 × 103 1.4729 × 103

Rank 1 6 3 9 2 8 7 4 5
p-value 4.6390 × 10−5 3.0199 × 10−11 9.7917 × 10−5 3.0199 × 10−11 6.7350 × 10−1 2.1959 × 10−7 6.0658 × 10−11 3.0199 × 10−11 -

F27

Min 3.2035 × 103 4.3757 × 103 3.2797 × 103 3.9060 × 103 3.1960 × 103 3.3824 × 103 3.3121 × 103 3.2117 × 103 3.2042 × 103

Max 3.2000 × 103 6.4912 × 103 3.3598 × 103 5.1682 × 103 3.2650 × 103 4.4337 × 103 3.8718 × 103 3.3703 × 103 3.3554 × 103

Mean 3.2068 × 103 6.3300 × 102 3.3131 × 103 4.4317 × 103 3.2250 × 103 3.7969 × 103 3.4806 × 103 3.2394 × 103 3.2369 × 103

Std 4.7499 × 100 8.2200 × 101 2.3424 × 101 3.0325 × 102 1.7090 × 101 2.7048 × 102 1.3175 × 102 3.0071 × 101 2.8526 × 101

Rank 1 6 4 9 2 8 7 5 3
p-value 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 6.6273 × 10−1 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 -

F28

Min 3.1485 × 103 9.7515 × 103 3.2360 × 103 7.3217 × 103 3.2010 × 103 3.2096 × 103 3.4433 × 103 3.1774 × 103 3.1475 × 103

Max 3.3000 × 103 1.7571 × 104 3.3029 × 103 1.2710 × 104 3.3490 × 103 3.2792 × 103 4.0095 × 103 3.2612 × 103 3.2628 × 103

Mean 3.2013 × 103 8.3300 × 102 3.2658 × 103 9.5271 × 103 3.2520 × 103 3.2426 × 103 3.6372 × 103 3.2101 × 103 3.2066 × 103

Std 1.0859 × 101 3.2200 × 103 1.9187 × 101 1.3320 × 103 3.5840 × 101 2.3085 × 101 1.2677 × 102 1.9640 × 101 2.2023 × 101

Rank 1 7 5 9 6 4 8 3 2
p-value 3.0199 × 10−11 3.0199 × 10−11 9.2603 × 10−9 3.0199 × 10−11 1.7479 × 10−5 7.1988 × 10−5 3.0199 × 10−11 3.0199 × 10−11 -
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Table 5. Cont.

Function ABC [43] ACO [42] DE [46] GA SMA [44] PSO [45] WOA [46] MRFO AMRFOCS

F29

Min 4.4928 × 103 6.6630 × 103 4.1331 × 103 6.5491 × 103 3.5400 × 103 3.9504 × 103 4.4103 × 103 3.3856 × 103 3.5042 × 103

Max 5.3740 × 103 1.2556 × 105 4.8043 × 103 2.5381 × 104 4.2920 × 103 5.2354 × 103 6.4875 × 103 4.1276 × 103 4.1586 × 103

Mean 4.9700 × 103 7.3300 × 103 4.4994 × 103 1.2062 × 104 3.9020 × 103 4.5567 × 103 5.3922 × 103 3.8356 × 103 3.8396 × 103

Std 2.4081 × 102 3.4400 × 102 1.6904 × 102 4.8332 × 103 1.7880 × 102 3.1462 × 102 5.5518 × 102 2.0514 × 102 1.7926 × 102

Rank 6 8 4 9 3 5 7 1 2
p-value 3.0199 × 10−11 3.0199 × 10−11 4.0772 × 10−11 3.0199 × 10−11 3.2651 × 10−2 2.8716 × 10−10 3.0199 × 10−11 3.0199 × 10−11 -

F30

Min 1.2719 × 104 9.3579 × 108 3.5700 × 104 7.2064 × 108 8.8130 × 103 5.0064 × 105 2.9098 × 106 5.3023 × 103 5.6202 × 103

Max 1.3080 × 106 6.4592 × 109 3.0691 × 105 5.4165 × 109 6.0320 × 104 1.0031 × 107 2.0458 × 108 1.9861 × 104 1.6952 × 104

Mean 2.1358 × 104 3.3295 × 109 1.0250 × 105 2.4729 × 109 2.4640 × 104 4.3834 × 106 5.3564 × 107 1.0142 × 104 9.4990 × 103

Std 5.9215 × 103 1.4214 × 109 6.2618 × 104 1.1582 × 109 1.0280 × 104 2.3051 × 106 5.4071 × 107 3.9579 × 103 3.0359 × 103

Rank 4 9 5 8 3 6 7 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.1589 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

+/=/− 29/0/1 30/0/0 28/0/2 30/0/0 21/0/9 27/0/3 30/0/0 29/0/1 -

Table 6. Comparison of results obtained—CEC2017 benchmark functions (50D).

Function ABC [43] ACO DE GA SMA [50] PSO [50] WOA MRFO [50] AMRFOCS

F1

Min 2.1737 × 1010 2.2302 × 1011 3.7780 × 108 1.7644 × 1011 2.8025 × 106 4.4042 × 107 1.2604 × 1010 7.2939 × 104 3.6432 × 104

Max 5.3757 × 1010 3.1622 × 1011 2.2735 × 109 2.5294 × 1011 1.2339 × 107 2.1058 × 109 2.8191 × 1010 7.0300 × 106 3.1240 × 106

Mean 3.6270 × 1010 2.6670 × 1011 8.8973 × 108 2.1598 × 1011 6.2106 × 106 5.6369 × 108 2.1789 × 1010 4.8755 × 105 3.9104 × 105

Std 8.0415 × 109 2.0681 × 1010 5.0840 × 108 2.4075 × 1010 2.2142 × 106 6.5264 × 108 4.5794 × 109 1.2467 × 106 6.9240 × 105

Rank 7 9 5 8 3 4 6 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F2

Min 1.5809 × 1075 8.2101 × 1082 4.0980 × 1043 1.1236 × 1080 1.5879 × 1025 2.8225 × 1020 1.5711 × 1064 1.2697 × 1064 3.1012 × 1025

Max 3.4176 × 1083 5.5082 × 1096 1.1547 × 1056 8.4006 × 1092 2.2968 × 1038 2.6945 × 1052 2.3354 × 1084 1.0921 × 1083 4.2615 × 1040

Mean 2.5029 × 1082 1.8541 × 1095 4.7927 × 1054 5.3503 × 1091 8.8177 × 1036 8.9816 × 1050 7.7881 × 1082 3.6479 × 1081 1.4390 × 1039

Std 7.2547 × 1082 1.0053 × 1096 2.1507 × 1055 2.0042 × 1092 4.2031 × 1037 4.9194 × 1051 4.2638 × 1083 1.9937 × 1082 7.7774 × 1039

Rank 7 9 4 8 1 3 6 5 2
p-value 3.0199 × 10−11 3.0199 × 10−11 4.0772 × 10−11 3.0199 × 10−11 8.1875 × 10−1 8.3520 × 10−8 3.0199 × 10−11 3.0199 × 10−11 -

F3

Min 1.8730 × 105 5.1261 × 105 1.7665 × 105 3.0514 × 105 7.7718 × 104 9.2693 × 104 1.9486 × 105 1.0899 × 105 9.0521 × 104

Max 1.8842 × 106 3.9258 × 1012 3.2630 × 105 7.5046 × 108 3.5256 × 105 2.2562 × 105 5.7027 × 105 2.6159 × 105 2.2619 × 105

Mean 2.2788 × 105 3.6318 × 1011 2.6879 × 105 3.4493 × 107 3.0052 × 102 1.1823 × 104 3.3277 × 105 3.0061 × 102 1.6057 × 105

Std 1.8593 × 104 9.4573 × 1011 3.8977 × 104 1.3871 × 108 3.3306 × 10−1 3.6550 × 103 1.0007 × 105 1.4242 × 100 3.1640 × 104

Rank 6 9 5 8 1 2 7 3 4
p-value 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 3.0317 × 10−2 8.0727 × 10−1 8.1527 × 10−11 2.8314 × 10−8 -

F4

Min 4.2924 × 102 6.7079 × 104 6.7833 × 102 5.4906 × 104 5.2565 × 102 4.8158 × 102 2.8058 × 103 4.4762 × 102 4.3289 × 102

Max 3.1194 × 104 1.4920 × 105 9.2950 × 102 1.1222 × 105 7.5166 × 102 7.4709 × 102 7.8817 × 103 8.1191 × 102 7.2753 × 102

Mean 4.5806 × 102 1.1460 × 105 7.8814 × 102 8.2777 × 104 5.4940 × 102 6.9121 × 102 4.8658 × 103 4.6152 × 102 5.7350 × 102

Std 1.5587 × 101 2.1693 × 104 6.4800 × 101 1.8160 × 104 5.3517 × 101 7.7460 × 101 1.2178 × 103 4.5205 × 101 5.3578 × 101

Rank 1 9 6 8 4 5 7 2 3
p-value 3.0199 × 10−11 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 4.2067 × 10−02 2.8913 × 10−03 3.0199 × 10−11 3.0199 × 10−11 -

F5

Min 6.7622 × 102 1.4434 × 103 9.1209 × 102 1.3227 × 103 6.6596 × 102 7.8626 × 102 1.0008 × 103 7.1991 × 102 7.4477 × 102

Max 1.2094 × 103 1.8792 × 103 1.0089 × 103 1.7771 × 103 8.8866 × 102 9.5048 × 102 1.3249 × 103 9.3479 × 102 9.1489 × 102

Mean 7.1659 × 102 1.6872 × 103 9.4975 × 102 1.5792 × 103 7.0992 × 102 6.3764 × 102 1.1352 × 103 8.2425 × 102 8.3384 × 102

Std 3.0539 × 101 1.1129 × 102 2.4416 × 101 1.0960 × 102 4.3070 × 101 2.9924 × 101 8.3373 × 101 3.9911 × 101 3.6296 × 101

Rank 3 9 6 8 1 2 7 4 5
p-value 3.0199 × 10−11 3.0199 × 10−11 3.3384 × 10−11 3.0199 × 10−11 8.3146 × 10−3 4.1191 × 10−1 3.0199 × 10−11 3.0199 × 10−11 -

F6

Min 6.0000 × 102 7.3948 × 102 6.0963 × 102 7.1424 × 102 6.1911 × 102 6.5547 × 102 6.8136 × 102 6.2359 × 102 6.2709 × 102

Max 7.0165 × 102 7.7541 × 102 6.2515 × 102 7.6016 × 102 6.6413 × 102 6.8208 × 102 7.3238 × 102 6.7067 × 102 6.6725 × 102

