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Abstract: Spiking neural networks (SNNs) are widely recognized for their biomimetic and efficient
computing features. They utilize spikes to encode and transmit information. Despite the many
advantages of SNNs, they suffer from the problems of low accuracy and large inference latency,
which are, respectively, caused by the direct training and conversion from artificial neural network
(ANN) training methods. Aiming to address these limitations, we propose a novel training pipeline
(called IDSNN) based on parameter initialization and knowledge distillation, using ANN as a
parameter source and teacher. IDSNN maximizes the knowledge extracted from ANNs and achieves
competitive top-1 accuracy for CIFAR10 (94.22%) and CIFAR100 (75.41%) with low latency. More
importantly, it can achieve 14× faster convergence speed than directly training SNNs under limited
training resources, which demonstrates its practical value in applications.

Keywords: spiking neural networks (SNNs); knowledge distillation; initialization; image classification

1. Introduction

Artificial neural networks (ANNs) have come a long way since their inception in the
1940s. From simple perceptrons to complex deep neural networks, ANNs have revolu-
tionized the field of artificial intelligence. In recent years, with the help of deep learning
algorithms, ANNs have achieved remarkable success in various applications, such as image
and speech recognition, natural language processing, and game playing. However, ANNs
rely heavily on computing resources, resulting in high energy consumption. Based on
this, Spiking Neural Networks (SNNs) try to imitate biological mechanisms and offer
energy-efficient advantages. By simulating the way neurons in the brain communicate
through spikes or brief electrical pulses [1], SNNs can perform computations with minimal
energy consumption [2,3]. This makes them well-suited for applications in low-power
devices, such as IoT sensors or mobile devices, where energy efficiency is a critical factor.
Furthermore, SNNs can also enable new computing paradigms, such as neuromorphic
computing, which aim to mimic the brain’s ability to learn and adapt to new situations.

Limited by the non-differentiable nature of impulse signals, the backpropagation
algorithm used in ANNs is not suitable for SNNs [4]. There are two training methods for
SNNs: the conversion from ANN and the direct training based on surrogate gradients. The
conversion method [5–8] transforms ANNs into SNNs by replacing the activation functions
with spiking neurons and keeping the weights stable without extra training. However, this
approach suffers from several drawbacks, including the high computational cost of training
ANN, the inability to handle temporal information, and the high latency in inference. The
direct training method, on the other hand, bypasses the conversion step and trains SNNs
directly using surrogate gradients, which are simplified gradients that approximate the true
gradients and allow for backpropagation-like training [9,10]. This approach can handle
temporal information and overcome the problem of inference latency, making it more
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suitable for real-time applications. However, this method loses the performance gain of
ANNs, and the resulting SNNs suffer from a significant decrease in accuracy. Given the
huge potential of SNNs in the field of bionics, as well as their energy-saving advantages, it
is crucial to investigate a training method that can conserve computational resources while
maintaining excellent performance.

We recognize that the training methods for SNNs must adapt to the nature of spikes
in order to fully realize their advantages. At the same time, ANNs already have mature
training methods and excellent performance, with performance being positively correlated
with model size. These achievements of large models are currently not available for
SNNs. It is crucial to learn from these achievements to obtain SNNs, but we cannot rely
solely on well-trained ANNs. In previous neural network training, the statistics-based
Kaiming initialization has strong generalizability and is suitable for different models and
datasets. However, its generalization comes at the cost of weaker specificity. Inspired
by various distillation algorithms, we realized that the teacher model contains dataset-
specific knowledge. When we use the teacher model’s parameters to initialize the SNN
model, this knowledge-based (rather than statistics-based) initialization has particular
advantages. In this paper, we show that SNNs can learn much from larger ANNs, through
initialization and distillation to obtain excellent performance, and direct training—using a
surrogate gradient ensures the ability to quickly infer and process temporal data. The main
contributions of this work can be summarized as follows:

1. Based on the connection we established between ANNs and SNNs, we propose a
knowledge-based method to enable initialization from larger to smaller models, or vice
versa, which has good scalability.

