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Abstract: The lack of intuitive controllability remains a primary challenge in enabling transhumeral
amputees to control a prosthesis for arm reaching with residual limb kinematics. Recent advance-
ments in prosthetic arm control have focused on leveraging the predictive capabilities of artificial
neural networks (ANNs) to automate elbow joint motion and wrist pronation–supination during tar-
get reaching tasks. However, large quantities of human motion data collected from different subjects
for various activities of daily living (ADL) tasks are required to train these ANNs. For example, the
reaching motion can be altered when the height of the desk is changed; however, it is cumbersome
to conduct human experiments for all conditions. This paper proposes a framework for cloning
motion datasets using deep reinforcement learning (DRL) to cater to training data requirements. DRL
algorithms have been demonstrated to create human-like synergistic motion in humanoid agents to
handle redundancy and optimize movements. In our study, we collected real motion data from six
individuals performing multi-directional arm reaching tasks in the horizontal plane. We generated
synthetic motion data that mimicked similar arm reaching tasks by utilizing a physics simulation and
DRL-based arm manipulation. We then trained a CNN-LSTM network with different configurations
of training motion data, including DRL, real, and hybrid datasets, to test the efficacy of the cloned
motion data. The results of our evaluation showcase the effectiveness of the cloned motion data in
training the ANN to predict natural elbow motion accurately across multiple subjects. Furthermore,
motion data augmentation through combining real and cloned motion datasets has demonstrated
the enhanced robustness of the ANN by supplementing and diversifying the limited training data.
These findings have significant implications for creating synthetic dataset resources for various arm
movements and fostering strategies for automatized prosthetic elbow motion.

Keywords: motion prediction; deep reinforcement learning; motion cloning; prosthetic elbow;
artificial neural network

1. Introduction

In recent decades, significant progress has been made in the development of advanced
prosthetics [1,2] aimed at restoring lost limb function with multiple active degrees of
freedom (DOF). However, despite the improvements in robotics and sensor technologies,
there is a growing gap between control methods and hardware improvements, resulting in
a rejection rate as high as 40% [3]. This disparity becomes even more pronounced in the
case of transhumeral amputees.

The lack of intuitive controllability remains a primary challenge in enabling tran-
shumeral amputees to control a multi-functional prosthesis, which includes a powered
hand, wrist, and elbow, replicating various functions of a human arm. A significant
control objective is the execution of elbow joint motion and wrist pronation–supination
during target reaching tasks. Currently, commercially available prosthetic elbows are
controlled through electromyographic (EMG) signals, which results in complex control
schemes and the development of compensatory strategies involving large trunk and shoul-
der displacements [4]. However, the myoelectric control strategy lacks intuitiveness since

Biomimetics 2023, 8, 367. https://doi.org/10.3390/biomimetics8040367 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8040367
https://doi.org/10.3390/biomimetics8040367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-1896-9592
https://orcid.org/0000-0002-5326-7847
https://orcid.org/0000-0001-6179-5706
https://doi.org/10.3390/biomimetics8040367
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8040367?type=check_update&version=1


Biomimetics 2023, 8, 367 2 of 18

the physiologically appropriate muscles are unavailable, necessitating highly invasive
surgeries such as targeted muscle reinnervation (TMR) to overcome these limitations [5].
Furthermore, an analysis of the manipulation strategies employed by prosthetic users [6]
suggests that body-powered devices tend to offer more intuitive control compared to my-
oelectric devices. It has been observed that myoelectric devices often make routine tasks
more cumbersome and time-consuming to perform [7]. As an alternative, bio-inspired
and human motor-control-based techniques have been developed to achieve more natural
control of multiple DOFs [8,9].

Recent studies have focused on enhancing the intuitive control of prosthetic elbow
joints by leveraging movement synergies that govern coordinated joint movements in
the upper limb [10–12]. Previous studies have revealed that human movements can be
effectively characterized by a reduced set of primitive components known as motor syn-
ergies [13–15]. It has also been observed that similar movements performed by different
individuals exhibit shared synergies, indicating the reusability of motor synergy pat-
terns [16,17]. Researchers in [18] have successfully demonstrated the generalization ability
of movement synergies for new targets in multi-directional scenarios.

Building upon this concept, recent studies such as [19,20] have showcased the effec-
tiveness of controlling wrist pronation–supination and elbow flexion–extension through
remaining shoulder movements, which participants have found intuitive. This approach
combines the residual limb motion strategy with the predictive capabilities of ANNs, har-
nessing the inherent movement synergies between the shoulder and elbow joints. As a
result, it enables independent and simultaneous control of the multi-DOF prosthesis. In
particular, radial basis function network (RBFN) models have proven effective in capturing
intricate inter-joint coordination patterns in various ADLs [21,22]. Additionally, ANNs and
fuzzy logic methodologies have been successfully applied for classifying and predicting
prosthetic arm motions [23]. Moreover, the combination of EMG and shoulder orientation
data has also been explored to estimate distal arm joint angles [24].

However, one of the crucial challenges associated with this strategy revolves around
the acquisition of a sufficient amount of training data from human experiments, as this
approach relies on ANNs to identify and model the intricate coordination between the
shoulder and elbow joints. This necessitates providing extensive training data to the net-
work during the learning process. Obtaining such training data involves expensive motion
capture equipment and a lengthy, repetitive process where subjects perform numerous
repetitions of the desired ADLs. The quantity and quality of the motion data obtained
also significantly impact the performance of the ANN, as there are certain levels of motion
variations among different human subjects.