Mean 6.0000 × 102 7.5660 × 102 6.1498 × 102 7.4094 × 102 6.0575 × 102 6.4765 × 102 7.0095 × 102 6.0121 × 102 6.4814 × 102

Std 3.8755 ×10−13 8.8646 × 100 3.8880 × 100 1.0274 × 101 2.2689 × 100 1.1227 × 101 1.2176 × 101 7.6182 ×10−1 1.0358 × 101

Rank 1 9 2 7 3 6 8 4 5
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 5.1060 × 10−01 9.9186 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F7

Min 9.2657 × 102 4.3362 × 103 1.1683 × 103 4.7100 × 103 1.0340 × 103 1.6035 × 103 1.7225 × 103 1.2525 × 103 1.1067 × 103

Max 2.0399 × 103 7.0315 × 103 1.2890 × 103 5.9726 × 103 1.3204 × 103 1.9375 × 103 2.0341 × 103 1.8252 × 103 1.7588 × 103

Mean 9.3679 × 102 6.0513 × 103 1.2322 × 103 5.4172 × 103 9.8578 × 102 9.4995 × 102 1.8734 × 103 1.4977 × 103 1.4712 × 103

Std 1.3669 × 101 5.0609 × 102 3.0198 × 101 3.6143 × 102 4.6819 × 101 4.9071 × 101 7.8377 × 101 1.3581 × 102 1.5023 × 102

Rank 1 9 3 8 2 4 7 6 5
p-value 1.8731 × 10−7 3.0199 × 10−11 1.3111 × 10−8 3.0199 × 10−11 5.5727 × 10−10 1.6351 × 10−5 4.6159 × 10−10 5.4941 × 10−11 -

F8

Min 9.5307 × 102 1.8134 × 103 1.1621 × 103 1.7187 × 103 1.0106 × 103 1.1057 × 103 1.2746 × 103 1.0109 × 103 1.0667 × 103

Max 1.5179 × 103 2.1794 × 103 1.2895 × 103 2.0365 × 103 1.2399 × 103 1.2817 × 103 1.6484 × 103 1.2428 × 103 1.2248 × 103

Mean 1.0207 × 103 2.0123 × 103 1.2439 × 103 1.8588 × 103 9.8827 × 102 9.4820 × 102 1.3998 × 103 1.1382 × 103 1.1408 × 103

Std 2.2909 × 101 8.7077 × 101 2.5499 × 101 8.7226 × 101 4.5826 × 101 2.3206 × 101 7.1058 × 101 4.4933 × 101 4.0742 × 101

Rank 1 9 6 8 2 3 7 5 4
p-value 3.0199 × 10−11 3.0199 × 10−11 1.7769 × 10−10 3.0199 × 10−11 7.6171 × 10−3 3.6439 × 10−2 3.0199 × 10−11 3.0199 × 10−11 -

F9

Min 4.8233 × 104 7.2918 × 104 5.8535 × 103 5.7641 × 104 9.4579 × 103 2.4979 × 104 2.6835 × 104 2.9374 × 104 1.2546 × 104

Max 9.0949 × 104 1.2119 × 105 2.1322 × 104 1.0598 × 105 2.9632 × 104 4.2548 × 104 7.4146 × 104 4.5420 × 104 3.5896 × 104

Mean 7.3802 × 104 9.9799 × 104 1.3925 × 104 8.2871 × 104 1.8497 × 104 3.4493 × 104 3.9735 × 104 3.6275 × 104 2.3481 × 104

Std 9.4844 × 103 1.2560 × 104 3.8673 × 103 1.0137 × 104 4.4405 × 103 4.1921 × 103 9.8762 × 103 3.9604 × 103 5.8765 × 103

Rank 7 9 1 8 2 4 6 5 3
p-value 3.6897 × 10−11 3.0199 × 10−11 4.1178 × 10−6 3.0199 × 10−11 6.5204 × 10−6 6.0459 × 10−7 4.1997 × 10−10 1.4643 × 10−10 -

F10

Min 1.4934 × 104 1.7224 × 104 1.4494 × 104 1.5148 × 104 6.2925 × 103 7.0489 × 103 1.1265 × 104 6.1837 × 103 5.5321 × 103

Max 1.6715 × 104 1.9414 × 104 1.6160 × 104 1.8002 × 104 9.8385 × 103 1.0939 × 104 1.5006 × 104 9.6680 × 103 1.1909 × 104

Mean 1.6150 × 104 1.8362 × 104 1.5510 × 104 1.6538 × 104 7.3335 × 103 6.9984 × 103 1.3376 × 104 7.4781 × 103 7.9009 × 103

Std 5.6697 × 102 5.1518 × 102 4.2387 × 102 5.5881 × 102 8.1754 × 102 1.3399 × 103 9.6279 × 102 8.6425 × 102 1.2515 × 103

Rank 7 9 4 8 5 3 6 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.1830 × 10−1 7.2208 × 10−6 1.9568 × 10−10 8.9934 × 10−11 -
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Table 6. Cont.

Function ABC [43] ACO DE GA SMA [50] PSO [50] WOA MRFO [50] AMRFOCS

F11

Min 2.0214 × 103 6.3864 × 104 1.4631 × 103 4.1450 × 104 1.2675 × 103 1.3884 × 103 4.7453 × 103 1.2529 × 103 1.2173 × 103

Max 1.1219 × 105 1.2177 × 108 2.1360 × 103 3.4811 × 105 1.6147 × 103 1.6474 × 103 1.2710 × 104 1.4930 × 103 1.5044 × 103

Mean 4.5105 × 103 7.8482 × 106 1.6211 × 103 1.1678 × 105 1.3906 × 103 1.3255 × 103 8.4656 × 103 1.3531 × 103 1.3283 × 103

Std 1.4754 × 103 2.4554 × 107 1.6887 × 102 7.3811 × 104 7.2417 × 101 6.8586 × 101 2.0427 × 103 6.0964 × 101 7.0062 × 101

Rank 6 9 5 8 4 3 7 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 1.0105 × 10−8 3.0199 × 10−11 1.6351 × 10−5 2.3897 × 10−8 3.0199 × 10−11 3.0199 × 10−11 -

F12

Min 3.5279 × 106 8.7017 × 1010 7.2668 × 106 6.2728 × 1010 1.1258 × 107 4.5434 × 107 1.5888 × 109 2.4553 × 1010 6.5751 × 105

Max 2.2512 × 1010 2.0672 × 1011 6.4227 × 107 1.4081 × 1011 1.1308 × 108 1.0011 × 109 1.4224 × 1010 9.2162 × 1010 8.1294 × 106

Mean 6.7942 × 106 1.5357 × 1011 2.7073 × 107 1.0607 × 1011 5.6105 × 106 2.7271 × 106 5.1376 × 109 5.3826 × 1010 4.2792 × 106

Std 1.4874 × 106 2.9783 × 1010 1.3604 × 107 2.1816 × 1010 3.3639 × 106 2.5234 × 106 2.6765 × 109 1.5493 × 1010 1.7662 × 106

Rank 2 9 5 8 4 3 6 7 1
p-value 3.0199 × 10−11 3.0199 × 10−11 4.0772 × 10−11 3.0199 × 10−11 2.1544 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F13

Min 7.2149 × 103 4.9894 × 1010 5.9113 × 103 2.5897 × 1010 4.6446 × 104 2.7099 × 106 1.1170 × 108 2.0782 × 103 2.1310 × 103

Max 6.0868 × 108 1.4655 × 1011 3.8426 × 105 1.0462 × 1011 4.0505 × 105 1.4181 × 107 1.1703 × 109 3.8934 × 104 3.0815 × 104

Mean 2.4268 × 104 9.4367 × 1010 6.9790 × 104 5.6101 × 1010 3.5581 × 104 6.7661 × 106 5.0369 × 108 1.2327 × 104 1.0811 × 104

Std 1.3717 × 104 2.3674 × 1010 8.6118 × 104 2.3213 × 1010 9.0619 × 103 2.4739 × 106 2.6966 × 108 1.0564 × 104 8.2004 × 103

Rank 5 9 4 8 3 6 7 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.8202 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F14

Min 4.1906 × 105 9.5570 × 107 2.0714 × 103 3.3316 × 107 1.3498 × 105 1.7340 × 104 8.9321 × 105 1.4359 × 104 1.4389 × 104

Max 1.7106 × 107 1.4629 × 109 7.7314 × 104 4.1784 × 108 3.1740 × 106 1.9287 × 106 2.5760 × 107 5.2479 × 105 3.2952 × 105

Mean 1.0222 × 106 4.6257 × 108 1.7420 × 104 1.9959 × 108 1.2329 × 105 8.7627 × 104 7.0398 × 106 6.2703 × 103 1.2819 × 105

Std 2.9243 × 105 3.3366 × 108 1.7944 × 104 1.1014 × 108 8.1386 × 104 8.2944 × 104 5.3175 × 106 5.0191 × 103 8.5647 × 104

Rank 6 9 1 8 5 3 7 2 4
p-value 3.0199 × 10−11 3.0199 × 10−11 2.8716 × 10−10 3.0199 × 10−11 1.5581 × 10−8 1.0035 × 10−3 3.0199 × 10−11 3.0199 × 10−11 -

F15

Min 1.3091 × 104 1.0950 × 1010 3.1864 × 103 7.8860 × 109 9.5371 × 103 1.0031 × 106 2.2147 × 106 2.1377 × 103 1.7094 × 103

Max 6.7823 × 107 6.4681 × 1010 1.8522 × 104 3.5336 × 1010 1.0513 × 105 2.6072 × 106 7.3772 × 108 2.0301 × 104 2.0306 × 104

Mean 2.0082 × 104 3.7251 × 1010 8.8352 × 103 2.0862 × 1010 2.6560 × 104 8.1477 × 103 1.2709 × 108 1.0394 × 104 1.0118 × 104

Std 1.3254 × 107 1.0897 × 1010 3.9229 × 103 7.2317 × 109 7.0281 × 103 7.2640 × 103 1.5770 × 108 6.3665 × 103 6.3766 × 103

Rank 6 9 1 8 5 4 7 3 2
p-value 3.0199 × 10−11 3.0199 × 10−11 3.4783 × 10−01 3.0199 × 10−11 1.0937 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F16

Min 2.6894 × 103 1.0329 × 104 4.7435 × 103 6.9585 × 103 2.9053 × 103 3.1301 × 103 4.9183 × 103 2.6587 × 103 2.6772 × 103

Max 7.6050 × 103 2.9300 × 104 6.0319 × 103 1.8262 × 104 4.9114 × 103 5.0726 × 103 8.1525 × 103 4.2215 × 103 4.3269 × 103

Mean 7.0721 × 103 1.6145 × 104 5.4797 × 103 1.2009 × 104 3.6782 × 103 4.1060 × 103 6.3953 × 103 3.5095 × 103 3.3572 × 103

