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Abstract: The ability to navigate effectively in a rich and complex world is crucial for the survival of
all animals. Specialist neural structures have evolved that are implicated in facilitating this ability,
one such structure being the ring attractor network. In this study, we model a trio of Spiking Neural
Network (SNN) ring attractors as part of a bio-inspired navigation system to maintain an internal
estimate of planar translation of an artificial agent. This estimate is dynamically calibrated using a
memory recall system of landmark-free allotheic multisensory experiences. We demonstrate that the
SNN-based ring attractor system can accurately model motion through 2D space by integrating ideo-
thetic velocity information and use recalled allothetic experiences as a positive corrective mechanism.
This SNN based navigation system has potential for use in mobile robotics applications where power
supply is limited and external sensory information is intermittent or unreliable.
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1. Introduction

To sense and act upon the world in an adaptive way, the brain must model the relevant
dynamics of the world, enabling itself to anticipate and proactively engage with events,
rather than being restricted to a loop of stimulus-response. This is aided by implicit neural
structures with dynamics that reflect some of the physical properties inferred from the
external world. One system in particular that is common across many species and genera
is the ring attractor. Found as physical rings of neurons in flies and locusts [1] and virtual
rings in mammals [2,3], this neural structure allows for the direct modelling of a cyclic
physical variable—for example head direction—that can accept contributions from multiple
information sources whilst obeying physical constraints.

Physically-constrained problem spaces ensure the responses of an organism account
for its physical capabilities, particularly its limited repertoire of sensory and motor systems,
and its inability to act instantaneously. Examples of problem spaces that are intrinsically
physical include episodic memory (reconstructing a linear event narrative from memory
snapshots), communication (be it with speech, gesture or dance) and moving purposefully
from place to place within the world; the domain of navigation.

Extensively studied in both biology and robotics, it has long been established that
two of the key tasks of navigation—building a representation of the environment, and
locating oneself within that environment—must be solved simultaneously, an approach
popularly referred to in robotics as Simultaneous Localisation and Mapping (SLAM) [4].
Typical state-of-the-art SLAM algorithms use a variety of proven techniques, be it finding
key-points in a visual scene [5], building graphs relating visited locations [6], and include
techniques like dead-reckoning to move through areas with limited sensory richness [7].
Robotic SLAM algorithms make use a variety of sensors, including cameras, LIDAR and
GPS signals. Bio-inspired and bio-plausible approaches have also been proposed and
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evaluated [8–10], often with the intention of leveraging the robustness and power efficiency
of spiking hardware.

Whilst mobile robots need to be able to navigate effectively, they must also work within
the constraints of their designs, particularly in regards to their power source. SLAM systems
can be notoriously power-hungry, particularly when LIDAR sensors are required [11],
whereas the human brain, a capable and robust navigation system, requires a mere 20 Watts
of power [12]. This motivates a biomimetic approach to designing navigation systems
for power-efficient mobile robots, inspired by neuroscience and able to take advantage of
recently available neuromorphic hardware [13].

Within mammalian neuroscience the entorhinal cortex has been implicated as an im-
portant region of the brain that supports spatial navigation. Neurons within the entorhinal
cortex exhibit activity patterns that are strongly correlated with the movement of the ani-
mal. These so-called Grid Cells maintain firing fields that are best described as triangular,
repeating ‘tessellations’ across local space [14,15]. The entorhinal cortex hosts a variety
of these activity patterns, with Grid Cell populations that have firing fields recurring at
varying frequencies and each cell within that population representing a different subset
of locations. Collectively, they are thought to form a metric representation for resolving
problems with a structured spatial component; typically navigation in physical space,
though there is evidence that Grid Cell-like activity is useful for ‘navigation’ in similarly
structured, physical-analogous spaces, such as trees and relational graphs [16], as well as
being found in brain regions far from the entorhinal-hippocampal complex [17].

A popular computational model of Grid Cell activity involves the so-called Twisted
Torus model proposed by Guanella et al. [18]. Here, a population of neurons describe a
conceptual 2D surface that forms an offset torus topology, closed in all directions; a kind of
neural ‘Pac-Man space’. This space is realised via excitatory connections whose synaptic
strengths encode a virtual distance between cells, with virtual neighbours having strong
connections and virtually distant cells having weaker connections. Inhibitory influence can
either be global, or follow the opposite rule to that of the excitatory connections; neighbours
inhibit each other proportional to their ‘distance’.