This study presents an innovative motion-cloning strategy to address the challenge
of acquiring a substantial amount of training data for effective training of ANN. Our
approach leverages the capabilities of DRL algorithms to create natural and human-like
motion in simulated humanoid agents [25]. We introduce a DRL-based motion cloning
framework that utilizes a 7-DOF robot arm model in a mujoco simulation to generate
synthetic motion data. Furthermore, we explored the use of the synthetic motion data
obtained from DRL simulation (hereafter referred to as DRL-Data) to train different ANNs
and demonstrate the effectiveness of DRL-Data in accurately estimating the arm motion
of human subjects by comparing it with their actual motion data (hereafter referred to
as Real-Data). Moreover, the integration of Real-Data and DRL-Data through motion
data augmentation demonstrated the enhanced robustness of the trained ANNs. This
approach addresses the challenge of limited motion data availability by supplementing and
diversifying the training data, thereby improving the ANN’s ability to generalize across
different subjects.

The fundamental concept behind the proposed framework is that the simulated robot
arm has the ability to learn and replicate a wide range of desired movements. We can
utilize the extracted motion data from the shoulder and elbow joints from the simulated
arm to effectively supplement and diversify the training data for the ANN. To the best
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of our knowledge, our study represents the first successful demonstration of employing
learning–synthetic motion data to estimate actual human arm movements.

This paper is organized as follows. Section 2 presents our proposed framework,
including details of the experimental protocols and the implementation of DRL simulation.
The ANN training strategy and the method employed for performance evaluation are also
described in this section. The results are presented in Section 3 and discussed in Section 4.
Finally, we draw conclusions and discuss future works in Section 5.

2. Materials and Methods
2.1. Experiment Protocols

This study focuses on estimating the elbow joint motion and wrist pronation–supination
during arm reaching movements, spanning across multiple directions in the horizontal
planes. We designed our experiment by drawing inspiration from the investigation carried
out in [26], which explored arm reaching movements towards target points arranged in a
circular manner. We created a target grid consisting of eight points positioned along the
circumference of a circle with a diameter of 0.5 m, as depicted in Figure 1a.

The experimental task involves a reaching movement starting from a resting position
at the center point, then reaching and touching the selected outer target point, and finally
returning to the center point. A brief pause at the center point precedes the repetition of the
process to reach the next target. This movement task is referred to as the center-out-center
reaching task. Throughout the experiments, the participants were instructed to perform
center-out-center reaching movements towards all eight target points within the horizontal
plane, as illustrated in Figure 1b.

(a) (b)

Figure 1. The designed experimental protocol for arm reaching movements in the horizontal plane:
(a) The target points are arranged in a circular pattern. The center point (red) represents the initial
neutral/rest position, and the outer points (blue) numbered 1 to 8 indicate the target points to be
reached. The arrow depicts the outline of the desired center-out-center reaching movement to be
performed. (b) An illustration of a subject with the target grid in the horizontal plane, demonstrating
the positions of the target points relative to the participant.

2.2. Human Subject Motion Data Acquisition: Real-Data

Six right-handed individuals (five males and one female) with no known upper limb
neuromuscular disorders volunteered as participants for this study. The age range of the
subjects was between 20 and 28 years old. Prior to the experiment, all participants provided
informed consent to be involved in the research.

To acquire arm motion data from the participants, we implemented an experimental
setup as depicted in Figure 2. The participants were instructed to execute center-out-center
reaching movements with their right arm while standing. A number was displayed on a
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screen in front of the subjects, indicating the specific target point to be reached (Figure 2a).
The timing of the movements was controlled passively through automatic color changes at
fixed intervals. The green color indicated the start of the reaching movement towards the
outer target point, and it remained green for 2 seconds. A display of red color indicated
the return to the center point and the waiting phase, as it remained red for 5 seconds. The
process was repeated for the next movement once the color turned green again.

We employed neuron pro, an inertial measurement unit (IMU)-sensor-based full-body
motion capture system, to capture the participants’ motion data. While this system’s
accuracy may be lower than that of optical-camera-based motion capture systems, it offers
the advantage of capturing motions without spatial constraints from any location within
the device’s communicable range. The neuron pro system includes the axis neuron pro
software (Figure 2b), which processes raw IMU data and generates a real-time 3D skeletal
model. This skeletal model provides valuable motion information, including the position
and angle of each joint, which can be saved for further analysis.

(a) (b)

Figure 2. Experimental setup for capturing arm reaching motion data from human subjects. (a) A
human subject wearing the neuron pro motion capture system and performing the reaching motion
on the target grid in the horizontal plane, with the desired target point projected on the front screen.
(b) Illustration of axis neuron pro software with a real-time 3D model.

The participants were instructed to perform only four repetitions of the center-out-
center reaching movements for each target point, resulting in a relatively small amount of
collected data. We conducted the experiment twice per subject, recording two sets of motion
data, one each for training and testing purposes. The motion data of interest included the
angles of the right arm’s 3-DOF shoulder joint (rotation (Sθx), flexion (Sθy)), and abduction
(Sθz) and 2-DOF elbow joint (pronation (Eθx) and flexion (Eθy)) during the reaching move-
ments toward the targets. These joint angles were saved and utilized for cross-validation
testing of the trained ANNs to assess the effectiveness of the DRL-Data approach.

