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Abstract: To address the problem of insufficient real-world data on planetary gearboxes, which makes
it difficult to diagnose faults using deep learning methods, it is possible to obtain sufficient simulation
fault data through dynamic simulation models and then reduce the difference between simulation
data and real data using transfer learning methods, thereby applying diagnostic knowledge from
simulation data to real planetary gearboxes. However, the label space of real data may be a subset of
the label space of simulation data. In this case, existing transfer learning methods are susceptible to
interference from outlier label spaces in simulation data, resulting in mismatching. To address this
issue, this paper introduces multiple domain classifiers and a weighted learning scheme on the basis
of existing domain adversarial transfer learning methods to evaluate the transferability of simulation
data and adaptively measure their contribution to label predictor and domain classifiers, filter the
interference of unrelated categories of simulation data, and achieve accurate matching of real data.
Finally, partial transfer experiments are conducted to verify the effectiveness of the proposed method,
and the experimental results show that the diagnostic accuracy of this method is higher than existing
transfer learning methods.

Keywords: planetary gearbox; fault diagnosis; dynamics simulation; partial transfer learning

1. Introduction

A planetary gearbox (PG) is a key component of rotating machinery. Due to its
advantages of large bearing capacity, small volume, and high transmission efficiency, it has
been widely applied in mechanical transmission systems in industries such as wind power,
aviation, lifting, and transportation. However, PG often works in harsh environments,
making it susceptible to malfunctions. If PG fails, it may cause the entire transmission
system to degrade and fail, even causing catastrophic damage and huge economic losses [1].
Therefore, researching fault diagnosis methods for PG has important practical significance
for ensuring stable operation and prolonging the service life of mechanical equipment [2].
By conducting relevant research and establishing reliable fault diagnosis models, people
can detect problems in a timely manner and take corresponding measures. This can not
only reduce the maintenance costs of mechanical equipment but also avoid larger faults
and losses.

When using machine learning and deep learning methods for PG fault diagnosis,
huge quantities of labeled fault data are usually necessary. However, for actual industrial
production, most data is collected while the machine is running normally [3], making it
challenging to obtain vast and detailed fault data. To address this issue, an abundance
of simulated fault data can be gathered through dynamic simulation analysis, and then
transfer learning (TL) methods can be used to narrow the disparity between simulated
and real data. Thus, the diagnostic information in the simulated data is able to be applied
to the fault diagnosis of real PG. Li et al. [4] simulated vibration signals using a lumped
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parameter dynamic model and then used a CNN-based TL network to obtain domain-
invariant features from various domains in order to classify faults. Dong et al. [5] generated
an abundance of simulated data using dynamic models and then used CNN and parameter
transfer methods to apply the learned fault diagnosis knowledge to practical scenarios,
solving the problem of small samples. Li et al. [6] trained a deep neural network model
using computer-simulated data to deal with the challenge caused by an insufficient amount
of labeled fault data and used TL to narrow the discrepancy between the simulated and
actual domains. Zhu et al. [7] introduced a defect vibration model for simulating fault
vibration signals and used real and simulated signals as the target domain and source
domain of TL fault diagnosis methods, demonstrating the method’s effectiveness and
superiority through experimentation. Liu et al. [8] generated simulated vibration signals
using a phenomenological model and then used domain adversarial neural networks to
train adversarial data among source and target domains. According to the experimental
findings, this means can produce excellent classification accuracy with just relatively little
real data.

Diagnostic methods based on dynamic simulation and TL usually presume that the la-
bel space of simulation data and real data are identical. But when this method is applied to
real planetary gear fault diagnosis, simulation data can contain all possible fault categories
while the real planetary gearbox may only have one or a few faults, which means that
the label space of real data is a subset of the label space of simulation data. This can lead
to interference from outlier label space in simulation data, causing mismatching. Partial
transfer learning (PTL) methods can help reduce mismatching. Wang et al. [9] proposed a
balanced adversarial domain adaptive network for fault diagnosis tasks in partial transfer
scenarios, which alleviated the mismatching problem by introducing balancing strategies
and class-level weights. Li et al. [10] proposed a class-weighted adversarial neural net-
work that encourages positive transfers of shared classes and ignores source class outliers
through class-weighting strategies. Sun et al. [11] suggested a game theory-enhanced
domain adaptation network to solve partial domain adaptation problems. The network
constructs three attention matrices using maximum mean discrepancy, Jensen-Shannon
divergence, and Wasserstein distance and generates the best probability weight through the
combination of game theory weights, thereby filtering out irrelevant source domain sam-
ples and improving mechanical fault diagnosis performance. Li et al. [12] suggested a new
weighted adversarial transfer network that filters out irrelevant source domain samples
and improves the performance of the target task through weighted learning. Jiao et al. [13]
proposed a domain adaptive network based on classifier inconsistency. The network uses
two discriminative 1D-CNN as the basic architecture and promotes active network training
by identifying and emphasizing source domain samples with the same classification as
the target domain. At the same time, the classifier inconsistency is added in order to
direct the model towards learning discriminative and domain-invariant representations
for precise classification of unlabeled target data. Kuang et al. [14] proposed a two-stage
double-weight consistency-induced partial domain adaptive network. This network ob-
tains double-level composite weights from class-level and sample-level weights through
double-weight consistency-induced weighting strategies, enabling selective mapping of
source diagnosis knowledge to the target domain.

