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Abstract: Existing swarm intelligence (SI) optimization algorithms applied to node localization
optimization (NLO) and node coverage optimization (NCO) problems have low accuracy. In this
study, a novel balanced butterfly optimizer (BBO) is proposed which comprehensively considers
that butterflies in nature have both smell-sensitive and light-sensitive characteristics. These smell-
sensitive and light-sensitive characteristics are used for the global and local search strategies of the
proposed algorithm, respectively. Notably, the value of individuals’ smell-sensitive characteristic
is generally positive, which is a point that cannot be ignored. The performance of the proposed
BBO is verified by twenty-three benchmark functions and compared to other state-of-the-art (SOTA)
SI algorithms, including particle swarm optimization (PSO), differential evolution (DE), grey wolf
optimizer (GWO), artificial butterfly optimization (ABO), butterfly optimization algorithm (BOA),
Harris hawk optimization (HHO), and aquila optimizer (AO). The results demonstrate that the
proposed BBO has better performance with the global search ability and strong stability. In addition,
the BBO algorithm is used to address NLO and NCO problems in wireless sensor networks (WSNs)
used in environmental monitoring, obtaining good results.

Keywords: balanced butterfly optimizer; bio-inspired optimization; wireless sensor network; node
localization; node coverage; environmental monitoring

1. Introduction

Sensor networks play a vital role in the study of intelligent environmental monitoring
systems [1,2]. Node localization optimization (NLO) and node coverage optimization
(NCO) are important problems in WSNs [3–6], which are the core component of the
Internet of Things (IoT) for intelligent management. The emergence of SI optimization
algorithms provides novel approaches for many practical optimization problems that are
difficult to solve. At present, the global positioning system (GPS) and Beidou navigation
system of China can accurately locate the target; however, certain places, such as indoor
locales, dense forests, mountains, caves, and underwater situations, satellite positioning
technology cannot precisely locate the target due to the interference or even shielding of the
signal by the obstruction. Thus, there is great significance involved in studying the NLO
and NCO problems in the context of WSNs, along with substantial challenges. Recently,
swarm intelligence (SI) optimization algorithms have been widely used in WSN node
deployment, positioning, routing, and other problems [7–9]. It is worth noting that several
heuristic algorithms have been proposed based on the social behavior and physiological
characteristics of butterflies.

There are a great many species of butterflies [10–12], most of which rely on scent
perception for foraging and mating; others have strong visual sensitivity, and rely on their
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vision for foraging [13]. In past studies, researchers have been inspired by the inherent
characteristics of butterflies, including behaviors such as migration, flight, foraging, and
mating. Several swarm intelligence algorithms have been inspired by these behaviors
of butterflies, including monarch butterfly optimization (MBO) [14], artificial butterfly
optimization (ABO) [15], butterfly optimization algorithm (BOA) [16], and more. MBO is
an optimization algorithm proposed by designing a search strategy based on the migration
characteristics of monarch butterflies. The ABO algorithm designs the butterfly’s flight
strategy solely from the artificial point of view, then divides the butterfly population into
two categories and updates their positions during flight using the relative position. The
BOA established an odor foraging model of butterflies; however, it cannot solve all 23 CEC
benchmark functions [17,18]. The reason for this is that the odor model generates negative
numbers for certain problems, which biases the search range of individuals and leads to
optimization with imaginary numbers for certain benchmark functions.

Aiming at the shortcomings of BOA-based modeling and inspired by the literature [19],
a novel smell- and light-sensitive balanced butterfly optimizer (BBO) is proposed in this
paper, distinguished by a simple structure and conforming to the characteristics of actual
butterfly behaviors. The global and local search strategies of the BBO are inspired by the
natural characteristics of different species of butterflies. First, different species of butterflies
have light-sensing characteristics, which should be considered because their visual function
is better than their odor function. Second, the smell perception of butterflies is used in the
process of foraging or courtship, and the corresponding odor value from the mathematical
point of view is positive. Therefore, the absolute value of smell characteristics is introduced
to ensure the rationality of the proposed BBO algorithm. The main contributions of this
study are summarized from the above motivation as follows:

• According to the smell perception and light perception characteristics of actual butter-
flies in nature, a novel balanced butterfly optimizer (BBO) is proposed. Inspired by
the physical properties of individuals, the search strategy is designed to avoid falling
into local optima.

• The superiority of the BBO is verified by numerical optimization experiments on all 23
CEC benchmark functions, then the results are compared with a variety of advanced
SI algorithms.

• The NLO and NCO problems of WSNs in IoT contexts are modeled; the proposed
BBO is used to address these problems, showing better performance than several
well-known SI algorithms.

2. Related Works

Among the existing swarm intelligence algorithms, the Firefly algorithm (FA) [20]
is a typical SI method inspired by the photosensitivity characteristic of fireflies in nature.
The fruitfly optimization algorithm (FOA) [21] is another typical SI algorithm that uses the
social behavior of fruit fly odorant foraging and updates individual positions by smell. In
addition, FA [22] and FOA [23] have been applied to the NLO problem of WSNs. Moreover,
it is worth noting that the classic intelligent algorithms include GA [24], PSO [25], DE [26],
FA [20] and GWO [27], among others [28–31]. DV-Hop localization is a classic non-ranging
positioning algorithm; its principle is a distributed positioning method via distance vector
hopping and positioning. Kanwar et al. [32] proposed an optimized DV-Hop localization
method for sensor node displacement in WSNs using the PSO algorithm. Ouyang et al. [33]
proposed an improved GA to optimize the node DV-Hop localization optimization algo-
rithm for the NLO issue. However, the location accuracy of the above methods needs to be
further enhanced.

Traditional WSN node localization technologies are mainly categorized into range-
based location [34] and range-free location approaches [35]. The typical range-based
location approaches use the received signal strength indicator (RSSI) [36], the time of
arrival/difference of arrival (TOA/TDOA) [37,38], the angle of arrival (AOA) [39], etc. The
typical range-free location approaches include centroid localization (EL), weighted centroid
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localization (WCL) [40], DV-Hop [32], multidimensional scaling (MDS) localization [41],
approximate point-in-triangulation (APIT) localization [42], etc. It is worth noting that
the range-based location approaches have higher positioning accuracy than those without
ranging, while those without ranging have lower cost, lower power consumption, stronger
resistance to measurement noise, and simpler hardware equipment. It is particularly
important to note that as long as a range-free location alogorithm can meet the accuracy
needs of the application it is generally preferable. A brief summary of NLO and NCO
problems using SI algorithms is detailed in Table 1.

Table 1. A brief summary of NLO and NCO problems using SI algorithms.

