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Abstract: In this work, an approach is proposed to solve binary combinatorial problems using
continuous metaheuristics. It focuses on the importance of binarization in the optimization process,
as it can have a significant impact on the performance of the algorithm. Different binarization schemes
are presented and a set of actions, which combine different transfer functions and binarization rules,
under a selector based on reinforcement learning is proposed. The experimental results show that the
binarization rules have a greater impact than transfer functions on the performance of the algorithms
and that some sets of actions are statistically better than others. In particular, it was found that sets
that incorporate the elite or elite roulette binarization rule are the best. Furthermore, exploration
and exploitation were analyzed through percentage graphs and a statistical test was performed to
determine the best set of actions. Overall, this work provides a practical approach for the selection of
binarization schemes in binary combinatorial problems and offers guidance for future research in
this field.

Keywords: binarization scheme selection; grey wolf optimizer; sine cosine algorithm; whale
optimization algorithm; set covering problem; Q-learning; diversity metrics

1. Introduction

In recent years, the optimization of systems has become a fundamental task in various
areas of industry and technology. The search for optimal solutions to complex and mul-
tidimensional problems is a constant challenge in fields such as engineering, economics,
physics, and computer science. In this sense, the application of metaheuristic optimization
algorithms has become a valuable tool for finding efficient and effective solutions to these
problems. Furthermore, the use of continuous metaheuristics to solve binary problems
has become increasingly relevant due to their ability to find optimal solutions in a short
period of time [1]. These techniques are capable of efficiently exploring and exploiting the
search space, making them ideal for optimization problems in fields such as engineering,
data science, and industry. However, it is important to note that the proper selection of
parameters and search strategies is essential for obtaining optimal results.

The proposal of this work is to study different sets of actions (combinations of transfer
functions and binarization rules) in order to evaluate the impact on the resolution of binary
combinatorial problems, where different sets were evaluated in the binarization scheme
selection (BSS) proposed in [2], where Q-learning, a machine learning technique, acts as an
intelligent selector of binarization schemes.

The no free lunch (NFL) theorem [3] states that there is no single algorithm capable
of reaching the optimal solution to all optimization problems. With this, researchers have
the motivation to innovate and/or create new algorithms and validate them on different
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optimization problems with different domains. Tests were carried out with three good
metaheuristics (MHs): grey wolf optimization [4], the whale optimization algorithm [5],
and the sine cosine algorithm (SCA) [6].

The grey wolf optimizer has been used for example in feature selection [7], clustering
applications [8], design and tuning controllers [9], power dispatch problems [10], economic
dispatch problems [11], robotics and path planning [12], scheduling [13], and training
neural networks [14].

The whale optimization algorithm has been used for example in optimal power flow
problems [15], economic dispatch problems [16], electric vehicle charging station locating
problems [17], image segmentation [18], feature selection [19], drug toxicity prediction [20],
and CO2 emissions prediction and forecasting [21].

The sine cosine algorithm has been used for example in trajectory controller prob-
lems [22], feature selection [23], power management [24], network integration [25], engi-
neering problems [26], and image processing [27].

The main contributions of this work are as follows:

• Evaluate different sets of transfer functions and binarization rules.
• Explore the importance of binarization rules compared to transfer functions.
• Compare the results in three different and complex metaheuristics.
• Conduct a comprehensive comparison of the results obtained by solving the set

covering problem.

The structure of the content in the paper is as follows: In Section 2, a review of
the related works on the use of continuous metaheuristics and reinforcement learning
in combinatorial binary problems will be presented. In Section 2.1, we will present how
continuous metaheuristics solve binary combinatorial optimization problems. In Section 2.4,
hybridization between continuous metaheuristics and Q-learning will be presented, where
Q-learning acts as an intelligence selector of binarization schemes. In Section 3, the different
sets of actions (pairs of transfer functions and binarization rules) to be compared will be
presented. In Section 4, the results obtained and the analysis performed will be presented,
ending with the final conclusions in Section 5.

2. Related Work

In this section, we will discuss related work on four topics. The first topic is on
continuous MHs for solving combinatorial problems, discussed in Section 2.1. To perform
work in binary domains, the second topic is two-step techniques, covered in Section 2.2.
Additionally, in Section 2.3, we will explain the MH used in this study. Finally, in Section 2.4,
we describe the binarization schemes selector (BSS) hybridization technique.

2.1. Continuous Metaheuristics to Solve Combinatorial Problems

The binarization techniques used in continuous MHs involve transferring continuous
domain values to binary domains, with the aim of maintaining the quality of moves and
generating high-quality binary solutions. While some MHs operate on binary domains
without a binary scheme, studies have demonstrated that continuous MHs supported by a
binary scheme perform exceptionally well on multiple NP-hard combinatorial problems [1].
Examples of such MHs include the binary bat algorithm [28,29], particle swarm optimiza-
tion [30], binary sine cosine algorithm [2,31–33], binary salp swarm algorithm [34,35],
binary grey wolf optimizer [32,36,37], binary dragonfly algorithm [38,39], the binary whale
optimization algorithm [2,32,40], and the binary magnetic optimization algorithm [41].

In the scientific literature, two main groups of binary schemes used to solve combi-
natorial problems can be identified. The first group refers to operators that do not cause
alterations in the operations related to different elements of the MH. Within this group, two-
step techniques stand out as the most widely used in recent years, as they are considered
to be the most efficient in terms of convergence and their ability to find optimal solutions.
These techniques are based on modifying the solution in the first step and discretizing
it into a 0 or a 1 in the second step [42]. In addition, the angle modulation technique
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is also used in this group as it has been shown to be effective in solving combinatorial
problems [43].

On the other hand, the second group of binary schemes includes methods that alter the
normal operation of an MH. For example, the quantum binary approach, which is based on
the application of quantum mechanisms to solve combinatorial problems [44]. In addition,
also included in this group are set-based approaches, which focus on the selection of
solution sets to improve the efficiency of the MH. Finally, clustering-based techniques, such
as the k-means approach [45,46], are also considered in this second group, as they modify
the normal operation of the MH to improve its ability to find optimal solutions.

2.2. Two-Step Techniques

In the scientific community, two-step binarization schemes are very relevant [1]. They
have been widely used to solve a variety of combinatorial problems [47]. As the name
suggests, this binarization scheme consists of two stages. The first stage involves the
application of a transfer function [30], which transfers the values generated by the con-
tinuous MH to a continuous interval between 0 and 1. The second stage consists of the
application of a binarization rule, which discretizes the numbers within that interval into
binary values. This technique has been shown to be effective in solving combinatorial
problems, since it allows the quality moves of the continuous MH to be preserved, while
generating high-quality binary solutions.

2.2.1. Transfer Function

In 1997, Kennedy et al. [48] introduced transfer functions in the field of optimization.
Their main advantage is that they provide a probability between 0 and 1 with low com-
putational cost. There are several types of transfer functions, including those in the form
of an S [30,49] and a V [50], as well as in the forms of O, Z, X, Q, and U, among others.
These functions are used to transfer values generated by the continuous MH to a continu-
ous interval between 0 and 1, allowing the quality movements of the continuous MH to
be preserved while high-quality binary solutions are generated. The families of transfer
functions we have used in this work can be seen in Tables 1 and 2 and Figures 1 and 2.
The notation dj

w observed in Tables 1 and 2 corresponds to the continuous value of the
j-th dimension of the w-th individual resulting from the perturbation performed by the
continuous metaheuristic.

It is important to note that no transfer function is superior to the others in all cases in
which they have been used, since according to the “no free lunch” theorem there is no uni-
versal optimization algorithm that is better than the others in all situations. Therefore, due to
this theorem we have room for experimentation and analysis of new optimization algorithms.

Table 1. S-shaped and V-shaped transfer functions.

Transfer Functions
S-shaped [30,49] V-shaped [30,49,50]

Name Equation Name Equation

S1 T(dj
w) =

1

1+e−2dj
w

V1 T(dj
w) =

∣∣∣er f
(√

π
2 dj

w

)∣∣∣
S2 T(dj

w) =
1

1+e−dj
w

V2 T(dj
w) =

∣∣∣tanh(dj
w)
∣∣∣

S3 T(dj
w) =

1

1+e
−dj

w
2

V3 T(dj
w) =

∣∣∣∣∣ dj
w√

1+(dj
w)2

∣∣∣∣∣
S4 T(dj

w) =
1

1+e
−dj

w
3

V4 T(dj
w) =

∣∣∣ 2
π arctan

(
π
2 dj

w

)∣∣∣
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Figure 1. S-shaped and V-shaped transfer functions.

Table 2. X-shaped and Z-shaped transfer functions.

Transfer Functions
X-shaped [51,52] Z-shaped [53,54]

Name Equation Name Equation

X1 T(dj
w) =

1

1+e2dj
w

Z1 T(dj
w) =

√
1− 2dj

w

X2 T(dj
w) =

1

1+edj
w

Z2 T(dj
w) =

√
1− 5dj

w

X3 T(dj
w) =

1

1+e
dj

w
2

Z3 T(dj
w) =

√
1− 8dj

w

X4 T(dj
w) =

1

1+e
dj

w
3

Z4 T(dj
w) =

√
1− 20dj

w
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Figure 2. X-shaped and Z-shaped transfer functions.

On the other hand, different researchers [38,55–57] incorporated a parameter to these
transfer functions, thus developing time-varying transfer functions. This parameter varies
iteration by iteration, thus generating a new transfer function. For example, in [38], the pa-
rameter the authors incorporate is defined as follows:

τ =

(
1− t

T

)
· τmax +

t
T
· τmin (1)

This parameter τ is added to the transfer functions of the S-shaped and V-shaped
family. Table 3 shows the new time-varying transfer functions equation proposed by the



Biomimetics 2023, 8, 400 5 of 47

authors and Figure 3 shows the results of running 100 iterations of each time-varying
transfer function.

Table 3. X-shaped and Z-shaped transfer functions.

Time-Varying Transfer Functions [38]
S-shaped V-shaped

Name Equation Name Equation

TVS1 T(dj
w, τ) = 1

1+e
−2dj

w
τ

TVV1 T(dj
w, τ) =


1− 2

1+e
−2dj

w
τ

dj
w ≤ 0

2

1+e
−2dj

w
τ

− 1 dj
w > 0

TVS2 T(dj
w, τ) = 1

1+e
−dj

w
τ

TVV2 T(dj
w, τ) =


1− 2

1+e
−dj

w
τ

dj
w ≤ 0

2

1+e
−dj

w
τ

− 1 dj
w > 0

TVS3 T(dj
w, τ) = 1

1+e
−dj

w
2τ

TVV3 T(dj
w, τ) =


1− 2

1+e
−dj

w
2τ

dj
w ≤ 0

2

1+e
−dj

w
2τ

− 1 dj
w > 0

TVS4 T(dj
w, τ) = 1

1+e
−dj

w
3τ

TVV4 T(dj
w, τ) =


1− 2

1+e
−dj

w
3τ

dj
w ≤ 0

2

1+e
−dj

w
3τ

− 1 dj
w > 0
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Figure 3. Time-varying S-shaped and V-shaped transfer functions when τmax = 4 and τmin = 0.01
during 100 iterations with time step 2 [38].

2.2.2. Binarization Rule

The process of binarization involves converting continuous values into binary values,
that is, values of 0 or 1. In this context, binarization rules are applied to the probability
obtained from the transfer function to obtain a binary value. There are various different
techniques described in the scientific literature [58] that can be utilized for this binarization
process. Some of these techniques are illustrated in Table 4, and can vary depending
on the context and specific project needs. It is crucial to consider appropriate use of the
binarization technique to obtain accurate and reliable results.
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Table 4. Binarization rules.

Type Binarization Rules

Standard X j
new =

{
1 i f rand ≤ T(dj

w)

0 else.

Complement X j
new =

{
Complement(X j

w) i f rand ≤ T(dj
w)

0 else.

Static Probability X j
new =


0 i f T(dj

w) ≤ α

X j
w i f α < T(dj

w) ≤ 1
2 (1 + α)

1 i f T(dj
w) ≥ 1

2 (1 + α)

Elitist X j
new =

{
X j

Best i f rand < T(dj
w)

0 else.

Roulette Elitist X j
new =

P[X j
new = ζ j] =

f (ζ)
∑δ∈Qg f (δ) if rand ≤ T(dj

w)

P[X j
new = 0] = 1 else.

The notation X j
w observed in Table 4 corresponds to the j-th dimension binary value of

the w-th current individual and X j
Best corresponds to the j-th dimension binary value of the

best solution.

2.3. Metaheuristics

Metaheuristics are general-purpose algorithms that provide good solutions in a rea-
sonable time. The search process consists of balancing the diversification and intensification
phases by means of operators specific to each algorithm [59]. Exploration aims to find
tentative regions with good solutions and exploitation intensifies the search for the best
regions to try to find better solutions.

Human behavior, genetic evolution, social behavior of animals, and physical phe-
nomena are some of the main sources of inspiration for the authors, and every year new
metaheuristics are developed based on the no free lunch theorem [3]. This theorem tells us
that there is no supreme algorithm that solves all optimization problems.

In general, metaheuristics are designed and used to solve continuous optimization
problems. In the following sections, we will present a brief summary of the three meta-
heuristics that have been used in this study with the aim of providing a background as to
how the metaheuristic works; for more information see the seminal manuscripts.

2.3.1. Sine Cosine Algorithm

The sine cosine algorithm (SCA) was proposed by Mirjalili [6]. This metaheuristic
has two main equations combined into one (Equation (2)) and four main parameters for
the position update of the solutions (r1, r2, r3, and r4). The combined equations used are
as follows:

Xt+1
i =

{
Xt

i + r1 · sin(r2) · |r3 · Xt
Best − Xt

i | if r4 < 0.5

Xt
i + r1 · cos(r2) · |r3 · Xt

Best − Xt
i | if r4 ≥ 0.5

, (2)

where Xt
i is the position of the current solution in the i-th dimension at the t-th iteration,

Xt
Best shows the best individual’s position at the t-th iteration, and r1, r2, r3, and r4 are

random parameters. SCA uses the latter parameters to avoid entrapment in suboptimal
solutions and to balance the exploration and exploitation processes.

• r1 is a linearly decreasing parameter and is calculated as follows: r1 = a − t a
Tmax

,
where a is a constant, t is the current iteration, and Tmax represents the maximum
iterations allowed.
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This parameter conditions the movement of the solution either towards the best
solution (r1 < 1) or away from the best solution (r1 > 1). The above equation allows
for the balance between exploration and exploitation.

• r2 has values in the range [0, 2π] and determines how big the movement of a solution
is towards or away from the destination.

• r3 has values in the range [0, 2] and is used to assign a weight to the destination,
reinforcing or inhibiting the impact of the destination point on the updating process
of the other solutions.

• r4, with values in the range [0, 1], is a switch between the sine and cosine functions.

2.3.2. Grey Wolf Optimizer

The grey wolf optimizer (GWO) was proposed by Mirjalili [4], this metaheuristic is
inspired by both the hunting behavior and social hierarchy of the grey wolf. Within the
pack there are four types of social hierarchy:

• Alpha (α): these are wolves that are at the top of the hierarchy and lead the pack.
• Beta (β): wolves that support the alpha wolves’ decisions.
• Delta (δ): they are strong but lack leadership skills.
• Omega: they have no power, they are dedicated to follow, help, and protect the

younger members of the pack.