This contrasts with the Oscillatory Interference model, whereby interference patterns
between three intersecting theta waves can produce periodic firing fields [19,20]. Despite
its elegance, it had been disregarded as a mechanism in part due to the lack of recorded
theta rhythms in bats [21]. However, despite the absence of continual theta rhythms in bats,
they do show activity in the theta band during navigation-relevant actions, such as active
exploration of the environment through echolocation [22]. Furthermore, the presence of 3D
place fields in bats [23] casts further doubt on the ‘all-in-one’ solution of the Twisted Torus,
as the topology (connectome) would need to become even more complex. To represent
3D space using multiple ring attractor networks, as underlies the Oscillation interference
model, would simply require the integration of additional ring attractors [24].

An early example of a biomimetic approach to robotic navigation is found in Milford’s
RatSLAM algorithm [25]. Taking inspiration from the rodent entorhinal cortex, it models
the robot’s 2D location (x, y) and head direction (θ) as an attractor state on a non-Euclidean,
wrap-around 3D manifold. Odometry information is converted into velocity inputs that
perturb the attractor state in proportion to how the robot moves. With all integral dead-
reckoning mechanisms, the noise inherent in the velocity measurements accumulates,
causing drift in the estimate over time. External sensory information that is anchored to an
assumed static world can be used to correct for this drift by making the further assumption
that drift earlier in the run is lower than later. This means that external sensory scenes
observed in early ‘low-drift’ regions of an exploratory venture can be used to correct for
drift in the dead-reckoning system when the robot later encounters the same scene. This
implies the use of a memory system, which in RatSLAM is called the View Cell memory.

We place our model firmly in this arena, relying on the known existence of physical
ring structures in invertebrate brains [1], neural homologies in the form of virtual rings
in mammalian brains [2,3], and existing models showing the viability of periodic and
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ring-like structures in creating grid codes [19,20,24]. We forgo the explicit modelling of
theta rhythms, including phase precession, in favour of focusing purely on navigation tasks
and the use of realistic allothetic sensory cues in correcting for drift.

To collect this sensory data, we used the WhiskEye robot which was built to mimic
whiskered mammals and equipped with both visual (cameras) and tactile (whiskers)
sensors [26]. As seen in Figure 1, WhiskEye has been replicated in simulation and put
within rich virtual environments, enabling the swift gathering of large visuo-tactile datasets
using a model of tactile attention [27] to explore autonomously. These datasets have
been used as training data for a Predictive Coding Network (PCN), a generative machine
learning model that creates multisensory, entangled representations from two or more
sensory modality streams. Further multisensory test sets can then be presented to the
network and the generated representations gathered alongside odometry data, which is
subsampled to find the position and orientation of the robot where the corresponding
multisensory samples were captured. This gives a ground truth trajectory of (x, y, θ) poses
and the corresponding sensory ‘experience’ at each pose [28].

Figure 1. WhiskEye is a biomimetic robot platform that mimics the sensory systems and behaviour
of rats and shrews. It has been recreated in simulation along with rich visuo-tactile environments. Ex-
ploring these environments autonomously, it gathers multisensory datasets along with odometry data
describing its trajectory. These ‘experiences’ of the environment are later used as corrective inputs.

In this study, we design a spiking neural network (SNN) model to track this trajectory.
This takes the form of three SNN ring attractors, each integrating motion with respect to a
principal axis and linked together by a population of Grid Cells. The ring state is mapped
to conventional 2D Cartesian coordinates to give (x̂, ŷ) estimates that can be compared to
the ground truth trajectory. We demonstrate that this system can maintain an estimate of
position that tracks the robot trajectory, can use multisensory experiences to correct for
drift in this estimate and can do so at varying levels of power consumption. We also show
that apportioning corrective input relative to the system’s confidence in its corrections has
a positive effect on reducing drift. Lastly, we compare the performance of using visual,
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tactile and multisensory experiences as corrective inputs and demonstrate that the system
is resilient to extraneous sensory modalities.