2. Based on the initialization method we proposed between ANNs, SNNs, and knowl-
edge distillation, we propose a new training method that fully utilizes the information
from ANNs to directly train SNNs. Firstly, we trained a larger-scale ANN and initialized
the target SNN through the parameter connection. Then, we used the ANN as a teacher to
train the student SNN through the surrogate-gradient method.

3. We evaluated our method and achieved 75.41% and 94.22% top-1 accuracy on
the CIFAR100 and CIFAR10 datasets, exceeding common direct training SNNs by 4.10%
on CIFAR100 and 0.68% on CIFAR10. Moreover, our model made a greater contribution
by significantly accelerating the convergence speed (14×) at the same time as achieving
better accuracy.

2. Related Works
2.1. ANN-to-SNN Conversion

Considering that the training of ANNs is already very mature, converting well-trained
ANNs to SNNs can reduce computation and memory usage. The conversion is based on
the link between the transfer function of a spiking neuron and ReLU in ANNs. Ref. [11]
analyzed the feasibility of conversion of ANNs to SNNs, providing a theoretical basis
for the conversion. Moreover, weight normalization [12], soft-reset [13], and threshold
balancing [7] were proposed to mitigate the errors caused by the conversion. However, the
existing methods for converting ANNs with BN layers require large time-steps (100–1000)
for inference, which results in significant latency. On the other hand, SNNs obtained in
this way are only suitable for static data. The high latency and data constraints posed by
these simple conversion methods hinder the realization of the biological advantages offered
by SNNs. As a result, alternative approaches are needed to enable efficient training and
inference of SNNs.

2.2. Directly Training SNNs

The main method to obtain deep SNNs directly is backpropagation with surrogate
gradients. The reason why SNNs cannot be directly trained using the BP algorithm is
because of the non-differentiable nature of spikes. Surrogate-gradient methods [9,10,14]
use an approximate continuous function to replace the actual gradient of the spiking
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neurons. Due to the inaccuracy of activation functions, errors accumulate over time-
steps and iterations, leading to poor accuracy of such methods. Additionally, several other
approaches have been proposed to improve the accuracy of SNNs. For example, researchers
have enhanced the ReLU activation function to evolve towards spiking neurons during
the training process [15]. This allows the SNN to absorb some of the information that the
ANN can learn. Another obvious way is to use knowledge distillation to introduce the
output of an ANN as the supervisory information. LaSNN [16], for instance, used attention
to bridge the information gap between ANNs and SNNs and proposed a three-stage
layer-wise knowledge distillation training pipeline. The authors still used the conversion
method to initialize the weights of the target SNN, resulting in the disadvantage of high
latency. Furthermore, intermediate layer distillation has also been introduced to improve
the accuracy of SNNs [17].

3. Materials and Methods
3.1. Spiking Neuron Model

The spiking neuron we used in this work is the Leaky Integrate-and-Fire (LIF) [18],
which considers the current leakage of neurons more than IF does. In a multi-layer neural
structure, the dynamic equations of a single LIF neuron are

X(t) = W ∗ F(t− 1) (1)

U(t) =

{
U0 = X(t), t = 0

U(t− 1)e−
1
τ ∗ (1− F(t− 1)) + X(t), t 6= 0

(2)

F(t) = F(U(t)) =

{
1, U(t) > Uth

0, otherwise
(3)

where t denotes the timestamp, τ is the time coefficient, X(t) is the input current from the
last neuron, W means the weight matrix between neurons, and F(t) is the output of the
spiking neuron at timestamp t, which is 1 if activated and 0 otherwise. U0 is the initial
membrane potential at timestamp 0. U(t) denotes the hidden membrane potential, which
continuously receives input current until the neuron is activated and reset to 0. Uth is the
activation threshold that determines whether or not the neuron is activated.

The step function in Equation (3) results in the non-differentiable characteristic. We
used the surrogate gradient proposed in STBP [19]. We took a neighborhood of length
2 ∗ lens on both sides of Uth, assuming that the membrane potential range where the spike
fires was within this neighborhood, in order to calculate the surrogate gradient as follows:

F
′
(U(t)) =

{
1

2∗lens , Uth + lens > U(t) > Uth − lens
0, otherwise

(4)

where lens represents half the length of the neighborhood mentioned above. Hence, both
forward information transfer and back error propagation between spiking neurons can be
carried out.