Std 1.8079 × 102 4.0451 × 103 3.2502 × 102 2.8612 × 103 3.0762 × 102 3.5018 × 102 8.3211 × 102 4.3163 × 102 4.5277 × 102

Rank 4 9 6 8 3 5 7 1 2
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 9.5207 × 10−4 2.6015 × 10−8 3.0199 × 10−11 3.0199 × 10−11 -

F17

Min 2.4423 × 103 9.8528 × 104 3.6865 × 103 3.3592 × 104 2.6928 × 103 2.9257 × 103 3.3481 × 103 2.4857 × 103 2.2453 × 103

Max 6.2546 × 103 9.5595 × 106 4.4438 × 103 2.9279 × 106 4.2062 × 103 4.1047 × 103 6.2500 × 103 4.1235 × 103 3.6754 × 103

Mean 2.7730 × 103 1.9614 × 106 4.1175 × 103 8.1293 × 105 3.1007 × 103 2.7561 × 103 4.5374 × 103 3.2171 × 103 3.1866 × 103

Std 1.1315 × 102 2.1509 × 106 2.1428 × 102 8.0943 × 105 3.8834 × 102 3.4257 × 102 6.6839 × 102 3.5632 × 102 2.9674 × 102

Rank 2 9 6 8 5 3 7 4 1
p-value 3.0199 × 10−11 3.0199 × 10−11 1.3289 × 10−10 3.0199 × 10−11 3.1830 × 10−3 7.6588 × 10−5 9.9186 × 10−11 3.0199 × 10−11 -

F18

Min 1.1442 × 106 2.6311 × 108 1.4109 × 105 1.3777 × 108 9.0091 × 105 1.9368 × 105 5.6824 × 106 3.1599 × 105 1.4013 × 105

Max 1.9841 × 108 4.2097 × 109 6.9597 × 106 1.8157 × 109 1.6783 × 107 6.1907 × 106 1.9516 × 108 3.0602 × 106 3.6657 × 106

Mean 2.2748 × 106 1.6174 × 109 1.0200 × 106 5.1869 × 108 6.5200 × 105 1.4151 × 106 7.8002 × 107 6.2117 × 104 1.2824 × 106

Std 9.3414 × 105 9.0538 × 108 1.2802 × 106 3.8238 × 108 3.7436 × 105 1.5271 × 106 5.7298 × 107 3.1235 × 104 9.1925 × 105

Rank 6 9 3 8 4 5 7 1 2
p-value 3.0199 × 10−11 3.0199 × 10−11 7.2446 × 10−2 3.0199 × 10−11 4.4440 × 10−7 6.5671 × 10−2 3.0199 × 10−11 3.0199 × 10−11 -

F19

Min 2.2536 × 104 7.2629 × 109 2.7325 × 103 1.7391 × 109 4.9036 × 103 4.3727 × 105 1.5371 × 106 2.7933 × 103 2.2570 × 103

Max 1.0624 × 107 2.5147 × 1010 3.3273 × 104 1.3703 × 1010 5.3008 × 104 8.5652 × 106 2.0519 × 108 4.3588 × 104 4.3440 × 104

Mean 3.5934 × 104 1.5889 × 1010 1.2450 × 104 8.2284 × 109 1.1180 × 104 1.1636 × 104 2.2289 × 107 1.6594 × 104 1.9110 × 104

Std 5.8193 × 103 4.4925 × 109 8.1019 × 103 2.6890 × 109 1.4291 × 104 1.3499 × 104 3.8275 × 107 8.6516 × 103 1.1465 × 104

Rank 5 9 1 8 4 6 7 3 2
p-value 3.0199 × 10−11 3.0199 × 10−11 6.9724 × 10−03 3.0199 × 10−11 6.5671 × 10−2 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F20

Min 2.6998 × 103 4.3422 × 103 3.6976 × 103 4.2261 × 103 2.5538 × 103 2.9170 × 103 2.9470 × 103 2.7100 × 103 2.5200 × 103

Max 5.1469 × 100 6.3104 × 103 4.5766 × 103 5.5410 × 103 3.9869 × 103 4.2865 × 103 4.8530 × 103 4.0657 × 103 3.7274 × 103

Mean 2.8057 × 103 5.5757 × 103 4.2660 × 103 5.0164 × 103 2.9847 × 103 2.7640 × 103 3.9645 × 103 3.2555 × 103 3.1375 × 103

Std 1.1503 × 102 3.9107 × 102 1.8976 × 102 2.8959 × 102 2.6650 × 102 3.5288 × 102 4.5085 × 102 2.8232 × 102 2.8467 × 102

Rank 3 9 6 8 5 2 7 4 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.3384 × 10−11 3.0199 × 10−11 1.2235 ×10−1 2.4327 × 10−5 4.1997 × 10−10 1.6132 × 10−10 -

F21

Min 2.3136 × 103 3.4265 × 103 2.7012 × 103 3.1961 × 103 2.4949 × 103 2.6926 × 103 2.8774 × 103 2.4874 × 103 2.4818 × 103

Max 3.0055 × 103 3.8239 × 103 2.7877 × 103 3.7133 × 103 2.7156 × 103 2.9352 × 103 3.3561 × 103 2.7711 × 103 2.6774 × 103

Mean 2.5208 × 103 3.5781 × 103 2.7456 × 103 3.4235 × 103 2.5004 × 103 2.4284 × 103 3.0989 × 103 2.5924 × 103 2.5879 × 103

Std 4.1582 × 101 1.0084 × 102 2.2641 × 101 1.1081 × 102 4.8130 × 101 2.6054 × 101 1.0630 × 102 5.9981 × 101 4.5289 × 101

Rank 2 9 5 8 3 4 7 6 1
p-value 3.0199 × 10−11 3.0199 × 10−11 2.6099 × 10−10 3.0199 × 10−11 5.1060 × 10−1 6.0658 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F22

Min 2.3290 × 103 1.7731 × 104 1.5921 × 104 1.6734 × 104 7.9563 × 103 8.7394 × 103 1.3148 × 104 2.3027 × 103 2.3083 × 103

Max 1.8295 × 104 2.1117 × 104 1.7677 × 104 1.9531 × 104 1.1998 × 104 1.3645 × 104 1.6183 × 104 1.6584 × 104 1.4202 × 104

Mean 7.2668 × 103 1.9976 × 104 1.6949 × 104 1.8199 × 104 8.5906 × 103 8.6909 × 103 1.5011 × 104 9.7202 × 103 1.0244 × 104

Std 1.7029 × 103 7.5148 × 102 4.1891 × 102 6.5818 × 102 8.8234 × 102 1.5935 × 103 7.7079 × 102 1.6942 × 103 1.4818 × 103

Rank 5 9 7 8 1 3 6 4 2
p-value 3.0199 × 10−11 3.0199 × 10−11 3.3384 × 10−11 3.0199 × 10−11 8.7663 × 10−1 2.6806 × 10−4 1.6947 × 10−9 1.3289 × 10−10 -

F23

Min 2.9430 × 103 4.3426 × 103 3.1540 × 103 4.3702 × 103 2.9032 × 103 3.7582 × 103 3.2908 × 103 2.8899 × 103 2.8969 × 103

Max 3.5530 × 103 6.1944 × 103 3.2442 × 103 5.3720 × 103 3.1720 × 103 5.1547 × 103 4.3469 × 103 3.2646 × 103 3.2729 × 103

Mean 2.9640 × 103 5.4133 × 103 3.2063 × 103 4.7249 × 103 2.9374 × 103 2.8589 × 103 3.8112 × 103 3.1530 × 103 3.0477 × 103

Std 1.6073 × 101 4.4709 × 102 2.3231 × 101 2.6141 × 102 3.7229 × 101 2.3081 × 101 1.9865 × 102 1.2025 × 102 8.2490 × 101

Rank 2 9 5 8 1 6 7 3 4
p-value 3.0199 × 10−11 3.0199 × 10−11 4.6159 × 10−10 3.0199 × 10−11 1.9073 × 10−01 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F24

Min 3.3535 × 103 5.2235 × 103 3.3085 × 103 4.6051 × 103 3.0156 × 103 3.4696 × 103 3.6496 × 103 3.0843 × 103 3.0889 × 103

Max 3.8130 × 103 6.6783 × 103 3.4137 × 103 6.1114 × 103 3.3977 × 103 4.3417 × 103 4.5317 × 103 3.4981 × 103 3.4223 × 103

Mean 3.3993 × 103 6.0244 × 103 3.3676 × 103 5.1850 × 103 3.0837 × 103 3.1199 × 103 3.9231 × 103 3.3588 × 103 3.2258 × 103

Std 4.3891 × 101 3.7345 × 102 3.3211 × 101 3.7552 × 102 3.3313 × 101 1.2851 × 102 1.8043 × 102 1.2714 × 102 8.7882 × 101

Rank 5 9 2 8 1 6 7 4 3
p-value 3.0199 × 10−11 3.0199 × 10−11 5.9673 × 10−9 3.0199 × 10−11 4.3764 × 10−1 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -
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Table 6. Cont.

Function ABC [43] ACO DE GA SMA [50] PSO [50] WOA MRFO [50] AMRFOCS

F25

Min 2.9755 × 103 4.7272 × 104 3.1495 × 103 2.8090 × 104 3.0408 × 103 2.9953 × 103 4.0182 × 103 3.0579 × 103 3.0554 × 103

Max 1.4647 × 104 9.0089 × 104 3.3198 × 103 6.2084 × 104 3.1692 × 103 3.1970 × 103 6.4537 × 103 3.1648 × 103 3.1685 × 103

Mean 3.0165 × 103 6.4324 × 104 3.2248 × 103 4.5618 × 104 3.0272 × 103 3.1182 × 103 5.0816 × 103 3.0624 × 103 3.1108 × 103

Std 1.3439 × 101 9.8094 × 103 4.8319 × 101 8.5251 × 103 3.9176 × 101 4.6437 × 101 6.1735 × 102 4.0919 × 101 2.3322 × 101

Rank 1 9 6 8 2 5 7 4 3
p-value 3.0199 × 10−11 3.0199 × 10−11 8.1527 × 10−11 3.0199 × 10−11 1.7613 × 10−1 1.3272 × 10−2 3.0199 × 10−11 3.0199 × 10−11 -

F26

Min 2.9444 × 103 2.4665 × 104 7.8425 × 103 1.6339 × 104 2.9634 × 103 3.1709 × 103 1.1662 × 104 3.0121 × 103 2.9194 × 103

Max 1.2607 × 104 4.0057 × 104 9.2694 × 103 3.1395 × 104 1.0315 × 104 1.3575 × 104 1.8656 × 104 1.1977 × 104 1.2784 × 104