To deal with the challenge of scarce labeled fault data in real PG fault diagnosis, this
paper establishes a dynamic simulation model of PG to obtain abundant fault simulation
data. But simulation data and actual data are distinct, and the label space is also het-
erogeneous. To solve these problems, this paper introduces multiple domain classifiers
and weighted learning schemes on the basis of existing domain adversarial TL methods,
evaluates the transferability of simulation data, adaptively measures their contributions to
label predictor and domain classifiers, filters out the interference of irrelevant categories of
simulation data, achieves accurate matching of real data, and thus improves the diagnostic
accuracy of transfer tasks.
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The main contributions of this paper are as follows:

• Through the rigid-flexible coupling dynamic model of PG, a wealth of fault simulation
data is obtained, and then the problem of scarcity of labeled fault data in real-world
scenarios is solved.

• By introducing multiple domain discriminators and a weighted learning scheme, the
interference from simulation data of irrelevant categories is filtered, thereby improving
the diagnostic accuracy of partial transfer tasks.

The remainder of this paper is arranged as below: Section 2 introduces the relevant
theories. Section 3 describes the proposed means. Section 4 studies a practical case. Section 5
summarizes this paper.

2. Theoretical Background
2.1. Partial Transfer Learning

In TL, it is often assumed that the label space of the source domain (Ds) samples, Cs,
is the same as that of the label space of the target domain (Dt) samples, Ct. However, in
real-world applications, Ct is more likely to be a subset of Cs. In this case, all labels in Dt
are shared by both Ds and Dt, and Ct is also known as the shared label space. There are
also some labels in Ds that are unique to it, known as the outlier label space (Cs-Ct), which
can lead to mismatches between Ds and Dt samples and affect the accuracy of the transfer
task. PTL aims to promote the positive transfer of samples in the shared label space while
suppressing the negative transfer of samples in the outlier label space when Ct is a subset of
Cs, thereby improving the accuracy of the transfer task [15]. Figure 1 illustrates the concept
behind traditional TL and PTL. In the figure, Ds samples have three types of labels: 4, #,
and �, while Dt samples only have two types of labels: 4 and �. In this case, # in Ds is an
outlier label, which may lead to mismatching with Dt samples during TL. However, PTL
methods can recognize and filter out outlier labels in Ds, effectively reducing the risk of
mismatching and improving model performance.
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2.2. Residual Neural Network

For deep neural networks, the number of layers is crucial. The deeper the network,
the richer its ability to extract hierarchical features and its recognition and classification
capabilities are also enhanced. However, for traditional CNN, too many layers can cause
gradient vanishing or explosion, making the network difficult to train. To address the
issue, He et al. [16] proposed Residual Neural Networks (ResNet) in 2015. ResNet usu-
ally includes convolutional layers, pooling layers, residual blocks, and fully connected
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layers. Figure 2 illustrates a schematic diagram of residual blocks, where x is the input,
H(x) = F(x) + x is the output, and F(x) = H(x) − x is the residual. The residual block has two
branches, the residual branch, and the identity mapping branch. The residual branch con-
sists of two convolutional layers, which are used to fit the residual F(x), while the identity
mapping branch keeps the input x unchanged. The output H(x) of the residual block is
obtained by element-wise addition of the two branches and then passed through the ReLu
activation function. The introduction of identity mapping ensures that the performance of
deep networks is not worse than that of shallow networks, and no additional parameters
or computation complexity are added.
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2.3. Domain Adversarial Neural Network

Domain Adversarial Neural Networks (DANNs) have been extensively implemented
in TL. Through the adversarial learning process, the network is capable of extracting
domain-invariant features from both Ds and Dt. The adversarial learning process is able to
be seen as a two-player game, with the first player being a domain classifier Gd taught to
differentiate between Ds and Dt features, and the second player is a feature extractor Gf
trained to confuse Gd. The framework of DANN is shown in Figure 3.