Applying the previously described hierarchy, at each step we will denote the best three
solutions as alpha, beta, and delta, and the other solutions as omega. Basically, this means
that the optimization process follows the flow of the position of the three best wolves in the
hierarchy. In addition, the prey will be the optimal solution of the solution.

Most of the logic follows the equations:

−→
X (t + 1) =

−→
Xp(t)−

−→
A · −→D (3)

−→
D =| −→C · −→Xp(t)−

−→
X (t) | (4)

where t denotes the current iteration,
−→
A and

−→
C are coefficient vectors,

−→
Xp is the position

vector of the prey, and
−→
X is the position of the wolf. Finally, the symbol “·” represents a

multiplication operator. Vectors
−→
A and

−→
C are equal to:

−→
A = 2a · −→r1 −−→a (5)
−→
C = 2−→r2 (6)

where components of −→a are linearly decreased from 2 to 0 through iterations and −→r1 , −→r2
are random vectors with values from [0, 1], calculated for each wolf at each iteration. Vector
−→
A controls the trade-off between exploration and exploitation, while

−→
C always adds some

degree of randomness. This is necessary because our agents can become stuck in local
optima and most of the metaheuristics have a way of avoiding this.

Since we do not know the real position of the optimal solution,
−→
Xp depends on the

three best solutions and the formulas for updating each of the agents (wolves) are:

−→
Dα =| −→C1 ·

−→
X α −

−→
X | (7)

−→
Dβ =| −→C2 ·

−→
X β −

−→
X | (8)

−→
Dδ =|

−→
C3 ·
−→
X δ −

−→
X | (9)

−→
X 1 =

−→
X α −

−→
A 1 ·
−→
Dα (10)

−→
X 2 =

−→
X β −

−→
A 2 ·
−→
Dβ (11)

−→
X 3 =

−→
X δ −

−→
A 3 ·
−→
Dδ (12)



Biomimetics 2023, 8, 400 8 of 47

−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(13)

where
−→
X is the current position of the agent and

−→
X (t + 1) is the updated one. The formula

above indicates that the position of the wolf will be updated according to the best three
wolves from the previous iteration. Notice that it will not be exactly equal to the average of
the three best wolves because of the vector

−→
C which adds a small random shift. This makes

sense because, from one side, we want our agents to be guided by the best individuals, but
from the other side, we do not want to become stuck in local optima.

2.3.3. Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a metaheuristic that was proposed by
Mirjalili and Lewis [5]. Like the GWO, the whale metaheuristic is inspired by a hierarchy
and a particular way of hunting called bubble-net hunting. The metaheuristic has three
main phases:

(1) Exploration phase: search for the prey.
(2) Encircling the prey.
(3) Exploitation phase: attacking the prey using a bubble-net method.

Based on the three main phases mentioned above, at each step of the exploration to
search for the best solution (prey), the search agent (whale) is updated based on a random
agent and not on the best. The mathematical model behind this logic is the following:

−→
X (t + 1) =

−→
X Rand −

−→
A · −→D (14)

−→
D =| −→C · −→X Rand −

−→
X | (15)

where
−→
A and

−→
C are coefficient vectors, and

−→
X Rand is a random position vector selected

from the current population. Vectors
−→
A and

−→
C are equal to:

−→
A = 2−→a · −→r −−→a (16)
−→
C = 2−→r (17)

where −→r is a random vector in the range [0, 1] and −→a decreases linearly from 2 to 0 during
the iterations. In addition, if | A |> 1, then the search agent is forced to move away from a
reference whale.

Humpback whales encircle the prey during hunting. Then, they consider the current
best candidate solution as the best solution and near the optimal one. In short, here is the
model of encircling behavior that is used to update the position of the other whales towards
the best search agent:

−→
X (t + 1) =

−→
X′(t)−−→A · −→D (18)

−→
D =| −→C ·

−→
X′(t)−−→X (t) | (19)

where t is the current iteration,
−→
X ′ is the position of the best solution,

−→
X refers to the

position vector of a solution, and finally,
−→
A and

−→
C are coefficient vectors, as shown in

Equations (16) and (17).
The exploitation phase combines two approaches, shrinking the encircling mechanism

and a spiral update of the position mechanism. In the shrinking encircling mechanism,
the value of A is random within the interval [−a, a], and the value decreases from 2 to 0
as previously stated in Equation (16). In the spiral position update mechanism, we start
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by calculating the distance between the search agent (whale) and the best solution (prey),
the mathematical model that simulates this movement is as follows:

−→
X (t + 1) =

−→
D′ · ebl · cos (2πl) +

−→
X ′ (20)

−→
D′ = |−→X ′ −−→X t| (21)

where
−→
D′ represents the distance between the whale and the prey (best solution obtained so

far), l is a random number between [−1, 1] with a uniform distribution, and b is a constant
defining the shape of the logarithmic spiral. Finally, the mathematical model that combines
the two mechanisms is as follows:

−→
X (t + 1) =

{−→
X′(t)−−→A · −→D If p < 0.5
−→
D′ · ebl · cos (2πl) +

−→
X′ If p ≥ 0.5

(22)

where p is a random number in the range [0, 1] and represents the probability of selecting
one of these two methods to update the position of the whales.

2.4. Hybridization: Binarization Schemes Selector

In the literature, there are several related works on binarization [30,42] that have
laid the groundwork for investigations into this domain problem, as there are several
practical applications where working in binary domains is necessary. Moreover, research
has emerged on how the change of binarization schemes affects each iteration of the
search process, such as time-varying binarization schemes [38] or binarization scheme
selectors [2,32,60], where the influence of binarization schemes and their impact at both the
problem level and each iteration of the search has been demonstrated.

In Section 2.1, we can see how to adapt a continuous MH so that it can solve binary
combinatorial problems. The two-step technique provides us with different possible
combinations for binarizing continuous solutions. Although it is desirable to have a wide
variety of combinations, each one must be tested individually to determine which is the
best for a given problem.

In the literature, various related works have proposed the hybridization of the sine cosine
algorithm, grey wolf optimizer, whale optimization algorithm, and Q-learning [2,31,36,40].
Q-learning was used as a dynamic binarization scheme selector in each of the metaheuristics,
allowing them to solve binary combinatorial problems. This solution delegates the selection
of a good binarization scheme to an artificial intelligence, eliminating any human bias.

The BSS provides a way to dynamically choose the binarization scheme, in this case
the combination of transfer functions and binarization rules, within a set of them, using
the scheme proposed in [2], where an intelligent operator chooses between a set of actions
(possible binarization schemes) by observing the environment (exploration or exploitation).

2.4.1. Actions

The decision of which action to take is a complex task that requires careful evaluation
of multiple options in different situations. In this context, Q-learning is utilized, which
is a reinforcement learning technique that seeks to determine the best action to take in a
specific state. In this work, as in previous studies, we define the considered actions as the
existing combinations between the transfer functions (Tables 1 and 2) and the binarization
rules (Table 4). As an example, Figure 4 shows how the possible 40 actions that Q-learning
would choose if it were working only with S- and V-type transfer functions and the five
defined binarization rules, would be formed.
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Standard

Complement

Static Probability

Elitist

Elitist Roulette

S-Shaped 

(4 transfer functions)

V-Shaped 

(4 transfer functions)

Transfer Functions

Binarization Rules

40 actions

Total combinations

Figure 4. Building actions on the basis of binarization schemes.

2.4.2. States

As can be seen in Section 2.3, metaheuristics perform the search process alternating
between intensification (exploration) and diversification (exploitation). Previous propos-
als [2,31,40,60,61] used these phases as the states to use in Q-learning. In these papers,
the authors determined the stage of the search process by calculating the population diver-
sity. In particular, they used the diversity proposed by Hussain Kashif et al. [62], which is
defined as follows:

Div =
1

l · n
l

∑
d=1

n

∑
i=1
|x̄d − xd

i |, (23)

where Div represents the diversity status determination, x̄d denotes the mean values of the
individuals in dimension d, xd

i denotes the value of the i-th individual in dimension d, n
denotes the population size, and l denotes the size of the individuals dimension.

If we consider the exploration and exploitation percentages to be XPL% (exploration)
and XPT% (exploitation), the percentages XPL% and XPT% are computed from the study
of Morales-Castañeda et al. [63] as follows:

XPL% =
Div

Divmax
· 100, (24)

XPT% =
|Div− Divmax|

Divmax
· 100. (25)

where Div represents the diversity state determined by Equation (23) and Divmax denotes
the maximum value of the diversity state discovered throughout the optimization process.

3. The Proposal: Analysis of Different Sets of Actions

Analyzing all the work presented so far and considering what is stated in Section 2.2,
we ask ourselves the following questions:

(1) Which will have more impact on binarization, the transfer function or the binariza-
tion rule?

(2) Will the binarization schemes selector work better with more actions?

To answer these two questions, we apply the scheme proposed in Figure 5. For our
analysis we used three continuous metaheuristics, which are SCA, GWO, and WOA. These
three metaheuristics solved the set covering problem, a classical combinatorial optimization
problem that will be defined in Section 4.1. Since it is a combinatorial problem and the
chosen metaheuristics solve continuous problems, it is necessary to binarize the solutions.
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As noted in Section 2.2, we have different ways of binarizing. On the other hand,
Section 2.4 explains hybridizations where machine learning techniques are used to select
binarization scheme dynamically.

We use the hybridization proposed in Section 2.4 as it allows us to evaluate how well
a machine learning technique performs against different sets of actions.

Initialization of population

Pertubation of solutions

Binarize the population using
the action selected

by Q-Learning

Update Best Solution

end?

Return Best Solution

Initialization Q-Table

Select action from  Q-Table

Get immediate reward for
action

Update Q-Table

SCA
TFBR-1

TFBR-2

TFBR-3

TFBR-4

TFBR-5

TFBR-6

TFBR-7

TFBR-8

TFBR-9

TFBR-10

TFBR-11

TFBR-12

GWO WOA

Metaheuristic Modules Q-Learning Modules

Figure 5. Proposal.

In other words, we analyzed different combinations between four families of transfer
functions (S-shaped, V-shaped, X-shaped, and Z-shaped) and the five binarization rules
were carried out. Fourteen different action sets will be analyzed. First, a total of five sets
with eight actions will be formed, where the S-shaped and V-shaped families will be used
as transfer functions and the binarization function will be fixed in each set. Secondly,
another five sets with 18 actions will be formed, where the S-shaped, V-shaped, X-shaped,
and Z-shaped families will be used as transfer functions and the binarization function will
be fixed in each set. Thirdly, a set with 40 actions will be formed, replicating the same work
presented by the authors in [2,31,36,40]. Finally, a set with 80 actions will be formed, where
the S-shaped, V-shaped, X-shaped, and Z-shaped families will be used as transfer functions
and all the binarization functions will be used.

We present Table 5, which shows a set of actions analyzed in our study. The table
includes 12 sets of actions, labeled as TFBR-1 to TFBR-12, and provides information on
their transfer functions and binarization rules. The transfer functions considered are S-
shaped, V-shaped, X-shaped, and Z-shaped, while the binarization rules used are standard,
complement, static probability, elitist, and roulette elitist. The last column of the table
reports the amount of actions associated with each set. The sets differ in terms of the
combination of transfer functions and binarization rules used, and the number of actions
considered. Table 5 serves as a reference for the subsequent experiments, in which we
evaluate the performance of different algorithms on each set of actions.
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Table 5. Set of actions analyzed.

Set of Actions

Set ID Transfer Functions Binarization Rules Amount
of actions

TFBR-1 S-shaped and V-shaped
Standard, Complement, Static Probability,

Elitist, and Roulette Elitist
40

TFBR-2 S-shaped and V-shaped Standard 8
TFBR-3 S-shaped and V-shaped Complement 8
TFBR-4 S-shaped and V-shaped Static Probability 8
TFBR-5 S-shaped and V-shaped Elitist 8
TFBR-6 S-shaped and V-shaped Roulette Elitist 8

TFBR-7 S-shaped, V-shaped, X-shaped and Z-shaped
Standard, Complement, Static Probability,

Elitist, and Roulette Elitist
80

TFBR-8 S-shaped, V-shaped, X-shaped, and Z-shaped Standard 16
TFBR-9 S-shaped, V-shaped, X-shaped, and Z-shaped Complement 16

TFBR-10 S-shaped, V-shaped, X-shaped, and Z-shaped Static Probability 16
TFBR-11 S-shaped, V-shaped, X-shaped, and Z-shaped Elitist 16
TFBR-12 S-shaped, V-shaped, X-shaped, and Z-shaped Roulette Elitist 16

The experimental results are presented in Section 4. In particular, in Section 4.2,
the results obtained in each algorithm executed will be observed. Section 4.3 will analyze
the convergence of each algorithm executed. In Section 4.4, we will analyze the exploration
and exploitation behavior of each algorithm executed thanks to Equations (24) and (25).
Finally, in Section 4.5, we will analyze the statistical test performed where all the executed
versions are compared.

4. Experimental Results

To evaluate the performance of the proposed algorithms, the test cases of the set
covering problem proposed in Beasley’s OR-Library [64] were used. In particular, 45 in-
stances of this problem were solved. The algorithms were developed using the Python
3.7 programming language and executed using the free Google Colaboratory services [65].
The results obtained were stored and processed through databases provided by Google
Cloud Platform.

Following recommendations from the literature [58], 40,000 calls were made to the
objective function in each run. To achieve this, a population of 40 individuals and 1000 it-
erations were used across all GWO, SCA, and WOA runs. Thirty-one independent runs
were performed for each instance. As for the parameters used for GWO, SCA, WOA, and
Q-learning, they are detailed in Table 6.

Table 6. Parameter settings.

Parameter Value

Independent runs 31
Number of populations 40

Number of iterations 1000
Parameter a of SCA 2

Parameter a of GWO Decreases linearly from 2 to 0
Parameter a of WOA Decreases linearly from 2 to 0
Parameter b of WOA 1

Parameter α of Q-learning 0.1
Parameter γ of Q-learning 0.4
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4.1. Set Covering Problem

The set covering problem (SCP) is a classic NP-hard combinatorial optimization
problem [66] and consists of finding the set of elements with the lowest cost that meets a
certain amount of needs. The objective function of the problem is as follows:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
am1 am2 . . . amn

 (26)

Minimize Z =
n

∑
j=1

cjxj (27)

Subject to the following restrictions:

n

∑
j=1

aijxj ≥ 1 ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

(28)

where A is a binary matrix of size m rows and n columns and aij ∈ {0, 1} is the value
of each cell in the matrix A. i and j are the sizes of the m rows and n columns. In the
event that column j satisfies a row i, then aij is equal to 1, otherwise it is 0. In addition,
it has an associated cost c ∈ C, where C = {c1, c2, . . . , cn}, together with i = {1, 2, . . . , m}
and j = {1, 2, . . . , n}, which are the sets of rows and columns, respectively. Finally, x
corresponds to the area to be covered.

The mathematical model of the set covering problem is explained in more detail
in [67]. This problem formulation has inspired the modeling of different real-world prob-
lems such as airline and bus crew scheduling [68], the location of gas detectors for industrial
plants [69], plant location selection [70], the location of emergency services [71], dynamic ve-
hicle routing problems [72], the location of electric vehicle charging points in California [73],
disaster management systems [74], emergency humanitarian logistics [75], the optimal
UAV locations for the purpose of generating wireless communication networks in disaster
areas [76], among others.