2. Materials and Methods
2.1. Ring Attractor Model

The Ring Attractors are modelled in NEST 2.18 [29], using an architecture based on
prior models of the head direction system [30]. This involves an Excitatory Cell population
to model the ring state, tracking one component of the trajectory; an Inhibitory Cell
population to regulate the attractor dynamics, ensuring a unitary locus of activity within
the ring; and two populations (+/−) of Conjunctive Cells, encoding incoming velocities
by spiking proportional to the velocity vector’s alignment (+) or anti-alignment (−) to a
particular ‘principal’ axis. Figure 2A shows how these cells are connected to form the ring
structure. Preliminary work has suggested that three rings with principal axes offset 60◦

from each other can produce Grid Cell-like firing patterns (Figure 2B), thus being able to
track position in a 2D plane. Further details of this model are discussed below.

Figure 2. (A) The ring model is composed of repeating units of Excitatory, Inhibitory and Conjunctive
Cells that work together to integrate an input into a unitary ring state. (B) A single ring integrating
a component of a trajectory (blue trace, from [15]) will have its Excitatory Cells spike (orange) in
regular intervals along an axis, similar to recorded Stripe Cells [31]. A cell taking input from three
rings, each integrating a different component of the same trajectory, produces Grid Cell-like firing
patterns, suggesting that three rings are collectively able to track position in a 2D plane.

2.1.1. Direct Inhibition of Conjunctive Input

Self-motion velocity inputs to the ring attractors are governed by Conjunctive Cells [15].
In the original head direction ring attractor model they were co-excited by both the excita-
tory manifold ‘below’, and by incoming angular velocity signals. Each excitatory neuron
had two associated Conjunctive Cells, each of which is sensitive to either positive or nega-
tive angular velocity. Careful weight selection enabled them to act as a neural AND gate,
contributing velocity signals only around the location of the attractor state, or activity
’bump’ as is often referred. Thus, inputs can only move the bump to adjacent cells, forcing
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the bump to sequentially traverse each adjacent neuron to reach a new resting state. This
constraint grounds the ring attractor’s behaviour in the physical reality of head movement.

The problem we found in using this approach was that the maximum firing rate of
the Conjunctive Cells was determined by the firing rate of the underlying Excitatory Cells,
as they made the largest contribution to their activity. A better solution would be for the
opposite to be true, whereby the firing rate of the Conjunctive Cells, and therefore change
in the ring attractor state, would be predominantly proportional to incoming velocities.

To address this, the Inhibitory Cells were connected to the Conjunctive Layer with
the same distance-dependent relationship as previous, replacing the direct Inhibitory-
Excitatory connections. This directly inhibited most input to the network except for a small
‘window’ of non-inhibition above the ‘bump’. Inhibiting the input rather than Excitatory
activity meant that the Conjunctive Cells could fire faster than their downstream Excitatory
Cells, ensuring that rapid increases in velocity could be more accurately represented by a
proportional increase in spike rate across a wider range.

However, this approach meant that the ring was entirely dependent on incoming
velocity inputs to maintain its attractor state; a velocity of 0 m s−1 would cause the bump
to collapse. Clearly, it would be detrimental to lose path integration state every time the
animal stops, which suggests that the ring attractor requires a ‘floor’ of constant velocity
input to maintain its activity pattern. Recordings in vivo support this; cells that display
Conjunctive Cell-like activity show a rate of spiking that, though proportional to velocity,
does not diminish entirely when the animal is at rest [32]. This forms one half of the
inspiration for the development of antagonistic input signals discussed in Section 2.1.2.

2.1.2. Antagonistic Input Signals

One of the main causes of drift in the ring attractor came from rapid changes in
velocity, particularly those that involve a change in direction. This change was resisted by
the effective inertia of the bump making it difficult to represent some patterns of movement;
the dynamics of the ring attractor not matching the dynamics of the agent’s movement.
To help overcome this, an antagonistic mechanism was added to the input system:

• At rest, a baseline level of excitability is provided, with each Conjunctive population
trying to push the bump left or right with equal intensity. This holds the bump ‘in
tension’; ready to move, yet in balance.

• Changes in incoming velocity proportionally increase input to the population associ-
ated with its sign, with a equal and proportional reduction to the opposing population.
Baseline input is increased proportional to velocity magnitude; speed coding [15].

• When a change in velocity direction occurs, the respective Conjunctive Cells are
already close to the required spike rate to accurately convey the velocity information
to the bump and induce appropriate movement.