To obtain domain-invariant features, during the training process of DANN, the pa-
rameters θf of Gf are learned by maximizing the loss of the Gd. The parameters θd of Gd
are learned by minimizing its loss. In addition, minimizing the loss of the label predictor
Gy ensures a low Ds classification error. The overall loss function of DANN is shown in
Equation (1) [17]:

L
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In the formula, Ly is the loss function of Gy, Ld is the loss function of Gd, di is the
domain label of the i-th sample, and λ is the hyperparameter that balances Ly and Ld. The
parameter optimization for DANN is:(
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3. Proposed Method
Weighted Domain Adversarial Neural Network Diagnostic Model

When Dt label space Ct is a subset of Ds label space Cs, if existing TL fault diagnosis
models are used, Dt samples may be incorrectly matched with samples belonging to the
outlier label space Cs-Ct in Ds, resulting in reduced diagnostic accuracy. To deal with
this problem, this paper suggests a domain adversarial neural network with a weighted
learning strategy to promote the positive transfer of the shared label space Ct and suppress
the negative transfer of the outlier label space Cs-Ct in Ds. The network framework is
shown in Figure 4.
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This network includes a feature extractor Gf, a label predictor Gy, and |Cs| domain
classifiers Gd. Gf and Gy are composed of ResNet-18. Gf is the feature extraction part of
ResNet-18, including convolutional layers, pooling layers, and residual blocks. To extract
more effective features, CBAM [18] is added to each residual block. Gy corresponds to
the output of ResNet-18 and includes a fully connected layer and a softmax classification
layer. |Cs| domain classifiers Gd have the same structure, including three fully connected
layers. The c-th domain classifier Gc

d (c = 1, 2, . . ., |Cs|) is responsible for matching the Ds
sample with label c and the Dt sample with label c. Therefore, in Gc

d, samples with label
c should be assigned larger weights, while samples with other labels should be assigned
smaller weights. In addition, only the domain classifier is accountable for matching the
shared label space Ct can promote positive transfer, while the domain classifier accountable
for matching the outlier label space Cs-Ct will introduce noise. Therefore, it is necessary
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to reduce the weight of the domain classifiers responsible for matching the outlier label
space Cs-Ct.

As the labeled samples in Dt are unknown during model training, it is not possible
to determine the weights based on labels. Joint distribution adaptation (JDA) [19] is often
used to calculate differences between samples, and this paper will calculate weights using
JDA values. The calculation formula for the weight matrix Wd assigned to the domain
classifier is shown in Equations (4)–(6):

jci =


jsc
i : mean

(
∑

xj∈Dc
s

JDA
(

G f
(
xj
)
, G f (xi)

))
, xi ∈ Ds

jtc
i : mean

(
∑

xj∈Dc
s

JDA
(

G f
(
xj
)
, G f (xi)

))
, xi ∈ Dt

(4)

yc =

1/mean
( nt

∑
i=1

jtc
i

)
|Cs |
∑

c=1

(
1/mean

( nt
∑

i=1
jtci

)) (5)

Wd = [y1, y2, . . . , y|Cs |] (6)

In the formula, mean(.) calculates the average value, Gf(.) represents the extracted
features by the feature extractor, and JDA(.) represents the JDA value used to measure
the difference between the two samples. If the JDA value is small, it indicates that the
difference between the two samples is small, and there is a significant possibility that they
belong to the same label. jsc

i represents the discrepancy between the i-th Ds sample and
Ds sample with label c, and jtc

i represents the discrepancy between the i-th Dt sample and
Ds sample with label c. By calculating the discrepancy between each Dt sample and Ds
sample with label c, the probability yc of label c belonging to the shared label space Ct can
be obtained. Since the labels in the outlier label space, Cs-Ct, do not belong to Ct, their
probabilities yc, c∈Cs-Ct are small enough to reduce the weight of the domain classifiers
responsible for Cs-Ct.

The calculation formula for the weight matrix Ws assigned to the samples is shown in
Equations (7) and (8):
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In the formula, ssc
i is the probability that the label of the i-th Ds sample is c, while stc

i is
the probability that the label of the i-th Dt sample is c.