Author Problem Algorithm Title

Shi et al. [43] NLO Particle swarm optimization (PSO) An improved DV-Hop scheme based on path matching and particle swarm opti-
mization algorithm

Han et al. [44] NLO DE algorithm Enhancing the sensor node localization algorithm based on improved DV-hop and
DE algorithms in wireless sensor networks

Zhang et al. [45] NLO Enhanced sparrow search algorithm Multi-strategy improved sparrow search algorithm for solving the node localiza-
tion problem in heterogeneous wireless sensor networks

Ghafour et al. [46] NLO Enhanced squirrel search algorithm Improved DV-Hop based on squirrel search algorithm for localization in wireless
sensor networks

Yang et al. [47] NCO Improved Firefly algorithm (FA) Deploying charging nodes in wireless rechargeable sensor networks based on
improved firefly algorithm

Wang et al. [48] NCO Resampled PSO algorithm Coverage control of sensor networks in IoT based on RPSO
Miao et al. [49] NCO GWO-EH algorithm Grey wolf optimizer with an enhanced hierarchy and its application to the wireless

sensor network coverage optimization problem
Wang et al. [50] NCO Wolf pack algorithm (WPA) A novel topology-based coverage-oriented strategy optimization of wireless sensor

networks
Zhang et al. [51] NCO hybrid HPSBA HPSBA, a modified hybrid framework with convergence analysis for solving the

wireless sensor network coverage optimization problem

DV-Hop is a distributed localization algorithm that uses the routing and positioning of
the distance vectors of nodes. It is popular due to its simplicity and low equipment require-
ments. SI algorithms have proven particularly effective when applied to the optimization
of traditional localization algorithms. Shi et al. [43] proposed a modified PSO-DV-Hop
method and used a path-matching strategy for searching the shortest path between anchor
nodes and independently determining the distance of the average hop from unknown
nodes to target anchors. Han et al. [44] used the DE algorithm combined with a weighted
DV-Hop method in which the second step of the weighted DV-Hop algorithm used the
average hop distance, then the location of unknown nodes was optimized by the DE.
Zhang et al. [45] used an enhanced sparrow search algorithm (SSA) to optimize the DV-
Hop localization method through a multi-hybrid strategy to improve the SSA and a dual
communication radius method to modify the minimum number of hops between nodes
while reducing the estimated distance error. In [46], a modified DV-Hop was proposed
with an enhanced squirrel search algorithm, which was utilized to estimate the distance
from unknown nodes to anchor nodes.

The optimization of node coverage plays a crucial role in improving the capabilities
of the WSN work area. Notably, SI algorithms have played a significant role in the NCO
problem for WSNs. Yang et al. [47] solved the sensor coverage problem with improved
FA taking into account the target coverage and network node connectivity. A resampled
PSO method was proposed by Wang et al. [48], which was utilized to optimize the node
coverage control of WSNs in the IoT context. There are two optimization algorithms
inspired by wolf packs which have been used to address the NCO issue. The first is the
GWO-EH algorithm [49] and the other is the wolf pack algorithm (WPA) [50] coupled to
the coverage-oriented method. Zhang et al. [51] proposed a node coverage optimization
method via the hybrid HPSBA using different simulation areas. Quite successful results
have been achieved by the aforementioned SI approaches; however, avoiding local optima
remains difficult for a number of challenging problems, making the study of novel heuristic
algorithms both necessary and significant.
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The above summary describes the use of different kinds of SI algorithms to address
the NLO and NCO problems of WSNs. Regardless of whether two-dimensional or three-
dimensional positioning is used for the NLO, shortcomings such as insufficient positioning
accuracy and low positioning efficiency are encountered. This study proposes the novel
BBO algorithm combined with DV-Hop and applies it to the WSN node localization
problem. In addition, the proposed BBO algorithm is used to address the NCO problem in
WSNs to modify the node coverage ratio. Notably, the proposed BBO can be used to solve
other optimization problems as well.

3. Problem Descriptions
3.1. Node Localization Optimization (NLO) Problem in WSNs

Anchors and unknown nodes are crucial for the NLO problem in WSNs. Anchor nodes
are installed with GPS positioning devices, and their coordinates can be known through
satellite positioning. The cost and energy consumption of anchor nodes is usually much
higher than that of ordinary sensor nodes. The localization method is to locate and optimize
the position of an unknown node through an anchor node with a known location. The
description of the NLO problem is as follows: (1) there are m anchors with known positions
and n unknown nodes with undetermined positions; (2) it is assumed that the anchors and
unknown nodes of the sensor network are distributed on the L× L two-dimensional plane
and that the nodes are randomly and uniformly distributed; (3) the measurement distance
error conforms to a normal distribution and the measurement distance is d′ij, meaning that
we have

d′ij = dij · (1 + τ · ε), (1)

where dij denotes the real distance from node i to node j, the distribution of ε is σ(0, 1),
and τ is the error factor.

The typical DV-Hop approach without range-based positioning [32] includes three
steps: calculating the minimum number of hops (MNH) between anchors; calculating
the estimated distance from anchors to unknown nodes; and calculating the unknown
node coordinate position. The steps of the basic DV-Hop algorithm can be summarized
as follows.

In Step 1, the MNH is calculated through the flooding process, in which the anchors
broadcast information to each node of the WSN, then the MNH between the unknown
nodes and anchor nodes is calculated, as well as the MNH between the anchor nodes
themselves, with each communication representing a hop.

In Step 2, the mean distance per hop Hopi of each anchor node and the estimated
distance du,i are calculated using Formulas (2) and (3), respectively:

Hopi =
∑i 6=j di,j

∑i 6=j hi,j
=

∑i 6=j

√
(xi − xj)

2 + (yi − yj)
2

∑i 6=j hi,j
(2)

where (xi, yi) represents the position coordinates of anchor node i, (xj, xj) represents the
position coordinates of anchor node j, hi,j denotes the MNH from anchor node i to node j,
and estimated distance du,i from anchor node i to unknown node u is formulated as follows:

du,i = Hopi × hu,i (3)

where hu,i represents the MNH from unknown node u to anchor node i.
In Step 3, the fitness function of the node localization optimization algorithm is

calculated using Formula (4):

f (xu) =
m

∑
i=1

√
(xu − xi)

2 + (yu − yi)
2 − du,i (4)
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where (xu, yu) represents the estimated position coordinates of the u-th unknown node,
(xi, yi) denotes the position coordinates of the i-th anchor node, du,i denotes the estimated
distance from unknown node u to anchor node i, and m is the number of anchor nodes.

3.2. Node Coverage Optimization (NCO) Problem in WSNs

Assuming that the simulation work area is a two-dimensional space and the side
length is L, there are n detection points that need to be perceived within the sensing radius
of the sensor nodes; we use Rs and Rc to denote the sensing radius and communication
radius, respectively. The Euclidean distance d(i, s) between sensor nodes and target points
can be calculated as follows:

d(i, s) =
√
(xs − xi)

2 + (ys − yi)
2 (5)

where (xi, yi) denotes the position coordinate of the i-th target point and (xs, ys) denotes
the position coordinates of sensor node s. The coverage probability p using the binary
perception model [51,52] from sensor node s to target node i is

p(i, s) =

{
0, d(i, s) ≥ Rs,

1, d(i, s) < Rs.
(6)

According to the binary perception model, the x-axis and y-axis of the two-dimensional
deployment area can be divided into a step length q, that is, each segment length is l = q
with an intersection q2 of the node deployment area. The deployment node coverage rate
of the work area is

Cov =
pcov

q2 =

S
∑

i=1
p(i, s)

q2 . (7)

According to the binary perception model and calculation of the node coverage rate
of the NCO problem, the mathematical model of this problem can be summarized as a
constrained optimization task with four constraints, defined as follows:

max f (x) = Cov, s.t



g1 =
S

∑
i=1

p(i, s) ≥ 0

g2 =
S

∑
i=1

p(i, s)− q2 ≥ 0

g3 = d(i, s)− Rs ≥ 0

g4 = S−M ≥ 0

(8)

where p(i, s) denotes the probability of sensing nodes s covering and monitoring target
nodes i, q2 is the intersection of the node deployment area, d(i, s) is the Euclidean distance
from sensor node s to the target monitored node i, Rs indicates the sensing radius of
the sensor node, M denotes the number of deployment nodes in the work area by the
node-aware range in theory (that is, the sum of the node’s sensing range is equal to the
simulation work area), and S represents the sensor node number in the monitoring area,
which is greater than or equal to the theoretical number of nodes M.