This leads to the following calculation of the Conjunctive Cell inputs:

Cmin ∈ R+

Vmag = ||∆X(t), ∆Y(t)||
Vang = cos(atan2(∆Y(t), ∆X(t)))

V+
mag = {|v| ∈ Vmag : Vmag > 0 else 0}

V−mag = {|v| ∈ Vmag : Vmag < 0 else 0}

C+
o = Vmag −V+

mag

C−o = Vmag −V−mag
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C+ = Vmag + Cmin + V+
mag + C−o

C− = Vmag + Cmin + V−mag + C+
o

where ∆X and ∆Y are N-by-1 matrices (arrays) of the agent’s velocity in the environment,
Cmin is the minimum velocity input, C+ and C− are the positive and negative conjunctive
velocity inputs and C+

o and C−o are the opposites thereof. In this case, the opposite of C is
its additive inverse, element-wise, such that a velocity of +2 would become −2 etc. This
makes V+

mag the set of all elements that are positive, with 0 replacing negative elements;
V−mag is the opposite case, retaining negative elements only. This ensures that the V+

mag
and V−mag vectors retain the same length as their parent Vmag. Taking the absolute for
each v ensures they can be used equivalently in later steps. A velocity of 0 m s−1 at any
point leaves only the baseline Cmin to maintain the bump’s memory and allow for smooth
integration of future nonzero velocities.

2.1.3. Multiple Rings for Multiple Components

Grid Cells were first recorded in vivo within the entorhinal cortex of foraging rats [14].
Grid Cell firing fields tessellate the environment in a triangular pattern and are thought
to contribute to navigational tasks, particularly to path integration [33]. Path integration
appears to be computed by Stripe Cells [34], tracking movement along 3 axes offset at
60 degrees from each other.

Inspired by prior models, such as Kovacs [35], Horiuchi and Moss [24] and Burgess [36],
we have built a 3-ring attractor system to model path integration using spiking neurons
as media. Each unique combination of neurons between the three rings is connected to a
Grid Cell, that will fire maximally when the activity bump of all three rings is centred on
its connected ring neurons (see: Figure 2B for an illustration). This accommodates both the
repeating nature of both Stripe and Grid Cells, implying a periodicity in their underlying
substrate, and the known capability of biological neurons to form ring attractors.

In our model, each ring attractor is sensitive to a component of velocity with their
principal axes at 0, +60, and +120 degrees offset from a globally anchored reference axis.
Work by Mhatre et al. [34] has already shown how Spike Timing-Dependent Plasticity can
lead to the emergence of Stripe Cells adopting this 60 degree offset from each other; we
take this for granted and build our model with this relationship already established.

Parameters were hand-tuned to reflect the dynamics of the robot’s motion until the
‘bump’ was both stable at rest and moved smoothly to track velocity changes. Tuning
was conducted through a piecewise simulation process, running the ring attractors for
small timesteps, gathering data and viewing visualised activity of the three rings. This
was combined with a view of the ground truth trajectory, plus the estimated trajectory
from the ring activity, after unwrapping and transformation to the Cartesian coordinate
system. An example of this visualisation is given in Figure 3. Note that the ground truth
data was taken from simulation and thus has no noise by default; this is added post-hoc, as
discussed in Section 2.6.

2.2. Predictive Coding Network

Derived from Dora et al. [37] and used to build representations for place recogni-
tion [28] and correct for drift in a head direction network [30], the MultiPredNet is a
Predictive Coding Network (PCN) written in Tensorflow [38] that learns generative multi-
sensory representations to predict its inputs across multiple modalities (vision and tactile).
The PCN can also be run with one or more sensory streams disabled; the network will
only encode information from active sensory streams, thereby enabling the generation of
single-modality visual or tactile representations.

The PCN demonstrates that by training to predict incoming sensory inputs alone,
representations suitable for place recognition can be learned. Indeed, separating incoming
sensory inputs well necessitates the understanding that they occur under different con-
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ditions. As the environment explored is static, this leads to the robot’s own location and
orientation being the primary factors that determine the nature of its sensory experience.

Figure 3. An example of the visualisation used for the ring tuning and evaluation process, with
ring principle axes being aligned to 0◦, 60◦ and 120◦ offsets from the reference axis as described in
Section 2.1.3. Polar plots represent the three ring attractors with ring activity composed of spikes
gathered over a 100 ms window, with their unitary activity bumps clearly visible. Trajectory plots
show the ground truth trajectory the rings are trying to track, with the Cartesian transformation
of the ring states overlaid as per Section 2.3.1. The error plot shows the cumulative error of the
uncorrected and corrected ring attractor estimates, with each timestamp representing 20 ms of
simulation time. An animated version of this figure is provided at https://github.com/TomKnowles1
994/Biomimetics-Ring-Attractors.