3.2. Connect ANNs and SNNs Through Initialization
3.2.1. The Relationship between Spiking ResNet and ResNet

Currently, research works [14,20–22] typically utilize residual structures to obtain
deep SNNs, just as in ANNs. By stacking residual blocks with different numbers, it is
possible to achieve deep residual models of different sizes, such as ResNet18, ResNet34,
ResNet50, ResNet101, etc. [23].

The residual block is the main component of ResNet. Figure 1a shows the basic block
in ResNet. It consists of convolution layers, batch normalization layers, and activation
functions. X(t) denotes the input from the last block at time-step t, and Y(t) denotes the
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output of this residual block. The basic block of Spiking ResNet used in [20–22] simply
mimics the block in ANNs by replacing ReLU activation layers with spiking neurons (e.g.,
LIF), which is illustrated in Figure 1b. While Spiking ResNet suffers from the problem of
vanishing or exploding gradient, [14] used Spike-Element-Wise block to mitigate this, as
Figure 1c shows.

➕

Conv

BN

Conv

ReLU

BN

ReLU

Conv

extended BN

Conv

LIF

extended BN

➕

LIF

X(t) X(t)

Y(t) F(t)

(a) (b) 

Conv

extended BN

Conv

LIF

extended BN

LIF

(c)  

g

F(t)

X(t)

Figure 1. The structure of ResNet block and Spiking ResNet block. (a) Basic block in ANN ResNet.
(b) Basic block in Spiking ResNet. (c) Basic block in SEW ResNet.

No matter the type of Spiking ResNet structure, we can find that it consists of convo-
lution layers and BN layers, similar to the ResNet structure in ANNs. The only difference
is that the activation function (such as ReLU) is replaced by spiking neurons (such as LIF).

Based on this observation, a natural idea is that we can use a pre-trained ANN model to
obtain an SNN model, and the conversion method is one possible solution. The conversion
method transfers the parameters of ANN to SNN and uses the link between the transfer
function of a spiking neuron and ReLU to determine the activation of spiking neurons. As
mentioned earlier, it suffers from high inference latency, which limits its practical value.
We believe that the relationship between the parameters can be utilized, as they have
highly similar convolution and BN layers. However, the non-parametric neuron activation
cannot be determined using the ReLU activation function, as they represent two completely
different encoding schemes. Based on this idea, we proposed an initialization-based method
to exploit the parameter relationship between ANN and SNN.

3.2.2. SNN Initialization through ANN

Although the parameterized layers are convolution and BN layers in both ANN and
spiking residual blocks, the temporal and spatial properties of spiking neural networks re-
quire an additional time dimension in the input, resulting in structural differences between
convolution and BN layers. Furthermore, taking inspiration from knowledge distillation,
the benefits of initialization from a larger network outweigh those from a same-size net-
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work. Therefore, SNN initialization through ANN requires overcoming both model size
and model structure issues in parameter initialization.

We first focus on the initialization problem of model size (block level). In this work, we
only discuss the ResNet model family. Figure 2a shows the structure of ResNet. The body of
ResNet consists of four stages—every stage consists of different numbers of blocks—which
create ResNet with different depths (e.g., ResNet18, ResNet34, etc.). We believe that every
block has an impact on the blocks before and after it in the same stage, meaning that
the order of blocks in the same stage contains spatial information about the model. As
Figure 2b shows, when initializing parameters at the block level, we preserved this spatial
relationship. As we used a larger ResNet to initialize the Spiking ResNet, the number of
blocks in the ANN was greater than that in the SNN in the corresponding stage. Each block
in the SNN could be initialized with the corresponding ANN parameters, maintaining the
relative spatial relationship in the ANN.

Stem

Body

Head

Stage1

Stage2

Stage3

Stage4

Block1

Block2

Block 

N

...

Block1

Block2

Block4

Block3

Block1

Block2

Block3

(a) (b) 

Figure 2. (a) The structure of ResNet. (b) The correspondence during initialization at block level.