These studies allow us to appreciate the importance of solving this problem with
optimization techniques that guarantee good results.

4.2. Summary of Results

This section will present an analysis of the results obtained using the three metaheuris-
tics. Tables 7–9 display the relative percentage deviation (RPD) between the optimum and
the best result obtained for 45 instances of the set covering problem using GWO, SCA,
and WOA, respectively, with 12 different action sets. The RPD is defined in Equation (29),
and the values of the RPD are grouped into four ranges. The first range corresponds to a
deviation of 0%, the second range to a deviation of more than 0% up to 3%, the third range
to a deviation of more than 3% up to 5%, and the last range corresponds to a deviation
greater than 5%. The 12 different combinations are called TFBR-1 to TFBR-12, and the val-
ues shown in the table are the number of instances for each MH and evaluated combination
that are within the RPD range indicated in each row.
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Table 7. RPD obtained for 12 sets using GWO.

RPD TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6 TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

0 0 0 0 0 12 8 0 0 0 1 8 8

]0, 3] 20 1 1 13 30 32 13 1 7 25 33 33

]3, 5] 11 3 6 10 3 5 17 2 11 8 4 4

>5 14 41 38 22 0 0 15 42 27 11 0 0

Table 8. RPD obtained for the 12 sets using SCA.

RPD TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6 TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

0 0 0 0 0 6 7 1 0 0 0 6 6

]0, 3] 13 0 9 0 33 33 14 0 14 0 31 33

]3, 5] 16 0 1 0 5 4 21 0 10 0 7 5

>5 16 45 44 45 1 1 9 45 21 45 1 1

Table 9. RPD obtained for 12 sets using WOA.

RPD TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6 TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

0 1 0 0 0 8 10 0 0 1 0 6 7

]0, 3] 18 4 0 1 32 29 22 0 21 0 31 27

]3, 5] 18 1 1 3 5 6 15 0 15 0 7 11

>5 8 40 44 41 0 0 8 45 8 45 1 0

The table presents thirteen columns, the first column indicates the four different RPD
ranges and from column two to column thirteen indicates for each algorithm executed the
number of instances whose RPD obtained is within the range.

RPD =
100 · (Best−Opt)

Opt
. (29)

Tables 10 and 11 show the results obtained with the twelve sets applied to the grey
wolf optimizer (GWO). Tables 12 and 13 show the results obtained with the twelve sets
applied to the sine cosine algorithm (SCA). Tables 14 and 15 show the results obtained with
the twelve sets applied to the whale optimization algorithm (WOA).

For all tables, the first column indicates the name the OR-Library instances solved
(Inst.), the second column the optimal value known for each of these instances (Opt.),
the following three columns are repeated for each executed set. The first one indicates the
best result obtained for the 31 independent runs, the second one indicates the average of
the 31 results obtained, and the third one indicates the RPD.
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Table 10. Results obtained with GWO and the TFBR-1, TFBR-2, TFBR-3, TFBR-4, TFBR-5, and TFBR-6 sets.

SCP TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 431.0 436.81 0.47 439.0 472.35 2.33 435.0 448.48 1.4 432.0 445.48 0.7 430.0 433.23 0.23 430.0 434.29 0.23

42 512 532.0 543.48 3.91 562.0 611.42 9.77 551.0 578.97 7.62 543.0 558.97 6.05 521.0 530.32 1.76 518.0 529.39 1.17

43 516 535.0 542.71 3.68 567.0 626.97 9.88 543.0 577.71 5.23 532.0 551.94 3.1 517.0 525.68 0.19 522.0 526.1 1.16

44 494 508.0 521.29 2.83 520.0 581.87 5.26 523.0 539.68 5.87 506.0 530.13 2.43 496.0 507.39 0.4 502.0 509.29 1.62

45 512 532.0 545.23 3.91 547.0 602.03 6.84 552.0 581.77 7.81 529.0 552.0 3.32 520.0 526.42 1.56 521.0 527.29 1.76

46 560 576.0 582.39 2.86 592.0 670.77 5.71 582.0 617.52 3.93 574.0 591.94 2.5 566.0 570.26 1.07 563.0 570.29 0.54

47 430 437.0 444.19 1.63 454.0 492.52 5.58 449.0 468.06 4.42 441.0 451.81 2.56 434.0 436.87 0.93 433.0 436.9 0.7

48 492 502.0 508.45 2.03 510.0 598.45 3.66 522.0 547.52 6.1 506.0 524.29 2.85 494.0 500.45 0.41 493.0 500.29 0.2

49 641 670.0 688.58 4.52 684.0 763.71 6.71 679.0 727.52 5.93 685.0 705.81 6.86 652.0 669.13 1.72 661.0 671.68 3.12

410 514 524.0 529.71 1.95 552.0 601.65 7.39 541.0 557.55 5.25 522.0 545.68 1.56 518.0 522.48 0.78 519.0 523.13 0.97

51 253 261.0 266.87 3.16 277.0 305.16 9.49 264.0 283.9 4.35 263.0 272.87 3.95 257.0 261.19 1.58 255.0 262.55 0.79

52 302 324.0 331.48 7.28 349.0 381.45 15.56 332.0 353.74 9.93 333.0 341.32 10.26 315.0 322.9 4.3 316.0 322.45 4.64

53 226 231.0 234.06 2.21 245.0 270.29 8.41 236.0 247.52 4.42 233.0 239.81 3.1 228.0 230.23 0.88 229.0 230.94 1.33

54 242 249.0 252.52 2.89 254.0 283.29 4.96 255.0 265.77 5.37 252.0 260.06 4.13 244.0 248.0 0.83 245.0 248.29 1.24

55 211 215.0 218.26 1.9 221.0 245.84 4.74 220.0 228.55 4.27 216.0 224.74 2.37 212.0 214.55 0.47 212.0 215.48 0.47

56 213 218.0 227.45 2.35 240.0 267.87 12.68 221.0 243.68 3.76 224.0 233.71 5.16 214.0 219.06 0.47 215.0 220.52 0.94

57 293 307.0 312.03 4.78 320.0 354.61 9.22 317.0 333.13 8.19 308.0 318.97 5.12 298.0 303.03 1.71 297.0 303.0 1.37

58 288 294.0 298.42 2.08 314.0 338.06 9.03 303.0 319.06 5.21 295.0 308.77 2.43 290.0 293.9 0.69 291.0 294.52 1.04

59 279 285.0 289.68 2.15 301.0 330.13 7.89 293.0 307.87 5.02 287.0 297.84 2.87 281.0 284.55 0.72 280.0 284.03 0.36

510 265 274.0 278.42 3.4 292.0 318.77 10.19 284.0 296.42 7.17 274.0 283.87 3.4 268.0 272.06 1.13 266.0 271.16 0.38
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Table 10. Cont.

SCP TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

61 138 144.0 146.58 4.35 155.0 219.35 12.32 150.0 169.94 8.7 146.0 150.87 5.8 141.0 143.23 2.17 140.0 143.06 1.45

62 146 153.0 156.39 4.79 171.0 264.4 17.12 166.0 199.29 13.7 151.0 160.61 3.42 148.0 150.0 1.37 146.0 150.58 0.0

63 145 147.0 150.32 1.38 189.0 250.65 30.34 152.0 184.58 4.83 149.0 155.74 2.76 145.0 148.06 0.0 147.0 148.42 1.38

64 131 133.0 135.0 1.53 147.0 199.0 12.21 138.0 151.16 5.34 134.0 138.45 2.29 131.0 132.77 0.0 131.0 132.9 0.0

65 161 173.0 178.61 7.45 188.0 271.29 16.77 188.0 215.16 16.77 173.0 180.42 7.45 161.0 168.35 0.0 162.0 169.0 0.62

a1 253 262.0 268.1 3.56 309.0 362.26 22.13 286.0 314.61 13.04 270.0 278.74 6.72 258.0 262.32 1.98 259.0 262.52 2.37

a2 252 266.0 271.81 5.56 316.0 364.42 25.4 285.0 314.1 13.1 271.0 280.77 7.54 258.0 263.61 2.38 259.0 265.29 2.78

a3 232 245.0 248.03 5.6 280.0 326.13 20.69 264.0 286.65 13.79 248.0 255.06 6.9 239.0 242.81 3.02 240.0 243.68 3.45

a4 234 247.0 251.26 5.56 273.0 332.42 16.67 269.0 295.65 14.96 247.0 262.19 5.56 236.0 242.52 0.85 236.0 242.87 0.85

a5 236 245.0 249.77 3.81 265.0 330.97 12.29 265.0 294.39 12.29 247.0 259.87 4.66 239.0 243.42 1.27 240.0 243.61 1.69

b1 69 71.0 72.58 2.9 137.0 211.19 98.55 106.0 132.29 53.62 71.0 76.94 2.9 69.0 70.29 0.0 69.0 70.06 0.0

b2 76 78.0 80.97 2.63 146.0 196.16 92.11 112.0 142.26 47.37 81.0 86.55 6.58 76.0 77.32 0.0 76.0 77.48 0.0

b3 80 82.0 84.13 2.5 161.0 240.94 101.25 129.0 166.84 61.25 84.0 90.13 5.0 80.0 81.06 0.0 81.0 81.45 1.25

b4 79 83.0 85.29 5.06 158.0 214.74 100.0 114.0 153.9 44.3 84.0 89.58 6.33 79.0 81.26 0.0 80.0 81.61 1.27

b5 72 73.0 75.0 1.39 140.0 193.06 94.44 101.0 137.39 40.28 73.0 82.68 1.39 72.0 72.87 0.0 72.0 72.81 0.0

c1 227 245.0 250.68 7.93 289.0 371.32 27.31 279.0 316.45 22.91 248.0 260.52 9.25 231.0 238.45 1.76 233.0 239.1 2.64

c2 219 232.0 241.48 5.94 295.0 364.77 34.7 268.0 305.77 22.37 239.0 252.68 9.13 226.0 230.23 3.2 227.0 231.32 3.65

c3 243 256.0 263.97 5.35 348.0 415.35 43.21 293.0 343.03 20.58 267.0 280.74 9.88 248.0 252.65 2.06 248.0 253.65 2.06

c4 219 232.0 237.06 5.94 314.0 359.52 43.38 270.0 303.9 23.29 233.0 247.97 6.39 225.0 230.9 2.74 226.0 230.52 3.2

c5 215 229.0 233.35 6.51 293.0 358.71 36.28 270.0 303.42 25.58 228.0 243.84 6.05 220.0 224.16 2.33 220.0 224.16 2.33
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Table 10. Cont.

SCP TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

d1 60 65.0 66.94 8.33 171.0 250.42 185.0 130.0 174.23 116.67 66.0 72.77 10.0 60.0 61.61 0.0 61.0 62.03 1.67

d2 66 67.0 70.9 1.52 222.0 305.71 236.36 136.0 176.35 106.06 70.0 81.03 6.06 66.0 67.45 0.0 66.0 67.87 0.0

d3 72 77.0 79.97 6.94 230.0 314.58 219.44 159.0 209.1 120.83 82.0 90.35 13.89 73.0 74.71 1.39 73.0 75.23 1.39

d4 62 63.0 65.35 1.61 155.0 254.77 150.0 125.0 163.23 101.61 65.0 75.32 4.84 62.0 62.9 0.0 62.0 62.97 0.0

d5 61 65.0 66.74 6.56 159.0 250.29 160.66 139.0 170.06 127.87 66.0 75.13 8.2 61.0 62.35 0.0 61.0 62.68 0.0

263.07 268.5 3.88 305.58 363.1 43.64 286.58 314.4 25.83 265.51 277.09 5.19 256.87 261.27 1.07 257.4 261.7 1.29

Table 11. Continued results obtained with GWO and the TFBR-7, TFBR-8, TFBR-9, TFBR-10, TFBR-11, and TFBR-12 sets.

SCP TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 433.0 437.87 0.93 438.0 460.39 2.1 432.0 442.55 0.7 430.0 436.06 0.23 431.0 433.39 0.47 430.0 433.52 0.23

42 512 530.0 545.26 3.52 544.0 590.26 6.25 538.0 557.19 5.08 521.0 546.65 1.76 518.0 530.77 1.17 524.0 533.03 2.34

43 516 533.0 544.26 3.29 554.0 598.42 7.36 537.0 558.68 4.07 530.0 541.0 2.71 519.0 527.03 0.58 523.0 528.39 1.36

44 494 517.0 523.1 4.66 528.0 558.65 6.88 513.0 532.97 3.85 506.0 523.97 2.43 499.0 509.29 1.01 501.0 509.16 1.42

45 512 529.0 544.03 3.32 552.0 602.97 7.81 532.0 560.1 3.91 527.0 541.74 2.93 520.0 526.0 1.56 516.0 527.65 0.78

46 560 572.0 583.35 2.14 592.0 634.32 5.71 572.0 599.16 2.14 568.0 582.0 1.43 562.0 568.06 0.36 565.0 569.74 0.89

47 430 438.0 444.45 1.86 453.0 481.87 5.35 440.0 451.87 2.33 435.0 445.48 1.16 433.0 436.48 0.7 435.0 437.58 1.16

48 492 502.0 511.1 2.03 508.0 576.35 3.25 506.0 525.71 2.85 500.0 508.74 1.63 497.0 499.35 1.02 496.0 499.87 0.81

49 641 671.0 688.52 4.68 693.0 750.13 8.11 680.0 705.52 6.08 673.0 688.71 4.99 658.0 670.1 2.65 661.0 672.48 3.12

410 514 526.0 530.97 2.33 542.0 576.9 5.45 526.0 540.58 2.33 522.0 532.84 1.56 517.0 520.84 0.58 518.0 522.1 0.78
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Table 11. Cont.