4. Theory of the Balanced Butterfly Optimizer (BBO)

The BBO is inspired by the influence of both smell and light signals on the foraging
process of butterflies. In addition, it is considered that butterflies are photosensitive and
that the smell value is generally positive. The specific algorithm modeling processes are
population initialization and individual smell and light perception characteristics, which
correspond to global and local search, respectively.
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4.1. Algorithmic Population Initialization

Assuming that the search space is Dim-dimensional, the expression of the initial
position of the population is

Xi,j =

LB1,1 · · · LB1,j
...

. . .
...

LBi,1 · · · LBi,j

+


UB1,1 · · · UB1,j

...
. . .

...
UBi,1 · · · UBi,j

−
LB1,1 · · · LB1,j

...
. . .

...
LBi,1 · · · LBi,j


 ·

rand1,1 · · · rand1,j
...

. . .
...

randi,1 · · · randi,j

 (9)

where Xi,j represents the individual initial position, i = 1, 2, · · · , NP, j = 1, 2, · · · , Dim, NP
denotes the number of initial solutions, Dim denotes the dimension of the problem, UBi,j
is the upper boundary value of the search space, LBi,j is the lower boundary value of the
search space, and randi,j represents a random value in (0, 1).

4.2. Modeling of the Odor- and Light-Sensitive Properties of Butterflies

In nature, there are many kinds of animals with smell perception, butterflies being a
typical one; however, different butterfly species have different characteristics. Common but-
terflies are generally smell-sensing, while light-sensing butterflies mainly include Vanessa
Indica [53], Swallowtail [54], and similar varieties; three of these butterfly species shown in
Figure 1. Researchers have proven through experiments that these butterflies are affected
by both olfactory and visual signals during foraging [55]. Thus, in the design of heuristic
algorithms, mathematical modeling based on the conclusions of corresponding biological
experiments should be more reasonable and competitive.

Figure 1. Butterflies that use both olfactory and visual signals for foraging: (a) Vanessa Indica;
(b) Swallowtail; (c) Papilio Maackii.

(1) Smell-Sensitive Properties
The smell-sensitive properties of butterflies taking into account the exponential diffu-

sion form of odors can be defined as follows:

Smelli = rand · |(Fi)
α|+ eps (10)

where Smelli represents the smell in the search process, which must be positive in practice
and is represented by an absolute value, Fi denotes the fitness value obtained by the
objective function, rand denotes a random value in (0, 1), α indicates the smell index,
which has a value range pf (0.1, 0.6), and eps represents a non-zero infinite decimal, which
prevents the smell value from becoming zero during the search process.

(2) Light-Sensitive Properties
The light-sensitive properties of butterflies are affected by the distance between in-

dividuals and their food sources or between multiple individuals, which can be defined
as follows:

Lighti = Light0 · exp(− Dij
2) (11)
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where Lighti denotes the light sensitivity of butterflies and Light0 is the initial light sensitiv-
ity value, which is set to 1. The light-sensing distance Dij between the searched individual
and the food source (or adjacent individuals) can be expressed as

Dij =
∣∣∣Xt

i − Xt
j

∣∣∣. (12)

4.3. Algorithmic Exploitation

The switching probability (sp) is a control parameter between global and local search
in the BBO. In nature, there are more butterfly species that rely mainly on scent for foraging
or mating than that forage using light. According to this cognitive law, the value of the
parameter sp is set to 0.6 in this study. Two search strategies are considered in this study
for the proposed algorithm; the best individual is used to choose a search strategy, with the
mean position taken into consideration. For sp > rand, meaning that smell-sensitivity is
the main search strategy in this stage, the definition is as follows:

Xt+1
i = Xt

i + rand · C ·mean(Gt
best,i)− Xt

i · Smelli, i f sp > rand (13)

where Xt
i represents the current position of the individuals, rand is a random number in

(0, 1), C denotes a hyperparameter, which can be set to a random number between (0, 1)
or to a constant, Gt

best,i is the best individual’s search position, and Smelli is the smell
sensitivity value in the search process. Alternatively, when light-sensitive is the main
search strategy, the position of the individual is updated by

Xt+1
i = Xt

i + rand ·
(

Xt
j − Xt

k

)
· Lighti, i f sp ≤ rand (14)

where Xt
j and Xt

k respectively represent the food source and neighboring individuals of the
t-th iteration, rand is a random value in (0, 1), and Lighti denotes the light sensitivity value
in the search process.

4.4. Algorithm Computational Complexity Analysis

Different test platforms lead to differences in optimization time consumption for the
same optimization method, meaning that the structure of the proposed BBO, that is, the
computational complexity, must be analyzed taking this into account. The assumptions
are as follows: N indicates the population size of the proposed algorithm, T represents
the maximum number of iterations of the algorithm, and D is the dimension for the
optimization problem. The computational complexity of the BBO can be summarized as
follows: the initialization complexity of the population is O(ND), the fitness computational
complexity is O(ND), the sensitivity selection computational complexity is O(N2logN),
and the location update of global and local search complexity is O(N2logN). In addition,
the complexity of the fitness sorting during the iteration of the algorithm is O(N2). Thus,
the total computational complexity of BBO is

O(BBO) = O(ND) + O(T) ·
(

O(ND) + 2 ·O
(

N2logN
)
+ O(N2)

)
. (15)

4.5. Flowchart and Pseudo-Code of BBO

The flowchart of BBO is presented in Figure 2. There are three main stages of BBO,
introduced as follows: Stage 1 represents population initialization and the selection of
initial optimal position and fitness values; Stage 2 includes search strategy selection and the
process of optimizing the algorithm; and Stage 3 involves selecting the best population of
individuals based on the fitness values during the optimization process. The best solution
and fitness value are then output after Tmax iterations.
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Figure 2. The flowchart of the proposed BBO.

The main BBO pseudo-code showing the basic operation process is presented in
Algorithm 1.