After completing initialization at the block level, we turned our attention to the issue of
model structure (convolution and BN layers in the block). As Figure 3 shows (for the sake of
convenience, the batch dimension is omitted), set Xs ∈ RB×T×C×H×W denotes the input of
the spiking residual block, while Xa ∈ RB×C×H×W denotes the input of the residual block.
The T dimension of Xs is a repetition of the input sample to simulate the time-step of the
spiking neural networks. When using a residual block of the larger source ANN to initialize
that of the target SNN, we met differences in the channel dimension of convolution layers.
To be specific, a convolution layer contained many kernels (called output channels), and
one kernel contained many channels to process input data (called input channels). Firstly, in
the output channel dimension, we performed loop interpolation based on the convolution
kernel to ensure that each SNN convolution kernel had a corresponding source of ANN
convolution kernel parameters. Then, in the input channel dimension, we performed the
same loop interpolation, but based on the channel of kernels to complete the initialization
between convolution kernels. At this point, we had completed the initialization of the
convolution layers in a residual block.
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Input

Channel
Output

Channel

Figure 3. The initialization process in convolution and BN layers.

y =
x− µ√
σ2 + ε

(5)

As shown in Equation (5), batch normalization computes an output Y, which normal-
izes input X using per-channel statistics µ, σ2 ∈ RC. Here, x is a feature with a shape of
(T, C, H, W). Generally speaking, the normalization operation of the batch normalization
layer is followed by a channel-wise affine transform. It has two parameters: weight and
bias. Therefore, there are four parameters in the batch normalization layer: mean, variance,
weight, and bias. They are all one-dimensional vectors, also with a size of C extended in
time dimension. These four one-dimensional parameters can be converted from the ANN
model to the SNN model directly.

In this section, we have discussed how to address the initialization problem for model
size and different model structures. We are now able to use a larger ANN to initialize the
target SNN for training preparation.

3.3. IDSNN

We have initialized the SNN with the parameters of an ANN, which allows it to absorb
some knowledge from the ANN before training. In this section, we discuss how to fully
leverage ANN through knowledge distillation during the training process, as well as the
complete training pipeline.

3.3.1. ANN-to-SNN Distillation

Just as in ANN, there has been some exploration of knowledge distillation in SNNs,
such as distilling spikes from a large SNN to a small SNN [24] and distilling feature-based
knowledge from a well-trained ANN to an SNN [17]. However, the approaches mentioned
above either selected an inappropriate teacher model or complicated the distillation process
without bringing much improvement in performance. As proven in ANN, the simplest
knowledge distillation [25] method may be the most effective. Furthermore, because spikes
and analog formats are two different information encoding methods, even if the ANN
teacher and SNN student have similar network structures, there are differences in how the
intermediate layers encode data. Based on these two considerations, we abandoned the
intermediate-layer complex distillation and proposed a concise and efficient distillation
method suitable for SNNs, as Figure 4 shows. While training, the parameters of the teacher
model were fixed, and we fed the same sample into the teacher and student models. The
proposed method used response-based distillation to guide the student SNN training using
the output of the softmax function in the teacher ANN. The soft label contained more
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knowledge because it included the probability distribution information of the sample on
all class categories relative to the true label, as shown in Equation (6):

qi =
eZi/T

∑j eZj/T (6)

where Zi/j denotes the probability that a sample belongs to a certain class and T determines
the significance level of the probability distribution, which is related to the difficulty level
of learning knowledge conveyed through distillation. Combining soft labels with richer
information and absolutely correct true label, we adopted the following loss function:

Lkd = KL(so f tmax(Qs/T), so f tmax(Qt/T)) (7)

Ltotal = CrossEntropy(Qs, ytrue) + α ∗ T2 ∗ Lkd (8)

where ytrue denotes the true labels, and Qs and Qt are the outputs of student SNN and
teacher ANN. The total loss is obtained by summing two-part loss and using α to indicate
the importance of the two learning targets.

Teacher

Student

Soft label

True label

Predictions

Figure 4. Schematic illustration of distillation training.