2.3. Deep Reinforcement Learning (DRL)-Based Motion Cloning: DRL-Data

The model-based approach, which involves mathematical optimization for addressing
high-dimensional or redundancy problems in robotics, requires prior knowledge of robot
dynamics and the operating environment. In contrast, DRL presents a promising model-
free strategy that learns an effective policy through iterative trial-and-error interactions
with the environment without relying on dynamic parameters such as mass, inertia, or
even the model itself. An essential aspect is designing a suitable reward function, as
DRL algorithms enable robotic agents to learn optimal actions by maximizing cumulative
rewards within their virtual environment. In a related study [27], quantitative evidence
was provided to demonstrate that deep learning, like humans, also exhibits motor synergy,
enabling robotic agents to achieve energetically efficient and natural human-like motion.
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To generate synthetic motion data according to the predefined experimental protocols,
we utilized MuJoCo [28], a widely used simulation engine in the DRL research commu-
nity for studying multi-joint mechanical systems. We created an anthropomorphic 7-DOF
robotic arm agent consisting of three sequentially connected modules: a 3-DOF shoulder
joint with abduction, flexion, and rotation, a 2-DOF elbow joint with flexion and pronation,
and a 2-DOF wrist joint with abduction and flexion, mimicking a human arm’s configura-
tion. This arrangement, depicted in Figure 3a, replicates the total DOFs of a real human
arm, considering the forearm’s axial rotation as part of the elbow joint articulation along
with elbow bending. The arm’s endpoint is positioned at the fingertip of the middle finger.

3-DOF Shoulder Joint

(S𝜭x, S𝜭y, S𝜭z)

2-DOF Elbow Joint

(E𝜭x, E𝜭y)

2-DOF Wrist Joint

Fingertip

Target Points

(a) (b) (c)

Figure 3. The simulated anthropomorphic 7-DOF robot arm and the target points in the MuJoCo
simulation environment showcasing the setup: (a) Isometric view of the simulated robot arm with
the joints and a description of the DOFs. (b) The simulated robot arm in a neutral pose, with target
points arranged horizontally. (c) The simulated robot arm tracking a moving point (red) to reach and
touch a designated target point (yellow).

Our study utilizes the advanced soft actor–critic (SAC) algorithm [29] for synthetic
motion generation. In the DRL domain, tasks are typically represented as infinite-horizon
Markov decision processes (MDP), characterized by the tuple (S ,A, p, r). Here, S denotes
the continuous state space, A represents the possible action space, and p : S ×A× S →
[0, ∞) defines the probability density of transitioning from the current state st ∈ S to
the next state st+1 ∈ S given the action at ∈ A. Additionally, r : S × A → R is the
reward function, providing a scalar reward at each transition. The trajectory distribution
induced by a policy π(at|st) is denoted by ρπ . The SAC algorithm is a cutting-edge
stochastic DRL technique that learns a policy π(at|st) aiming to maximize not only the
rewards but also the expected entropy Eρπ [H(π(·|st))], weighted by an entropy term α as
expressed in Equation (1). This maximization of expected entropy enhances the exploration
of diverse behaviors during training, accelerating learning and significantly reducing
sub-optimal solutions.

πSAC = E(st ,at)∼ρπ
[r(st, at) + α · H(π(·|st))] (1)

To make the 7-DOF robot arm learn the reaching motion toward the target points,
it is assigned a task to track and follow a moving point. The trajectory of the moving
point adheres to the prescribed center-out-center reaching task outlined in the experimental
protocols. Starting at the center point, the moving point commences a linear movement
towards a designated target in yellow (Figure 3b), aiming to reach and touch it, followed by
a return to the center point. A brief pause occurs at the center point before the moving point
transitions to the next target, ensuring that all eight target points are periodically reached
during the training phase. Utilizing the SAC algorithm, the policy is learned to enable the
robot arm’s endpoint (the fingertip of the middle finger) to accurately track the moving
target (as depicted in Figure 3c). The objective is to minimize the position error between the
endpoint and the moving target in the task space while ensuring energy-efficient motion.
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The reward function used during training is defined as in Equation (2) and has three
terms with constant coefficients b, c, and d carefully chosen through experimentation to
maximize performance potential. The position error errorp quantifies the distance between
the moving point’s position and the current fingertip position computed from the state.
This component enables the robot arm to effectively learn the center-out-center reaching
motion. The ‖. ‖ notation represents the Euclidean Norm and captures the total energy
cost associated with each action at. By minimizing this term, the robot arm is encouraged
to optimize energy usage, resulting in the generation of synergistic motion that closely
resembles human-like behavior. Furthermore, the palm orientation error “erroro” ensures
proper palm orientation during the reaching motion, aligning with the observations made
during the human motion data acquisition experiments, where the palm of the hand
consistently faced downwards.

r(st, at) = −b · errorp − c · ‖at‖2 − d · erroro (2)

The training involved learning the reaching movements towards the target points
in the horizontal plane over 200,000 steps. Upon completion, the robot arm’s learned
motion was simulated within the MuJoCo environment, where it successfully executed
the center-out-center reaching tasks for all target points. Subsequently, synthetic motion
data were extracted from the robot arm during the target reaching movements, comprising
3-DOF shoulder joint angles (i.e., rotation, flexion, and abduction) and 2-DOF elbow joint
angles (i.e., pronation and flexion). These joint angles are hereafter referred to as Sθx, Sθy,
Sθz, Eθx and Eθy, respectively, constituting our motion dataset. We acquired the DRL-
Data containing four repetitions of reaching movements per target point, later used as the
training dataset for the ANNs.