SCP TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

51 253 256.0 268.42 1.19 265.0 291.84 4.74 262.0 273.81 3.56 260.0 268.42 2.77 256.0 262.94 1.19 256.0 262.06 1.19

52 302 327.0 332.81 8.28 341.0 366.0 12.91 337.0 343.97 11.59 324.0 333.32 7.28 315.0 322.58 4.3 316.0 324.13 4.64

53 226 231.0 234.52 2.21 243.0 262.03 7.52 235.0 241.45 3.98 230.0 235.74 1.77 228.0 229.87 0.88 228.0 230.48 0.88

54 242 249.0 253.1 2.89 256.0 277.94 5.79 249.0 256.87 2.89 249.0 252.77 2.89 246.0 248.48 1.65 245.0 247.71 1.24

55 211 216.0 218.48 2.37 222.0 237.58 5.21 216.0 222.06 2.37 214.0 218.0 1.42 211.0 214.06 0.0 212.0 214.97 0.47

56 213 221.0 228.71 3.76 226.0 255.19 6.1 226.0 235.13 6.1 222.0 228.23 4.23 216.0 220.19 1.41 215.0 219.71 0.94

57 293 309.0 313.19 5.46 310.0 339.29 5.8 307.0 320.06 4.78 300.0 311.35 2.39 296.0 302.97 1.02 297.0 303.42 1.37

58 288 297.0 299.52 3.12 304.0 329.84 5.56 298.0 309.97 3.47 292.0 299.58 1.39 290.0 293.06 0.69 290.0 292.87 0.69

59 279 285.0 290.35 2.15 293.0 320.65 5.02 283.0 297.9 1.43 284.0 291.1 1.79 281.0 283.35 0.72 280.0 282.94 0.36

510 265 272.0 278.87 2.64 284.0 305.06 7.17 275.0 286.77 3.77 271.0 279.45 2.26 267.0 271.39 0.75 267.0 271.58 0.75

61 138 145.0 147.65 5.07 151.0 186.61 9.42 147.0 153.65 6.52 144.0 147.48 4.35 141.0 142.55 2.17 141.0 142.77 2.17

62 146 153.0 157.13 4.79 173.0 230.39 18.49 156.0 168.77 6.85 149.0 158.42 2.05 149.0 150.77 2.05 147.0 150.71 0.68

63 145 149.0 151.03 2.76 155.0 208.71 6.9 151.0 161.71 4.14 148.0 152.03 2.07 146.0 148.06 0.69 147.0 148.16 1.38

64 131 133.0 135.23 1.53 138.0 169.39 5.34 135.0 139.42 3.05 131.0 134.87 0.0 131.0 132.65 0.0 131.0 132.55 0.0

65 161 174.0 178.42 8.07 193.0 240.65 19.88 181.0 191.45 12.42 165.0 178.87 2.48 164.0 167.65 1.86 162.0 169.48 0.62

a1 253 262.0 268.52 3.56 284.0 337.74 12.25 274.0 286.97 8.3 264.0 271.74 4.35 259.0 261.84 2.37 258.0 261.87 1.98

a2 252 264.0 273.68 4.76 286.0 340.32 13.49 279.0 295.1 10.71 266.0 274.65 5.56 258.0 263.74 2.38 258.0 263.32 2.38

a3 232 246.0 249.39 6.03 277.0 307.9 19.4 254.0 265.06 9.48 240.0 250.58 3.45 238.0 242.0 2.59 237.0 242.35 2.16

a4 234 246.0 253.1 5.13 280.0 310.1 19.66 259.0 269.71 10.68 243.0 255.55 3.85 238.0 242.45 1.71 240.0 242.68 2.56

a5 236 248.0 250.87 5.08 271.0 309.52 14.83 258.0 269.81 9.32 246.0 254.23 4.24 240.0 242.65 1.69 241.0 242.77 2.12
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Table 11. Cont.

SCP TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

b1 69 70.0 72.77 1.45 107.0 171.03 55.07 79.0 96.19 14.49 71.0 77.29 2.9 69.0 69.84 0.0 69.0 69.81 0.0

b2 76 78.0 82.42 2.63 104.0 170.42 36.84 88.0 100.16 15.79 77.0 84.45 1.32 76.0 76.77 0.0 76.0 76.81 0.0

b3 80 82.0 83.97 2.5 123.0 212.29 53.75 85.0 110.94 6.25 81.0 88.45 1.25 81.0 81.13 1.25 81.0 81.1 1.25

b4 79 83.0 86.29 5.06 120.0 193.39 51.9 89.0 104.68 12.66 83.0 88.97 5.06 79.0 81.06 0.0 79.0 81.16 0.0

b5 72 75.0 75.65 4.17 132.0 181.55 83.33 81.0 96.26 12.5 74.0 77.97 2.78 72.0 72.39 0.0 72.0 72.52 0.0

c1 227 243.0 250.42 7.05 283.0 340.26 24.67 264.0 279.74 16.3 241.0 257.63 6.17 234.0 238.42 3.08 236.0 238.65 3.96

c2 219 236.0 242.9 7.76 302.0 344.0 37.9 261.0 273.84 19.18 234.0 245.32 6.85 227.0 230.52 3.65 225.0 230.71 2.74

c3 243 259.0 264.9 6.58 332.0 398.45 36.63 274.0 297.29 12.76 259.0 272.87 6.58 247.0 251.71 1.65 249.0 252.45 2.47

c4 219 231.0 237.87 5.48 288.0 351.87 31.51 245.0 268.52 11.87 232.0 240.68 5.94 226.0 228.35 3.2 226.0 228.84 3.2

c5 215 227.0 233.81 5.58 269.0 338.32 25.12 239.0 262.68 11.16 226.0 238.39 5.12 220.0 223.1 2.33 220.0 223.65 2.33

d1 60 65.0 67.03 8.33 168.0 228.9 180.0 84.0 100.65 40.0 64.0 72.97 6.67 61.0 61.97 1.67 61.0 62.1 1.67

d2 66 68.0 71.35 3.03 183.0 258.87 177.27 84.0 115.68 27.27 69.0 76.0 4.55 67.0 67.42 1.52 66.0 67.39 0.0

d3 72 77.0 80.26 6.94 192.0 288.61 166.67 91.0 117.94 26.39 78.0 90.45 8.33 74.0 74.97 2.78 74.0 74.94 2.78

d4 62 64.0 66.35 3.23 175.0 232.74 182.26 79.0 97.45 27.42 63.0 70.87 1.61 62.0 62.39 0.0 62.0 62.74 0.0

d5 61 64.0 67.29 4.92 149.0 217.16 144.26 83.0 102.19 36.07 66.0 73.97 8.2 61.0 62.39 0.0 61.0 62.39 0.0

263.47 269.32 4.1 295.18 341.89 34.47 270.76 286.4 9.97 261.6 271.11 3.44 257.33 261.04 1.36 257.64 261.45 1.37
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Table 12. Results obtained with SCA and the TFBR-1, TFBR-2, TFBR-3, TFBR-4, TFBR-5 and TFBR-6 sets.

SCP TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 436.0 442.61 1.63 626.0 666.72 45.92 446.0 461.16 3.96 630.0 669.08 46.85 431.0 434.08 0.47 430.0 434.28 0.23

42 512 545.0 554.77 6.45 1061.0 1116.68 107.23 565.0 595.16 10.35 1015.0 1095.8 98.24 524.0 530.76 2.34 525.0 531.8 2.54

43 516 537.0 549.06 4.07 1097.0 1195.08 112.6 546.0 592.72 5.81 1085.0 1210.52 110.27 522.0 526.44 1.16 520.0 527.6 0.78

44 494 519.0 530.0 5.06 881.0 975.72 78.34 537.0 562.24 8.7 857.0 964.8 73.48 499.0 508.0 1.01 503.0 508.76 1.82

45 512 537.0 550.29 4.88 1076.0 1132.76 110.16 561.0 592.44 9.57 1029.0 1113.44 100.98 521.0 526.48 1.76 522.0 527.24 1.95

46 560 577.0 590.45 3.04 1241.0 1360.88 121.61 590.0 635.92 5.36 1262.0 1372.12 125.36 564.0 568.0 0.71 564.0 568.16 0.71

47 430 438.0 449.19 1.86 796.0 853.44 85.12 457.0 482.24 6.28 779.0 853.56 81.16 434.0 436.92 0.93 432.0 437.08 0.47

48 492 505.0 514.23 2.64 1077.0 1150.96 118.9 549.0 570.76 11.59 1052.0 1160.16 113.82 494.0 499.48 0.41 495.0 500.68 0.61

49 641 682.0 695.16 6.4 1466.0 1580.72 128.71 723.0 760.64 12.79 1484.0 1590.4 131.51 660.0 672.12 2.96 661.0 672.44 3.12

410 514 526.0 534.35 2.33 978.0 1070.44 90.27 551.0 579.6 7.2 1023.0 1091.2 99.03 515.0 521.0 0.19 518.0 521.28 0.78

51 253 264.0 272.77 4.35 517.0 565.16 104.35 281.0 293.48 11.07 546.0 577.16 115.81 257.0 263.84 1.58 259.0 263.52 2.37

52 302 324.0 335.13 7.28 794.0 870.08 162.91 345.0 369.76 14.24 815.0 879.24 169.87 319.0 323.16 5.63 320.0 324.64 5.96

53 226 230.0 235.32 1.77 493.0 524.04 118.14 244.0 260.96 7.96 472.0 521.52 108.85 229.0 230.48 1.33 229.0 230.52 1.33

54 242 251.0 255.0 3.72 500.0 540.0 106.61 265.0 277.2 9.5 509.0 546.72 110.33 246.0 248.88 1.65 246.0 248.76 1.65

55 211 217.0 220.81 2.84 363.0 398.8 72.04 226.0 237.56 7.11 362.0 395.32 71.56 212.0 214.36 0.47 213.0 215.12 0.95

56 213 225.0 230.84 5.63 469.0 497.04 120.19 241.0 258.08 13.15 458.0 502.08 115.02 216.0 219.8 1.41 215.0 220.4 0.94

57 293 308.0 315.0 5.12 645.0 672.48 120.14 329.0 346.28 12.29 620.0 664.56 111.6 299.0 303.28 2.05 301.0 302.88 2.73

58 288 296.0 300.87 2.78 647.0 697.0 124.65 319.0 335.28 10.76 645.0 694.76 123.96 290.0 293.44 0.69 290.0 293.56 0.69

59 279 288.0 293.58 3.23 654.0 699.4 134.41 308.0 326.08 10.39 685.0 707.12 145.52 281.0 283.56 0.72 281.0 284.08 0.72

510 265 271.0 280.9 2.26 570.0 623.28 115.09 294.0 308.44 10.94 603.0 631.24 127.55 267.0 271.04 0.75 267.0 271.24 0.75
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Table 12. Cont.

SCP TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

61 138 145.0 147.81 5.07 692.0 739.12 401.45 161.0 176.72 16.67 670.0 751.56 385.51 141.0 142.96 2.17 141.0 142.8 2.17

62 146 151.0 157.58 3.42 998.0 1098.04 583.56 181.0 216.96 23.97 1029.0 1123.04 604.79 148.0 150.8 1.37 148.0 151.2 1.37

63 145 147.0 150.77 1.38 957.0 1047.92 560.0 168.0 205.36 15.86 989.0 1048.24 582.07 146.0 148.16 0.69 146.0 148.08 0.69

64 131 134.0 135.71 2.29 602.0 649.16 359.54 147.0 160.56 12.21 595.0 656.92 354.2 131.0 132.44 0.0 131.0 132.56 0.0

65 161 168.0 181.42 4.35 1024.0 1098.32 536.02 191.0 228.28 18.63 1019.0 1099.76 532.92 164.0 167.56 1.86 162.0 167.44 0.62

a1 253 263.0 268.45 3.95 1263.0 1337.08 399.21 289.0 338.24 14.23 1233.0 1335.12 387.35 260.0 262.32 2.77 260.0 262.44 2.77

a2 252 268.0 272.65 6.35 1183.0 1228.4 369.44 282.0 335.76 11.9 1161.0 1234.96 360.71 261.0 263.4 3.57 259.0 263.6 2.78

a3 232 242.0 248.26 4.31 1066.0 1153.44 359.48 273.0 305.16 17.67 1086.0 1165.12 368.1 240.0 242.24 3.45 237.0 242.44 2.16

a4 234 246.0 251.58 5.13 1093.0 1142.04 367.09 285.0 320.56 21.79 1066.0 1148.16 355.56 238.0 241.64 1.71 240.0 243.12 2.56

a5 236 244.0 250.06 3.39 1113.0 1161.8 371.61 275.0 312.8 16.53 1086.0 1167.92 360.17 240.0 242.44 1.69 241.0 242.88 2.12

b1 69 70.0 72.26 1.45 1386.0 1463.68 1908.7 91.0 153.92 31.88 1408.0 1462.8 1940.58 69.0 69.8 0.0 69.0 70.04 0.0

b2 76 79.0 80.58 3.95 1389.0 1467.88 1727.63 106.0 155.12 39.47 1368.0 1468.24 1700.0 76.0 76.92 0.0 76.0 76.88 0.0

b3 80 82.0 82.81 2.5 1806.0 1883.88 2157.5 102.0 187.76 27.5 1818.0 1887.96 2172.5 81.0 81.08 1.25 80.0 81.04 0.0

b4 79 83.0 84.55 5.06 1560.0 1674.4 1874.68 115.0 182.4 45.57 1597.0 1676.76 1921.52 80.0 81.36 1.27 80.0 81.52 1.27

b5 72 74.0 74.65 2.78 1424.0 1495.88 1877.78 92.0 164.32 27.78 1427.0 1489.68 1881.94 72.0 72.6 0.0 72.0 72.68 0.0

c1 227 244.0 250.06 7.49 1510.0 1634.92 565.2 296.0 333.4 30.4 1555.0 1617.6 585.02 235.0 237.48 3.52 235.0 238.24 3.52

c2 219 234.0 240.48 6.85 1781.0 1863.36 713.24 286.0 329.24 30.59 246.0 1785.28 12.33 226.0 230.16 3.2 228.0 230.72 4.11

c3 243 256.0 262.06 5.35 2099.0 2182.0 763.79 319.0 370.96 31.28 1952.0 2161.6 703.29 248.0 251.32 2.06 249.0 252.32 2.47

c4 219 230.0 235.0 5.02 1635.0 1776.44 646.58 286.0 333.68 30.59 1608.0 1776.52 634.25 226.0 229.76 3.2 227.0 229.84 3.65

c5 215 226.0 232.65 5.12 1596.0 1713.16 642.33 252.0 329.96 17.21 1583.0 1707.88 636.28 221.0 223.0 2.79 219.0 222.56 1.86
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Table 12. Cont.

SCP TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

d1 60 63.0 65.32 5.0 2090.0 2154.68 3383.33 90.0 174.12 50.0 2015.0 2166.6 3258.33 61.0 61.88 1.67 61.0 61.92 1.67

d2 66 68.0 69.45 3.03 2366.0 2467.0 3484.85 115.0 202.8 74.24 2369.0 2460.32 3489.39 67.0 67.4 1.52 67.0 67.2 1.52

d3 72 76.0 78.16 5.56 2587.0 2705.04 3493.06 99.0 213.32 37.5 2611.0 2691.96 3526.39 74.0 75.0 2.78 74.0 74.72 2.78

d4 62 63.0 63.61 1.61 2089.0 2192.56 3269.35 91.0 171.88 46.77 2075.0 2164.4 3246.77 62.0 62.76 0.0 62.0 62.84 0.0

d5 61 64.0 65.71 4.92 2119.0 2199.12 3373.77 82.0 167.12 34.43 2072.0 2181.68 3296.72 61.0 62.24 0.0 61.0 62.12 0.0

264.36 270.49 4.06 1186.2 1260.44 808.15 290.02 331.48 20.3 1145.98 1259.35 788.39 257.96 261.15 1.57 258.13 261.45 1.58

Table 13. Continued results obtained with SCA and the TFBR-7, TFBR-8, TFBR-9, TFBR-10, TFBR-11 and TFBR-12 sets.

SCP TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 438.0 443.0 2.1 632.0 672.92 47.32 434.0 442.32 1.17 620.0 671.56 44.52 432.0 435.0 0.7 430.0 434.64 0.23

42 512 541.0 551.16 5.66 1023.0 1105.32 99.8 537.0 552.44 4.88 1051.0 1120.24 105.27 522.0 531.68 1.95 526.0 533.88 2.73

43 516 538.0 546.71 4.26 1134.0 1194.16 119.77 533.0 546.96 3.29 1148.0 1210.96 122.48 524.0 529.56 1.55 523.0 530.08 1.36

44 494 515.0 528.97 4.25 904.0 967.88 83.0 516.0 527.28 4.45 875.0 965.72 77.13 501.0 508.6 1.42 503.0 510.08 1.82

45 512 531.0 549.19 3.71 1072.0 1138.52 109.38 526.0 543.4 2.73 1042.0 1117.36 103.52 522.0 528.2 1.95 522.0 528.64 1.95

46 560 573.0 586.55 2.32 1288.0 1377.0 130.0 575.0 584.76 2.68 1269.0 1365.32 126.61 564.0 569.08 0.71 566.0 568.84 1.07

47 430 440.0 447.65 2.33 790.0 865.24 83.72 441.0 449.12 2.56 790.0 864.6 83.72 436.0 438.12 1.4 434.0 438.16 0.93

48 492 505.0 513.0 2.64 1086.0 1163.44 120.73 503.0 514.08 2.24 1077.0 1160.92 118.9 496.0 500.28 0.81 497.0 500.84 1.02

49 641 679.0 692.35 5.93 1504.0 1592.68 134.63 686.0 700.72 7.02 1473.0 1560.2 129.8 663.0 673.72 3.43 660.0 674.64 2.96

410 514 527.0 533.74 2.53 1004.0 1079.0 95.33 526.0 534.64 2.33 972.0 1053.84 89.11 519.0 522.04 0.97 518.0 522.4 0.78
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Table 13. Cont.