Mean 4.7204 × 103 3.2947 × 104 8.4516 × 103 2.6237 × 104 5.6094 × 103 5.2261 × 103 1.4650 × 104 7.1147 × 103 8.8009 × 103

Std 1.5343 × 103 4.6618 × 103 3.2312 × 102 3.5910 × 103 8.4608 × 102 3.5855 × 102 1.5239 × 103 3.9328 × 103 3.0914 × 103

Rank 2 9 3 8 1 4 7 6 5
p-value 2.6243 × 10−3 3.0199 × 10−11 1.3345 × 10−1 3.0199 × 10−11 9.5207 × 10−4 7.2951 × 10−4 3.0199 × 10−11 3.0199 × 10−11 -

F27

Min 3.3438 × 103 7.1551 × 103 3.6472 × 103 6.2376 × 103 3.3222 × 103 4.0781 × 103 4.0833 × 103 3.3419 × 103 3.3592 × 103

Max 3.2000 × 103 1.1558 × 104 4.1135 × 103 9.2642 × 103 3.6406 × 103 6.8633 × 103 6.2070 × 103 3.9052 × 103 4.0475 × 103

Mean 3.3665 × 103 9.4605 × 103 3.8592 × 103 7.2641 × 103 3.3638 × 103 3.4086 × 103 4.9736 × 103 3.7284 × 103 3.5766 × 103

Std 1.1946 × 101 1.0557 × 103 1.5081 × 102 7.5261 × 102 6.6761 × 101 6.8591 × 101 5.7337 × 102 2.0288 × 102 1.6445 × 102

Rank 2 9 6 8 1 5 7 3 4
p-value 3.0199 × 10−11 3.0199 × 10−11 4.8011 × 10−7 3.0199 × 10−11 9.0000 × 10−1 4.0772 × 10−11 4.5043 × 10−11 3.0199 × 10−11 -

F28

Min 3.2686 × 103 1.8715 × 104 3.4037 × 103 1.5041 × 104 3.3066 × 103 3.3134 × 103 5.1531 × 103 3.3186 × 103 3.2791 × 103

Max 3.3000 × 103 3.9762 × 104 4.0746 × 103 2.6058 × 104 3.5665 × 103 4.6174 × 103 7.5274 × 103 3.4944 × 103 3.4946 × 103

Mean 3.2929 × 103 2.5912 × 104 3.6658 × 103 2.0357 × 104 3.3093 × 103 3.3430 × 103 5.9790 × 103 3.2984 × 103 3.3820 × 103

Std 1.2643 × 101 4.5988 × 103 1.3597 × 102 3.0568 × 103 2.2196 × 101 4.2886 × 101 5.3741 × 102 3.4640 × 101 4.3503 × 101

Rank 1 9 6 8 2 5 7 3 4
p-value 5.5727 × 10−10 3.0199 × 10−11 3.3384 × 10−11 3.0199 × 10−11 4.2896 × 10−1 6.9522 × 10−1 3.0199 × 10−11 3.0199 × 10−11 -

F29

Min 3.8197 × 103 1.2914 × 105 5.1182 × 103 2.7327 × 104 4.4704 × 103 5.0757 × 103 6.9052 × 103 3.4215 × 103 3.6832 × 103

Max 1.4178 × 104 9.3402 × 106 6.3314 × 103 7.8777 × 106 5.9182 × 103 8.1004 × 103 1.4442 × 104 5.4800 × 103 5.3900 × 103

Mean 4.0094 × 103 2.5219 × 106 5.7297 × 103 1.3381 × 106 4.3452 × 103 3.8221 × 103 9.3579 × 103 4.6241 × 103 4.5194 × 103

Std 1.3811 × 102 2.3693 × 106 2.6551 × 102 1.8461 × 106 2.3220 × 102 2.4027 × 102 1.6141 × 103 3.1504 × 102 3.1315 × 102

Rank 4 9 6 8 5 3 7 2 1
p-value 3.0199 × 10−11 3.0199 × 10−11 5.0723 × 10−10 3.0199 × 10−11 9.6263 × 10−2 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F30

Min 7.4175 × 105 1.5664 × 1010 6.5073 × 106 5.7609 × 109 4.7658 × 106 5.8641 × 107 1.2543 × 108 9.0351 × 108 7.7096 × 105

Max 8.3117 × 108 3.5848 × 1010 1.7274 × 107 2.6506 × 1010 2.2023 × 107 1.1202 × 108 7.8791 × 108 8.6897 × 109 2.4072 × 106

Mean 8.4809 × 105 2.3769 × 1010 1.1678 × 107 1.2540 × 1010 1.6586 × 106 2.4672 × 106 3.4948 × 108 3.5788 × 109 1.2371 × 106

Std 5.8574 × 104 5.7961 × 109 2.6507 × 106 5.2766 × 109 3.0622 × 105 6.2579 × 105 1.6293 × 108 1.8702 × 109 3.9959 × 105

Rank 1 9 4 8 3 5 6 7 2
p-value 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

+/=/− 30/0/0 30/0/0 27/0/3 30/0/0 18/0/12 26/0/4 30/0/0 30/0/0 -

4.1.2. Convergence Behavior Analysis

The second part is the convergence rate of the proposed AMRFOCS. Therefore, when
dealing with 30-dimensional and 50-dimensional CEC2017 benchmark functions, the aver-
age convergence curve of AMRFOCS is compared with other classical algorithms, as shown
in Figures 3 and 4. By examining the curve, it can be recognized that many algorithms fall
into the local solution of most functions. In the case of multimodal, mixed and composite
functions such as F1, F3, F11, F12, F16, F17, F21, F24, F29 and F30, AMRFOCS shows a high
degree of balance between the exploration and exploitation phases.

4.2. Valuation AMRFOCS by Utilizing CEC2020 Benchmark Functions

In this section, AMRFOCS passes 10 functional tests of CEC2020. According to the
CEC2020 available dimension of the competition report, they are 5, 10, 15 and 20 [49]. Based
on the experimental settings of the references, the dimensions used in this experiment
are 10, 15 and 20 dimensions. The population sizes are 30, 100 and 30, respectively. The
number of evaluation functions used is 3000, 500 and 5000, respectively. AMRFOCS is
compared with ABC, ACO, SMA, GA, PSO, WOA and MRFO. Each algorithm implements
30 independent runs.

4.2.1. Statistical Results Analysis

In this benchmark test of CEC2020, AMRFOCS is compared with seven algorithms,
including ACO [42], ABC [43], GA, SMA [51], PSO [52], WOA [52] and MRFO [18].These
comparative algorithms are from different references and show their respective advantages
and good performance in the literature. The comparison results between AMRFOCS and
the other algorithms are shown in Tables 7–9.

Tables 7–9 show four indicators, namely the mean value (mean), standard deviation
(std), minimum value (min) and maximum value (max), as well as the sort value of the
algorithm. In addition, at the 5% significance level, the Wilcoxon rank-sum test [47] is
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used to affirm whether AMRFOCS has a significant contribution to other algorithms. “-”
represents “not applicable”, which means that the best algorithm cannot be statistically
compared with itself in the rank-sum test. In Tables 7–9, we give the algorithm’s ranking in
different test functions and the p-value of the rank-sum test. The table’s bold data are the
eight algorithms’ optimal minimum values (maximum values, mean values or standard
deviation). Additionally, the last row of Tables 7–9 lists three symbols (+/−/=) to show the
number of functions whereby AMRFOCS has a superior (+) performance, the number of
functions whereby AMRFOCS has the same behavior as the other algorithms (=) and the
number of functions whereby AMRFOCS is at a disadvantage.

Tables 7–9 show the average fitness values obtained for each method in the overall
number of runs. Based on the results of these records, Table 7 shows that for both F1 and F2,
AMRFOCS only achieved the best fitness value. In F3, AMRFOCS performed poorly, and
PSO achieved the best mean and standard deviation. However, from F4 to F10, AMRFOCS
showed a dominant position and basically achieved the best value of all indicators. Table 8
shows that of the 10 test functions in CEC2020, for 8 of them (F1, F4–F10), AMRFOCS
performed better than all the other algorithms and showed the best average. As shown in
Table 9, AMRFOCS still performed well in the reorganization experiment, especially with
the mixed function and the combinatorial function. AMRFOCS always achieves the best
fitness value and average value and ranks first.

The experimental results also show the standard deviation for AMRFOCS and the other
comparison algorithms. Based on these results, AMRFOCS is the most stable metaheuristic
algorithm because it enables more than half of the 10 functions to reach the minimum,
such as F1, F4, F5, F7, F8, F9 and F10. In addition, the Wilcoxon signed-rank test is also
shown in the table to check whether there is a statistical difference between AMRFOCS and
the other algorithms when the p value is less than 0.05. The results show that most of the
obtained values are less than 0.05, which means that there is a statistical difference between
AMRFOCS and the other algorithms.
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Figure 3. Mean convergence curves for AMRFOCS against other counterparts—CEC2017 benchmarks
D = 30. (a) Convergence curve of F1. (b) Convergence curve of F3. (c) Convergence curve of F4.
(d) Convergence curve of F11. (e) Convergence curve of F12. (f) Convergence curve of F16. (g) Con-
vergence curve of F7. (h) Convergence curve of F20. (i) Convergence curve of F24. (j) Convergence
curve of F25. (k) Convergence curve of F29. (l) Convergence curve of F30.
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Table 7. Comparison of results obtained—CEC2020 benchmark functions (10D).

Function ABC ACO SMA GA PSO WOA MRFO AMRFOCS

F1

Min 1.1392 × 102 1.2380 × 1010 4.1585 × 102 4.1787 × 109 1.0248 × 102 5.2553 × 104 1.0102 × 102 1.0001 × 102

Max 3.7030 × 103 4.0313 × 1010 1.2741 × 104 2.7128 × 1010 5.5466 × 103 2.2853 × 106 6.8346 × 103 8.8983 × 103

Mean 8.2827 × 102 2.2807 × 1010 7.1025 × 103 1.3071 × 1010 1.6719 × 103 2.8538 × 105 1.8831 × 103 2.0195 × 103

Std 8.9945 × 102 6.7663 × 109 4.5802 × 103 5.7495 × 109 2.0858 × 103 4.9750 × 105 1.8434 × 103 2.4139 × 103

Rank 1 8 5 7 2 6 3 4
p-value 7.6183 × 10−1 3.0199 × 10−11 1.5292 × 10−5 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -
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Table 7. Cont.