After incorporating Wd and Ws, the total loss function of the model is outlined below:
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In the equation, θf represents the parameters of Gf, θy represents the parameters
of the Gy, θc

d represents the parameters of Gc
d, Ly represents the loss function of the Gy,
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Lc
d represents the loss function of Gc

d, di represents the domain label of the i-th sample, and
λ is a hyperparameter that balances Ly and Ld.

The optimization of the model parameters is as follows:(
θ̂ f , θ̂y

)
= argmin

θ f ,θy
L
(

θ f , θy, θc
d|
|Cs |
c=1

)
(10)(

θ̂1
d, . . . , θ̂

|Cs |
d

)
= arg max

θ1
d ,...,θ|Cs |

d

L
(

θ f , θy, θc
d|
|Cs |
c=1

)
(11)

Compared with a single domain classifier, the multiple domain classifiers used in this
paper have two advantages: (1) by using the weight matrix Wd of the domain classifiers,
the model can emphasize the domain classifiers responsible for the shared label space and
suppress the ones responsible for the outlier label spaces, thereby reducing the negative
impact of outlier label spaces. (2) The sample weight matrix Ws allows Dt samples to only
align with Ds samples of one or multiple most relevant labels, thus reducing mismatching.

4. Experiment and Analysis
4.1. Dataset Comparison and Analysis

The real data for the PG comes from the Drivetrain Diagnostics Simulator (DDS),
which is a comprehensive experimental platform for diagnosing power transmission faults.
Figure 5 shows the physical model of the DDS experiment platform. During data collection,
the variable-speed drive motor has three speeds: 20 Hz, 30 Hz, and 40 Hz, and the magnetic
brake has three currents: 0 A, 0.4 A, and 0.8 A (by adjusting the current of the magnetic
brake, various loads can be transferred to the output shaft). The sampling frequency
is 12,800 Hz.
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The simulated data for the PG comes from our previous article, where a rigid-flexible
coupled model was established [20]. We used this model to obtain simulation data for four
different health conditions of the PG: sun gear broken tooth fault (BR), sun gear crack fault
(CR), sun gear tooth missing fault (MI), and normal sun gear (NO). During data acquisition,
the input shaft speed was 30 Hz with no load, and the simulation time was 10 s with a
simulation step of 128,000. This is equivalent to a working conditions of 30 Hz 0 A for
the simulation data, with a sampling frequency of 12,800 Hz. In addition, in our previous
article, we also analyzed the effect of the simulation step size on the simulation data, and
the results are shown in Figure 6 [20], where ∆t represents the time interval between two
impacts, fm represents the meshing frequency, and fg represents the fault frequency. It
can be seen from Figure 6 that the smaller the simulation step size, the more obvious the
periodic shock in the time domain diagram and the sideband in the frequency domain
diagram, and they are all consistent with the calculated values of the theoretical formula,
which verifies the simulation model and simulation data plausibility.
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of rigid-flexible coupling model.

The rigid-flexible coupling model has simplified the PG of the DDS experimental
platform to a large extent, and the parameter settings in the model are difficult to completely
match with the actual PG. This results in a discrepancy between the simulation and real
data, even though the simulated data agrees with the theory. In order to more intuitively
demonstrate this difference, this section will analyze and compare the simulation and real
data from the perspectives of time-domain, frequency-domain, and probability distribution.
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(1) Comparison and analysis of time domain diagrams
Figure 7 shows the time-domain plots of simulated data and real data, both of which

were obtained under a 30 Hz 0 A operating condition. It can be observed that there is no clear
periodic impulse in either the simulated data or the real data due to a lack of sufficiently
high sampling frequency. However, the real data exhibits amplitude modulation, while the
simulated data does not. This is because the real data was collected using a fixed-position
vibration sensor, while in PG, the planetary gear rotates, causing the distance between the
planetary gear and sensor to change. When the planetary gear is closer to the sensor, the
measured meshing vibration is larger, and when it is farther away, it is smaller, resulting
in amplitude modulation in the time-domain waveform. In contrast, the simulated data
measures the angular acceleration of the planetary carrier, which is less affected by the
position of the planetary gear and hence does not exhibit amplitude modulation.
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(2) Comparison and analysis of frequency domain diagrams
Figure 8 shows the frequency domain comparison of the simulated and real data, both

of which were obtained under the same working conditions of 30 Hz 0 A. The frequency
domain spectra of both simulated and real data exhibit obvious meshing frequencies and
their low harmonics, indicating similar vibration characteristics between the two groups of
data. However, the real data does not show higher harmonics of the meshing frequency,
which may be due to environmental noise and other factors affecting the high-frequency
components of the frequency domain spectra during data acquisition.
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(3) Comparison and analysis of probability distribution
From the simulated data with a frequency of 30 Hz and a current of 0 A, as well as