Biomimetics 2023, 8, 393 9 of 24

Algorithm 1: Pseudo-code of BBO
Input: The number of individuals NP, the problem dimensional Dim; and the

maximum iterations Tmax.
Output: Optimal solution and fitness of the agent.
Initialization: The position X of the population, and calculate the fitness F of the

initial X.
while t = 1 : Tmax do

for i = 1 : NP do
Update the individual’s smell perception value using Equation (10).
for j = 1 : Dim do

Update the light perception value and distance between individuals
using Equation (11) and Equation (12), respectively.

if r < sp then
The individual’s position Xt+1

i is updated by Equation (13);
else

The individual’s position Xt+1
i is updated by Equation (14);

end
Determine whether the updated individual position X exceeds the
boundary constraint.

Update the best fitness fbest corresponding to the best position Gbest of
the individual.

end
end

end

5. Analysis of the Numerical Optimization Results

The benchmark functions of the optimization experiment were the CEC function
from [17,18], which includes a total of 23 functions, of which F1 to F7 are unimodal functions,
F8 to F13 are multimodal functions, and F14 to F23 are fixed-dimensional functions; the
corresponding categories are U, M, and Fixed, respectively. Detailed descriptions of all
23 functions are provided in Table 2. The experimental environment was a Windows 10
system with an Intel(R) Core (TM) i5-10210U CPU @2.11 GHz, 16 GB memory, and the
Matlab 2018a platform.

Table 2. Descriptions of the 23 benchmark functions.

Formula SR Dim fmin Category

TF1 =
Dim
∑

i=1
x2

i [−100, 100] 30 0 U

TF2 =
Dim
∑

i=1
|xi |+

Dim
∏
i=1
|xi | [−10, 10] 30 0 U

TF3 =
Dim
∑

i=1

(
i

∑
j=1

xj

)2

[-100, 100] 30 0 U

TF4 = max{|xi |, 1 ≤ i ≤ Dim} [−100, 100] 30 0 U

TF5 =
Dim
∑

i=1

(
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
)

[−30,30] 30 0 U

TF6 =
Dim
∑

i=1
(xi + 0.5)2 [-100, 100] 30 0 U

TF7 =
Dim
∑

i=1
ix4

i + rand(0, 1) [−1.28, 1.28] 30 0 U
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Table 2. Cont.

Formula SR Dim fmin Category

TF8(x) = ∑n
i=1−xi sin(

√
|xi |) [−500, 500] 30 −12,569.487 M

TF9 =
Dim
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5.12, 5.12] 30 0 M

TF10 = −20 exp

(
−0.2

√
1

Dim

Dim
∑

i=1
x2

i

)
− exp

(
1

Dim

Dim
∑

i=1
cos(2πxi)

)
+ 20 + e [−32, 32] 30 0 M

TF11 = 1
4000

Dim
∑

i=1
x2

i −
Dim
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] 30 0 M

TF12 = π
Dim

{
Dim−1

∑
i=1

(yi − 1)2[1 + 10sin2(πyi+1)] + (yDim−1)
2 + 10sin2(πy1)

}
+

Dim
∑

i=1
u(xi , 10, 100, 4), yi = 1 + xi+1

4 , uyi ,a,k,m =


k(xi − a)m, xi > a,

0,−a ≤ xi ≤ a,

k(−xi − a)m, xi < a

[−50, 50] 30 0 M

TF13 = 1
10

{
sin2(πx1) +

Dim−1
∑

i=1
(xi − 1)2[1 + sin2(3πxi+1)

]
+ (xDim−1)

2(1 + sin2(2πxi+1)
)}

+

Dim
∑

i=1
u(xi , 5, 100, 4)

[−5, 5] 30 0 M

TF14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6

)−1

[−65, 65] 2 1 Fixed

TF15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2

[−5, 5] 4 0.00030 Fixed

TF16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5] 2 −1.0316 Fixed

TF17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 [−5, 5] 2 0.3980 Fixed

TF18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] [−2, 2] 2 3 Fixed

TF19(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij
(

xj − pij
)2
)

[1, 3] 3 −3.86 Fixed

TF20(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij
(

xj − pij
)2
)

[0, 1] 5 −3.32 Fixed

TF21(x) = −∑5
i=1 [(X− ai)(X− ai) + ci ]

−1 [0, 10] 4 −10.1532 Fixed
TF22(x) = −∑7

i=1 [(X− ai)(X− ai) + ci ]
−1 [0, 10] 4 −10.4028 Fixed

TF23(x) = −∑10
i=1 [(X− ai)(X− ai) + ci ]

−1 [0, 10] 4 −10.5363 Fixed

5.1. Hyperparameter Settings for the Comparison Methods

In this study, 23 benchmark functions were used to verify the performance and ef-
fectiveness of the proposed BBO using a random number in (0,1) for the parameter C.
BBO was compared with the PSO [25], DE [26], GWO [27], ABO [15], BOA [16], HHO [56],
and AO algorithms [30]. In addition, the proposed BBO was used for the NLO and NCO
problems of WSNs in order to prove its practical applicability. The hyperparameter settings
used for the comparison algorithms are presented in Table 3. The code of BBO is released
at https://www.researchgate.net/profile/Mengjian-Zhang/research.

Table 3. Hyperparameter settings used for the comparison methods.

Methods Value

PSO NP = 30, c1 = c2 = 2, ωmin = 0.2, ωmax = 0.9
DE NP = 30, F = 0.85, CR = 0.7
GWO NP = 30, a f irst = 2, a f inal = 0
ABO NP = 30, a f irst = 2, a f inal = 0
BOA NP = 30, a = 0.1, c(0) = 0.01, p = 0.5
HHO NP = 30, β = 1.5, E ∈ (0, 2)
AO NP = 30, α = 0.1, δ = 0.1
BBO NP = 30, α = 0.1, Light0 = 1, sp = 0.6

Each test benchmark function consisted of 30 independent runs and the Tmax for the
optimization process was set to 1000. The evaluation of the compared SOTA methods

https://www.researchgate.net/profile/Mengjian-Zhang/research
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included the mean (Mean) and standard deviation (Std) along with the Ranking, as shown
in Table 4. Moreover, Table 5 shows the Wilcoxon rank-sum (WSR) test results among the
comparison algorithms using a significance level of α = 0.05.

Table 4. Means and standard deviations of the compared SI methods for all 23 functions.