2.3. Associative Memory

To provide the ability to remember prior experiences, detect loop closures, and gener-
ate corrective signals to the ring attractors, we have built a dynamically allocated associative
memory system inspired by RatSLAM [25] and developed from prior work [28]. This mem-
ory system takes as input the upper, multisensory latent layer of the PCN as the signature of
an experience. Each incoming experience is then compared to all other previous experiences
using Pearson correlation, where if the correlation between it and at least one existing expe-
rience is above a threshold (0.8) then the closest ‘memory’ is recalled. If however, the new
experience’s correlation is below the threshold for all existing experiences—guaranteed if it
is the first experience—then it is added to the collection of stored memories.

Each experience stored in memory not only holds the signature created by the PCN
but also the current state of each ring attractor, that is, the location on the ring with the
highest spike rate at that time. Upon a successful recall event, current will be injected into
the 3 ring attractors at the stored targets, thereby adjusting the activity in each attractor
towards the remembered state associated with that memory.

2.3.1. Deriving Position from Ring Attractor State

Unwrapping the ring states causes them to act as pseudo-axes of a 3-value, planar
coordinate system. The location in ’ring space’ can be transformed into Cartesian space by
projecting perpendicular from each ring and finding the point at which these projections

https://github.com/TomKnowles1994/Biomimetics-Ring-Attractors
https://github.com/TomKnowles1994/Biomimetics-Ring-Attractors
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intersect. Once converted to Cartesian coordinates, the predicted agent location can be
compared to the ground truth odometry data, enabling the performance of the ring system
to be evaluated. The current model represents a spatial area of roughly 1.3 m2; all trajectories
in this study stay within these bounds, meaning each ring state represents a unique location
and does not require disambiguation with multiple spatial scales. This allows for the
comparison of ring attractor state to ground truth trajectory as shown in Figure 3.

2.4. Compensating for Drift in the System

The ring attractor system models a given trajectory faithfully in the initial leg of the
journey. However, relying on the integration of velocity changes alone leads to drift over
time, a problem shared by all inertial navigation systems. Fortunately, the idiothetic navi-
gation system represented by the rings need only be relied upon exclusively in conditions
with poor access to familiar distal allothetic cues (be they visual, tactile, olfactory etc.)
or when clear proximal cues (such as for determining translocation via optic flow) aren’t
available. These condition are rarely long term and some form of external cue or memory
trace will usually be available, even if only intermittently, to provide a known reference
point that can be used to compensate for drift. This can be done by associating each stored
memory with the current state of the idiothetic system (in this case, the ring state) and
’nudging’ the rings back toward that state upon recall.

To represent external corrective input from other brain areas, step current generators
were connected to the rings. 3 rings of 120 neurons each gives a total of 1203 = 1,728,000 com-
binations of cells. To apply corrections faithfully to the rings, 1,728,000 separate injectors
would be needed, which is infeasible both in terms of simulation size and neurophysiology.
To reduce this complexity, we add in ‘Arc Cells’ that act as hubs for down-scaling the
underlying ring activity, both for reading from the ring—to provide the ring estimate to
downstream areas—and corrective injections, connecting across an exclusive patch of cells
on the ring. To be clear, we are not predicting or assuming these cells exist in the entorhinal
cortex; rather the influence of these Arc Cells would likely be realised as branches on the
axonal or dendritic arbours of connecting cells. We choose to represent them as cells in
NEST for ease of simulation. With 10 Arc Cells per ring the number of injection sites reduces
to 1728, striking a balance between precision of correction and simulation resources.

In prior work [28], robot trajectories were gathered and sensory data, both visual
(camera images) and tactile (whisker deflection values) data were fed to a predictive coding
network (PCN). This PCN learned to abstract the two sensory streams into a compressed,
100-dimensional multisensory representation, for the purposes of predicting future sensory
data in either stream. This representation also acts as a useful ‘signature’ of a multisensory
experience, similar to the use of image signatures in RatSLAM. The metric of choice to
compare memories is Pearson’s Product Moment Correlation Coefficient (PPMCC), as there
has already been established a statistically significant positive correlation between the
PPMCC of two representations and their distance in physical space [28].