2.4. Convolutional Long Short-Term Memory (CNN-LSTM) Neural Network

This study employed convolutional long short-term memory (CNN-LSTM) neural net-
works to train a neural network model capable of recognizing shoulder–elbow coordination
and predicting elbow joint angles based on shoulder kinematics input. The CNN-LSTM
architecture combines the strengths of both convolutional neural networks (CNNs) and
long short-term memory (LSTM) recurrent neural networks (RNNs), which have shown
promising results in various time series prediction or classification tasks. Recent studies,
such as human activity recognition in [30], have explored combining CNN and LSTM
layers to enhance performance. This combination is motivated by the idea that LSTM’s
performance can be limited by the quality of the input features it receives [31]. By incorpo-
rating CNN layers, which are adept at reducing input frequency variance and extracting
meaningful features, we improve the overall feature representation. The LSTM layers then
capture temporal dependencies within the extracted features. Additionally, our approach
integrates CNN and LSTM layers within a unified architecture, allowing optimized training
for all layers.

We utilized Python’s machine learning library, Keras, to implement our CNN-LSTM
model. Following the methodology outlined in [22], our CNN-LSTM network was trained
to establish the relationship between shoulder and elbow joint angles during target reaching
movements. The training process involved supervised learning, where the CNN-LSTM
developed a regression model using input–output pairs. Specifically, the CNN-LSTM
received the shoulder joint angles (Sθx, Sθy and Sθz) as input and was trained to predict
the corresponding elbow joint angles (Eθx and Eθy).

To achieve high prediction accuracy, we fine-tuned the hyperparameters of the CNN-
LSTM network, including the number of nodes and hidden layers. We found that a
CNN-LSTM network with a single one-dimensional CNN layer, two LSTM layers, each
containing 256 nodes, and a final dense layer along with the Adam optimization function
yielded efficient results (Figure 4). This configuration allowed the network to effectively
capture features from the input data and model the temporal dependencies necessary for
accurate estimation.
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Figure 4. CNN-LSTM model architecture.

2.5. Analysis Strategy

To assess the effectiveness of the DRL-Data, we trained various CNN-LSTM models
using different input data configurations. In particular, we tested two different scenarios:

2.5.1. Sufficient Human Motion Data Availability

In the first scenario, we evaluated how well the DRL-Data could be used for predicting
the elbow joint motion of a human arm during reaching movements across different subjects.
For performance comparison, we developed two CNN-LSTM models: the DRL-Model and
the Human-Avg-Model. The Human-Avg-Model was trained using an averaged motion
dataset from five human subjects, making it suitable for the sufficient data scenario. On the
other hand, the DRL-Model was solely trained on synthetic motion data. We then evaluated
the performance of both models using a new motion dataset from a sixth subject. Below
are the details of the trained CNN-LSTM models:

• DRL-Model:
DRL-Model was trained with synthetic motion data generated from a DRL simula-

tion without using any human joint angle information. Its purpose was to evaluate
how well the decoder based only on DRL-Data could predict elbow joint motion in
human arms during reaching movements across different subjects.

• Human-Avg-Model:
Six distinct Human-Avg-Models were trained using averaged motion data obtained

by combining the motion data from five human subjects. Each Human-Avg-Model
excluded the motion data from one of the six subjects, which was later utilized for
testing the model. These Human-Avg-Models served as the gold standard for perfor-
mance comparison given that the predictive model trained using motion data from
multiple human subjects’ can capture typical features of human reaching motion from
Real-Data.

• Performance Assessment:
The efficacy of the trained CNN-LSTM models (DRL-Model and Human-Avg-

Model) was tested using real motion data captured via the neuron pro motion capture
system. For example, to validate the Human-Avg-Model, which was trained on aver-
aged motion data from subjects two to six (S2–S6), subject one’s (S1) motion data were
employed. Subsequently, subject one’s (S1) motion data were also used to test the
DRL-Model. For comprehensive performance evaluation, the predicted elbow joint
motion angles from both CNN-LSTM models were compared with the original elbow
joint motion data of subject one (S1) and quantified using the root mean squared error
(RMSE) (Section 2.6.2), a key metric for performance assessment. This iterative test-
ing procedure was replicated using the motion data of each subject to ensure thorough
performance evaluation across multiple subjects.
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2.5.2. Limited Human Motion Data Availability

In the second scenario, we focused on exploring the potential enhancement of per-
formance and efficiency in a CNN-LSTM model through motion data augmentation by
the integration of DRL-Data with Real-Data. For comparison purposes, we trained two
types of CNN-LSTM models: the Hybrid-Model and the Human-Sparse-Model. This scenario
is considered a limited data scenario as we utilized motion data from a single human
subject with a constraint. To elaborate, for training the Human-Sparse-Model, the motion
data comprised one repetition of reaching movements towards only four out of the eight
target points (specifically, target points 1, 3, 5, and 7).

Conversely, the Hybrid-Model was trained using an augmented motion dataset. We
combined the motion data from the same human subject as before and enriched it with
DRL-Data consisting of reaching movements towards an additional set of four target points
(target points 2, 4, 6, and 8), thereby diversifying the training dataset.