Function ABC ACO SMA GA PSO WOA MRFO AMRFOCS

F2

Min 2.1494 × 103 2.7892 × 103 1.2259 × 103 2.6188 × 103 1.2431 × 103 1.4208 × 103 1.2420 × 103 1.1069 × 103

Max 2.7872 × 103 4.6651 × 103 2.0202 × 103 3.5672 × 103 2.3308 × 103 2.5457 × 103 2.5707 × 103 2.1619 × 103

Mean 2.5096 × 103 3.8503 × 103 1.5427 × 103 3.1849 × 103 1.8046 × 103 2.0166 × 103 1.7194 × 103 1.6420 × 103

Std 1.5423 × 102 3.6014 × 102 2.0360 × 102 2.8795 × 102 2.8154 × 102 3.1524 × 102 3.0358 × 102 2.7249 × 102

Rank 5 8 1 7 4 3 6 2
p-value 4.0772 × 10−11 3.0199 × 10−11 4.8413 × 10−2 3.0199 × 10−11 9.3341 × 10−2 5.1857 × 10−7 2.0283 × 10−7 -

F3

Min 7.2727 × 102 1.0276 × 103 7.1436 × 102 8.9206 × 102 7.1620 × 102 7.4046 × 102 7.1873 × 102 7.1666 × 102

Max 7.4843 × 102 1.4397 × 103 7.4611 × 102 1.1748 × 103 7.2973 × 102 8.1452 × 102 7.8961 × 102 7.7151 × 102

Mean 7.3954 × 102 1.2033 × 103 7.2509 × 102 1.0282 × 103 7.2131 × 102 7.7289 × 102 7.4756 × 102 7.4002 × 102

Std 4.8970 × 100 9.1232 × 101 5.9102 × 100 8.3489 × 101 4.2931 × 100 1.8023 × 101 1.7360 × 101 1.3309 × 101

Rank 3 8 2 7 1 5 6 4
p-value 4.9178 × 10−1 3.0199 × 10−11 1.7479 × 10−5 3.0199 × 10−11 1.1536 × 10−1 4.1825 × 10−9 1.1023 × 10−8 -

F4

Min 1.9009 × 103 3.9594 × 105 1.9006 × 103 1.4313 × 104 1.9005 × 100 1.9015 × 103 1.9005 × 103 1.9001 × 103

Max 1.9024 × 103 2.1254 × 107 1.9020 × 103 3.9910 × 106 1.9017 × 103 1.9133 × 103 1.9021 × 103 1.9017 × 103

Mean 1.9018 × 103 5.8465 × 106 1.9010 × 103 1.1194 × 106 1.9010 × 103 1.9052 × 103 1.9011 × 103 1.9010 × 103

Std 3.8056 × 10−1 5.3127 × 106 3.6866 × 10−1 1.1438 × 106 3.8581 × 10−1 3.0433 × 100 4.0247 × 10−1 3.4371 × 10 -1

Rank 4 8 2 7 3 5 6 1
p-value 2.6099 × 10−10 3.0199 × 10−11 2.6433 × 10−1 3.0199 × 10−11 2.0283 × 10−7 3.3384 × 10−11 3.0199 × 10−11 -

F5

Min 3.0234 × 104 7.8639 × 105 1.7319 × 103 1.2076 × 105 2.1097 × 103 4.0071 × 103 1.7394 × 103 1.7216 × 103

Max 3.0470 × 105 2.0144 × 108 1.7902 × 104 7.0618 × 107 9.3423 × 103 2.2519 × 106 2.6867 × 103 2.3247 × 103

Mean 9.7741 × 104 3.5939 × 107 7.4005 × 103 1.0550 × 107 4.5410 × 103 3.2595 × 105 2.1621 × 103 2.0043 × 103

Std 7.7378 × 104 4.2267 × 107 5.9110 × 103 1.7068 × 107 2.6321 × 103 5.8379 × 105 2.6215 × 102 1.7213 × 102

Rank 5 8 3 7 2 6 4 1
p-value 3.0199 × 10−11 3.0199 × 10−11 2.7829 × 10−07 3.0199 × 10−11 6.5183 × 10−09 3.0199 × 10−11 1.0702 × 10−9 -

F6

Min 1.6004 × 103 1.6107 × 103 1.6002 × 103 1.6035 × 103 1.6007 × 103 1.6126 × 103 1.6000 × 103 1.6000 × 103

Max 1.6010 × 103 2.1694 × 103 1.6010 × 103 1.8803 × 103 1.9365 × 103 1.9815 × 103 1.6012 × 103 1.6006 × 103

Mean 1.6007 × 103 1.7757 × 103 1.6005 × 103 1.7042 × 103 1.7815 × 103 1.8004 × 103 1.6003 × 103 1.6002 × 103

Std 1.6805 × 10−1 1.3259 × 102 2.5080 × 10−1 7.1502 × 101 8.9709 × 101 1.0238 × 102 2.9741 × 10−1 1.6704 × 10 -1

Rank 3 8 2 7 4 5 6 1
p-value 1.5465 × 10−9 3.0199 × 10−11 8.5641 × 10−4 3.0199 × 10−11 8.1014 × 10−10 2.6015 × 10−8 2.1544 × 10−10 -

F7

Min 7.2813 × 103 1.0613 × 104 2.1235 × 103 2.5605 × 104 2.1008 × 103 3.1679 × 103 2.1006 × 103 2.1001 × 103

Max 4.8656 × 104 5.5590 × 107 1.3274 × 104 2.8168 × 107 2.7098 × 103 7.9900 × 104 2.5875 × 103 2.3049 × 103

Mean 2.1022 × 104 1.3985 × 107 4.2549 × 103 3.9699 × 106 2.3453 × 103 2.1814 × 104 2.2227 × 103 2.1724 × 103

Std 1.0771 × 104 1.4600 × 107 3.2623 × 103 6.1860 × 106 1.7779 × 102 1.8219 × 104 1.2202 × 102 6.8456 × 101

Rank 5 8 2 7 3 6 4 1
p-value 3.0199 × 10−11 3.0199 × 10−11 9.0632 × 10−8 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 4.9752 × 10−11 -

F8

Min 2.3042 × 103 3.5079 × 103 2.2226 × 103 2.7068 × 103 2.3006 × 103 2.2835 × 103 2.3003 × 103 2.2181 × 103

Max 2.3090 × 103 5.5522 × 103 3.2109 × 103 4.2787 × 103 2.3042 × 103 3.6330 × 103 2.3062 × 103 2.3032 × 103

Mean 2.3068 × 103 4.5947 × 103 2.4092 × 103 3.4760 × 103 2.3018 × 103 2.4247 × 103 2.3020 × 103 2.2970 × 103

Std 1.3501 × 100 5.6370 × 102 2.5965 × 102 4.6147 × 102 8.2941 × 10−1 3.4389 × 102 1.3591 × 100 7.6795 × 10 -1

Rank 2 8 3 7 5 6 4 1
p-value 3.0180 × 10−11 3.0180 × 10−11 2.9203 × 10−2 3.0180 × 10−11 3.0180 × 10−11 5.0695 × 10−10 3.0180 × 10−11 -

F9

Min 2.7173 × 103 2.8592 × 103 2.7433 × 103 2.7979 × 103 2.4000 × 103 2.7527 × 103 2.5000 × 103 2.4000 × 103

Max 2.7698 × 103 3.3082 × 103 2.7753 × 103 3.1470 × 103 2.7677 × 103 2.8258 × 103 2.7668 × 103 2.7597 × 103

Mean 2.7557 × 103 3.0335 × 103 2.7571 × 103 2.9184 × 103 2.6812 × 103 2.7776 × 103 2.6820 × 103 2.6723 × 103

Std 1.2156 × 101 1.0545 × 102 9.2128 × 100 7.6362 × 101 1.2122 × 102 2.0095 × 101 1.1194 × 102 8.3901 × 101

Rank 3 8 2 6 7 4 5 1
p-value 1.2018 × 10−8 3.0180 × 10−11 6.7634 × 10−5 2.3701 × 10−10 2.1322 × 10−5 2.9201 × 10−9 6.9113 × 10−4 -

F10

Min 2.8979 × 103 3.1575 × 103 2.8982 × 103 3.0391 × 103 2.8979 × 103 2.6443 × 103 2.8979 × 103 2.6000 × 103

Max 2.9460 × 103 7.1006 × 103 3.0242 × 103 5.1923 × 103 2.9500 × 103 2.9723 × 103 2.9489 × 103 2.9495 × 103

Mean 2.9392 × 103 4.8641 × 103 2.9384 × 103 3.8670 × 103 2.9220 × 103 2.9354 × 103 2.9349 × 103 2.9015 × 103

Std 9.7289 × 100 8.7925 × 102 2.8954 × 101 5.8024 × 102 2.3653 × 101 7.1523 × 101 1.9938 × 101 2.2267 × 101

Rank 2 8 4 7 3 5 6 1
p-value 5.7929 × 10−1 3.0199 × 10−11 1.3272 × 10−2 3.0199 × 10−11 9.3519 × 10−1 2.0152 × 10−8 4.5726 × 10−9 -

+/=/− 7/0/3 10/0/0 9/0/1 9/0/1 7/0/3 10/0/0 10/0/0 -

Table 8. Comparison of results obtained—CEC2020 benchmark functions (15D).

Function ABC ACO SMA GA PSO [53] WOA MRFO AMRFOCS

F1

Min 8.9182 × 103 1.8080 × 1010 3.0812 × 102 1.1723 × 1010 1.5726 × 106 5.5228 × 107 1.0003 × 102 1.0919 × 102

Max 3.0062 × 106 6.3113 × 1010 2.5958 × 104 4.3013 × 1010 4.3153 × 106 1.1845 × 109 2.5394 × 104 1.9760 × 104

Mean 2.0499 × 105 3.9588 × 1010 1.1066 × 104 2.4697 × 1010 2.8600 × 108 3.5501 × 108 8.3197 × 103 6.2404 × 103

Std 5.7480 × 105 1.0666 × 1010 9.1622 × 103 7.0715 × 109 6.5900 × 108 2.6468 × 108 8.0391 × 103 5.8357 × 103

Rank 3 8 2 7 4 5 6 1
p-value 1.6132 × 10−10 3.0199 × 10−11 1.3272 × 10−2 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -
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Table 8. Cont.