3.3.2. IDSNN Training Process

The entire IDSNN training process is divided into three steps, as illustrated in Algorithm 1.
Firstly, it trains a larger teacher ANN using a conventional ResNet. Here, we used ResNet34 as
the ANN teacher.

Secondly, it uses the parameters of the trained ANN to initialize a smaller-sized student
SNN, according to the method described in the previous section. This step mainly focuses
on the parameters of the convolution layer and the BN layer, while keeping the parameters
of the fully connected layer randomly initialized. The firing of the spiking neurons is
determined by the next step of training. We used Spiking ResNet18 as the target SNN,
without any trick in structure design, to verify the effectiveness of our training method.

After finishing the training of the teacher model and initialization, all the prepara-
tion work for training has been completed. We used the method of surrogate gradient
and backpropagation algorithm to train target SNN with teacher ANN distillation. The
response-based distillation scheme was adopted for transferring the knowledge of the
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teacher ANN to the student SNN. The distillation strategy and loss function design are
described in the above subsections.

Algorithm 1 Training pipeline

Require: Pre-trained ANN Mt, target SNN Ms, input samples X, true label ytrue
Ensure: Mt and Ms are both ResNet-based

# initialization
# forward propagation
for t = 1 to T do

X(t)← PoissonEncoder(X(t))
for l = 1 to L− 1 do

if t == 1 then
Ft

l−1 = X(t)
end if
# receive input from the previous layer and accumulate membrane potential
Ut

l = Ut−1
l ∗ e−

1
τ ∗ (1− Ft−1

l ) + Ft
l−1

F(t) = F(Ut
l , Uth)

end for
end for
# calculate total loss Ltotal
Ltotal = CrossEntropy(Qs, ytrue) + α ∗ T2 ∗ Lkd
# Backward Propagation
for t = T to 1 do

for l = L− 1 to 1 do
dLtotal

dUt
l

= dLtotal
dFt

l

dFt
l

dUt
l
= dLtotal

dFt
l
× 1

2Uth

end for
end for

4. Results and Discussion

In this section, we evaluate the proposed IDSNN method on two benchmark datasets,
CIFAR10 and CIFAR100. To further show the advantage of convergence speed, we tested
it with various optimization strategies. Moreover, we conducted ablation experiments to
validate the effectiveness of the initialization module and distillation module.

4.1. Experiments Setting

For both teacher ANN and target SNN training, we set the batch size as 64 and
employed an SGD optimizer. The training epoch was set as 200, the learning rate was 0.05,
the momentum was 0.9, and the weight decay was 0.0001. The teacher ANN was trained
from scratch. In target SNN training, the time-step was set to four for fair comparison and
six for better performance. All performances were evaluated on four NVIDIA GeForce RTX
2080ti GPUs.

4.2. Performance Comparison with Other Methods

In all experiments, we trained a ResNet34 as the teacher to initialize and knowledge
distill. We validated the performance of IDSNN on the CIFAR10 and CIFAR100 datasets
and compared with conversion-based methods, direct training methods, and knowledge
distillation-based methods. Results are shown in Tables 1 and 2. On the CIFAR10 dataset,
the ResNet18 structure trained with our proposed method achieved a test accuracy of
94.03% using a time-step of four with the ResNet34 teacher model. IDSNN outperformed
all other methods in terms of accuracy using the same or smaller time-step (T = 4).
Compared to three of the latest and best-performing distillation-related works from 2023,
under the condition of using time-step of four (i.e., less than the three other works), our
method achieved 0.62%, 2.81%, and 8.6% higher accuracy than KDSNN [17], LaSNN [16],
and [26], respectively. In particular, when using ANNs that had the same accuracy (95.10%)
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as teachers, the accuracy of IDSNN was 0.62 higher than KDSNN. This indicates that our
method is able to extract more useful knowledge from ANNs compared to others. When
the time-step was increased to six, this further improved the accuracy to 94.22%.

Table 1. Accuracy comparison with other SNN training methods on CIFAR10.