Function Item PSO DE GWO ABO BOA HHO AO BBO

TF1 Mean 2.14E-03 6.13E-07 2.79E-59 7.25E-56 4.98E-13 2.91E-184 4.49E-199 0.00E+00
Std 2.29E-03 4.05E-07 5.32E-59 3.12E-55 5.14E-14 0.00E+00 0.00E+00 0.00E+00

TF2 Mean 3.74E-03 1.94E-04 1.19E-34 1.54E-37 2.31E-10 1.22E-94 1.77E-118 2.35E-129
Std 4.23E-03 9.01E-05 1.12E-34 2.88E-37 6.15E-11 6.45E-94 9.68E-118 1.06E-128

TF3 Mean 4.11E+03 1.07E+04 2.71E-15 3.00E-20 4.27E-13 6.86E-153 1.28E-199 0.00E+00
Std 1.26E+03 4.10E+03 9.11E-15 1.30E-19 3.78E-14 3.69E-152 0.00E+00 0.00E+00

TF4 Mean 1.39E+01 3.78E+00 1.72E-14 7.53E-14 3.24E-10 6.38E-94 1.92E-98 1.77E-74
Std 2.97E+00 2.09E+00 3.03E-14 2.03E-13 2.61E-11 3.17E-93 1.05E-97 9.71E-74

TF5 Mean 1.48E+02 5.05E+01 2.68E+01 2.73E+01 2.89E+01 3.55E-03 1.08E-03 2.85E+01
Std 1.27E+02 3.81E+01 7.05E-01 1.00E+00 2.92E-02 7.62E-03 1.82E-03 2.54E-01

TF6 Mean 2.61E-03 6.94E-07 6.03E-01 2.22E+00 4.83E+00 2.19E-05 3.15E-05 1.08E-11
Std 3.21E-03 4.40E-07 3.25E-01 3.86E-01 5.64E-01 3.03E-05 6.35E-05 1.60E-11

TF7 Mean 7.99E-02 3.33E-02 8.76E-04 7.77E-04 1.26E-03 5.63E-05 4.80E-05 7.59E-06
Std 2.98E-02 1.10E-02 5.51E-04 4.40E-04 5.76E-04 4.03E-05 4.47E-05 5.10E-06

TF8 Mean −1.12E+04 −9.26E+03 −6.12E+03 −6.18E+03 NAN −1.26E+04 −9.48E+03 −7.85E+03
Std 3.08E+02 1.39E+03 5.98E+02 5.84E+02 NAN 2.83E-01 3.67E+03 4.16E+03

TF9 Mean 6.19E+01 1.36E+02 5.30E-01 0.00E+00 7.13E+01 0.00E+00 0.00E+00 0.00E+00
Std 1.22E+01 2.26E+01 2.54E+00 0.00E+00 9.51E+01 0.00E+00 0.00E+00 0.00E+00

TF10 Mean 2.77E-01 2.63E+00 1.68E-14 2.03E+00 1.22E-10 8.88E-16 8.88E-16 8.88E-16
Std 5.36E-01 6.81E+00 2.59E-15 6.21E+00 6.53E-11 0.00E+00 0.00E+00 0.00E+00

TF11 Mean 2.65E-02 2.67E-03 2.19E-03 1.32E-03 1.87E-15 0.00E+00 0.00E+00 0.00E+00
Std 2.88E-02 5.97E-03 5.93E-03 5.19E-03 3.63E-15 0.00E+00 0.00E+00 0.00E+00

TF12 Mean 8.68E-01 2.07E-02 4.00E-02 1.60E-01 3.64E-01 1.81E-06 6.40E-07 1.60E-12
Std 1.01E+00 7.89E-02 2.37E-02 1.02E-01 1.22E-01 2.50E-06 1.07E-06 2.92E-12

TF13 Mean 6.70E-01 4.24E-04 4.77E-01 1.56E+00 2.45E+00 1.60E-05 1.54E-05 2.63E-01
Std 1.41E+00 2.02E-03 2.24E-01 2.41E-01 4.69E-01 2.23E-05 3.05E-05 8.01E-01

TF14 Mean 0.998004 1.130541 4.418589 3.541092 1.068958 1.097407 2.374092 1.129753
Std 4.12E-17 3.44E-01 4.58E+00 4.11E+00 2.56E-01 3.03E-01 2.71E+00 7.22E-01

TF15 Mean 0.003171 0.004441 0.004384 0.000535 0.000356 0.000362 0.000448 0.000307
Std 6.97E-03 8.10E-03 8.13E-03 3.89E-04 4.33E-05 1.64E-04 8.76E-05 1.83E-19

TF16 Mean −1.031628 −1.031628 −1.031628 −1.031628 NAN −1.031628 −1.031495 −1.031628
Std 6.45E-16 6.78E-16 7.86E-09 5.70E-09 NAN 3.33E-11 1.15E-04 6.78E-16

TF17 Mean 0.397887 0.397887 0.477671 0.397888 0.398020 0.397888 0.397996 0.397887
Std 0.00E+00 0.00E+00 4.37E-01 3.78E-07 1.82E-04 7.21E-07 1.39E-04 0.00E+00

TF18 Mean 3 3 3.000009 3.000000 3.005992 3 3.011503 3
Std 1.40E-15 2.12E-15 1.19E-05 3.20E-07 9.81E-03 2.44E-08 1.44E-02 1.90E-15

TF19 Mean −3.862782 −3.862782 −3.861725 −3.857002 NAN −3.861322 −3.858885 −3.862782
Std 2.63E-15 2.71E-15 2.28E-03 3.54E-03 NAN 1.98E-03 2.47E-03 2.71E-15

TF20 Mean −3.282364 −3.266512 −3.262065 −3.095172 NAN −3.121452 −3.198913 −3.321995
Std 5.70E-02 6.03E-02 6.83E-02 1.98E-01 NAN 1.12E-01 8.21E-02 1.34E-15

TF21 Mean −7.040316 −7.805056 −9.814474 −7.363414 −5.790008 −5.222809 −10.144644 −6.908833
Std 2.86E+00 3.02E+00 1.29E+00 3.47E+00 1.07E+00 9.22E-01 1.67E-02 3.59E+00

TF22 Mean −8.307454 −9.220698 −10.402433 −8.667653 −5.925582 −5.086337 −10.400402 −9.031198
Std 2.86E+00 2.44E+00 2.73E-04 3.33E+00 1.34E+00 1.96E-03 3.61E-03 2.84E+00

TF23 Mean −10.17745 −10.53641 −10.53592 −9.09307 −5.88811 −5.03705 −10.53198 −9.33568
Std 1.37E+00 2.21E-15 2.92E-04 2.73E+00 1.27E+00 4.94E-01 7.52E-03 2.76E+00

Mean/+/−/= 1/18/4 1/18/4 1/21/1 0/21/2 0/23/0 1/17/5 3/18/2 8/9/6
Fridman Rank 5.86 5.04 5.57 5.87 7.58 4.66 4.76 2.59

Total Rank 6 4 5 7 8 2 3 1
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Table 5. Results of WSR test for the compared SI methods.