Function ABC ACO SMA GA PSO [53] WOA MRFO AMRFOCS

F2

Min 3.3808 × 103 4.1367 × 103 1.3889 × 103 3.9989 × 103 1.9509 × 103 2.4380 × 103 1.7015 × 103 1.2364 × 103

Max 4.3815 × 103 6.0406 × 103 3.3464 × 103 5.5303 × 103 3.5246 × 103 4.1739 × 103 3.0513 × 103 2.7292 × 103

Mean 4.0746 × 103 5.4222 × 103 2.0896 × 103 4.7553 × 103 3.9700 × 102 3.3124 × 103 2.2987 × 103 1.9570 × 103

Std 2.6396 × 102 4.1989 × 102 4.0949 × 102 4.0296 × 102 1.9500 × 102 4.7882 × 102 3.4635 × 102 3.6533 × 102

Rank 4 8 3 6 2 5 7 1
p-value 3.0199 × 10−11 3.0199 × 10−11 1.3345 × 10−1 3.0199 × 10−11 2.0023 × 10−6 4.1997 × 10−10 9.9186 × 10−11 -

F3

Min 7.7125 × 102 1.3751 × 103 7.3112 × 102 1.2423 × 103 7.8084 × 102 7.9357 × 102 7.5401 × 102 7.3690 × 102

Max 8.1444 × 102 2.0440 × 103 7.5919 × 102 1.6998 × 103 9.2097 × 102 9.6361 × 102 9.0212 × 102 8.0621 × 102

Mean 7.9919 × 102 1.7320 × 103 7.4427 × 102 1.4555 × 103 2.2800 × 101 8.7867 × 102 8.0701 × 102 7.6385 × 102

Std 9.3785 × 100 1.7168 × 102 8.4538 × 100 1.2329 × 102 3.3400 × 100 4.3156 × 101 3.6815 × 101 1.8231 × 101

Rank 2 8 1 7 4 5 6 3
p-value 8.5641 × 10−4 3.0199 × 10−11 1.4294 × 10−8 3.0199 × 10−11 4.9426 × 10−5 3.6897 × 10−11 4.5043 × 10−11 -

F4

Min 1.9062 × 103 5.0856 × 105 1.9012 × 103 5.5274 × 104 1.9048 × 103 1.9173 × 103 1.9015 × 103 1.9009 × 103

Max 1.9101 × 103 1.4279 × 107 1.9053 × 103 1.0775 × 107 1.9093 × 103 2.3598 × 103 1.9102 × 103 1.9044 × 103

Mean 1.9083 × 103 5.7404 × 106 1.9025 × 103 2.6295 × 106 7.5000 × 101 2.0594 × 103 1.9038 × 103 1.9022 × 103

Std 8.4822 × 10−1 4.0652 × 106 9.5245 × 10−1 2.3108 × 106 4.0000 × 102 1.1233 × 102 1.8716 × 100 9.6539 × 10−1

Rank 3 8 4 7 2 5 6 1
p-value 5.4941 × 10−11 3.0199 × 10−11 1.4128 × 10−1 3.0199 × 10−11 4.5043 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F5

Min 9.8935 × 104 8.4389 × 106 3.3567 × 103 6.2312 × 106 1.7109 × 104 9.1560 × 103 2.7053 × 103 1.8091 × 103

Max 1.4449 × 106 3.6071 × 108 1.0135 × 106 2.9321 × 108 3.9436 × 105 3.0431 × 107 1.7649 × 105 4.9794 × 103

Mean 6.2043 × 105 1.4181 × 108 3.4353 × 105 5.0984 × 107 2.6300 × 104 4.5353 × 106 1.9206 × 104 3.2198 × 103

Std 3.5873 × 105 1.0360 × 108 3.7205 × 105 6.1107 × 107 1.0100 × 105 6.1643 × 106 3.1836 × 104 7.2998 × 102

Rank 4 8 3 7 2 6 5 1
p-value 3.0199 × 10−11 3.0199 × 10−11 2.5721 × 10−7 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F6

Min 1.7276 × 103 1.7276 × 103 1.7276 × 103 1.7276 × 103 1.7276 × 103 1.7276 × 103 1.7276 × 103 1.6025 × 103

Max 1.7276 × 103 1.7934 × 103 1.7276 × 103 1.7350 × 103 1.7276 × 103 1.7276 × 103 1.7276 × 103 1.6025 × 103

Mean 1.7276 × 103 1.7359 × 103 1.7276 × 103 1.7285 × 103 1.2800 × 102 1.7276 × 103 1.7276 × 103 1.6025 × 103

Std 5.5011 × 10−6 1.4801 × 101 1.0386 × 10−8 1.6969 × 100 8.9900 × 101 3.2909 × 10−11 3.2043 × 10−7 8.5918 × 10−8

Rank 4 7 2 8 6 1 5 3
p-value 7.6171 × 10−3 3.8461 × 10−3 2.5296 × 10−4 3.3384 × 10−11 2.0762 × 10−6 7.1086 × 10−12 6.2828 × 10−6 -

F7

Min 1.3476 × 105 4.2064 × 106 3.0138 × 103 2.8154 × 106 8.4201 × 103 1.6493 × 105 2.5435 × 103 2.3344 × 103

Max 1.1855 × 106 3.7604 × 1008 4.0915 × 105 6.3958 × 107 5.6134 × 105 3.2858 × 107 8.9311 × 103 3.8247 × 103

Mean 5.9020 × 105 5.8754 × 107 1.4061 × 105 2.4985 × 107 4.9000 × 102 8.3051 × 106 4.3069 × 103 2.7756 × 103

Std 3.2196 × 105 6.6206 × 107 1.3538 × 105 1.7097 × 107 4.1000 × 102 8.8725 × 106 1.5006 × 103 3.7423 × 102

Rank 5 8 3 7 2 6 4 1
h-value 1 1 1 1 1 1 1 -
p-value 3.0199 × 10−11 3.0199 × 10−11 3.1589 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F8

Min 2.5928 × 103 4.9297 × 103 2.3002 × 103 2.7897 × 103 2.3105 × 103 2.3194 × 103 2.2744 × 1003 2.2628 × 103

Max 5.5346 × 103 7.4795 × 103 3.7248 × 103 6.6078 × 103 4.5823 × 103 5.1608 × 103 2.3017 × 103 2.3020 × 103

Mean 3.4110 × 103 6.4724 × 103 2.6974 × 103 5.2093 × 103 1.2300 × 102 3.3445 × 103 2.2998 × 103 2.2983 × 103

Std 7.7193 × 102 6.6794 × 102 5.4439 × 102 9.0966 × 102 3.4200 × 101 1.1929 × 103 4.8385 × 100 1.1649 × 100

Rank 4 8 2 7 3 6 5 1
p-value 2.9710 × 10−11 2.9710 × 10−11 1.0531 × 10−3 2.9710 × 10−11 5.4938 × 10−10 2.9710 × 10−11 2.9710 × 10−11 -

F9

Min 2.8564 × 103 3.2944 × 103 2.7970 × 103 3.0641 × 103 2.5057 × 103 2.8417 × 103 2.5000 × 103 2.7944 × 103

Max 2.8918 × 103 4.4273 × 103 2.8337 × 103 3.8402 × 103 3.2787 × 103 3.0317 × 103 2.8648 × 103 2.8275 × 103

Mean 2.8760 × 103 3.7546 × 103 2.8108 × 103 3.3587 × 103 4.0600 × 102 2.9344 × 103 2.8016 × 103 2.8082 × 103

Std 7.7323 × 100 2.5499 × 102 9.3661 × 100 2.2100 × 102 8.7800 × 101 5.3179 × 101 5.8581 × 101 7.3602 × 100

Rank 3 8 1 7 6 4 5 2
p-value 3.0199 × 10−11 3.0199 × 10−11 9.7052 × 10−01 3.0199 × 10−11 6.5277 × 10−8 4.6159 × 10−10 4.6159 × 10−10 -

F10

Min 2.9382 × 103 5.7203 × 103 2.9002 × 103 4.3186 × 103 2.9065 × 103 3.1705 × 103 2.9000 × 103 2.9000 × 103

Max 3.1275 × 103 1.9135 × 104 3.1655 × 103 1.2221 × 104 3.1546 × 103 3.5295 × 103 3.1396 × 103 3.1525 × 103

Mean 3.0845 × 103 9.9196 × 103 2.9642 × 103 6.7857 × 103 2.2100 × 104 3.2974 × 103 2.9296 × 103 2.9175 × 103

Std 3.6737 × 101 2.3530 × 103 9.8522 × 101 1.7801 × 103 6.9600 × 101 9.7382 × 101 7.7440 × 101 6.6683 × 101

Rank 3 8 4 7 1 5 6 2
p-value 5.0650 × 10−9 9.4001 × 10−12 1.7736 × 10−8 9.4001 × 10−12 2.5168 × 10−8 2.4067 × 10−11 1.0445 × 10−11 -

+/=/− 10/0/0 10/0/0 7/0/3 10/0/0 10/0/0 10/0/0 10/0/0 -

Table 9. Comparison of results obtained—CEC2020 benchmark functions (20D).

Function ABC ACO SMA [50] GA PSO [49,54] WOA MRFO [50,54] AMRFOCS

F1

Min 6.6991 × 102 4.0563 × 1010 1.6574 × 102 2.5636 × 1010 1.0001 × 102 6.3265 × 107 8.3778 × 109 1.0000 × 102

Max 1.2555 × 107 8.4887 × 1010 1.2154 × 104 6.7598 × 1010 3.3223 × 102 6.1524 × 108 3.7434 × 1010 5.8159 × 103

Mean 5.5245 × 105 6.6290 × 1010 7.0214 × 103 4.3889 × 1010 1.6732 × 102 1.7326 × 108 2.1385 × 1010 1.8646 × 103

Std 2.2918 × 106 1.0292 × 1010 3.4661 × 103 9.5270 × 109 7.3804 × 101 1.3456 × 108 6.9336 × 109 1.9147 × 103

Rank 4 8 3 7 2 5 6 1
p-value 9.9410 × 10−01 3.0199 × 10−11 1.7290 × 10−06 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -
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Table 9. Cont.