Model Training Method ANN SNN ANN Acc (%) SNN Acc (%) Time-Step

KDSNN [17] KD training Pyramidnet18 ResNet18 95.10 93.41 4
LaSNN [16] KD training – VGG16 – 91.22 100

[26] KD training – 6Conv+2FC – 85.43 8
Dspike [27] SNN training – ResNet18 – 93.66 4

STBP-tdBN [22] SNN training – ResNet19 – 92.92 4
QCFS [5] Conversion – ResNet18 96.04 90.43 4

Parameter Calibration [28] Conversion – ResNet20 96.72 92.98 8

IDSNN Hybrid training ResNet34 ResNet18 95.10
94.03
94.22

4
6

On CIFAR100, the superiority of IDSNN was further demonstrated because, in general,
a larger dataset requires higher classification capabilities from the model. It could achieve
an accuracy of 75.24 using a time-step of four and 75.41 using a time-step of six. Compared
with the KD training method [26], IDSNN also achieved better performance (75.24 vs.
74.42) using a shorter time-step (four vs. five). Compared to direct SNN training method
Dspike [27] and Real Spike [29], IDSNN surpassed them by 1.89 and 10.37, respectively,
in terms of accuracy when the time-step was four. This is because our initialization and
distillation strategies largely compensated for the error accumulation caused by the surro-
gate gradient, thus achieving better accuracy. As for the methods (SNN Calibration [11],
COS [30], Parameter Calibration [28]) based on conversion, they need an extremely large
time-step to achieve good performance. Our proposed method has a crushing advantage
both in time latency and absolute accuracy. When using an ANN that achieved an accuracy
of 81.51%, Parameter Calibration [28] could only achieve an accuracy of 71.86%. This means
that methods based solely on conversion cannot fully obtain information from ANNs
within a short time delay. In comparison, IDSNN requires lower demands on ANNs and
can enable SNNs to achieve better performance.

Table 2. Accuracy comparison with other SNN training methods on CIFAR100.

Model Training Method ANN SNN ANN Acc (%) SNN Acc (%) Time-Step

[31] KD training – VGG16 – 74.42 5
Dspike [27] SNN training – ResNet18 – 73.35 4

Real Spike [29] SNN training – ResNet20 – 64.87 4
SNN Calibration [11] Conversion – ResNet20 – 72.33 16

COS [30] Conversion – ResNet20 – 70.29 32
Parameter

Calibration [28] Conversion – ResNet20 81.51 71.86 8

IDSNN Hybrid training ResNet34 ResNet18 77.26 75.24
75.41

4
6

4.3. Ablation Experiments

To verify the effects of the initialization module and distillation module, we conducted
an ablation experiment on both the CIFAR10 and CIFAR100 datasets. As shown in Table 3,
when not using any of our methods, the SNN of the ResNet18 structure only achieved
93.54% on CIFAR10 and 71.34% on CIFAR100. When using ResNet34 to initialize Spiking
ResNet18 based on the relationship between the structures of the two, the performance was
improved to 93.64% and 74.47%. When applying knowledge distillation to the baseline, the
performance was 93.98% and 73.71%. Both initialization and knowledge distillation have a
significant impact on improving accuracy, especially on the CIFAR100 dataset. This further
confirms that the current direct training methods for SNNs have significant limitations
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on larger-scale datasets, and utilizing information from ANNs can be helpful. Through
combining initialization and Knowledge distillation, IDSNN achieved the best performance,
with 94.22% on CIFAR10 and 75.41% on CIFAR100. Using both modules simultaneously
is more effective than using either module alone, which indicates that the information
obtained from ANNs by the two modules does not overlap. On CIFAR10, the performance
improvement (0.68) brought by two modules even exceeded the sum (0.10 + 0.44 = 0.54) of
the improvements achieved by each module used separately.

Table 3. Ablation study.

Model Initialization KD ANN Teacher Acc. on
CIFAR10 (%)

Acc. on
CIFAR100 (%)

ResNet18

7 7 – 93.54 71.31
3 7 ResNet34 93.64 (↑0.10) 74.47 (↑3.16)
7 3 ResNet34 93.98 (↑0.44) 73.71 (↑2.40)
3 3 ResNet34 94.22 (↑0.68) 75.41 (↑4.10)

4.4. Convergence Speed Experiments

In the previous experimental section, we changed the learning rate every 60 epochs
in order to ensure that the model was sufficiently trained. The previous text explains the
superior performance of IDSNN under this experimental condition. However, a larger
learning rate interval means a greater training cost. An excellent model should not only
ensure outstanding absolute performance but also be able to use limited training resources
and achieve good performance within fewer training epochs.