To assess the performance of both CNN-LSTM models comprehensively, we evaluated
their ability to predict reaching motions towards all eight target points utilizing new motion
data from five different subjects, employing a cross-subject evaluation strategy. Details of
the trained CNN-LSTM models are as follows:

• Hybrid-Model:
Six distinct Hybrid-Models were trained using the augmented motion dataset,

which combined the motion data from only one human subject, having one repetition
of reaching movements toward four target points, and the DRL-Data, with one repeti-
tion of reaching movements toward four additional target points (eight target points
in total). The aim was to investigate the potential of the DRL-Data to supplement
and diversify the limited training data, thereby enhancing the performance of the
CNN-LSTM model.

• Human-Sparse-Model:
Six separate Human-Sparse-Models were trained, each using motion data from

only one human subject, with the limitation of having only one repetition of reaching
movements towards the specified four target points. This Human-Sparse-Model estab-
lishes a baseline for performance comparison and evaluation of the corresponding
Hybrid-Models.

• Performance Assessment:
The effectiveness of the augmented motion data was assessed through a compara-

tive analysis of the predictive capabilities of the Hybrid-Model and Human-Sparse-Model.
This validation process was conducted using real motion data encompassing reaching
movements toward all eight target points, employing a cross-subject methodology. To
illustrate, if subject one’s (S1) motion data were utilized to train the Human-Sparse-
Model and augmented motion data from subject one (S1 + DRL) were employed for
training the Hybrid-Model, then the performance of both models was evaluated using
a cross-subject approach, involving motion data from subjects two to six (S2–S6). The
root mean squared error (RMSE) (as described in Section 2.6.2) between the predicted
and original elbow joint angular values was computed, serving as a performance
assessment metric.

2.6. Evaluation

To evaluate the quality of the synthetic motion data and assess the performance of the
CNN-LSTM models in predicting elbow joint angles, we employed well-established metrics
such as Pearson’s correlation coefficient and root mean squared error (RMSE) [32]. By
utilizing Pearson’s correlation coefficient, we could assess the degree of linearity between
the predicted joint angles and the actual values, providing insights into the model’s ability
to capture the underlying synergistic patterns in the data, whereas the RMSE metric enables
us to gauge the overall accuracy and precision of the CNN-LSTM models’ estimations.
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2.6.1. Pearson Correlation Coefficient

Pearson’s correlation method examines the linear relationship between two variables
and quantifies the strength of their correlation. The resulting coefficient, denoted as “r”,
ranges between −1 and +1, offering insights into the extent and direction of the correlation.
Table 1 presents the detailed interpretation of the Pearson correlation coefficient.

To compute the Pearson correlation coefficient, we employed the “corrcoef” function
available in Python’s NumPy library, which uses the subject’s original elbow joint angles
and the CNN-LSTM estimated elbow joint angles to compute the Pearson correlation
coefficient.

Table 1. Interpretation of Pearson correlation coefficient.

Range of r Degree of Relationship

−1.0 ≤ r ≤ −0.7 A strong negative linear relationship
−0.7 ≤ r ≤ −0.3 A distinct negative linear relationship
−0.3 ≤ r ≤ −0.1 A weak negative linear relationship
−0.1 ≤ r ≤ +0.1 Not a linear relationship
+0.1 ≤ r ≤ +0.3 A weak positive linear relationship
+0.3 ≤ r ≤ +0.7 A distinct positive linear relationship
+0.7 ≤ r ≤ +1.0 A strong positive linear relationship

2.6.2. Root Mean Squared Error (RMSE)

For performance evaluation, we compared the estimated elbow joint angles (i.e.,
pronation–supination Eθx and flexion–extension Eθy) with the subject’s original elbow joint
angles obtained during the reaching movements captured using the neuron pro system,
using the root mean squared error (RMSE) metric as defined in the Equation (3). Here, x̂t is
the predicted joint angle and xt is the actual joint angle at data point t. The total number of
data points is represented by N.

RMSE =

√√√√ 1
N

N

∑
t=0

(x̂t − xt)2 (3)

2.6.3. Target Point Reaching Error: Unity 3D Simulation

To evaluate the accuracy of the predicted arm movements in reaching the target points,
we utilized a Unity 3D simulation. This simulation was designed to animate the motion
data predicted by the CNN-LSTM model. The Unity simulation replicated the setup of the
human subject motion data acquisition experiment, featuring a humanoid actor in a standing
position with target points arranged in the horizontal plane (as shown in Figure 5).

(a) (b) (c)
Figure 5. The Unity 3D simulated environment for estimated motion animation: (a) Isometric
view showcasing the arrangement of target points horizontally in a circular configuration, with the
humanoid actor positioned in a standing stance. (b) Front view of the humanoid actor in a neutral
pose, with the middle finger’s fingertip at the center point. (c) Illustration of the humanoid actor’s
arm reaching towards a designated target point (yellow).
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The joint angles from each subject’s original motion data and the corresponding
predicted elbow joint angles from both the DRL-Model and the Human-Avg-Model were
used for the animation. This allowed the humanoid actor to visualize the arm reaching
movements toward all the target points. The target point reaching error of both the CNN-
LSTM models was determined relative to the actual arm reaching movements of each
human subject toward the specified target points animated in the Unity 3D simulation. The
Unity-based evaluation provided valuable insights into the performance of the CNN-LSTM
models through the visualization of the predicted arm reaching motions.