SCP TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

51 253 264.0 271.1 4.35 502.0 575.84 98.42 269.0 274.4 6.32 548.0 575.16 116.6 261.0 263.92 3.16 259.0 264.24 2.37

52 302 327.0 333.97 8.28 811.0 870.52 168.54 330.0 335.8 9.27 815.0 872.24 169.87 318.0 325.16 5.3 318.0 324.2 5.3

53 226 233.0 234.9 3.1 491.0 527.4 117.26 231.0 236.36 2.21 488.0 521.72 115.93 230.0 230.56 1.77 230.0 230.88 1.77

54 242 249.0 254.06 2.89 510.0 544.64 110.74 251.0 254.76 3.72 506.0 541.84 109.09 247.0 249.48 2.07 244.0 248.96 0.83

55 211 217.0 219.45 2.84 358.0 397.68 69.67 217.0 221.36 2.84 356.0 398.04 68.72 213.0 215.76 0.95 213.0 215.16 0.95

56 213 221.0 229.61 3.76 483.0 502.12 126.76 228.0 231.08 7.04 427.0 497.88 100.47 217.0 221.2 1.88 216.0 220.88 1.41

57 293 307.0 313.97 4.78 616.0 663.68 110.24 307.0 314.0 4.78 642.0 673.6 119.11 298.0 303.84 1.71 295.0 303.32 0.68

58 288 295.0 300.16 2.43 633.0 691.92 119.79 298.0 303.0 3.47 673.0 700.72 133.68 291.0 294.12 1.04 292.0 294.12 1.39

59 279 286.0 291.81 2.51 652.0 695.36 133.69 288.0 293.52 3.23 627.0 693.0 124.73 282.0 284.64 1.08 281.0 284.76 0.72

510 265 275.0 279.87 3.77 552.0 617.12 108.3 271.0 279.0 2.26 609.0 632.04 129.81 267.0 271.88 0.75 268.0 271.36 1.13

61 138 143.0 147.1 3.62 667.0 741.8 383.33 144.0 148.76 4.35 689.0 740.64 399.28 140.0 143.16 1.45 141.0 143.04 2.17

62 146 152.0 157.03 4.11 1039.0 1111.2 611.64 154.0 157.6 5.48 935.0 1099.08 540.41 149.0 151.32 2.05 148.0 150.64 1.37

63 145 147.0 150.48 1.38 977.0 1046.24 573.79 149.0 152.4 2.76 958.0 1042.36 560.69 147.0 148.24 1.38 147.0 148.52 1.38

64 131 132.0 135.32 0.76 606.0 651.44 362.6 134.0 136.12 2.29 608.0 655.08 364.12 131.0 132.72 0.0 132.0 132.96 0.76

65 161 175.0 181.48 8.7 982.0 1095.04 509.94 172.0 178.4 6.83 1008.0 1084.64 526.09 162.0 168.92 0.62 162.0 168.68 0.62

a1 253 263.0 267.77 3.95 1279.0 1349.96 405.53 266.0 270.16 5.14 1236.0 1327.92 388.54 259.0 262.56 2.37 261.0 262.84 3.16

a2 252 264.0 271.68 4.76 1134.0 1221.84 350.0 268.0 274.0 6.35 1161.0 1232.48 360.71 262.0 264.08 3.97 260.0 264.12 3.17

a3 232 242.0 247.84 4.31 1100.0 1168.4 374.14 247.0 250.32 6.47 1071.0 1152.0 361.64 239.0 242.52 3.02 241.0 242.52 3.88

a4 234 242.0 250.52 3.42 1066.0 1133.2 355.56 250.0 253.48 6.84 1078.0 1141.72 360.68 241.0 243.12 2.99 240.0 243.24 2.56

a5 236 246.0 250.0 4.24 1084.0 1172.12 359.32 248.0 250.92 5.08 1132.0 1168.44 379.66 241.0 242.84 2.12 240.0 242.84 1.69

b1 69 70.0 72.29 1.45 1345.0 1440.92 1849.28 71.0 72.56 2.9 1282.0 1445.64 1757.97 69.0 70.12 0.0 69.0 70.04 0.0

b2 76 79.0 80.45 3.95 1364.0 1471.2 1694.74 79.0 82.56 3.95 1352.0 1449.48 1678.95 76.0 76.84 0.0 76.0 76.96 0.0
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Table 13. Cont.

SCP TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

b3 80 82.0 82.68 2.5 1823.0 1870.48 2178.75 83.0 84.68 3.75 1732.0 1857.12 2065.0 81.0 81.08 1.25 80.0 81.24 0.0

b4 79 83.0 84.68 5.06 1604.0 1678.4 1930.38 85.0 86.32 7.59 1614.0 1681.24 1943.04 80.0 81.72 1.27 80.0 81.64 1.27

b5 72 74.0 74.74 2.78 1396.0 1485.4 1838.89 74.0 75.68 2.78 1334.0 1486.04 1752.78 72.0 72.56 0.0 72.0 72.44 0.0

c1 227 239.0 248.26 5.29 1556.0 1624.12 585.46 244.0 250.68 7.49 1511.0 1627.56 565.64 233.0 238.2 2.64 235.0 238.6 3.52

c2 219 229.0 239.71 4.57 1733.0 1848.56 691.32 237.0 241.8 8.22 1778.0 1859.8 711.87 226.0 230.76 3.2 228.0 230.64 4.11

c3 243 253.0 261.42 4.12 2092.0 2189.8 760.91 256.0 265.56 5.35 2090.0 2171.96 760.08 248.0 252.4 2.06 247.0 252.48 1.65

c4 219 232.0 234.84 5.94 1678.0 1787.12 666.21 234.0 239.28 6.85 1709.0 1780.92 680.37 228.0 230.32 4.11 225.0 230.2 2.74

c5 215 224.0 231.58 4.19 1649.0 1712.48 666.98 226.0 232.32 5.12 1633.0 1723.8 659.53 221.0 223.36 2.79 221.0 223.4 2.79

d1 60 64.0 65.58 6.67 2067.0 2163.96 3345.0 64.0 66.88 6.67 2017.0 2164.88 3261.67 61.0 62.04 1.67 61.0 62.2 1.67

d2 66 68.0 69.39 3.03 2383.0 2466.44 3510.61 70.0 72.4 6.06 2314.0 2455.12 3406.06 66.0 67.48 0.0 67.0 67.36 1.52

d3 72 77.0 78.03 6.94 2623.0 2699.56 3543.06 77.0 80.32 6.94 2372.0 2687.96 3194.44 73.0 74.92 1.39 73.0 74.92 1.39

d4 62 62.0 63.71 0.0 2078.0 2197.04 3251.61 63.0 66.16 1.61 2057.0 2208.84 3217.74 62.0 62.84 0.0 62.0 63.0 0.0

d5 61 64.0 65.74 4.92 2055.0 2173.96 3268.85 65.0 67.76 6.56 2080.0 2187.8 3309.84 62.0 62.44 1.64 61.0 62.52 0.0

263.71 269.63 3.89 1187.22 1260.96 805.67 265.04 271.02 4.71 1172.42 1258.43 786.57 258.49 261.85 1.7 258.31 261.94 1.62
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Table 14. Results obtained with WOA and the TFBR-1, TFBR-2, TFBR-3, TFBR-4, TFBR-5, and TFBR-6 sets.

SCP TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 432.0 439.13 0.7 434.0 472.16 1.17 449.0 466.03 4.66 437.0 472.77 1.86 431.0 434.77 0.47 430.0 434.19 0.23

42 512 540.0 546.39 5.47 553.0 634.94 8.01 575.0 602.9 12.3 539.0 637.65 5.27 521.0 531.0 1.76 520.0 531.52 1.56

43 516 531.0 542.9 2.91 551.0 645.39 6.78 578.0 612.65 12.02 541.0 636.1 4.84 521.0 525.65 0.97 520.0 527.03 0.78

44 494 510.0 523.16 3.24 526.0 591.13 6.48 544.0 573.06 10.12 519.0 568.45 5.06 500.0 507.77 1.21 501.0 509.16 1.42

45 512 533.0 543.16 4.1 554.0 641.94 8.2 570.0 602.97 11.33 539.0 665.68 5.27 520.0 526.87 1.56 521.0 525.74 1.76

46 560 569.0 582.45 1.61 607.0 697.77 8.39 597.0 649.13 6.61 591.0 725.03 5.54 562.0 568.84 0.36 565.0 569.48 0.89

47 430 438.0 445.42 1.86 442.0 506.23 2.79 457.0 489.16 6.28 448.0 506.9 4.19 435.0 437.42 1.16 435.0 437.55 1.16

48 492 499.0 507.48 1.42 528.0 622.26 7.32 547.0 587.9 11.18 527.0 607.55 7.11 494.0 500.48 0.41 493.0 500.23 0.2

49 641 670.0 688.06 4.52 736.0 860.45 14.82 731.0 775.23 14.04 707.0 841.1 10.3 662.0 672.9 3.28 663.0 673.48 3.43

410 514 523.0 530.52 1.75 529.0 623.35 2.92 561.0 590.55 9.14 545.0 619.13 6.03 518.0 522.1 0.78 515.0 521.84 0.19

51 253 261.0 267.94 3.16 279.0 327.26 10.28 288.0 301.81 13.83 277.0 312.84 9.49 258.0 264.03 1.98 258.0 263.19 1.98

52 302 324.0 332.03 7.28 345.0 417.77 14.24 350.0 377.74 15.89 344.0 401.81 13.91 315.0 323.29 4.3 316.0 323.55 4.64

53 226 231.0 233.84 2.21 239.0 288.39 5.75 243.0 266.26 7.52 247.0 283.77 9.29 229.0 230.48 1.33 229.0 230.74 1.33

54 242 249.0 252.81 2.89 266.0 305.58 9.92 265.0 282.55 9.5 258.0 302.26 6.61 246.0 248.74 1.65 246.0 248.26 1.65

55 211 217.0 218.71 2.84 216.0 246.06 2.37 227.0 242.16 7.58 227.0 251.29 7.58 212.0 215.35 0.47 212.0 215.13 0.47

56 213 222.0 227.61 4.23 235.0 277.29 10.33 235.0 259.45 10.33 230.0 273.74 7.98 214.0 219.45 0.47 217.0 220.32 1.88

57 293 305.0 311.65 4.1 316.0 370.39 7.85 325.0 349.74 10.92 318.0 364.39 8.53 297.0 302.45 1.37 297.0 303.48 1.37

58 288 295.0 297.97 2.43 316.0 373.1 9.72 325.0 342.74 12.85 308.0 374.19 6.94 291.0 294.13 1.04 289.0 293.77 0.35

59 279 283.0 289.13 1.43 306.0 357.52 9.68 314.0 333.42 12.54 312.0 358.39 11.83 280.0 284.74 0.36 281.0 284.32 0.72

510 265 274.0 278.81 3.4 285.0 344.55 7.55 300.0 316.94 13.21 292.0 334.42 10.19 267.0 271.19 0.75 267.0 271.13 0.75
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Table 14. Cont.

SCP TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

61 138 142.0 146.32 2.9 154.0 194.13 11.59 154.0 184.81 11.59 153.0 200.48 10.87 140.0 142.61 1.45 142.0 142.94 2.9

62 146 152.0 156.32 4.11 174.0 252.29 19.18 172.0 224.0 17.81 159.0 208.23 8.9 147.0 150.55 0.68 148.0 150.52 1.37

63 145 148.0 150.29 2.07 155.0 225.52 6.9 173.0 220.03 19.31 173.0 253.19 19.31 146.0 148.52 0.69 147.0 148.55 1.38

64 131 133.0 135.1 1.53 137.0 165.84 4.58 145.0 176.1 10.69 142.0 177.68 8.4 131.0 132.73 0.0 131.0 132.97 0.0

65 161 170.0 178.74 5.59 185.0 255.1 14.91 206.0 243.74 27.95 196.0 267.97 21.74 163.0 167.68 1.24 161.0 168.32 0.0

a1 253 263.0 267.19 3.95 331.0 417.9 30.83 312.0 353.61 23.32 323.0 466.9 27.67 259.0 262.32 2.37 260.0 262.35 2.77

a2 252 266.0 270.16 5.56 315.0 458.42 25.0 300.0 348.48 19.05 311.0 422.13 23.41 259.0 264.03 2.78 260.0 264.29 3.17

a3 232 242.0 246.68 4.31 278.0 368.35 19.83 276.0 318.16 18.97 292.0 346.03 25.86 239.0 242.61 3.02 239.0 242.74 3.02

a4 234 244.0 249.58 4.27 299.0 412.32 27.78 282.0 327.13 20.51 308.0 431.13 31.62 239.0 242.9 2.14 239.0 242.81 2.14

a5 236 244.0 248.61 3.39 289.0 361.35 22.46 266.0 330.26 12.71 308.0 405.71 30.51 241.0 242.84 2.12 241.0 243.29 2.12

b1 69 70.0 71.65 1.45 111.0 312.71 60.87 93.0 175.65 34.78 126.0 259.13 82.61 69.0 70.06 0.0 69.0 69.94 0.0

b2 76 77.0 80.1 1.32 140.0 255.65 84.21 134.0 185.74 76.32 129.0 295.87 69.74 76.0 77.1 0.0 76.0 76.68 0.0

b3 80 81.0 82.61 1.25 161.0 318.26 101.25 105.0 207.81 31.25 165.0 305.42 106.25 81.0 81.39 1.25 80.0 81.23 0.0

b4 79 82.0 84.16 3.8 132.0 323.35 67.09 129.0 206.81 63.29 146.0 332.26 84.81 79.0 81.19 0.0 79.0 81.16 0.0

b5 72 74.0 74.52 2.78 124.0 230.61 72.22 118.0 184.29 63.89 140.0 320.29 94.44 72.0 72.48 0.0 72.0 72.71 0.0

c1 227 243.0 247.77 7.05 356.0 529.97 56.83 289.0 364.35 27.31 376.0 529.68 65.64 235.0 238.48 3.52 234.0 238.03 3.08

c2 219 236.0 239.19 7.76 365.0 508.9 66.67 305.0 371.13 39.27 326.0 462.74 48.86 224.0 230.26 2.28 227.0 230.1 3.65

c3 243 255.0 259.65 4.94 415.0 553.03 70.78 338.0 399.61 39.09 403.0 649.06 65.84 249.0 252.84 2.47 248.0 252.58 2.06

c4 219 229.0 234.13 4.57 349.0 491.23 59.36 275.0 361.42 25.57 353.0 559.61 61.19 227.0 229.97 3.65 225.0 229.81 2.74

c5 215 227.0 230.65 5.58 310.0 473.52 44.19 275.0 341.94 27.91 330.0 545.84 53.49 221.0 223.45 2.79 220.0 223.74 2.33
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Table 14. Cont.