We changed the learning rate decay interval to 20 and 10 and compared the training
performance of the baseline and IDSNN, as shown in Table 4. When the learning rate
interval was 60, our proposed method had higher accuracy and faster convergence speed
than the baseline, achieving 75.41% in epoch 138, while the baseline achieved 71.31% in
epoch 192. When the learning rate interval decreased to 20, we reached the best accuracy
74.45% (only decreased by 0.96%) at epoch 54, while the baseline only reached 68.96
(decreased by 2.35%) at epoch 74. In more extreme cases, the learning rate interval was
set to 10. Our proposed method (71.37%) only took 14 epochs to perform better than the
baseline (71.31%) under sufficient training (192 epochs). This means that we could achieve
the same or even higher accuracy at nearly 14 times the convergence speed. We chose the
classical distillation and also conducted convergence speed experiments. Undoubtedly,
distillation algorithms have some advantage over direct training algorithms in absolute
accuracy. However, we noticed that, after changing the learning rate interval to 20 and
10, the accuracy dropped by 3.36% and 7.69%, respectively, which is even greater than the
drops in the baseline (2.35% and 7.36%). Conversely, for IDSNN, the drops were 0.96%
and 2.39%, and IDSNN required fewer iterations to reach the same accuracy level. The
reason is that distillation algorithms provide more precise gradient updates during each
backpropagation, which increases the accuracy upper bound and approximates a linear
expansion of the convergence process. When the learning rate interval is reduced due to
limited training resources, the insufficient convergence under the previous learning rate
stage affects the next stage’s training, leading to a severe drop in accuracy. In comparison,
IDSNN simultaneously raises the lower and upper bounds of the accuracy, shifting the
entire training process towards higher accuracy. IDSNN can achieve the same or even
better results with fewer iterations, and the smaller accuracy loss demonstrates stronger
training robustness. Figure 5 shows the advantages of IDSNN in terms of convergence
speed and accuracy.



Biomimetics 2023, 8, 375 11 of 13

Table 4. Convergence experiments on CIFAR100.

Model
Acc(%) LR Strategy

[60, 120, 160] [20, 40, 60] [10, 20, 30]

baseline 71.31(e192) 68.96(e74) 63.95(e85)

K-L divergence distillation 73.71(e195) 70.35(e49) 66.02(e37)

IDSNN 75.41(e138) 74.45(e54) 73.02(e57)
71.37(e14)

Figure 5. The comparison of loss and accuracy between IDSNN and baseline. (a) The accuracy on
CIFAR100. (b) The accuracy on CIFAR10. (c) The loss on CIFAR100. (d) The loss on CIFAR10.

5. Conclusions and Future Work

In this paper, we established a connection between ResNet and Spiking ResNet at the
parameter initialization level and proposed a novel training pipeline based on knowledge
distillation (IDSNN). We took full advantage of the knowledge of larger teacher ANNs to
train SNNs with initialization and distillation. Experiments on CIFAR100 and CIFAR10
showed that we combined the advantages of direct training methods and conversion
methods to achieve competitive performance (94.22% and 75.41%, surpassing most of
the latest methods) at small time-steps (i.e., four, six). Both modules of our proposed
method had a significant effect on improving the effectiveness. Furthermore, convergence
speed experiments demonstrated its ability to converge quickly (14× faster) under limited
training resources.

The focus of this work is the efficient training of SNN universal modules, which
can better achieve downstream computer vision tasks by overlaying various classification
heads. The biomimetic and energy-saving features of SNNs make this work more suit-
able for visual perception tasks on mobile robots. The limitation of this work lies in its
applicability to only CNN networks, while the transformer structure is gaining promi-
nence in the field of computer vision. For future work, we will explore training methods
suitable for transformers and integrate training methods for both structures into a unified
training framework.
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