3. Results

In this section, we present the analysis results of our proposed DRL-based synthetic
motion cloning approach. Firstly, we demonstrate that the generated DRL-Data accurately
replicate synergistic human-like motion and exhibit joint angular movement patterns
similar to those observed in human subjects during arm reaching motions. Next, we
showcased the effectiveness of the DRL-Model, a CNN-LSTM model trained using the
DRL-Data as input, in predicting the elbow joint motion of different human subjects. The
DRL-Model achieves comparable performance to the gold-standard Human-Avg-Model. Most
notably, our cross-subject evaluation reveals that motion data augmentation through the
combination of Real-Data and DRL-Data can improve the performance of sparse CNN-
LSTM models (Hybrid-Model) in scenarios with limited data availability.

Starting with the quality assessment of the synthetic motion data, our analysis focused
on evaluating the correlation between the DRL-Data and the averaged human motion
dataset from all six subjects, which served as the benchmark for this comparison. Figure 6
illustrates the results through a confusion matrix, presenting the Pearson’s correlation
coefficient obtained by comparing all of the motion datasets, including the Real-Data for
each human subject and the DRL-Data.
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Figure 6. Confusion matrices illustrating the Pearson’s correlation coefficients obtained by comparing
the motion datasets with the averaged human motion data from all six subjects. Each confusion matrix
presents Pearson’s correlation comparison for reaching movements toward a specific target point.
The 3-DOF shoulder and 2-DOF elbow joint angular values (Sx, Sy, Sz, Ex, and Ey) are compared. The
correlation values are displayed within small boxes, with lighter colors (yellow) indicating stronger
correlations and darker colors (green, purple, etc.) representing weaker correlations. The columns
labeled S1 to S6 depict the comparison with motion data from each subject, while the last column
(DRL) compares the generated synthetic motion data.
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Figure 6 comprises individual confusion matrices demonstrating Pearson’s correlation
comparison for reaching movements towards target points, specifically the target points
numbered 4, 5, and 6. The columns labeled S1 to S6 depict the comparison with motion
data from each subject sequentially, while the final column presents the comparison with
the generated DRL-Data. Variations in Pearson’s correlation values can be observed due
to the subjects’ inherent individual differences in reaching motion. However, the overall
trend highlights the consistency among all participants and the DRL-Data, indicating a
shared movement pattern. The similarity between the Pearson’s coefficient values of the
DRL-Data and those of any other human subject’s motion data suggests that the synthetic
dataset generated by our DRL-based motion cloning framework can be considered as an
additional subject within the experiment.

The next step involved evaluating our framework’s effectiveness in predicting elbow
motion during actual human arm reaching movements. To achieve this, we utilized the
synthetic motion data as the training dataset for a CNN-LSTM network called the DRL-
Model (see Section 2.5). As the DRL-based motion cloning framework aimed to replicate
human-like motion, we expected the performance of the DRL-Model to be comparable
to that of the Human-Avg-Model (see Section 2.5), which was trained using the averaged
human motion dataset. Although slight variations in performance were expected due to
the artificially generated nature of the DRL-Data, we anticipated that it would capture the
essence of reaching movement synergistic patterns to effectively train the DRL-Model. After
training both models, we employed them to predict the elbow joint angles (Eθx and Eθy)
during reaching motions performed by actual human subjects. Their shoulder joint angles
(Sθx, Sθy and Sθz) served as input for the estimation process (see Section 2.4). Subsequently,
the estimated elbow joint angular values were compared to the subjects’ original elbow
joint angular values to analyze performance.

Figure 7 displays the results of the prediction performance analysis for both the DRL-
Model and the Human-Avg-Model for one of the subjects. The line graph illustrates the
variation in the joint angles (elbow pronation–supination Eθx and flexion–extension angle
Eθy) during reaching movements towards each target point, while the adjacent bars indicate
the corresponding Pearson’s correlation coefficient values compared to the subject’s original
joint angular variation. Additionally, as depicted in the bar graph in the last column, we
computed the overall RMSE value by comparing the estimated and original joint angular
values for all target points along with the error bar representing the standard deviation
of the estimation error values. As suggested by similar Pearson’s correlation coefficient
values and slight differences in overall RMSE values in Figure 7, both the DRL-Model and
the Human-Avg-Model exhibited comparable performance.

The bar graph in Figure 8 presents the overall RMSE values obtained for the prediction
of elbow joint motion across all six participating subjects. Since the Human-Avg-Model was
trained using an averaged human motion dataset as input, it is expected to have good
prediction results. Although the DRL-Model with an overall average RMSE value of 5.14◦

exhibits slightly lower performance compared to the Human-Avg-Model with an overall
average RMSE value of 4.03◦, the results demonstrate its successful prediction of elbow
joint angles with sufficient accuracy for all subjects.