SCP TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

d1 60 62.0 64.74 3.33 210.0 527.0 250.0 111.0 222.45 85.0 192.0 472.55 220.0 61.0 61.84 1.67 60.0 61.9 0.0

d2 66 68.0 69.0 3.03 291.0 697.77 340.91 147.0 251.94 122.73 289.0 755.23 337.88 66.0 67.52 0.0 67.0 67.55 1.52

d3 72 76.0 77.42 5.56 319.0 781.61 343.06 104.0 277.29 44.44 300.0 688.87 316.67 73.0 74.94 1.39 73.0 75.0 1.39

d4 62 62.0 63.52 0.0 234.0 610.23 277.42 101.0 215.94 62.9 226.0 569.26 264.52 62.0 62.9 0.0 62.0 62.97 0.0

d5 61 63.0 65.48 3.28 227.0 575.29 272.13 134.0 241.35 119.67 198.0 422.32 224.59 61.0 62.45 0.0 61.0 62.48 0.0

262.56 267.84 3.44 318.31 442.31 55.66 298.33 350.14 27.94 317.11 441.89 54.5 257.62 261.45 1.36 257.69 261.53 1.39

Table 15. Continued results obtained with WOA and the TFBR-7, TFBR-8, TFBR-9, TFBR-10, TFBR-11, and TFBR-12 sets.

SCP TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 434.0 439.42 1.17 611.0 647.0 42.42 434.0 439.65 1.17 556.0 637.68 29.6 430.0 435.42 0.23 432.0 435.16 0.7

42 512 538.0 546.74 5.08 649.0 1037.35 26.76 528.0 545.06 3.12 912.0 1029.32 78.12 523.0 534.13 2.15 529.0 535.39 3.32

43 516 527.0 542.87 2.13 1076.0 1143.58 108.53 532.0 542.23 3.1 997.0 1137.03 93.22 525.0 530.23 1.74 523.0 529.74 1.36

44 494 509.0 522.29 3.04 865.0 934.58 75.1 508.0 520.68 2.83 847.0 922.74 71.46 500.0 508.74 1.21 495.0 511.1 0.2

45 512 530.0 543.77 3.52 897.0 1067.16 75.2 529.0 538.55 3.32 950.0 1080.19 85.55 521.0 529.39 1.76 523.0 528.03 2.15

46 560 565.0 581.13 0.89 1174.0 1305.71 109.64 569.0 576.0 1.61 1171.0 1296.94 109.11 566.0 570.13 1.07 566.0 569.68 1.07

47 430 438.0 444.84 1.86 739.0 813.0 71.86 437.0 444.74 1.63 748.0 803.19 73.95 434.0 437.55 0.93 434.0 438.1 0.93

48 492 501.0 508.68 1.83 989.0 1088.74 101.02 498.0 508.55 1.22 1002.0 1101.55 103.66 497.0 501.29 1.02 493.0 500.32 0.2

49 641 676.0 688.23 5.46 1263.0 1492.29 97.04 673.0 691.94 4.99 1333.0 1496.29 107.96 665.0 676.57 3.74 665.0 679.16 3.74

410 514 524.0 531.1 1.95 914.0 1018.39 77.82 517.0 528.68 0.58 905.0 1024.03 76.07 517.0 522.26 0.58 520.0 523.13 1.17



Biomimetics 2023, 8, 400 28 of 47

Table 15. Cont.

SCP TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

51 253 261.0 268.19 3.16 495.0 547.19 95.65 264.0 270.9 4.35 506.0 546.23 100.0 259.0 264.74 2.37 261.0 265.16 3.16

52 302 323.0 330.61 6.95 743.0 836.42 146.03 324.0 331.32 7.28 748.0 828.71 147.68 318.0 324.9 5.3 317.0 324.29 4.97

53 226 231.0 233.97 2.21 446.0 501.48 97.35 230.0 234.06 1.77 465.0 496.48 105.75 229.0 230.68 1.33 229.0 230.94 1.33

54 242 249.0 252.13 2.89 484.0 514.68 100.0 248.0 253.06 2.48 468.0 513.77 93.39 246.0 249.03 1.65 247.0 249.39 2.07

55 211 214.0 217.65 1.42 317.0 371.71 50.24 214.0 218.71 1.42 331.0 377.32 56.87 212.0 215.52 0.47 214.0 215.42 1.42

56 213 220.0 226.29 3.29 448.0 474.71 110.33 222.0 227.0 4.23 416.0 473.1 95.31 216.0 221.03 1.41 218.0 221.39 2.35

57 293 305.0 311.42 4.1 603.0 642.48 105.8 305.0 310.65 4.1 573.0 632.74 95.56 300.0 304.32 2.39 297.0 303.74 1.37

58 288 296.0 298.71 2.78 543.0 663.23 88.54 291.0 298.77 1.04 603.0 658.77 109.38 291.0 294.65 1.04 291.0 293.71 1.04

59 279 285.0 289.26 2.15 598.0 658.23 114.34 286.0 289.87 2.51 559.0 658.32 100.36 281.0 284.48 0.72 282.0 284.35 1.08

510 265 273.0 278.03 3.02 517.0 595.39 95.09 271.0 277.35 2.26 531.0 593.97 100.38 268.0 272.29 1.13 267.0 271.42 0.75

61 138 145.0 146.19 5.07 657.0 705.68 376.09 143.0 146.52 3.62 588.0 694.32 326.09 142.0 143.58 2.9 141.0 143.26 2.17

62 146 150.0 155.87 2.74 853.0 1051.29 484.25 152.0 155.45 4.11 890.0 1044.55 509.59 148.0 151.77 1.37 149.0 151.39 2.05

63 145 147.0 150.45 1.38 735.0 981.26 406.9 147.0 150.39 1.38 919.0 1005.35 533.79 146.0 148.68 0.69 146.0 148.42 0.69

64 131 133.0 134.9 1.53 539.0 616.9 311.45 131.0 134.65 0.0 501.0 603.61 282.44 131.0 132.77 0.0 131.0 133.16 0.0

65 161 171.0 178.9 6.21 756.0 1041.06 369.57 171.0 176.68 6.21 878.0 1046.81 445.34 164.0 169.58 1.86 166.0 170.35 3.11

a1 253 263.0 266.42 3.95 1163.0 1289.55 359.68 262.0 266.84 3.56 1158.0 1279.52 357.71 261.0 262.77 3.16 261.0 262.97 3.16

a2 252 264.0 271.06 4.76 1057.0 1186.23 319.44 265.0 270.39 5.16 1076.0 1187.03 326.98 261.0 264.39 3.57 261.0 264.39 3.57

a3 232 243.0 246.97 4.74 978.0 1101.74 321.55 244.0 246.65 5.17 1030.0 1110.61 343.97 241.0 243.26 3.88 240.0 242.9 3.45

a4 234 241.0 248.48 2.99 965.0 1095.94 312.39 243.0 249.35 3.85 964.0 1086.9 311.97 238.0 243.23 1.71 238.0 243.58 1.71

a5 236 242.0 247.65 2.54 1045.0 1124.58 342.8 243.0 247.84 2.97 1010.0 1123.42 327.97 240.0 243.1 1.69 240.0 243.42 1.69

b1 69 71.0 72.0 2.9 1316.0 1414.39 1807.25 70.0 71.81 1.45 1318.0 1409.9 1810.14 69.0 69.9 0.0 69.0 69.9 0.0

b2 76 78.0 79.71 2.63 1278.0 1414.03 1581.58 77.0 79.68 1.32 1302.0 1421.52 1613.16 76.0 77.1 0.0 76.0 76.9 0.0
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Table 15. Cont.

SCP TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

b3 80 81.0 82.35 1.25 1701.0 1826.77 2026.25 81.0 83.23 1.25 1687.0 1823.32 2008.75 80.0 81.03 0.0 80.0 81.26 0.0

b4 79 81.0 83.81 2.53 1506.0 1635.9 1806.33 82.0 83.71 3.8 1420.0 1611.94 1697.47 80.0 81.9 1.27 80.0 81.87 1.27

b5 72 73.0 74.35 1.39 1300.0 1452.1 1705.56 73.0 74.48 1.39 1216.0 1428.77 1588.89 72.0 72.65 0.0 72.0 72.71 0.0

c1 227 239.0 246.1 5.29 1483.0 1585.42 553.3 239.0 244.77 5.29 1434.0 1592.42 531.72 235.0 238.45 3.52 235.0 238.23 3.52

c2 219 229.0 238.9 4.57 1227.0 1761.81 460.27 234.0 237.65 6.85 1629.0 1779.84 643.84 228.0 231.19 4.11 228.0 231.32 4.11

c3 243 255.0 259.68 4.94 1825.0 2100.68 651.03 248.0 259.52 2.06 1916.0 2113.77 688.48 249.0 252.84 2.47 249.0 252.94 2.47

c4 219 230.0 233.9 5.02 1608.0 1730.81 634.25 227.0 235.0 3.65 1616.0 1731.35 637.9 226.0 229.9 3.2 227.0 230.06 3.65

c5 215 224.0 229.61 4.19 1590.0 1663.94 639.53 226.0 228.94 5.12 1599.0 1681.77 643.72 221.0 223.52 2.79 220.0 223.16 2.33

d1 60 62.0 64.9 3.33 1929.0 2091.71 3115.0 62.0 64.68 3.33 2019.0 2122.1 3265.0 61.0 62.26 1.67 61.0 62.39 1.67

d2 66 68.0 69.13 3.03 2010.0 2395.26 2945.45 68.0 69.42 3.03 2255.0 2433.26 3316.67 67.0 67.65 1.52 67.0 67.68 1.52

d3 72 76.0 77.77 5.56 2323.0 2629.03 3126.39 76.0 77.71 5.56 2408.0 2622.19 3244.44 74.0 75.32 2.78 74.0 75.55 2.78

d4 62 63.0 63.68 1.61 868.0 2064.03 1300.0 63.0 64.1 1.61 1962.0 2136.19 3064.52 62.0 62.84 0.0 62.0 62.77 0.0

d5 61 63.0 64.97 3.28 1962.0 2125.19 3116.39 62.0 64.94 1.64 2013.0 2107.77 3200.0 62.0 62.58 1.64 61.0 62.68 0.0

262.02 267.62 3.25 1045.44 1209.75 685.81 261.53 267.38 3.08 1098.42 1211.26 745.64 258.49 262.21 1.73 258.6 262.29 1.76
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4.2.1. Analysis of the Results Obtained with Grey Wolf Optimizer

As can be seen in Table 7, only five sets achieved an RPD = 0, i.e., reached the known
optimum. In particular, TFBR-5 achieved this in 12 instances, TFBR-6 as well as TFBR-11
and TFBR-12 achieved this in 8 instances, and TFBR-10 achieved this in one instance.

For RPD ∈ ]0, 3], all sets achieved fitness in this range. In particular, TFBR-12 as well
as TFBR-11 achieved this in 33 instances, TFBR-6 achieved this in 32 instances, TFBR-5
achieved this in 30 instances, TFBR-10 achieved this in 25 instances, TFBR-1 achieved this
in 20 instances, TFBR-4 as well as TFBR-7 achieved this in 13 instances, TFBR-9 achieved
this in 7 instances, and TFBR-2 as well as TFBR-3 and TFBR-8 achieved this in 1 instance.

For RPD ∈ ]3, 5], all polls achieved fitness in this range. In particular, TFBR-7 achieved
this in 17 instances, TFBR-1 as well as TFBR-9 achieved this in 11 instances, TFBR-4
achieved this in 10 instances, TFBR-10 achieved this in 8 instances, TFBR-3 achieved this in
6 instances, TFBR-6 achieved this in 5 instances, TFBR-11 as well as TFBR-12 achieved this
in 4 instances, TFBR-2 as well as TFBR-5 achieved this in 3 instances, and TFBR-8 achieved
this in 2 instances.

Finally, for RPD > 5, only eight sets achieved fitness in this range. In particular, TFBR-
8 achieved this in 42 instances, TFBR-2 achieved this in 41 instances, TFBR-3 achieved this
in 38 instances, TFBR-9 achieved this in 27 instances, TFBR-4 achieved this in 22 instances,
TFBR-7 achieved this in 15 instances, TFBR-1 achieved this in 14 instances, and TFBR-10
achieved this in 11 instances.

Table 16 shows a ranking of the best sets of actions considering only the RPD ob-
tained. From this table, the first and second best sets include the elitist binarization rule
(TFBR-5: S-shaped and V-shaped × elitist and TFBR-11: S-shaped, V-shaped, X-shaped, and
Z-shaped × elitist) and the third and fourth best sets include the roulette elitist binarization
rule (TFBR-12: S-shaped, V-shaped, X-shaped, and Z-shaped × roulette elitist and TFBR-6:
S-shaped and V-shaped × roulette elitist).

On the other hand, the worst and second worst sets include the standard binarization
rule (TFBR-8: S-shaped, V-shaped, X-shaped, and Z-shaped × standard and TFBR-2:
S-shaped and V-shaped × standard) and the third and fourth worst sets include the
complement binarization rule (TFBR-3: S-shaped and V-shaped× complement and TFBR-9:
S-shaped, V-shaped, X-shaped, and Z-shaped × complement).

In terms of the number of actions in each set, the best sets have 8 and 16 actions.
In contrast, the sets with the most actions (TFBR-1 with 40 actions and TFBR-7 with
80 actions) are in the middle of the ranking.

Looking at these results, we can see that the binarization rule has a greater impact
than the transfer functions. Moreover, increasing the number of actions does not imply
better results.

Table 16. Ranking of the best sets considering RPD for GWO.

1. TFBR-5 4. TFBR-6 7. TFBR-7 10. TFBR-3

2. TFBR-11 5. TFBR-10 8. TFBR-4 11. TFBR-2

3. TFBR-12 6. TFBR-1 9. TFBR-9 12. TFBR-8

4.2.2. Analysis of the Results Obtained with Sine Cosine Algorithm

As can be seen in Table 8, only five sets achieved a RPD = 0, i.e., reached the known
optimum. In particular, TFBR-6 achieved this in seven instances, TFBR-5 as well as TFBR-11
and TFBR-12 achieved this in six instances, and TFBR-7 achieved this in one instance.

For RPD ∈ ]0, 3], only eight sets achieved fitness in this range. In particular, TFBR-12
as well as TFBR-5 and TFBR-6 achieved this in 33 instances, TFBR-11 achieved this in
31 instances, TFBR-7 as well as TFBR-9 achieved this in 14 instances, TFBR-1 achieved this
in 13 instances, and TFBR-3 achieved this in 9 instances.

For RPD ∈ ]3, 5], only eight sets achieved fitness in this range. In particular, TFBR-7
achieved this in 21 instances, TFBR-1 achieved this in 16 instances, TFBR-9 achieved this in
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10 instances, TFBR-11 achieved this in 7 instances, TFBR-5 as well as TFBR-12 achieved this
in 5 instances, TFBR-6 achieved this in 4 instances and TFBR-3 achieved this in 1 instance.