Function BBO vs. PSO BBO vs. DE BBO vs. GWO BBO vs. ABO BBO vs. BOA BBO vs. HHO BBO vs. AO

TF1 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1)
TF2 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.02E-01(0)
TF3 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1)
TF4 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 3.11E-05(1) 1.48E-04(1)
TF5 2.13E-06(1) 3.60E-01(0) 1.92E-06(1) 2.16E-05(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1)
TF6 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1)
TF7 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 2.88E-06(1) 7.69E-06(1)
TF8 1.48E-03(1) 8.59E-02(0) 7.52E-02(0) 6.87E-02(0) NAN(1) 1.48E-03(1) 1.92E-01(0)
TF9 1.73E-06(1) 1.73E-06(1) 1.56E-02(1) 1(0) 6.10E-05(1) 1(0) 1(0)

TF10 1.73E-06(1) 1.73E-06(1) 6.83E-07(1) 4.15E-07(1) 1.73E-06(1) 1(0) 1(0)
TF11 1.73E-06(1) 1.73E-06(1) 1.25E-01(0) 5.00E-01(0) 8.77E-05(1) 1(0) 1(0)
TF12 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1)
TF13 1.48E-03(1) 2.77E-03(1) 2.77E-03(1) 6.98E-06(1) 3.18E-06(1) 2.77E-03(1) 2.77E-03(1)
TF14 1(0) 6.45E-04(1) 7.69E-06(1) 1.24E-05(1) 3.11E-05(1) 3.11E-05(1) 1.73E-06(1)
TF15 1.73E-06(1) 1.54E-04(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1)
TF16 1(0) 1(0) 1.73E-06(1) 1.73E-06(1) NAN(1) 2.56E-06(1) 1.73E-06(1)
TF17 1(0) 1(0) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 8.30E-06(1) 1.73E-06(1)
TF18 5.86E-03(1) 5.08E-01(0) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1) 1.73E-06(1)
TF19 1(0) 1(0) 1.73E-06(1) 1.73E-06(1) NAN(1) 1.73E-06(1) 1.73E-06(1)
TF20 1.95E-03(1) 6.10E-05(1) 1.73E-06(1) 1.73E-06(1) NAN(1) 1.73E-06(1) 1.73E-06(1)
TF21 9.86E-01(0) 3.65E-01(0) 6.27E-02(0) 6.88E-01(0) 5.71E-02(0) 7.27E-03(1) 4.72E-02(0)
TF22 6.03E-01(0) 8.24E-01(0) 1.65E-01(0) 4.49E-02(0) 1.36E-04(1) 1.02E-05(1) 1.65E-01(0)
TF23 1.09E-01(0) 6.25E-02(0) 5.71E-02(0) 7.73E-03(1) 1.64E-05(1) 6.98E-06(1) 5.71E-02(0)

H(0/1) 7/16 9/14 5/18 5/18 1/22 3/20 8/15

5.2. Analysis of Benchmark Function Results

The 2D optimization process of the BBO algorithm for certain test functions (TF1,
TF4, TF10, and TF23) was described through a visual experiment. The main aim was to
qualitatively observe the behavior of the BBO. The shape of the test function, the search
history, and the convergence curves of individuals are shown in Figure 3. The search history
presents the location history of individual butterflies during an optimized search process.
The convergence curve shows the target value of the optimal obtained in each iteration.

The individuals’ search history position in Figure 3 shows that there is a gradual
approach to the optimal position during the optimization process. This ensures that the
BBO continues to explore and exploit the search space, eventually converging to an optimal
point. Compared with the convergence curves for the ABO and BOA in Figure 3, the
BBO enhances the initial random population on the test function and ideally improves the
accuracy of the approximate optimal value during the iterative process.

Table 4 shows the optimization results of eight comparison algorithms, including
a statistical analysis of the Best, Mean, and Ranking of the comparison methods via the
statistical results. Here, Best reflects the optimal searchability of BBO for solving numerical
optimization problems; the closer the search value is to the value in theory, the better
the search performance of the considered approach. The optimization results of the four
high-dimensional test functions that reach the theoretical optimal value are TF1, TF3, TF9,
and TF11. From the Mean in Table 4, it can be seen that the results of BBO on eight test
functions are better than those of the other algorithms, while on nine test functions the
optimization results of BBO have the same optimal value as the comparison algorithms.
Moreover, the Std objectively shows the stability of the compared methods for solving
numerical optimization problems. The results indicate that BBO has high stability and
strong generalization ability for numerical optimization problems. From the statistical
results of the Friedman test in Table 4, the order of the eight comparison algorithms for the
23 CEC functions is BBO > HHO > AO > DE > GWO > PSO > ABO > BOA.

Notably, the optimization results for the BOA on test functions TF8, TF16, TF19, and
TF20 are marked NAN. The reason for this is due to the insufficient design of the BOA.
The odor perception value of actual butterflies is positive, and the BOA does not take this
into account. It is worth noting that this is a crucial motivation behind our proposed BBO
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algorithm. In the proposed BBO, the individual’s smell perception value is positive; thus,
there is no NAN in the optimization result value.

(a)TF1

(b)TF4

(c)TF10

(d)TF23

Figure 3. Individual historical positions with two-dimensional coordinate and convergence curves of
the search process.

5.3. Analysis of the NLO Problem Results

The BBO algorithm was used to optimize DV-Hop to address the deficiency of the least
squares method for the WSN NLO problem. The BBO-DV-Hop localization optimization
method obtained better localization accuracy of an unknown node. The anchor nodes were
deployed first, then BBO-DV-Hop was utilized to locate the unknown node’s position based
on the known coordinates of the anchor nodes. The pseudo-code of the NLO problem via
the BBO-DV-Hop algorithm is provided in Algorithm 2.
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Algorithm 2: Pseudo-code of BBO-DV-Hop
Input: The hyperparameters of BBO-DV-Hop optimization algorithm, and the

maximum iterations Tmax.
Output: Optimal positioning coordinates of unknown nodes.
Initial: Total nodes N, anchor node rate p, unknown node communication radius

Ru, and anchor node communication radius Ra.
Calculate the minimum number hi,j of hops for the initially generated network
topology based on the shortest path algorithm (SPA).

for k = 1 : N do
for i = 1 : N do

for j = 1 : N do
if SPA(i, k) + SPA(k, j) < SPA(i, j) then

SPA(i, j) = SPA(i, k) + SPA(k, j);
end

end
end

end
Calculate the mean distance per hop Hopi of each anchor node and the estimated
distance du,i are calculated by the Equation (2) and Equation (3), respectively.

while t = 1 : Tmax do
for i = 1 : NP do

Update the individual’s smell perception value using Equation (10).
for j = 1 : N do

Update the light perception value and distance between individuals
using Equation (11) and Equation (12), respectively.

if r < sp then
The individual’s position Xt+1

i is updated by Equation (13);
else

The individual’s position Xt+1
i is updated by Equation (14);

end
Determine whether the updated individual position X exceeds the
boundary constraint.

Update the best fitness fbest corresponding to the best position Gbest of
the individual.

end
end

end

The Average Location Error (ALE) evaluation criteria can be expressed as

ALE =

√(
xestimate

u − xreality
u

)2
+
(
yestimate

u − yestimate
u

)2

R · n (16)

where
(

xestimate
u , yestimate

u
)

and
(

xreality
u , yreality

u

)
represent the estimated and actual position

coordinates, respectively, of unknown node u, R denotes the communication radius of the
nodes, and n represents the number of unknown nodes.

Aiming at the NLO problem in WSNs, the parameters used in this simulation ex-
periment are presented in Table 6. The positions of all nodes are obtained by continuous
optimization of the BBO. The deployment area is a 100 m × 100 m square area with
100 nodes, including 20 anchor nodes and 80 unknown nodes, for a rate of anchor nodes
to total nodes of 20%. In addition, the communication radius Ra of the anchor nodes
is set to 30 m and the communication radius Ru of the unknown nodes is set to 20 m.
Figure 4 shows the simulation results for the initial nodes, with a red “4” denoting an
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anchor node and a blue “o” indicating an unknown node. Five comparison algorithms
were used to demonstrate the effectiveness of the proposed BBO on the NLO problem in
WSNs: PSO, GWO, ABO, BOA, and BBO. Notably, ABO, BOA, and BBO are all inspired
by the behaviors of butterflies. The parameters of the comparison methods are shown in
Table 3. The maximum iteration Tmax for solving the NLO problem was set to 200.