As a corrective mechanism, these multisensory experiences can be stored alongside
the current most active Arc Cell from each ring; the idiothetic coordinates of the experience.
These can be stored as a combined ‘memory’ that can later be compared to other sensory
experiences. When the current experience closely matches a stored memory, this suggests
that the robot has returned to a location close to where it was previously. The ring state of
that memory can then be used to adjust the current ring states, pulling their activity closer
to where it was during the recalled memory. Figure 3 illustrates these injections taking
place throughout the run and their effect on the rings’ collective position estimate.

2.5. Variable Power Consumption

Spiking neural networks (SNNs) are uniquely suited to robotic applications, tending to
communicate sparsely and with low power requirements. This has lead to the development
of neuromorphic computing devices [13], providing a target platform for these networks.
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Mobile devices, particularly those that require robustness and longevity in the field, would
benefit enormously from the inherent redundancy and power efficiency of SNNs.

Further to this, a system such as a ring attractor model requires a minimum amount of
energy to maintain ring activity, but beyond that, its performance will vary depending on
the overall spike activity of the network—therefore the energy consumption—permitted.
To evaluate this in this study, numerous trials of the system were conducted, varying the
baseline amount of power provided to the rings.

2.6. Introducing Variance

The default model is entirely deterministic and has no stochastic components. To in-
troduce variability between trials, the initial membrane potential of each neuron was
randomised, and the velocity input varied by a small random value per timestep; for
details, see Table 1. Each network was run 100 times with all seeds incremented by 1 after
each run, with the exception of the Power Consumption experiment which was run 10 times
per power value (4500 total). The Master Seed is used by NEST’s internal Lagged Fibonacci
Generator [39], whereas the Membrane and Trajectory seeds are used by Numpy’s default
Random Number Generator (PCG-64) [40], modifying the starting membrane potential and
velocity inputs respectively. This process ensures that the model is robust to variation in
the trajectory and does not rely on having a particular initial state. The datasets generated
by this process are provided at https://github.com/TomKnowles1994/Biomimetics-Ring-
Attractors.

Table 1. The parameters for the Random Number Generators used in the simulations. After each
condition was tested for its requisite number of runs, the seed would be reset to its Seed Start value.

RNG Seed Start Distribution Mean Variance

Master 9032867582 - - -
Membrane 2390786556 Uniform - [−70, +55]
Trajectory 6983476394 Normal 0 0.1

2.7. Confidence

Using Pearson correlation to test the similarity of experiences also gives a continuous
value that can represent the confidence of the system in that particular recall. This can
be used as a scaling factor when applying corrective input; the rationale being that, if the
current experience perfectly matches a past experience, the ring attractor state should be
corrected maximally, as any deviation from the recalled state is assumed to be drift. For a
less closely matching (but still above-threshold) recall, the correction will be proportionally
weighted, as some of the deviation present may not be drift but representing an actual
difference in current position from the recalled state.

2.8. Influence of Allothetic Sensory Modality

The relative contribution of visual and tactile features in the environment was also
investigated. The network was run for 100 trials each for both visual and tactile corrections.
These were then compared to the original (multisensory) corrected run and the uncorrected
run, to see if lone modalities can improve network performance, how the performance
compared to multisensory corrections and how visual corrections compare to tactile.

3. Results
3.1. Spiking Ring Attractors Can Track Position

Once unwrapped and converted into Cartesian coordinates, as discussed in Section 2.3.1,
the ring values provide an estimate of the agent’s position. This permits comparison to the
ground truth position and the measuring of performance. The rings adjust this estimate
consistently with incoming changes in velocity, even when corrective influences are not
provided. However this estimate is subject to drift over time, with the estimated position
deviating considerably by the end of the trajectory.

https://github.com/TomKnowles1994/Biomimetics-Ring-Attractors
https://github.com/TomKnowles1994/Biomimetics-Ring-Attractors
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3.2. Spiking Ring Attractors Benefit from Corrective Input

Using earlier memories of both the environment and the ring state can correct drift
in the ring state and thus improve the accuracy of location estimate. Extensive testing
found that the optimal corrective input strength was 450 pA and the optimal corrective
input duration was 500 ms. Smaller, shorter current injections failed to influence the ring
state proportional to velocity inputs, whereas larger, longer injections would disrupt bump
stability. Applying these corrections lead to a significant drop in error across the run, as
seen in Figure 4.