Function ABC ACO SMA [50] GA PSO [49,54] WOA MRFO [50,54] AMRFOCS

F2

Min 5.1957 × 103 5.8815 × 103 1.1262 × 103 5.0471 × 103 1.1203 × 103 3.1463 × 103 1.7867 × 103 1.7736 × 103

Max 5.9571 × 103 7.7571 × 103 2.0288 × 103 6.8063 × 103 2.0631 × 103 5.0027 × 103 3.6937 × 103 3.3548 × 103

Mean 5.5760 × 103 7.0582 × 103 1.5103 × 103 6.2467 × 103 1.4822 × 103 3.9622 × 103 2.6240 × 103 2.5471 × 103

Std 1.9190 × 102 4.4158 × 102 2.3456 × 102 4.2793 × 102 2.2322 × 1002 4.6842 × 102 5.0980 × 102 4.1138 × 102

Rank 6 8 1 7 4 3 5 2
p-value 3.0199 × 10−11 3.0199 × 10−11 3.8249 × 10−9 3.0199 × 10−11 4.4205 × 10−6 5.4620 × 10−6 3.0199 × 10−11 -

F3

Min 8.2806 × 102 1.8443 × 103 7.2316 × 102 1.4839 × 103 7.0266 × 102 8.4704 × 102 7.5771 × 102 7.6226 × 102

Max 8.7007 × 102 2.6296 × 103 7.3664 × 102 2.4308 × 103 7.3323 × 102 1.0022 × 103 9.2576 × 102 9.3443 × 102

Mean 8.4879 × 102 2.2196 × 103 7.2929 × 102 1.9061 × 103 7.2179 × 102 9.3951 × 102 8.4981 × 102 8.4617 × 102

Std 9.4200 × 100 1.8780 × 102 3.6765 × 100 2.2344 × 102 1.0121 × 101 3.6276 × 101 3.8601 × 101 4.0698 × 101

Rank 3 8 2 7 1 5 6 4
p-value 5.2014 × 10−1 3.0199 × 10−11 3.3384 × 10−11 3.0199 × 10−11 4.9426 × 10−05 2.0152 × 10−08 4.0772 × 10−11 -

F4

Min 1.9111 × 103 1.2382 × 106 1.9007 × 103 4.3264 × 105 1.9005 × 103 1.9198 × 103 1.9017 × 103 1.9016 × 103

Max 1.9170 × 103 2.2397 × 107 1.9016 × 103 1.2404 × 107 1.9025 × 103 2.6053 × 103 1.9072 × 103 1.9091 × 103

Mean 1.9136 × 103 1.0108 × 107 1.9012 × 103 4.4157 × 106 1.9015 × 103 2.0567 × 103 1.9043 × 103 1.9046 × 103

Std 1.5087 × 100 6.3959 × 106 2.3298 × 100 3.1502 × 106 4.0505 ×10−1 1.8873 × 102 1.2803 × 100 2.0092 × 100

Rank 4 8 2 7 1 5 6 3
p-value 2.9215 × 10−9 3.0199 × 10−11 1.1077 × 10−06 3.0199 × 10−11 2.7829 × 10−07 4.0772 × 10−11 3.0199 × 10−11 -

F5

Min 8.0766 × 105 1.7852 × 107 3.7210 × 103 4.4310 × 106 2.6626 × 103 2.0301 × 105 1.8919 × 103 2.8351 × 103

Max 5.1985 × 106 2.6166 × 108 1.6802 × 104 2.4465 × 108 1.4404 × 105 5.2724 × 106 3.0040 × 103 1.8735 × 104

Mean 2.4414 × 106 1.3021 × 108 1.3273 × 104 6.2227 × 107 1.2921 × 104 2.2840 × 106 2.4118 × 103 6.1639 × 103

Std 9.3740 × 105 6.5744 × 107 4.0755 × 103 4.8280 × 107 2.5004 × 104 1.5022 × 106 2.9496 × 102 4.1052 × 103

Rank 5 8 3 7 2 4 6 1
p-value 3.0199 × 10−11 3.0199 × 10−11 3.3384 × 10−11 3.0199 × 10−11 9.9186 × 10−11 3.0199 × 10−11 3.0199 × 10−11 -

F6

Min 2.0209 × 103 2.0209 × 103 1.6025 × 103 2.0209 × 103 1.6025 × 103 2.0209 × 103 1.6025 × 103 1.6622 × 103

Max 2.0209 × 103 2.0209 × 103 2.3267 × 103 2.0209 × 103 2.3267 × 103 2.0209 × 103 2.3267 × 103 1.6622 × 103

Mean 2.0209 × 103 2.0209 × 103 1.8192 × 103 2.0209 × 103 1.8192 × 103 2.0209 × 103 1.8192 × 103 1.6622 × 103

Std 2.3126 × 10−13 2.3126 × 10−13 2.1374 × 102 2.3126 × 10−13 2.1374 × 102 2.3126 × 10−13 2.1374 × 102 2.3126 × 10-13

Rank 5 6 2 7 3 8 4 1
p-value NaN NaN NaN NaN NaN NaN NaN -

F7

Min 2.2983 × 105 7.5943 × 106 2.3186 × 103 1.9998 × 106 2.1388 × 103 4.2518 × 104 2.1809 × 103 2.3988 × 103

Max 1.5042 × 106 6.5444 × 108 6.4946 × 103 8.0646 × 107 3.8441 × 103 2.8797 × 106 3.2587 × 103 5.8574 × 103

Mean 7.9336 × 105 1.2540 × 108 3.8725 × 103 2.7422 × 107 2.5657 × 103 8.9956 × 105 2.6459 × 103 3.7674 × 103

Std 3.4751 × 105 1.2646 × 108 1.3768 × 103 2.3393 × 107 3.5521 × 102 8.6057 × 105 2.4382 × 102 1.0698 × 103

Rank 6 8 3 7 1 4 5 2
p-value 3.0199 × 10−11 3.0199 × 10−11 3.3384 × 10−11 3.0199 × 10−11 2.1544 × 10−10 3.0199 × 10−11 3.0199 × 10−11 -

F8

Min 4.1639 × 103 6.3323 × 103 2.3000 × 103 5.1673 × 103 2.3000 × 1003 2.3252 × 103 2.3000 × 103 2.3000 × 103

Max 7.4706 × 103 9.6924 × 103 4.4908 × 103 8.6986 × 103 3.8809 × 1003 7.0329 × 103 2.3028 × 103 2.3025 × 103

Mean 6.6378 × 103 8.6618 × 103 3.9746 × 103 7.4038 × 103 2.9396 × 1003 4.4362 × 103 2.3011 × 103 2.3007 × 103

Std 9.3263 × 102 7.3792 × 102 4.3257 × 102 7.4140 × 102 4.8483 × 1002 1.8870 × 103 6.9236 × 10−1 7.8838 × 10 -1

Rank 6 8 2 7 3 4 5 1
p-value 2.6203 × 10−11 2.6203 × 10−11 3.8409 × 10−06 2.6203 × 10−11 2.6203 × 10−11 2.6203 × 10−11 2.6203 × 10−11 -

F9

Min 2.9048 × 103 3.3682 × 103 2.8289 × 103 3.2094 × 103 2.8125 × 103 2.8789 × 103 2.4379 × 103 2.5000 × 103

Max 2.9581 × 103 4.2698 × 103 2.8727 × 103 3.8063 × 103 2.8470 × 103 3.1286 × 103 3.0148 × 103 2.9151 × 103

Mean 2.9416 × 103 3.8519 × 103 2.8507 × 103 3.4810 × 103 2.8207 × 103 3.0257 × 103 2.9098 × 103 2.8505 × 103

Std 1.0805 × 101 2.3544 × 102 1.2047 × 101 1.6779 × 102 9.6248 × 100 5.2418 × 101 1.1079 × 102 2.1817 × 101

Rank 3 8 1 7 5 4 6 2
p-value 3.6897 × 10−11 3.0199 × 10−11 1.8577 × 10−1 3.0199 × 10−11 3.0199 × 10−11 6.0658 × 10−11 3.0199 × 10−11 -

F10

Min 2.9067 × 103 6.2467 × 103 2.9100 × 103 5.2774 × 103 2.8992 × 103 2.9798 × 103 2.9114 × 103 2.8997 × 103

Max 3.0033 × 103 2.4861 × 104 2.9139 × 103 1.6018 × 104 2.9605 × 103 3.2326 × 103 3.0078 × 103 3.0024 × 103

Mean 2.9211 × 103 1.4171 × 104 2.9132 × 103 8.7877 × 103 2.9193 × 103 3.0608 × 103 2.9654 × 103 2.9570 × 103

Std 2.6124 × 101 4.2631 × 103 1.4034 × 100 2.9286 × 103 1.3624 × 101 4.9901 × 101 3.2780 × 101 3.1937 × 101

Rank 1 8 2 7 3 5 6 4
p-value 5.5727 × 10−10 3.0199 × 10−11 1.1567 × 10−07 3.0199 × 10−11 2.7086 × 10−02 4.1127 × 10−07 3.0199 × 10−11 -

+/=/− 7/0/3 9/0/1 8/0/2 9/0/1 9/0/1 9/0/1 9/0/1 -

4.2.2. Convergence Behavior Analysis

In order to further analyze the recommended AMRFOCS, the representations of
the convergence curves of AMRFOCS and the other kinds of algorithms are plotted in
Figures 5–7 to assess the performance of AMRFOCS with the CEC2020 function. These
results show that AMRFOCS is capable of faster convergence than all the compared algo-
rithms, especially those in F5, F7, F8, F9 and F10. In different dimensions, the comprehen-
sive performance of AMRFOCS ranks first. In more than 50% of the test functions, it can
always reach the optimal value in less time and fewer iteration times.
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Figure 6. Mean convergence curves for AMRFOCS against other counterparts—CEC2020 bench-
marks D = 15. (a) Convergence curve of F1. (b) Convergence curve of F4. (c) Convergence curve
of F5. (d) Convergence curve of F6. (e) Convergence curve of F7. (f) Convergence curve of F8.
(g) Convergence curve of F9. (h) Convergence curve of F10.
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5. AMRFOCS for Wireless Sensor Network (WSN)

In terms of deploying wireless sensor networks on 3D surfaces [55], compared with
other deployment strategies, swarm intelligence optimization algorithms have the advan-
tages of simplicity, ease of use and no need for special modeling [56]. In this paper, a
new hybrid algorithm based on MRFO is proposed and applied to the deployment of a
3D-surface WSN. In the background of a complex environment, fixed simple and complex
surfaces are set in the experiment [57].

5.1. WSN Coverage Model

In WSNs, the sensing radius R and communication radius Rc of sensor nodes are
fixed as Rc = 2R. When deploying N homogeneous sensors in this area, the node set can be
expressed as Z = {z1, z2, z3, . . ., zn}, which has the same sensing radius R and communication
radius Rc. In this paper, the Boolean model is used as the node perception model and grid
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segmentation method. As long as the target is within the node perception range, it can be
successfully perceived. Assuming that the coordinates of a monitored node zi are (xi, yi, zi)
and the position coordinates of the target point dj are (xi, yi, zi), the distance between the
node and the target point is

d(zi, dj) =
√(

xi − yj
)2

+
(
yi − yj

)2
+
(
zi − zj

)2 (11)

where P(zi, dj) represents the perceived quality of the node to the target node, as shown in
(12). When the sensing probability is less than one, in order to improve the sensing quality of
the target, multiple sensors are required to detect the target cooperatively, as shown in (13):

P(zi, dj) =

{
1 d(zi, dj) ≤ R
0 otherwise

(12)

P(zi, dj) = 1−
N

∏
i=1

[1− P(zi, dj)] (13)

The coverage of the monitoring area is the ratio of the number of target points covered
by all sensor nodes to the total number of target points in the area, which is defined as

Scov =

L
∑

x=1

W
∑

y=1
P(zi, dj)× SA(x−1)·W+y

SAa
(14)

Taking Equation (14) as the objective function to obtain the maximum value is optimal.