This highlights the effectiveness of synthetic motion data in training a neural network
model for predicting natural human motion. Notably, for testing the DRL-Model, human
motion data are used as input, which differs entirely from the synthetic motion dataset
used for training. However, it still achieves reasonable accuracy in predicting elbow joint
motion for all subjects. This highlights the robustness of the DRL-Model in accommodating
inter-subject variability.
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Figure 7. Prediction performance analysis for both the DRL-Model and the Human-Avg-Model for
one of the subjects. The top row illustrates the elbow pronation–supination angle Eθx, while the
bottom row represents the elbow flexion–extension angle Eθy. The line graph visually represents the
joint angle variation during reaching movements toward each target point. The original joint angles
are displayed in black, the DRL-Model estimations are shown in blue, and the Human-Avg-Model
estimations are depicted in red. The adjacent bars correspond to Pearson’s correlation coefficient
values for each comparison, while the overall RMSE value is depicted in the bar graph in the last
column, with the error bar representing the standard deviation of estimation error values.
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Figure 8. Bar graph representing the overall RMSE values obtained by comparing the estimated
elbow joint angular values to the original values for reaching movements towards all target points,
using both the DRL-Model (shown in blue) and the Human-Avg-Model (shown in red) across all
participating subjects. The error bar represents the standard deviation of estimation error values.
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Furthermore, we analyzed the target point reaching error associated with the predicted
elbow joint motion for both the DRL-Model and the Human-Avg-Model. For this evaluation,
we utilized a Unity 3D simulation with a humanoid actor, as detailed in Section 2.6.3.
This animation process involved visualizing not only the predicted motion data generated
by both the DRL-Model and the Human-Avg-Model but also the subject’s original motion
data. During the simulation, we tracked the position of the middle finger’s fingertip as
the humanoid actor executed the reaching movements toward each designated target
point. The target point reaching error was determined relative to the actual arm reaching
movements for each individual subject, as animated in the Unity 3D simulation.

Figure 9 presents a comparison of the target reaching error based on the predictions
made by the DRL-Model and the Human-Avg-Model, illustrated on polar charts. The pre-
dicted motion data from both the DRL-Model and the Human-Avg-Model demonstrated
the successful reaching of most target points with reasonable accuracy across all subjects.
Although there were slight variations in a few cases, the overall trend of final position
errors was similar for both models, with an average overall mean value of 3.03 cm for the
DRL-Model and 1.75 cm for the Human-Avg-Model, respectively.
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Figure 9. Comparison of the target reaching error for motion predictions of the DRL-Model and the
Human-Avg-Model. The polar charts present the target reaching error for each point across all subjects
for the DRL-Model in blue and the Human-Avg-Model in red, where the radial axis indicates the scale
of the position error measured in centimeters.

It is important to note that the humanoid actor in the simulation solely relied on
shoulder and elbow joint angular data to animate the reaching movements without in-
corporating compensatory movements such as trunk and shoulder displacements. In
real scenarios, slight compensatory movements could further enhance the accuracy of the
target point reaching error. These results further validate the effectiveness of our DRL-
based synthetic motion data in accurately predicting the elbow joint motion during natural
human movements.
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Motion Data Augmentation: Cross-Subject Evaluation

To assess the impact of integrating DRL-Data with Real-Data on the performance
of our predictive models, we developed CNN-LSTM models, namely the Human-Sparse-
Model and Hybrid-Model (see Section 2.5), representing a scenario with limited training data
availability. Subsequently, we conducted a cross-subject evaluation by utilizing the sparse
model of one subject to predict the elbow joint motion of all other participating subjects.
This approach accounts for the inherent inter-subject variability, providing valuable insights
into the robustness and transferability of the trained predictive models.

Figure 10 presents the RMSE values obtained from the cross-subject evaluation of the
Hybrid-Model and the Human-Sparse-Model, represented as a box plot. The box size indicates
the range encompassing 75% of the sample values, with the solid vertical golden line inside
representing the median. A black diamond marker indicates the mean value. Smaller box
sizes, along with smaller mean and median values, indicate less variation in the prediction
results and better overall performance.

2 3 4 5 6 7 8 9
RMSE (Degrees)

S1

S2

S3

S4

S5

S6

Elbow Joint Angles Prediction

Hybrid-Model Human-Sparse-Model

Sparse Models Cross-Subject Evaluation

Figure 10. Box plot of the RMSE values comparing the predicted and actual elbow joint angles
obtained from the cross-subject evaluation of the Hybrid-Model in blue and Human-Sparse-Model in red.
The box size represents the range encompassing 75% of the values, with the solid vertical golden line
inside indicating the median. A black diamond marker denotes the mean value. Circular markers
represent outliers, and the whiskers indicate the maximum and minimum values. Smaller box sizes,
along with lower mean and median RMSE values, indicate better performance.

The results depicted in Figure 10 demonstrate that the Hybrid-Model had improved
performance for all six subjects, as indicated by its smaller box size along with the lower
mean RMSE values compared to the Human-Sparse-Model. This can also be observed from
the percentage breakdown of the performance improvement presented in Table 2. The
overall cross-subject results show that the Hybrid-Model had an overall average RMSE value
of 5.72◦, whereas the Human-Sparse-Model had an overall average RMSE value of 6.35◦

with an overall average improvement of about 10% in the prediction performance. These
findings highlight the potential of integrating DRL-Data with Real-Data to enhance the
overall performance and robustness of the predictive model. By augmenting the subject’s
data with the additional synthetic motion data, it enriches the diversity of the training
dataset, contributing to improved model performance.
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Table 2. Percentage breakdown of sparse models’ cross-subject evaluation performance.