the real data from different conditions (30 Hz 0 A, 20 Hz 0.4 A, 40 Hz 0.8 A), 12,800 data
points were selected and normalized to [−1,1], resulting in the probability distribution
curves shown in Figure 9. Figure 9 illustrates that the probability distribution curve of
the simulated data is more concentrated and has a higher peak compared to the real data.
This indicates that the probability distribution of the simulated data and the real data
differ significantly. In addition, the probability distribution curves of the real data from
different conditions are relatively similar, indicating that the difficulty of transfer between
the simulated and real data is higher than the difficulty of transfer between real data from
various working condition.

4.2. Dataset Description

By using overlapping sampling, 512-length data segments were extracted with a re-
sampling step of 50 from both simulated and real data. Then, Short-Time Fourier Transform
(STFT) was applied to convert these segments into time-frequency images with a size
of 96 pixels in both width and height. There are 2400 time-frequency images for each
health condition of simulated and real data, of which 2000 are utilized for training, and
the remaining 400 are utilized for testing. Figure 10 shows the time-frequency images of
simulated data. After obtaining the time-frequency images, some partial transfer tasks
were designed, as shown in Tables 1 and 2. In Table 1, the real data of 30 Hz 0 A is used as
Ds, while the real data of other working conditions are used as Dt. In Table 2, the simulated
data of 30 Hz 0 A is used as Ds, while the real data are used as Dt. Ds in Tables 1 and 2 both
contain four health conditions: BR, CR, MI, and NO.



Biomimetics 2023, 8, 361 12 of 19

Biomimetics 2023, 8, 361 13 of 20 
 

 

 
(a) BR 

 
(b) CR 

Figure 9. Cont.



Biomimetics 2023, 8, 361 13 of 19

Biomimetics 2023, 8, 361 14 of 20 
 

 

 
(c) MI 

 
(d) NO 

Figure 9. Probability distribution curves of simulated data and real data. 

4.2. Dataset Description 
By using overlapping sampling, 512-length data segments were extracted with a 

resampling step of 50 from both simulated and real data. Then, Short-Time Fourier Trans-
form (STFT) was applied to convert these segments into time-frequency images with a size 
of 96 pixels in both width and height. There are 2400 time-frequency images for each 
health condition of simulated and real data, of which 2000 are utilized for training, and 
the remaining 400 are utilized for testing. Figure 10 shows the time-frequency images of 
simulated data. After obtaining the time-frequency images, some partial transfer tasks 
were designed, as shown in Tables 1 and 2. In Table 1, the real data of 30 Hz 0 A is used as 

Figure 9. Probability distribution curves of simulated data and real data.



Biomimetics 2023, 8, 361 14 of 19

Biomimetics 2023, 8, 361 15 of 20 
 

 

Ds, while the real data of other working conditions are used as Dt. In Table 2, the simulated 
data of 30 Hz 0 A is used as Ds, while the real data are used as Dt. Ds in Tables 1 and 2 both 
contain four health conditions: BR, CR, MI, and NO. 

 
(a) BR 

 
(b) CR 

 
(c) MI 

 
(d) NO 

Figure 10. Time-frequency diagram of simulation data for different health conditions. 

Table 1. Partial transfer tasks where both Ds and Dt are real data. 

Task Name Dt Conditions Dt Health Conditions 

C1 30 Hz 0.8 A BR, CR, MI 

C2 20 Hz 0 A BR, CR 

C3 20 Hz 0.4 A CR, NO 

C4 40 Hz 0.8 A CR 

Table 2. Partial transfer tasks where Ds is simulation data, and Dt is real data. 

Task Name Dt Conditions Dt Health Conditions 

C5 30 Hz 0 A BR, CR, NO 

C6 30 Hz 0.8 A BR, CR, MI 

C7 20 Hz 0 A BR, CR 

C8 20 Hz 0.4 A CR, NO 

C9 40 Hz 0.8 A CR 

4.3. Result Comparison 
To demonstrate the effectiveness of the proposed method, we compared it with Res-

Net [16], DeepCoral [21], DDC [22], and DANN [23]. To make an impartial comparison, 
all methods used the same ResNet network structure and parameters as the proposed 
method. 