5.2. WSN Deployment on 3D Surface

Compared with the simple s in WSNs, the sensing radius R and communication radius
Rc of the sensor nodes are kept as Rc = 2R. When deploying N homogeneous sensors in this
area, the node set can be expressed as Z = {z1, z2, z3, . . ., zn}, which has the same sensing
radius and communication radius Rc. In this paper, the Boolean model is used as the node
perception model and grid segmentation method. As long as the target is within the node
perception range, it can be successfully perceived. Assuming that the coordinates of the
monitored node zi are (xi, yi, zi) and the position coordinates of the target point dj are (xi, yi,
zi), the distance between the node and the target point can be determined.

Compared with the calculation of the surface area on the two-dimensional plane, the
three-dimensional (3D) surface deployment is more complex and worthy of discussion.
First, the three-dimensional undulating surface is not easy to divide equally. In order to
solve this problem, a grid method is proposed (as shown in Figure 8): the 3D surface is
vertically mapped to the 2D plane and the area is equally divided into a small grid, and the
surface area is calculated by the approximate mapping between the two.

Equation (15) represents the surface equation, and the total area is obtained by dividing
the curved area according to Equation (16):

z = f (x, y) (15)

SA =
x

Dxy

√
1 +

(
dz
dx

)2
+

(
dz
dy

)2
dxdy (16)

This experiment assumes that the energy consumption of nodes is not considered
when deploying nodes, which only needs to optimize the coverage area of the network.
The more area the network covers, the more properly the nodes are developed. Therefore,
the goal of this experiment is to find the maximum coverage.
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Figure 8. The schematic diagram of grid method (3D surface is vertically mapped to 2D plane).

The Boolean perception model cannot intuitively describe the whole process of de-
ploying sensor networks on 3D surfaces. As shown in Figure 9, the solid curve represents
the surface, and the dotted circle determines the sensing boundary. The monitoring points
shown in the figure are all within the sensing range of node Z. The signal transmitted in
a straight line will be blocked by the nearby hillside, resulting in the interruption of the
sensing signal, which is generally called the perception blind spot. Mathematically, the
position relationship is checked according to the number of intersection points between
the linear equation and the surface equation. For example, the intersection points between
the spatial line segment and the surface between the monitoring point B and the sensor
node Z are only two, B and Z, indicating that B can be completely covered by Z. Then, the
equations can be established to obtain the number of solutions. The simultaneous equations
are as follows: Equation (17). {

x−x1
x2−x1

= y−y1
y2−y1

= z−z1
z2−z1

z = f (x, y)
(17)

In the instance of Z and C in the graph, the condition of coverage also needs to add a
constraint. The midpoint of the line segment is in the inferior part of curve, which means
that the monitoring points cannot be covered. The equation is shown in Equation (18):

P(S, D) =

{
1 i f (x3, y3) ≤ z3

0 otherwise
(18)

When deploying wireless sensors, network connectivity is also one of the basic require-
ments. In this experiment, in order to facilitate the calculation, the communication radius is
set to be twice the sensing radius. As shown in the figure, the Euclidean distance between
Z and A is less than the communication radius, and there is a slope blocking the signal
between Z and A, so Z and A cannot communicate with each other. This phenomenon is
similar to the perceptual blind spot.



Biomimetics 2023, 8, 411 25 of 32

Biomimetics 2023, 8, x FOR PEER REVIEW 31 of 39 
 

 

equations can be established to obtain the number of solutions. The simultaneous equa-
tions are as follows: Equation (17). 








=
−
−=

−
−=

−
−

),(
12

1

12

1

12

1

yxfz
zz
zz

yy
yy

xx
xx

 (17) 

In the instance of Z and C in the graph, the condition of coverage also needs to add a 
constraint. The midpoint of the line segment is in the inferior part of curve, which means 
that the monitoring points cannot be covered. The equation is shown in Equation (18): 



 ≤

=
otherwise0

),(1
),( 333 zyxif

DSP  (18) 

When deploying wireless sensors, network connectivity is also one of the basic re-
quirements. In this experiment, in order to facilitate the calculation, the communication 
radius is set to be twice the sensing radius. As shown in the figure, the Euclidean distance 
between Z and A is less than the communication radius, and there is a slope blocking the 
signal between Z and A, so Z and A cannot communicate with each other. This phenom-
enon is similar to the perceptual blind spot. 

A

B

C
Z

monitoring points

sensor node

hillside

 
Figure 9. The schematic diagram of sensing blind area in the process of deploying nodes. 

5.3. Results and Discussion 
In order to verify the applicability and reliability of the AMRFOCS algorithm when 

deploying 3D wireless sensor networks, two 3D surfaces with different complexities are 
deployed. At the same time, they are compared with four 3D deployment methods opti-
mized by metaheuristic algorithms, namely MRFO in [18], GWO in [58], WOA in [16] and 
PSO in [59]. Considering the fairness of the comparison, the parameter setting refers to 
the literature in the same field: the population size is 50 and the maximum number of 
iterations is 300. 

First, a simple saddle-shaped surface is shown in Equation (19). The curved surface 
is segmented according to the grid method in Section 5.2, and the number of nodes is set 
to 50. Secondly, the complex surface is shown in Equation (20). The sensing radius of the 

Figure 9. The schematic diagram of sensing blind area in the process of deploying nodes.

5.3. Results and Discussion

In order to verify the applicability and reliability of the AMRFOCS algorithm when
deploying 3D wireless sensor networks, two 3D surfaces with different complexities are
deployed. At the same time, they are compared with four 3D deployment methods op-
timized by metaheuristic algorithms, namely MRFO in [18], GWO in [58], WOA in [16]
and PSO in [59]. Considering the fairness of the comparison, the parameter setting refers
to the literature in the same field: the population size is 50 and the maximum number of
iterations is 300.

First, a simple saddle-shaped surface is shown in Equation (19). The curved surface is
segmented according to the grid method in Section 5.2, and the number of nodes is set to
50. Secondly, the complex surface is shown in Equation (20). The sensing radius of the node
is 1 m, and the communication radius is 2 m. Due to the increase in the surface complexity,
the sensor node of the experiment is boosted to 100:

z = 1− x2 − y2 (19)

z = sin(x) sin(y) (20)

Figures 10–14 show the effect of the network coverage optimization of 50 sensor nodes
under a simple surface. Figures 10 and 11 show the effect of the initial random deployment
of nodes and the optimized node deployment effect. The red dot is the position of the sensor.
Initially, the uneven distribution of nodes can be seen from the figure. The optimized node
deployment is more uniform, and the coverage area is larger. Figures 12 and 13 are two-
dimensional displays of the node distribution and coverage area. In the two-dimensional
grid, the black hollow circle means the coverage area of the entire network deployment.
The comparison between the initialization of Figure 12 and the optimized coverage area
of Figure 13 shows that the effect of the optimized node distribution effect is significant,
and the indicators are significantly enhanced. Figure 14 is the minimum spanning tree
generated by the Kruskal algorithm mentioned in the network connectivity. Figure 15 is
the line chart comparing the coverage of the WSN under network connectivity between the
AMRFOCS algorithm and the four comparison algorithms. From the chart, it can be seen
that the average coverage of the AMRFOCS optimization is 86.34%; the average coverage of
MRFO is 72.63%; and the accuracy is improved by 14%, which is nearly 30% higher than the
worst PSO. AMRFOCS has the optimal solution and the highest coverage. The convergence
speed of AMRFOCS is also higher than that of the four comparison algorithms.
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In order to compare the performance of the algorithm in terms of the network connectivity,
Figure 14 and experimental data are combined. With 20 experimental tests and the same
number of nodes, AMRFOCS has a higher connectivity and average coverage rate under
network connectivity than the other deployment algorithms. AMRFOCS maintains the
network connectivity of the WSN under different surfaces and nodes all along the network.

Figures 16–20 describe the effect of the network coverage optimization of 100 sensor
nodes under complex surfaces. Figures 16 and 17 show the effect of the initial random
deployment of the nodes and the deployment effect of the nodes optimized by AMRFOCS,
respectively. Figures 18 and 19 are two-dimensional displays of the node distribution
and coverage area. In the two-dimensional grid, the black circle covers the size of the
network deployment. The obvious comparison shows that the initial node distribution
is uneven, the optimized node deployment is more uniform and the coverage area is
wider. Figure 20 shows the connectivity of the entire network. Figure 21 is the line chart
comparing the coverage of the WSN under network connectivity between the AMRFOCS
algorithm and the four comparison algorithms including the original MRFO algorithm.
The average coverage rate of the AMRFOCS optimization is 85.20%, while MRFO is 81.59%,
the accuracy is improved by 4% and it is 17% higher than the worst-performing PSO.
AMRFOCS maintains the optimal value and the maximum accuracy.
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The similar images in Figures 15 and 21 show the coverage comparison under network
connectivity, while the difference is that the overall performance of connectivity and
coverage in the deployment algorithm experiment decreased. The main reason is that the
complex surface leads to the decrease in the optimization performance of the algorithm and
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quickly falls into the local optimal state. Comprehensive experiments show that AMRFOCS
has good adaptability and it maintains high-quality deployment effects under simple or
complex terrain conditions all along the network.
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6. Conclusions and Future Work

In this paper, an improved Manta Ray Foraging Optimization algorithm (AMRFOCS)
hybridized with a Cuckoo Search algorithm is proposed and applied to deploy sensor
networks on 3D surfaces. The spiral foraging operator is optimized by combining the
random walk of the cuckoo. On this basis, the ability of AMRFOCS to avoid a local optimum
and achieve global optimization is effectively improved. In addition, a dynamic disturbance
factor is introduced, which can change with the operating state. This strategy helps to
coordinate the global search and balance the mining and exploration capabilities of the
algorithm. The proposed algorithm is tested on CEC2017 and CEC2020 benchmark datasets.
It is compared and tested by using different dimensions and other celebrated and newly
developed algorithms. The results manifest that the enhanced algorithm has a superior
convergence rate and solution precision. At the same time, through a nonparametric
statistical analysis and Wilcoxon signed-rank test, AMRFOCS was found to have good
stability and superiority in dealing with a series of experiments.

Simultaneously, AMRFOCS is applied to the network deployment of three-dimensional
surfaces. Firstly, the surface area is determined by integration and mesh segmentation, and then
the judgment method of the perceptual blind area is improved, so as to achieve the expected
experimental results. The experimental results show that AMRFOCS improves the coverage of
wireless sensor networks and ensures network connectivity during deployment.

In the next work, the practicality of AMRFOCS deployment on more complex surfaces
needs to be further improved, and it can be extended to different application fields, such as
image segmentation, feature selection, machine learning, electrical applications and other
engineering fields.
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