Table 6. Simulation parameter settings for the NLO problem.

Parameters Value

Deployment area/m 100 × 100
The communication radius Ra of the anchor nodes/m 30
The communication radius Ru of unknown nodes/m 20
Anchor node rate/% 20
The NP of individuals 30
Total number of nodes N 100

From Figure 4, the positions of unknown nodes can be calculated from the known
positions of the anchor nodes. The initial anchor node positions directly affect the posi-
tioning of the entire node structure, with uniform anchor node positions resulting in a
uniform deployment network. In Figure 4a, it can be seen that the network is affected by
anchor nodes; local nodes are stacked or located too close together, leading to redundant
nodes during the networking process. Although the network nodes in Figure 4b have good
connectivity, there are a small number of local nodes. In the upper right corner of Figure 4b
only two nodes are connected, leading to the loss of node information. Therefore, in node
localization the positions of the initial anchor nodes need to be fully considered; certain
movable nodes can be deployed among the unknown nodes for greater robustness, thereby
improving the overall life and anti-interference ability of the WSN.

0 20 40 60 80 100

X/m

0

20

40

60

80

100

Y
/m

Initial node distribution

(a) Initial node distribution

0 20 40 60 80 100

X/m

0

20

40

60

80

100

Y
/m

Initial node connectivity

(b) Initial node connectivity

Figure 4. Schematic of initial node localization optimization and connectivity.

From Figure 5, it can be seen that in terms of the convergence and speed of the
compared localization algorithm the order is BBO > ABO > BOA > GWO > PSO. The
location error curve of BBO-DV-Hop in the region is relatively smooth after about twenty
iterations, which suggests that the proposed BBO-DV-Hop is not likely to fall into local
optimal values and has good global convergence ability. On the other hand, the location
errors of the PSO and GWO algorithms are relatively high, and gradually become stable
after 20 iterations, which indicates that the performance of the proposed BBO-DV-Hop
needs to be further modified. The BOA shows large fluctuations before 100 iterations, which
suggests that the stability of the BOA needs to be enhanced. In general, while the use of SI
algorithms to optimize the NCO problem is a research direction that has received much
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attention, not all of these algorithms are effective. In actual node positioning deployment,
the relocation and the second positioning of mobile nodes could be considered, and design
and research could be carried out in combination with optimization algorithms.

0 50 100 150 200
Iterations

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
L

E

Location Error

PSO
GWO
ABO
BOA
BBO

Figure 5. Comparison curves of the location error of the compared SI algorithms over 200 iterations.

In addition, considering the effects on the location of unknown nodes of the number of
deployed nodes, rate of anchor nodes, and communication radius, three sets of experiments
were designed to compare BBO to PSO, GWO, ABO, and BOA. Figure 6 shows the results
of the three experimental parameter settings.

In Figure 6a shows the experimental results for an anchor node rate of 20%, commu-
nication radius Ra of 30 m, and total number of nodes of 80, 100, 120, 140, 180, and 200.
The results show that the trend of LE curves for the compared algorithms is essentially the
same. The results obtained with the PSO algorithm fluctuate greatly when the number of
nodes is 120 or 140; on the other hand, the BBO algorithm proposed in this study has stable
performance, and its LE is the smallest among the compared algorithms.

From Figure 6b, it can be seen that when the number of nodes is 100 and the com-
munication radius Ra is 30 m, the anchor point rates are 15%, 20%, 25%, 30%, 35%, 40%,
and 45%, respectively, in the node localization optimization simulation experiment. The
results show that the LE curves of the compared algorithms are essentially the same. The
LE decreases with an increasing anchor node rate, demonstrating that a higher number
of anchor nodes allows for more accurate positioning of the unknown nodes. Among the
compared algorithms, the location error of PSO is essentially unchanged for anchor node
rates of 20%, 25%, and 30%. The proposed BBO algorithm has stable performance, and its
location error is the smallest among the compared algorithms.

Figure 6c shows the results of the simulated node localization optimization experi-
ments when the number of nodes is 100, the anchor node rate is 20%, and the commu-
nication radius Ra is 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, and 50 m. These results show
that the LE curves of the compared algorithms are essentially the same. The location error
decreases with the increase in the anchor node communication radius when Ra is less than
or equal to 30 m. Moreover, the location error shows an overall upward trend when Ra
exceeds 30 m. Again, the proposed BBO algorithm has stable performance and its LE is the
smallest among the comparison algorithms.
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(a) Different number of nodes
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Figure 6. Results of location errors (LE) with different experimental parameters: (a) different number
of nodes; (b) different anchor node rate; and (c) different communication radius.

5.4. Analysis of the NCO Problem Results

To verify the effectiveness of the BBO with the parameter C = 1 for solving the NCO
problem, we used a deployment area of 100 m × 100 m in the simulation experiments and
we performed the following experiments: (1) by randomly deploying 40 and 45 nodes
with sensing radius Rs = 10 m and communication radius Rc = 20 m, we analyzed the
coverage optimization performance of BBO over different numbers of iterations using both
the time and coverage; (2) BBO’s performance when deploying a different number of nodes
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was analyzed using random deployment of nodes with sensing radius Rs = 10 m and
communication radius Rc = 20 m over 100 iterations; (3) through random deployment,
BBO’s performance with a different communication radius was analyzed with 20 nodes
over 100 iterations. The pseudo-code of the NCO problem based on the BBO algorithm can
be seen in Algorithm 3.

Algorithm 3: Pseudo-code of BBO for the NCO problem
Input: The hyperparameters of BBO algorithm, and the maximum iterations Tmax.
Output: Optimal positioning coordinates of deployment nodes and best coverage

rate.
Initial: Total deployment nodes N, node sensing radius Rs, and node
communication radius Rc.

while t = 1 : Tmax do
Calculate the node coverage rate using Equation (7).
for i = 1 : NP do

Update the individual’s smell perception value using Equation (10).
for j = 1 : N do

Update the light perception value and distance between individuals
using Equation (11) and Equation (12), respectively.

if r < sp then
The individual’s position Xt+1

i is updated by Equation (13);
else

The individual’s position Xt+1
i is updated by Equation (14);

end
% Limit the node boundary
for j=1:N do

Update the node location coordinate limited to the boundary of the
deployment area.

end
Update the node position, the individual’s best position, and the best
coverage rate.