Corrected vs. Uncorrected

Correction Type Grand Mean Error F-statistic p-Value Significant?

No Scaling 0.1131 64.8437 7.4196× 10−14 Yes
With Scaling 0.0996 321.6570 2.3431× 10−43 Yes
Uncorrected 0.1276 - - -

Scaling vs. No Scaling

Correction Type Grand Mean Error F-statistic p-Value Significant?

With Scaling 0.0996 33.2804 3.0343× 10−08 Yes
No Scaling 0.1131 - - -

Figure 4. The effect of ‘confidence scaling’ the injected currents on mean error. When enabled, the
injected current will be proportional to the Pearson’s Correlation between the incoming sensory view
and best-matching recalled memory. F-statistic and p-value taken from an F-test (n = 100, α = 0.05).
Cmin was set to 2700.

3.3. Higher Power Consumption Reduces Error

The stability of the ring activity and the consistency of its position estimate is pro-
portional to the amount of energy used to maintain it, with a robust, graceful decline in
performance as current is reduced. Similarly, a larger energy input results in more spikes
per unit time which can both excite and inhibit the network, such that it more faithfully
describes the trajectory of the robot. This comes with 3 caveats:

• A certain amount of current is required to establish the attractor dynamics and generate
any bump at all; currents below this fall into the ‘dead zone’

• The error declines proportional to input current for a certain range of values only
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• Past a certain value, extra input current has an inconsistent effect on performance

The dead zone arises due to the dependence of the ring attractors on their conjunctive
input; below a certain threshold (approximately 500 pA), too few spikes are generated
to overcome the latent inhibition in the network. The increase in performance is due to
increased responsiveness of the conjunctive cells; with a higher baseline input provided to
both populations, the bump activity is better able to represent large accelerations and thus
more faithfully model the robot’s motion. However, a too high baseline input disrupts the
ring attractor dynamics through over-excitation. The ring system was run for 10 trials for each
input current value, incremented by 10 pA each time. This demonstrates the reliability of the
effect across different runs and current values, preserving the accuracy-power relationship
despite the variance discussed in Section 2.6. Full results are shown in Figure 5.

Figure 5. The effect of varying baseline current input Cmin, a proxy for power consumption, on
mean error. Test values increment by 10 pA with 10 runs conducted for each value. Error is given as
the cumulative Euclidean distance between the ground truth trajectory and the corresponding ring
state-estimated trajectory. The dead zone represents no activity in the ring, due to a lack of sufficient
input current. Confidence Scaling applied as per Section 3.4.

3.4. Correction Intensity as a Proxy for Confidence

As the strength of recall is variable between recall events, it leads naturally to the
question as to whether making corrections proportional in intensity to this recall strength
would effect the ability of corrective inputs to compensate for drift. Figure 4 shows how
scaling the amount of current by the recall strength leads to a better corrective input and
therefore further reduced drift.

3.5. Sensory Modality of Memories Affects Corrective Performance

Using visual, tactile and multisensory experiences from the PCN as corrective inputs
affect the mean error in different ways. Figure 6 shows significant improvement when using
both multisensory and visual experiences, but not tactile. The benefits of multisensory vs
visual experience are not significantly different, suggesting that the contribution from the
tactile component of the multisensory experiences is minor—though it is worth noting that
the addition of tactile data does not confound the multisensory experiences. This suggests
that the experiences encoded by the PCN are resilient to extraneous sensory modalities,
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and thus useful in highly heterogenous environments where the utility of different sensory
modalities changes rapidly.

Correction Modality vs. Uncorrected

Modality Grand Mean Error F-statistic p-Value Significant?

Multisensory 0.0996 321.6570 2.3431× 10−43 Yes
Visual 0.0995 454.4637 3.6260× 10−53 Yes
Tactile 0.1370 29.2518 1.8207× 10−07 Yes

Uncorrected 0.1276 - - -

Multisensory vs. Visual Corrections

Modality Grand Mean Error F-statistic p-Value Significant?

Multisensory 0.0996 0.0022 0.9625 No
Visual 0.0995 - - -

Figure 6. The effect of correction modality—the sensory data used to form the experience memories—
on performance, benchmarked against the uncorrected run. Confidence Scaling applied as per
Section 3.4. F-statistic and p-value taken from an F-test (n = 100, α = 0.05). Cmin was set to 2700.