Finally, for RPD > 5, all sets achieved fitness in this range. In particular, TFBR-2 as
well as TFBR-4, TFBR-8, and TFBR-10 achieved this in 45 instances, TFBR-3 achieved this
in 44 instances, TFBR-9 achieved this in 21 instances, TFBR-1 as well as TFBR-1 achieved
this in 16 instances, TFBR-5 as well as TFBR-6, TFBR-11, and TFBR-12 achieved this in
1 instance.

Table 17 shows a ranking of the best sets of actions considering only the RPD obtained.
From this table, the best set includes the roulette elitist binarization rule (TFBR-6: S-shaped
and V-shaped × roulette elitist), the second best set includes the elitist binarization rule
(TFBR-5: S-shaped and V-shaped × elitist), the third best set also includes the roulette
elitist binarization rule (TFBR-12: S-shaped, V-shaped, X-shaped, and Z-shaped × roulette
elitist), and the fourth best set also includes the elitist binarization rule (TFBR-11: S-shaped,
V-shaped, X-shaped, and Z-shaped × elitist).

On the other hand, the worst set includes the static probability binarization rule (TFBR-
10: S-shaped, V-shaped, X-shaped, and Z-shaped x static probability), the second worst
set includes the standard binarization rule (TFBR-8: S-shaped, V-shaped, X-shaped, and
Z-shaped × standard), the third worst set also includes the static probability binarization
rule (TFBR-4: S-shaped and V-shaped × static probability), and the fourth worst set also
includes the standard binarization rule (TFBR-2: S-shaped and V-shaped × standard).

In terms of the number of actions in each set, the best sets have 8 and 16 actions.
In contrast, the sets with the most actions (TFBR-1 with 40 actions and TFBR-7 with
80 actions) are in the middle of the ranking.

Looking at these results, we can see that the binarization rule has a greater impact
than the transfer functions. Moreover, increasing the number of actions does not imply
better results.

Table 17. Ranking of the best sets considering RPD for SCA.

1. TFBR-6 4. TFBR-11 7. TFBR-9 10. TFBR-4

2. TFBR-5 5. TFBR-7 8. TFBR-3 11. TFBR-8

3. TFBR-12 6. TFBR-1 9. TFBR-2 12. TFBR-10

4.2.3. Analysis of the Results Obtained with Whale Optimization Algorithm

As can be seen in Table 9, only six sets achieved an RPD = 0, i.e., reached the known
optimum. In particular, TFBR-6 achieved this in 10 instances, TFBR-5 achieved this in
8 instances, TFBR-12 achieved this in 7 instances, TFBR-11 achieved this in 6 instances, and
TFBR-1 as well as TFBR-9 achieved this in 1 instance.

For RPD ∈ ]0, 3], only nine sets achieved fitness in this range. In particular, TFBR-5
achieved this in 32 instances, TFBR-11 achieved this in 31 instances, TFBR-6 achieved this
in 29 instances, TFBR-12 achieved this in 27 instances, TFBR-7 achieved this in 22 instances,
TFBR-9 achieved this in 21 instances, TFBR-1 achieved this in 18 instances, TFBR-2 achieved
this in 4 instances, and TFBR-3 achieved this in 1 instance.

For RPD ∈ ]3, 5], only 10 sets achieved fitness in this range. In particular, TFBR-1
achieved this in 18 instances, TFBR-7 as well as TFBR-9 achieved this in 15 instances, TFBR-
12 achieved this in 11 instances, TFBR-11 achieved this in 7 instances, TFBR-6 achieved this
in 6 instances, TFBR-5 achieved this in 5 instances, TFBR-4 achieved this in 3 instances, and
TFBR-2 as well as TFBR-3 achieved this in 1 instance.

Finally, for RPD > 5, only nine sets achieved fitness in this range. In particular, TFBR-8
as well as TFBR-10 achieved this in 45 instances, TFBR-3 achieved this in 44 instances,
TFBR-4 achieved this in 41 instances, TFBR-2 achieved this in 40 instances, TFBR-1 as
well as TFBR-7 and TFBR-9 achieved this in 8 instancesm and TFBR-11 achieved this in
1 instance.
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Table 18 shows a ranking of the best sets of actions considering only the RPD obtained.
From this table, the best set includes the roulette elitist binarization rule (TFBR-6: S-shaped
and V-shaped × roulette elitist), the second best set includes the elitist binarization rule
(TFBR-5: S-shaped and V-shaped × elitist), the third best set also includes the roulette
elitist binarization rule (TFBR-12: S-shaped, V-shaped, X-shaped, and Z-shaped × roulette
elitist), and the fourth best set also includes the elitist binarization rule (TFBR-11: S-shaped,
V-shaped, X-shaped, and Z-shaped × elitist).

On the other hand, the worst set includes the static probability binarization rule
(TFBR-10: S-shaped, V-shaped, X-shaped, and Z-shaped x static probability), the second
worst set includes the standard binarization rule (TFBR-8: S-shaped, V-shaped, X-shaped,
and Z-shaped × standard), the third worst set includes the complement binarization rule
(TFBR-3: S-shaped and V-shaped × complement), and the fourth worst set also includes
the standard binarization rule (TFBR-2: S-shaped and V-shaped × standard).

In terms of the number of actions in each set, the best sets have 8 and 16 actions.
In contrast, the sets with the most actions (TFBR-1 with 40 actions and TFBR-7 with
80 actions) are in the middle of the ranking.

Looking at these results, we can see that the binarization rule has a greater impact
than the transfer functions. Moreover, increasing the number of actions does not imply
better results.

Table 18. Ranking of the best sets considering RPD for WOA.

1. TFBR-6 4. TFBR-11 7. TFBR-7 10. TFBR-3

2. TFBR-5 5. TFBR-9 8. TFBR-4 11. TFBR-8

3. TFBR-12 6. TFBR-1 9. TFBR-2 12. TFBR-10

4.3. Convergence Analysis

In this section, a convergence analysis will be presented for each metaheuristic using
the 12 sets of actions. Figure 6 shows the 12 convergence graphs for the best execution of
the 31 performed using the grey wolf optimizer solving the scp44 instance; Figure 7 shows
the 12 convergence graphs for the best execution of the 31 performed using the sine cosine
algorithm solving the scpb2 instance; and Figure 8 shows the 12 convergence graphs for
the best execution of the 31 performed using the whale optimization algorithm solving the
scp65 instance.

For all figures, the x-axis shows the 1000 iterations run and the y-axis shows the best
fitness obtained during the optimization process.

4.3.1. Analysis of the Convergence Graphs Using Grey Wolf Optimizer

To analyze the convergence of the 12 sets applied to the GWO, the scp44 instance was
used as an example. Table 19 shows the ranking of the algorithms ordered from the best
fitness obtained to the worst fitness obtained for the scp44 instance. The global optimum
for the scp44 instance is 494.

Analyzing Figure 6e,f,i,k, we can see that the algorithms had a fast convergence but
were able to exit them and obtain better results. The sets of actions in these algorithms incor-
porate the elitist and elitist roulette binarization rules and they are the best-performing sets.

On the other hand, analyzing Figure 6b,c,h, we can see that the algorithms had slow
convergence, indicating that they explored more of the search space. The sets of actions in
these algorithms incorporate the standard and complement binarization rules and they are
the worst-performing sets.

Finally, analyzing Figure 6a,g, we can see that the algorithms had a fast convergence,
and from their behavior we can say that they fell into local optima since they did not
improve much after convergence. The sets of actions in these algorithms incorporate all of
the binarization rules.
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Table 19. Ranking of the best sets considering fitness obtained using GWO for scp44 instance.

Set— Fitness Set—Fitness Set—Fitness Set—Fitness

1. TFBR-5—496 4. TFBR-6—502 7. TFBR-1—508 10. TFBR-2—520

2. TFBR-11—499 5. TFBR-4—506 8. TFBR-9—513 11. TFBR-3—523

3. TFBR-12—501 6. TFBR-10—506 9. TFBR-7—517 12. TFBR-8—528
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Figure 6. Convergence graphs of the best execution obtained for the scp44 instance using GWO.
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With all of the above analysis we can visualize that the binarization rules have a
greater impact than the transfer functions.

4.3.2. Analysis of the Convergence Graphs Using Sine Cosine Algorithm

To analyze the convergence of the 12 sets applied to SCA, the scpb2 instance was used
as an example. Table 20 shows the ranking of the algorithms ordered from the best fitness
obtained to the worst fitness obtained for the scpb2 instance. The global optimum for the
scpb2 instance is 76.

Table 20. Ranking of the best sets considering fitness obtained using SCA for scpb2 instance.

Set— Fitness Set—Fitness Set—Fitness Set—Fitness

1. TFBR-5—76 4. TFBR-12—76 7. TFBR-9—79 10. TFBR-8—1364

2. TFBR-6—76 5. TFBR-1—79 8. TFBR-3—106 11. TFBR-4—1368

3. TFBR-11—76 6. TFBR-7—79 9. TFBR-10—1352 12. TFBR-2—1389

Analyzing Figure 7e,f,k,l, we can see that the algorithms had a fast convergence but
were able to exit them and obtained better results. The sets of actions in these algorithms
incorporate the elitist and elitist roulette binarization rules and they are the best-performing
sets, moreover, the four sets reached the global optimum.

On the other hand, analyzing Figure 7b,d,h,j, we can see that the algorithms had slow
convergence, indicating that they explored the search space. The sets of actions in these
algorithms incorporate the standard and static probability binarization rules and they are
the worst-performing sets, moreover, the four sets performed very poorly, reaching values
above 1000.

Finally, analyzing Figure 7a,g, we can see that the algorithms had a fast convergence
and from their behavior, we can say that they fell into local optima since they did not
improve much after convergence. The sets of actions in these algorithms incorporate all of
the binarization rules.

With all of the above analysis, we can visualize that the binarization rules have a
greater impact than the transfer functions.

4.3.3. Analysis of the Convergence Graphs Using Whale Optimization Algorithm

To analyze the convergence of the 12 sets applied to WOA, the scp65 instance was
used as an example. Table 21 shows the ranking of the algorithms ordered from the best
fitness obtained to the worst fitness obtained for the scp65 instance. The global optimum
for the scp65 instance is 161.

Table 21. Ranking of the best sets considering fitness obtained using WOA for scp65 instance.

Set—Fitness Set—Fitness Set—Fitness Set—Fitness

1. TFBR-6—161 4. TFBR-12—166 7. TFBR-9—171 10. TFBR-3—206

2. TFBR-5—163 5. TFBR-1—170 8. TFBR-2—185 11. TFBR-8—756

3. TFBR-11—164 6. TFBR-7—171 9. TFBR-4—196 12. TFBR-10—878

Analyzing Figure 8e,f,k,l, we can see that the algorithms had a fast convergence but
were able to exit them and obtained better results. The sets of actions in these algorithms
incorporate the elitist and elitist roulette binarization rules and they are the best-performing
sets, moreover, the TFBR-6 set reached the global optimum.

On the other hand, analyzing Figure 8c,d,h,j, we can see that the algorithms had slow
convergence, indicating that they explored the search space. The sets of actions in these
algorithms incorporate the static probability and complement binarization rules and they
are the worst-performing sets.
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Finally, analyzing Figure 8a,g, we can see that the algorithms had a fast convergence
and from their behavior, we can say that they fell into local optimum since they did not
improve much since convergence. The sets of actions in these algorithms incorporate all
binarization rules.

With all the above analysis we can visualize that the binarization rules have a greater
impact than the transfer functions.
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Figure 7. Convergence graphs of the best execution obtained for the scpb2 instance using SCA.
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Figure 8. Convergence graphs of the best execution obtained for the scp65 instance using WOA.

4.4. Exploration and Exploitation Analysis

In Section 2.4.2, Equations (24) and (25) were presented. The first one indicates the
exploration percentages of the search process and the second one indicates the exploitation
percentage of the search process. This section will analyze the evolution of the explo-
ration and exploitation percentages obtained in the best execution over the iterations in
a given instance. The latter were randomly selected among the most representative of
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the experiments conducted as it is not possible to present all of them in this document.
Nevertheless, all results and the implemented code have been made publicly available at
https://github.com/joselemusr/BSS-the-Transfer-Function-really-important, (accessed on
10 August 2023). Figure 9 shows the 12 percentage graphs using the grey wolf optimizer
solving the scp44 instance; Figure 10 shows the 12 percentage graphs using the sine cosine
algorithm solving scpb2 instance; and Figure 11 shows the 12 percentage graphs using the
whale optimization algorithm solving the scp65 instance.

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(a) TFBR-1

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(b) TFBR-2

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(c) TFBR-3

0 200 400 600 800 1000
10

20

30

40

50

60

70

80

90 % XPL
% XPLT

(d) TFBR-4

0 200 400 600 800 1000
0

20

40

60

80

100
% XPL
% XPLT

(e) TFBR-5

0 200 400 600 800 1000

20

40

60

80

% XPL
% XPLT

(f) TFBR-6

0 200 400 600 800 1000
0

20

40

60

80

100 % XPL
% XPLT

(g) TFBR-7

0 200 400 600 800 1000
0

20

40

60

80

100 % XPL
% XPLT

(h) TFBR-8

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(i) TFBR-9

0 200 400 600 800 1000

20

30

40

50

60

70

80
% XPL
% XPLT

(j) TFBR-10

0 200 400 600 800 1000
10

20

30

40

50

60

70

80

90 % XPL
% XPLT

(k) TFBR-11

0 200 400 600 800 1000

20

40

60

80

% XPL
% XPLT

(l) TFBR-12

Figure 9. Exploration–exploitation graphs of the best execution obtained for the scp44 instance
using GWO.

https://github.com/joselemusr/BSS-the-Transfer-Function-really-important
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Figure 10. Exploration–exploitation graphs of the best execution obtained for the scpb2 instance
using SCA.



Biomimetics 2023, 8, 400 39 of 47

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(a) TFBR-1

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(b) TFBR-2

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(c) TFBR-3

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(d) TFBR-4

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(e) TFBR-5

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(f) TFBR-6

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(g) TFBR-7

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(h) TFBR-8

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(i) TFBR-9

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(j) TFBR-10

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(k) TFBR-11

0 200 400 600 800 1000

0

20

40

60

80

100 % XPL
% XPLT

(l) TFBR-12

Figure 11. Exploration–exploitation graphs of the best execution obtained for the scp65 instance
using WOA.

For all figures, the x-axis shows the 1000 iterations run and the y-axis shows the
percentage obtained during the optimization process. The exploration percentage is repre-
sented by the color blue and the exploitation percentage is represented by the color orange.
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4.4.1. Analysis of the Percentage Graphs Using Grey Wolf Optimizer

The instance selected to analyze the behavior of the the grey wolf optimizer is the
same as the one selected in Section 4.3.1, i.e., the selected instance is the scp44.

Analyzing Figure 9e,f,k,l we can see that there is a good balance between exploration
and exploitation, reaching percentages close to 50%. The set of actions in these algorithms
incorporates the elitist and elitist roulette binarization rules. If we recall Table 19, these sets
have the best performance.

On the other hand, analyzing Figure 9a–c,g–i we can see that there is a bad balance
between exploration and exploitation. In particular, we can observe that the algorithms
had high exploration rates throughout the iterations. The set of actions in these algorithms
incorporates the elitist and elitist roulette binarization rules and these sets are the ones that
presented the worst results.