end
end

end

From Table 7, when the number of nodes is 40 and the sensing radius is 10 m, the cov-
erage results based on the BBO algorithm corresponding to 100, 150, 200, and 500 iterations
are 95.79%, 96.62%, 96.67%, and 96.99%, respectively. The time consumption of the best
position of the output node is 17.17 s, 24.48 s, 31.50 s, and 79.56 s, respectively. The coverage
and time consumption of nodes show an increasing trend. The coverage of the points in-
creases by 0.82%, 0.05%, and 0.32%, respectively, year-on-year, while the year-on-year time
consumption increases by 7.32 s, 7.01 s, and 48.06 s, respectively. When the number of nodes
is 45 and the sensing radius is 10 m, the coverage optimization results based on the BBO
algorithm corresponding to 100, 150, 200, and 500 iterations are 97.76%, 98.50%, 98.56%,
and 98.82%, respectively. The time consumption of the best position of the output node
is 21.87 s, 28.38 s, 37.29 s, and 86.35 s, respectively. The coverage and time consumption
of nodes show an increasing trend. The year-on-year coverage of the points increases by
0.75%, 0.06%, and 0.26%, respectively, while the year-on-year time consumption increases
by 6.51 s, 8.91 s, and 49.06 s, respectively. Based on the two scenarios with the same number
of iterations, when the number of nodes increases, the node coverage optimization of BBO
is significantly improved, although the time consumption is increased.
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Table 7. Coverage with different numbers of iterations.

Item N = 40, Rs = 10 m N = 45, Rs = 10 m

Iterations 100 150 200 500 100 150 200 500
Cov /% 95.79 96.62 96.67 96.99 97.76 98.50 98.56 98.82
Time /s 17.17 24.48 31.50 79.56 21.87 28.38 37.29 86.35
Percentage point increase in coverage /% / 0.82 0.05 0.32 / 0.75 0.06 0.26
Increase in time /s / 7.32 7.01 48.06 / 6.51 8.91 49.06

From Table 8, it can be seen that when the sensing radius is 10 m and the deployment
area is 100 m × 100 m, the coverage optimization results based on the BBO algorithm
correspond to a node coverage of 95.79%, 97.76%, and 98.29% for 40, 45, and 50 nodes,
respectively. The time consumption of the best node position is 17.17 s, 21.87 s, and
25.83 s, respectively. The coverage is 1.96 percentage points higher with 45 nodes than
with 40 nodes, and is 0.54 percentage points higher with 50 nodes than with 45 nodes. The
year-on-year time consumption increased by 4.70 s and 3.96 s, respectively. In addition,
these results show that the optimized coverage is significantly improved when the number
of deployment nodes is increased within a certain range. The coverage growth is slow until
saturation when the number of nodes is increased in transition.

Table 8. Node coverage rate with different number of deployment nodes.

Node Number 40 45 50

Cov /% 95.79 97.76 (+1.96) 98.29 (+0.54)
Time /s 17.17 21.87 (+4.70) 25.83 (+3.96)

Table 9 shows that when the deployment area is 100 m × 100 m with 20 deployment
nodes, the coverage rates obtained with BBO corresponding to a sensing radius of 13 m,
14 m, and 15 m are 91.67%, 97.15%, and 99.38%, respectively. The time consumption of
the best position of the output node is 6.07 s, 6.13 s, and 5.67 s, respectively. The year-
on-year node coverage of the points increases by 6.48% and 2.23%, respectively. The
time consumption of the BBO algorithm for node position optimization is less sensitive
to the change in the sensing radius, especially when the perception radius is 15 m, and
the simulation time consumption decreases by 0.46 s year-on-year. In addition, these
experimental results show that when the number of nodes is fixed, an increase in the sensor
radius increases coverage and decreases time consumption. Thus, when the deployment
area is the same and the sensing radius is excessively large, the number of deployment
nodes should be reduced.

Table 9. Node coverage rates with changes in the sensing radius.

Rs 13 14 15

Cov /% 91.67 97.15 (+6.48) 99.38 (+2.23)
Time /s 6.07 6.13 (+0.06) 5.67 (−0.46)

To assess the superiority of the proposed BBO algorithm for solving the NCO problem,
we selected four SI algorithms as comparison methods namely, PSO, GWO, ABO, and BOA,
as well as DSA [29] and two improved butterfly optimization algorithms, HPSBA [51] and
FBA [19]. The simulation parameters for the node coverage optimization problem were as
follows: the deployment area was 100 m × 100 m, the number of deployment nodes was
20, and the number of iterations was set to 100. The results on the NCO problem with a
changing sensing radius (13 m, 14 m, 15 m) are shown in Table 10.
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Table 10. Comparison of algorithms on the NCO problem with a changing sensing radius.

Method 13 m 14 m 15 m

PSO [25] 81.30 89.11 93.10
GWO [27] 79.02 85.14 91.30
ABO [15] 77.80 81.61 87.93
BOA [16] 78.27 85.04 91.20
DSA [29] 88.38 91.51 95.42
HPSBA [51] 89.57 95.77 98.66
FBA [19] 90.40 96.24 98.97
BBO (our) 91.67 97.15 99.38

Table 10 shows that for a sensing radius of 14 m, the results with the proposed BBO
are significantly better than with the compared methods. The coverage rate of BBO is
91.67%; when the sensing radius is 13 m or 15 m, the coverage rate for the NCO problem
achieved with BBO is higher than that achieved with the other algorithms. The performance
of BBO in solving the NCO problems is significantly modified, which indicates that it
has high application significance. Compared with the BOA, the node coverage rate of
BBO with a sensing radius Rs of 13 m, 14 m, and 15 m increased by 13.40 percentage
points, 12.11 percentage points, and 8.18 percentage points, respectively. In addition,
Figures 7 and 8 show the coverage curves for node coverage optimization achieved by the
compared algorithms (PSO, GWO, ABO, BOA, DSA, HPSBA, FBA, and BBO).
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Figure 7. Schematic of node deployment optimization with different SI algorithms.
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6. Conclusions

In this paper we propose a novel algorithm, BBO, inspired by the fact that butterflies
have both smell-sensitive and light-sensitive characteristics. We respectively translate these
smell and light-sensitive characteristics into the local and global search strategies of the
proposed algorithm. In addition, the value of an individual’s smell-sensitivity is positive,
which is a point that cannot be neglected. Our results show that the proposed BBO has
better performance in terms of global search capability and stability than other algorithms
used for comparison. In addition, our simulation results indicate that the BBO-DV-Hop
localization optimization algorithm proposed in this study has good stability and accuracy
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on the NLO problem for WSNs. The proposed BBO has superior performance on the NCO
problem as well. In both cases, the position of the initial anchor nodes needs to be fully
considered in order to ensure the robustness of the network after positioning. In future
studies, certain movable nodes can be deployed as unknown nodes to improve the overall
lifetime and anti-interference ability of the WSN.

The performance of the proposed BBO can be enhanced to solve high-dimensional
optimization problems. In-depth study could lead to more effective improvement strategies
which can be applied to engineering optimization, IoT, feature selection, and more. Among
these applications, node deployment, routing, dynamic networking optimization, and other
problems involving WSNs [57,58] can be solved by SI optimization algorithms. Currently,
research on 3D WSNs is a hot topic, with contexts including 3D space, underwater scenarios,
complex mountains, forest fire monitoring, and more.
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