Figures 11 and 12 illustrate the diagnostic accuracies of various methods. It can be 
observed that when both Ds and Dt are real data, the proposed method obtains a mean 
diagnostic precision of 98.02%. When Ds is simulated data and Dt is real data, as analyzed 
in Section 4.1, the transfer difficulty is significantly increased. Nevertheless, the proposed 
means still achieves a mean diagnostic precision of 83.83%, indicating its practical value. 
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Table 1. Partial transfer tasks where both Ds and Dt are real data.

Task Name Dt Conditions Dt Health Conditions

C1 30 Hz 0.8 A BR, CR, MI
C2 20 Hz 0 A BR, CR
C3 20 Hz 0.4 A CR, NO
C4 40 Hz 0.8 A CR

Table 2. Partial transfer tasks where Ds is simulation data, and Dt is real data.

Task Name Dt Conditions Dt Health Conditions

C5 30 Hz 0 A BR, CR, NO
C6 30 Hz 0.8 A BR, CR, MI
C7 20 Hz 0 A BR, CR
C8 20 Hz 0.4 A CR, NO
C9 40 Hz 0.8 A CR

4.3. Result Comparison

To demonstrate the effectiveness of the proposed method, we compared it with
ResNet [16], DeepCoral [21], DDC [22], and DANN [23]. To make an impartial com-
parison, all methods used the same ResNet network structure and parameters as the
proposed method.

Figures 11 and 12 illustrate the diagnostic accuracies of various methods. It can
be observed that when both Ds and Dt are real data, the proposed method obtains a
mean diagnostic precision of 98.02%. When Ds is simulated data and Dt is real data, as
analyzed in Section 4.1, the transfer difficulty is significantly increased. Nevertheless,
the proposed means still achieves a mean diagnostic precision of 83.83%, indicating its
practical value. Furthermore, the proposed means outperforms other TL methods in all
transfer tasks. This is because the proposed method introduces multiple domain classifiers
and a weighted learning strategy, which enables the model to effectively measure the
transferability of each label’s Ds sample to Dt and increase the contribution of shared label
Ds samples and decrease the contribution of outlier label Ds samples during training. This
effectively reduces the mismatching between Dt samples and outlier label Ds samples,
thereby improving the diagnostic accuracy of transfer tasks.
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4.4. Feature Visualization Analysis

To clearly demonstrate the feature distribution when simulation data is used as Ds
and real data as Dt, the features extracted by various methods were visualized using t-SNE.
Figure 13 depicts the feature visualization of different methods in task C5. In this task,
there are four labels in Ds samples, while there are only three labels in Dt samples, and MI
in Ds belongs to the outlier label. From Figure 13, it can be seen that ResNet can accurately
distinguish Ds features of different labels, but the distribution of Dt features it extracts is
quite different from that of Ds features, which leads to lower accuracy in classifying Dt
samples. In comparison, Ds features and Dt features extracted by DeepCoral, DDC, and
DANN have a more similar distribution, but there is a large overlap between features of
different labels, and some Dt features are incorrectly aligned with Ds MI features. In the
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proposed method, Dt features can be correctly aligned with the corresponding Ds features
of the label, and the discriminability between features of different labels is higher, which
further validates the effectiveness of the proposed means.
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both Ds and Dt are real data, this means achieved an average diagnostic accuracy of 
98.02%; when Ds is simulated data and Dt is real data, this method achieved an average 
diagnostic accuracy of 83.83%, both of which are better than other TL methods. In addi-
tion, this method relaxes the requirement that Ds and Dt need to have the same label space, 
which is more in line with practical application scenarios. 
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5. Conclusions

This paper puts forward a weighted domain adversarial neural network diagnostic
model aimed at improving the fault diagnosis performance of PG in partial transfer tasks.
Unlike traditional domain adaptation diagnostic methods that directly adapt all Ds and Dt
class samples, this method considers the influence of outlier label Ds samples. Specifically,
this method uses multiple domain classifiers, each of which is responsible for matching
samples of a certain label. And a weighting scheme is introduced to assign smaller weights
to outlier label Ds samples and domain classifiers responsible for matching outlier label
source domain samples, effectively reducing the negative impact of outlier label Ds samples
and promoting correct matching of shared labeled Ds samples and Dt samples. When both
Ds and Dt are real data, this means achieved an average diagnostic accuracy of 98.02%;
when Ds is simulated data and Dt is real data, this method achieved an average diagnostic
accuracy of 83.83%, both of which are better than other TL methods. In addition, this
method relaxes the requirement that Ds and Dt need to have the same label space, which is
more in line with practical application scenarios.
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