Model Mean RMSE Value
Human-Sparse-Model

Mean RMSE Value
Hybrid-Model

Percentage
Improvement

S1 8.63 7.03 18.48%
S2 5.56 5.50 1.22%
S3 5.29 4.95 6.34%
S4 5.13 4.92 4.01%
S5 6.75 5.90 12.58%
S6 6.77 6.05 10.61%

4. Discussion

We propose a DRL-based motion cloning framework for the synthetic motion gen-
eration of arm reaching movements. The synthetic motion data effectively supplement
and diversify the training motion data, addressing the challenge of acquiring large motion
datasets from human subjects for training a predictive model. Our evaluation results
showcase the efficacy of cloned motion data in accurately predicting natural human elbow
joint movements. Furthermore, motion data augmentation demonstrated the enhanced
performance of the predictive model across multiple subjects in the case of the decoder
based on human experiments.

We assessed the quality of the cloned motion data (DRL-Data) generated through our
DRL simulation by examining its correlation with the averaged human motion data and
comparing the results to that of Real-Data obtained from all participating subjects. Pearson’s
correlation coefficient analysis revealed a strong similarity between the cloned DRL-Data
and the motion data from the other subjects, albeit with slight variations in correlation
values due to the inherent inter-individual variability. These results highlight that the
synthetic dataset generated by our DRL-based motion cloning framework can be considered
as an additional subject within the experiment. Such findings provide compelling evidence
supporting the effectiveness of our DRL-based motion cloning framework in successfully
synthesizing human-like synergistic motion.

We used synthetic motion data to train a predictive model, the DRL-Model, and
evaluated its performance against the Human-Avg-Model (used as the gold standard), which
was trained using the averaged human motion data from all the participating subjects. We
employed metrics such as Pearson’s correlation coefficient and RMSE values to measure
the linearity and average difference between the estimated and actual joint angular values.
Both predictive models exhibited a similar performance, as evidenced by comparable
Pearson’s correlation coefficient values and minor differences in overall RMSE values.
This indicates that the synthetic motion data successfully captured the essential reaching
movement synergistic patterns, enabling the effective training of the DRL-Model. Notably,
the DRL-Model was tested using human motion data as input, which uniquely differs
from the synthetic motion data used for training. Nonetheless, it accurately predicted the
elbow joint motion across all subjects, demonstrating the robustness of the DRL-Model in
accommodating inter-subject variability.

We also conducted a visual analysis of the predicted motion using a Unity 3D sim-
ulation, where a humanoid actor animated the reaching movements toward all target
points. We calculated the target reaching error to assess the accuracy of the estimations.
The results demonstrated that both the DRL-Model and the Human-Avg-Model successfully
reached the target points with reasonable accuracy. While there were slight variations
in a few cases, overall, both models produced similar overall target reaching errors. It
is important to note that the humanoid actor in the simulation solely relied on shoulder
and elbow joint angular data to animate the reaching movements without incorporating
compensatory movements. Therefore, the target reaching errors can be further improved
in real scenarios by incorporating slight compensatory movements such as trunk and
shoulder displacements.
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Finally, we investigated the impact of integrating DRL-Data with the Real-Data for
training purposes to enhance the performance of the predictive models. We trained predic-
tive models with sparse training data, namely Human-Sparse-Model and Hybrid-Model, and
evaluated their prediction accuracy through a cross-subject evaluation. The results reveal
that the Hybrid-Model outperformed the Human-Sparse-Model, demonstrating improved
performance in all six subjects, as indicated by the smaller box plot size and lower overall
average RMSE values. These findings highlight the potential of integrating DRL-Data with
Real-Data, leading to the enhanced overall performance and robustness of the predictive
model. By augmenting the subject’s data with additional synthetic motion data, the training
dataset becomes more diverse, contributing to improved model performance.

In this study, we explored synthetic motion generation with a specific focus on funda-
mental horizontal-plane reaching movements and its utilization in motion data augmenta-
tion to improve the predictive model’s performance. Looking ahead, our research trajectory
entails an in-depth exploration of the domain of synthetic motion data generation. We
are striving to enhance the accuracy and diversity of the synthetic dataset through the
implementation of advanced DRL techniques to encompass a broader range of dynamic
movements and scenarios.

5. Conclusions

This study unveils the potential of synthetically generated motion data using a DRL-
based motion learning approach to accurately replicate human-like synergistic arm move-
ments and their effectiveness in training predictive models capable of accurately predicting
actual human arm movements.

We present a novel DRL-based motion cloning framework designed explicitly for
synthesizing motion data for arm reaching movements. Through our analysis, we con-
firmed that the synthetic motion data closely resemble the characteristics of motion data
obtained from human subjects and effectively capture the synergistic patterns of the arm
reaching movements, enabling the training of an accurate predictive model. Our trained
model demonstrates the ability to predict elbow joint motion across diverse human sub-
jects, achieving an overall average RMSE value of 5.14◦ and accurately reaching the target
points. Notably, our results highlight the significant advantages of integrating synthetic
motion data with actual motion data from human subjects during training, enhancing the
performance and robustness of the predictive models in a cross-subject evaluation setting,
with an overall average RMSE value of 5.72◦.

This initial investigation showcases the potential of the proposed DRL-based motion
cloning framework in successfully synthesizing and leveraging synthetic motion data to
enhance the accuracy and reliability of predictive models in capturing natural human-like
movements. Our evaluations yield compelling evidence, affirming the ability of the cloned
motion data to accurately predict natural elbow motion across multiple subjects. Moreover,
the cloned motion data can not only supplement limited data availability but also diversify
the training data, contributing to improved generalization. These findings have significant
implications for creating comprehensive synthetic motion dataset resources for diverse arm
movements and advancing strategies for automated prosthetic elbow motion.
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