Finally, analyzing Figure 9d,j we can see that they have high exploitation percentages.
The set of actions in these algorithms incorporates the static probability binarization rule.
If we consider the results obtained, we can conclude that both algorithms fell into local
optima and did not have the ability to exit from it.

From the above, we can conclude that the binarization rules have a greater impact
than the transfer functions.

4.4.2. Analysis of the Percentage Graphs Using Sine Cosine Algorithm

The instance selected to analyze the behavior of the sine cosine algorithm is the same
as the one selected in Section 4.3.2, i.e., the selected instance is the scpb2.

Analyzing Figure 10e,f,k,l we can see that all four algorithms show a high percentage
of exploitation and that even only the first iteration shows some exploration. The set of
actions in these algorithms incorporates the elitist and elitist roulette binarization rules.
If we recall Table 20, these sets are the ones that had the best results, and they even reached
the known global optimum.

On the other hand, analyzing Figure 10a,b,d,g,j we can see that the algorithms do not
present a good balance between exploration and exploitation. In particular, they have a
very aggressive behavior, where in one iteration they have a high percentage of exploration
and in the next iteration they have a high percentage of exploitation. The set of actions in
these algorithms incorporates the standard, static probability binarization rules and the
algorithms incorporating all the binarization rules are present. Using the fitness values
show in Table 20, we can see that aggressive behavior leads to good results in some cases
and very good results in others.

Finally, analyzing Figure 10c,i we can see that they have high exploration percentages.
Moreover, in most iterations, the algorithms show high exploration percentages. The set of
actions in these algorithms incorporates the complement binarization rule. When reviewing
Table 20 we can see that they reach acceptable results but when reviewing Tables 12 and 13
we can see that they present a high average. This indicates that they have a stochastic
behavior, providing low confidence.

In conclusion, we can see that the binarization rules have a greater impact than the
transfer functions.

4.4.3. Analysis of the Percentage Graphs Using Whale Optimization Algorithm

The instance selected to analyze the behavior of the whale optimization algorithm is
the same as the one selected in Section 4.3.3, i.e., the selected instance is the scp65.

Analyzing Figure 11e,f,k,l we can see that all four algorithms show a high percentage
of exploitation and that even only the first iteration shows some exploration. The set of
actions in these algorithms incorporates the elitist and elitist roulette binarization rules.
If we remember Table 21, these sets are the ones that had the best results, and one of them
even reached the known global optimum.

On the other hand, analyzing Figure 11a,b,d,g,h,j we can see that the algorithms have
an aggressive behavior at the beginning and as the iterations go by they present a more
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subdued behavior. The set of actions in these algorithms incorporates the standard, static
probability binarization rules and the algorithms incorporating all the binarization rules
are present. Considering the obtained results visible in Table 21, we can conclude that the
algorithms fell into local optima and could not escape from there.

Finally, analyzing Figure 11c we can see that the algorithm presents a high exploration
behavior that slowly decreases over the iterations. However, it does not reach high exploita-
tion percentages. On the other hand, analyzing Figure 11i we can see that the algorithm has
an explorative behavior that slowly decays until it reaches an exploitative behavior. The set
of actions in these algorithms incorporates the complement binarization rule. Considering
the obtained results visible in Table 21, we can conclude that they were in local optima and
failed to intensify the search.

In conclusion, we can see that the binarization rules have a greater impact than the
transfer functions.

4.5. Statistical Test

In order to determine the best action set, the Wilcoxon–Mann–Whitney test was
applied. This is a non-parametric test [77] and it is used when the data are independent
between samples and the data do not follow a normal distribution. Both characteristics
are covered in this work since the data do not come from nature and each run performed
was carried out independently of the others. As a sample size, 31 runs were used for each
algorithm. The hypothesis used for this statistical test is the following:

H0 = Algorithm A ≥ Algorithm B

H1 = Algorithm A < Algorithm B

If the result of the statistical test has obtained a p-value < 0.05, we cannot assume that
Algorithm A has a worse performance than Algorithm B, rejecting H0.

Table 22 shows the results when comparing the 12 sets of actions applied in the grey
wolf optimizer; Table 23 shows the results when comparing the 12 action sets applied in
the sine cosine algorithm; and Table 24 show the results when comparing the 12 action sets
applied in the whale optimization algorithm. These tables are structured as follows: the
first column presents the techniques used (Algorithm A); the following columns present
the average p-values of the 45 instances compared with the version indicated in the column
title (Algorithm B); if the value of this comparison is greater than 0.05 it is presented as
“≥0.05”; when the comparison is against the same version the symbol “-” is presented; and
the values have been approximated to the second decimal place

Table 22. Average p-value of GWO compared to others algorithm.

TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6 TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

TFBR-1 - 0.00 0.00 0.00 ≥0.05 ≥0.05 ≥0.05 0.00 0.00 ≥0.05 ≥0.05 ≥0.05

TFBR-2 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05

TFBR-3 ≥0.05 0.00 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 0.00 ≥0.05 ≥0.05 ≥0.05 ≥0.05

TFBR-4 ≥0.05 0.00 0.00 - ≥0.05 ≥0.05 ≥0.05 0.00 ≥0.05 ≥0.05 ≥0.05 ≥0.05

TFBR-5 0.00 0.00 0.00 0.00 - ≥0.05 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05

TFBR-6 0.00 0.00 0.00 0.00 ≥0.05 - 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05

TFBR-7 ≥0.05 0.00 0.00 0.00 ≥0.05 ≥0.05 - 0.00 0.00 ≥0.05 ≥0.05 ≥0.05

TFBR-8 ≥0.05 0.02 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05

TFBR-9 ≥0.05 0.00 0.00 ≥0.05 ≥0.05 ≥0.05 ≥0.05 0.00 - ≥0.05 ≥0.05 ≥0.05

TFBR-10 ≥0.05 0.00 0.00 0.03 ≥0.05 ≥0.05 ≥0.05 0.00 0.00 - ≥0.05 ≥0.05

TFBR-11 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 - ≥0.05

TFBR-12 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 ≥0.05 -
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Table 23. Average p-value of SCA compared to others algorithm.

TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6 TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

TFBR-1 - 0.00 0.00 0.00 ≥0.05 ≥0.05 ≥0.05 0.00 ≥0.05 0.00 ≥0.05 ≥0.05

TFBR-2 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05

TFBR-3 ≥0.05 0.00 - 0.00 ≥0.05 ≥0.05 ≥0.05 0.00 ≥0.05 0.00 ≥0.05 ≥0.05

TFBR-4 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05

TFBR-5 0.00 0.00 0.00 0.00 - ≥0.05 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05

TFBR-6 0.00 0.00 0.00 0.00 ≥0.05 - 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05

TFBR-7 ≥0.05 0.00 0.00 0.00 ≥0.05 ≥0.05 - 0.00 ≥0.05 0.00 ≥0.05 ≥0.05

TFBR-8 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05

TFBR-9 ≥0.05 0.00 0.00 0.00 ≥0.05 ≥0.05 ≥0.05 0.00 - 0.00 ≥0.05 ≥0.05

TFBR-10 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05

TFBR-11 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 - ≥0.05

TFBR-12 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 ≥0.05 -

Table 24. Average p-value of WOA compared to others algorithm.

TFBR-1 TFBR-2 TFBR-3 TFBR-4 TFBR-5 TFBR-6 TFBR-7 TFBR-8 TFBR-9 TFBR-10 TFBR-11 TFBR-12

TFBR-1 - 0.00 0.00 0.00 ≥0.05 ≥0.05 ≥0.05 0.00 ≥0.05 0.00 ≥0.05 ≥0.05

TFBR-2 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 0.00 ≥0.05 0.00 ≥0.05 ≥0.05

TFBR-3 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05 0.00 ≥0.05 0.00 ≥0.05 ≥0.05

TFBR-4 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 0.00 ≥0.05 0.00 ≥0.05 ≥0.05

TFBR-5 0.00 0.00 0.00 0.00 - ≥0.05 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05

TFBR-6 0.00 0.00 0.00 0.00 ≥0.05 - 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05

TFBR-7 ≥0.05 0.00 0.00 0.00 ≥0.05 ≥0.05 - 0.00 ≥0.05 0.00 ≥0.05 ≥0.05

TFBR-8 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05 ≥0.05 ≥0.05

TFBR-9 ≥0.05 0.00 0.00 0.00 ≥0.05 ≥0.05 ≥0.05 0.00 - 0.00 ≥0.05 ≥0.05

TFBR-10 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 ≥0.05 - ≥0.05 ≥0.05

TFBR-11 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 - ≥0.05

TFBR-12 0.00 0.00 0.00 0.00 ≥0.05 ≥0.05 0.00 0.00 0.00 0.00 ≥0.05 -

Analyzing the above three tables we can see that TFBR-5, TFBR-6, TFBR-11, and
TFBR-12 were statistically better than TFBR-1, TFBR-2, TFBR-3, TFBR-4, TFBR-8, TFBR-9,
and TFBR-10.

If we recall Table 5, the TFBR-5 and TFBR-11 sets incorporate the elitist binarization
rule and their only difference is that the first set is made up of S-shaped and V-shaped
transfer functions while the second set is made up of S-shaped, V-shaped, X-shaped, and
Z-shaped transfer functions. On the other hand, the TFBR-6 and TFBR-12 sets incorporate
the elitist roulette binarization rule and their only difference is that the first set is made up
of the S-shaped and V-shaped transfer functions while the second set is made up of the
S-shaped, V-shaped, X-shaped, and Z-shaped transfer functions.

These four sets are statistically better than the sets that incorporate the standard,
complement, and static probability binarization rules. Moreover, they are better than those
sets where all binarization rules are incorporated.

The fifth and sixth best sets are TFBR-1 and TFBR-7, which are those that include
all the binarization rules and their only difference is that the first set is made up of the
S-shaped and V-shaped transfer functions while the second set is made up of the S-shaped,
V-shaped, X-shaped, and Z-shaped transfer functions.

With this in mind, we can observe that the best sets incorporate at least the elitist
binarization rule or elitist roulette binarization rule. From this, we can conclude that the
binarization rules have a greater impact than the transfer functions.
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Table 25 shows the ranking of the sets by metaheuristic taking into account the sta-
tistical test applied. For each metaheuristic we have two columns, the first one refers to
the name of the set and the second column refers to the number of times when the set was
better than others. It is understood as a winning set when the comparison between them
indicates a p-value lower than 0.05.

Table 25. Ranking of the best set based on the statistical test.

GWO SCA WOA

set Win set Win set Win

1. TFBR-5 8 1. TFBR-5 8 1. TFBR-5 8

2. TFBR-6 8 2. TFBR-6 8 2. TFBR-6 8

3. TFBR-11 8 3. TFBR-11 8 3. TFBR-11 8

4. TFBR-12 8 4. TFBR-12 8 4. TFBR-12 8

5. TFBR-1 5 5. TFBR-1 5 5. TFBR-1 5

6. TFBR-7 5 6. TFBR-7 5 6. TFBR-7 5

7. TFBR-10 5 7. TFBR-9 5 7. TFBR-9 5

8. TFBR-4 3 8. TFBR-3 4 8. TFBR-2 2

9. TFBR-9 3 9. TFBR-2 0 9. TFBR-3 2

10. TFBR-3 2 10. TFBR-4 0 10. TFBR-4 2

11. TFBR-8 1 11. TFBR-8 0 11. TFBR-8 0

12. TFBR-2 0 12. TFBR-10 0 12. TFBR-10 0

4.6. Summary of the Analysis

In Section 3, we presented two research questions which were as follows.

(1) Which will have more impact on binarization, the transfer function or the binariza-
tion rule?

(2) Will the binarization schemes selector work better with more actions?

If we analyze Table 25, we can see that for the three metaheuristics used in the research
the best sets of actions are shown in Table 26.

Table 26. Best sets of actions.

Set of Actions

Set ID Transfer Functions Binarization Rules Amount of actions

TFBR-5 S-shaped and V-shaped Elitist 8

TFBR-6 S-shaped and V-shaped Roulette Elitist 8

TFBR-11 S-shaped, V-shaped, X-shaped, and Z-shaped Elitist 16

TFBR-12 S-shaped, V-shaped, X-shaped, and Z-shaped Roulette Elitist 16

As can be seen in Table 26, the best action sets are composed of the elitist binarization
rule and the elitist roulette binarization rule. Therefore, we can conclude that the bina-
rization rules have a greater impact than the transfer functions and that the intelligent
binarization scheme selector does not perform better by incorporating more actions.

5. Conclusions and Outlook

Continuous metaheuristics are a class of evolutionary algorithms that are used to solve
combinatorial problems. This makes them a powerful tool for solving binary problems,
as they can efficiently explore a large number of possible solutions. However, it is necessary



Biomimetics 2023, 8, 400 44 of 47

to incorporate intermediate steps to convert continuous solutions to a binary domain. These
techniques are also capable of avoiding falling into local optima and finding high-quality
solutions in problems with a large number of variables. This work has important impli-
cations in industry, as the set covering problem is a key problem in many applications,
such as production, logistics, project planning, and resource allocation. Using MH opti-
mization techniques to tackle this problem helps to improve efficiency and reduce costs.
Additionally, the proposed approach in this work allows for selecting the best combination
of binarization rules and transfer functions for a given problem instance, leading to even
better performance.

A proposal is presented to improve the performance of metaheuristic optimization
algorithms by using differentiated sets of actions. These sets of actions are composed of
combinations of binarization rules and transfer functions. Twelve different sets of actions
were proposed and applied to three different metaheuristic optimization algorithms: grey
wolf optimizer, sine cosine algorithm, and whale optimization algorithm. These algorithms
were applied to 45 different instances of the set covering problem.

The experimental results showed that the sets of actions that incorporate at least one
elitist or elitist roulette binarization rule are the best, as they obtained the best results in
terms of fitness and were statistically superior to the other sets of actions. Furthermore, it
was found that binarization rules have a greater impact on the performance of metaheuristic
algorithms than transfer functions. This work has demonstrated the importance of solving
combinatorial binary problems using continuous metaheuristic techniques. Through the
proposal that selects among a set of actions based on a reinforcement learning technique, it
has been possible to improve the results obtained using traditional techniques. Additionally,
it has been demonstrated that the elitist and elitist roulette binarization schemes are the
most effective compared to the standard, complementary, and static probability schemes.
This work opens a new line of research to improve the resolution of combinatorial binary
problems using continuous metaheuristic techniques and their hybridization with machine
learning techniques.

Conclusively, this study transcends conventional research on the binarization of con-
tinuous metaheuristics by not only providing a deeper understanding of this fundamental
process but also by pioneering innovative approaches hitherto unexplored in the literature.
Through a comprehensive and comparative analysis, we have tangibly illustrated how
the judicious selection of transfer functions can make a substantial difference in the effec-
tiveness and precision of binarization in the context of metaheuristics. These distinctively
pinpoint contributions establish this study as a prominent reference in the research of this
discipline, underscoring its significance in the optimization of continuous algorithms.

Future work could investigate how to use these optimization techniques on coverage
problems with additional constraints, such as time or capacity constraints. It would also
be interesting to investigate how these techniques behave with other algorithms, such as
genetic algorithms and knowledge-based algorithms. Additionally, it would be important
to investigate how these optimization techniques can be adapted to real-time coverage
problems and how they can be integrated with existing automation systems in industry.
In general, this work provides a solid foundation for future research in this area and
demonstrates the importance of using optimization techniques in coverage problems.
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