4. Discussion

This study has demonstrated that coupled ring attractors implemented as SNNs are
able to serve as a reliable and robust navigational aid for a robot. Their combined activity
mimics that of Grid Cells, not only in the visual similarities of their firing patterns, but
also in their cyclical representation of position and their propensity to be influenced by
multisensory memories of the external environment. In support of this, several improve-
ments have been made to prior SNN ring attractor models with success in modelling head
direction being naturally extended to success in modelling planar location, leaving scope
to develop this into a fully spike based estimate of (x, y, θ).

The ability to vary the baseline input to the ring attractors makes for a flexible path
integrator, one that can trade drift accumulation for power saving and vice versa. This
allows for neuromorphic systems with intelligent power usage, with the network sustained
by a lower, baseline level of power when corrective sensory inputs are readily available,
but increasing power consumption, and reducing the inherent drift, when sensors fail or
become uninformative. This capability could find use in applications where sensory data is
intermittently available, such as navigating mines and tunnel systems, and where graceful
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degradation in performance is required to manage a degrading or limited power supply,
such as for space exploration and field robotics.

The utility of weighting corrections by recall strength exploits the similarity of mem-
ories in ‘experience space’ to correct for discrepancies in physical space, demonstrating
the close mapping of non-spatial experiences of a rich environment to explicitly spatial
data. It is worth speculating if this relationship can be reversed; if indeed the inherent
physically-congruent activity of ring attractor system can be used to scaffold the organi-
sation of non-spatial information in the brain, with ring attractors structuring sequences
or even ‘spaces’ (or palaces [41]) of memory to be recalled. These ideas, of separating
memories in cortex as they are separated in space, echo ideas of Buzsáki and Moser [42].

The superior performance of visual data in providing corrective input agrees with
prior work [28], where visual and multisensory representations correlated better with
location than tactile. This may be due to the utility of visual cues for localisation—being
able to acquire useful stimuli at both close and long range—or to the lack of contact time
the whiskers had with objects. Future datasets from a more densely packed environment,
or with a greater variety of object shapes and sizes, may yield better results for tactile
corrective input.

Several areas of this model mimic features of entorhinal cortex processing but do not
implement it in spiking neurons. These include:

1. The corrective influences being injected as step currents, rather than spike trains
2. The Conjunctive Cell inputs being pre-calculated rather than being mediated by other

documented neuron behaviours, such as using Head Direction Cells [43] plus orienta-
tion information from the retrosplenial cortex [44] to apportion velocity components

3. A bio-plausible model of memory that can be used to trigger corrective inputs.

For (1), a Poisson generator could substitute in the short term, or a new model of
memory recall created, perhaps using bio-plausible pattern-completion circuits such as
proposed in the dentate gyrus [45]. This is related to (2), requiring additional spiking
models to describe the functionality of upstream brain areas. For (3), a system similar to
that of Ocko et al. [46] using Landmark Cells to mediate recall could be investigated; in this
case, they would be ‘Experience Cells’ working with landmark-free representations.

This model is also straightforward to extend to three or more dimensions, with bat-
inspired models of 3D navigation systems based on ring integrators showing Grid Cell-like
fields in three dimensions [24] with the addition of a fourth ring. This would make the
model suitable for environments where the vertical dimension is critical, such as aerial,
submarine or subterranean environments. Going beyond this to 4D or 5D navigation
problems is nonsensical in terms of purely physical space, but could be useful for adding
non-spatial context cues to navigation problems, such as modelling seasonal cycles or the
rhythm of a particular task [47].

Regardless of specific improvements, it is clear that an effective brain-inspired nav-
igation system involves an entire complex of interacting circuits to be effective. This is
to be expected, given that, in the Mammalian brain, the entorhinal cortex is strongly in-
terconnected with other areas. So far, this system has been demonstrated using set of
trajectories derived from one robot using hand-tuned parameters; an interesting further
study would be to investigate a bio-plausible Hebbian learning approach, with bidirec-
tional calibration between other areas in the hippocampal complex for a self-adaptive
learning system. In addition, the role of multi-scale Grid Cell populations, as first observed
by Stensolla et al. [48] within rat entorhinal cortex, would also be a natural extension to
this work through simple duplication of the proposed coupled ring attractor architecture,
enabling trajectories spanning larger areas to be represented with the same precision.
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