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Abstract: Digital twins are computer programs that use real-world data to create simulations that
predict the performance of processes, products, and systems. Digital twins may integrate artificial
intelligence to improve their outputs. Models for dealing with uncertainties and noise are used to
improve the accuracy of digital twins. Most currently used systems aim to reduce noise to improve
their outputs. Nevertheless, biological systems are characterized by inherent variability, which
is necessary for their proper function. The constrained-disorder principle defines living systems
as having a disorder as part of their existence and proper operation while kept within dynamic
boundaries. In the present paper, we review the role of noise in complex systems and its use in
bioengineering. We describe the use of digital twins for medical applications and current methods
for dealing with noise and uncertainties in modeling. The paper presents methods to improve
the accuracy and effectiveness of digital twin systems by continuously implementing variability
signatures while simultaneously reducing unwanted noise in their inputs and outputs. Accounting
for the noisy internal and external environments of complex biological systems is necessary for the
future design of improved, more accurate digital twins.

Keywords: digital twins; digital health; variability; noise; complex systems; system biology

1. Introduction

A digital twin is a computer program that uses real-world data to create simulations
that predict how a system, a product, or a process perform [1,2]. These programs integrate
artificial intelligence (AI) and software analytics to improve output [3]. In most currently
used digital twins platforms, noise in input datasets detract from the accuracy of the
results [4]. Different methods are used to reduce noise and uncertainties to improve the
accuracy of program outputs [5].

In the present paper, we review methods for dealing with noise and uncertainties
in digital twin systems and present several of their applications in biological systems.
Variability is inherent to biological systems and is part of their normal function [6–16].
We introduce the concept of noise-dependent second-generation AI systems based on
the constrained-disorder principle (CDP) to improve the performance of digital twins in
biology. The paper describes the differentiation between noise, which is necessary for
the proper function of biological systems, and unwanted noise, which detracts from an
algorithm’s accuracy in improving the performance of digital twins for diagnosis, treatment,
and predictions.

2. The Constrained-Disorder Principle Defines Noise as Inherent to
Biological Systems

Biological systems are complex, and part of their complexity results from the in-
herent noise and variability that characterize their function. The constrained-disorder

Biomimetics 2023, 8, 359. https://doi.org/10.3390/biomimetics8040359 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8040359
https://doi.org/10.3390/biomimetics8040359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0003-0802-1220
https://doi.org/10.3390/biomimetics8040359
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8040359?type=check_update&version=1


Biomimetics 2023, 8, 359 2 of 16

principle (CDP) defines biological systems as comprising a disorder within constrained
random boundaries [6]. It defines living organisms as machines with a regulated degree
of variability. Per the CDP, a disorder is necessary for the systems’ existence and proper
operation [6,7].

Variability is inherent to all levels of biological systems [7–10]. At the genome level,
variability characterizes normal DNA function, and a similar stochastic function is required
for the proper function of RNA and proteins [8–10]. Fluctuations in gene expression,
cell-to-cell signaling, and the cell environment are tightly regulated [11]. At the cellular
level, multiple examples exist of the need for inherent variability. Dynamic instability
characterizes microtubule function and implies variability in their elongation and short-
ening [6,12–15]. At the whole-organ function level, heart rate variability (HRV), blood
pressure variability, and gait variability are examples of functions that require noise for the
systems’ proper function [17–20].

3. Bioengineering Needs to Account for Variability

System engineering and computerized architectures of biological systems must ac-
count for the variability that characterizes them [16,21]. Engineering single-cell and
multi-cellular biological systems using a combination of synthetic and systems biology,
nanobiotechnology, pharmaceutical science, and computational approaches are challenged
by noise and the intra- and inter-cellular fluctuations that characterize systems [22]. Bio-
engineering must comprise noisy variables inherent to biological systems and requires that
biological noise is recognized as a design element with fundamentals that can be actively
controlled [23]. As part of a stochastic design, engineering noise can improve modeling
accuracy [16,17].

4. Digital Twins Use Real-World Data to Create Simulations

Digital twins were presented and defined by Grieves as a model, including virtual
products, physical products, and their connection [18]. They use real-world data to create
simulations that predict how a system performs. Digital twins reflect the real-time operation
state, future evolution trends, and essential functions of systems by integrating historical
data, real-time data, and physical models [19]. A digital twin is a virtual clone of a tangible
entity, a vehicle engine, a person, or an intangible system, and is studied independently of
its real-world counterpart to make informed judgments [20,24].

The definition provided for a digital twin differs from the conventional definition
as a key tool for digital transformation in the manufacturing industry. According to the
conventional definition, a digital twin is a virtual representation of a physical good, process
or product. A DT is a virtual representation of a physical asset, process, or system that
enables real-time monitoring, analysis, and optimization [25].

Digital twins collect data from multiple dimensions such as personnel, equipment,
materials, processes, and the environment, generating an actual operation state in ob-
jects [26]. They conduct virtual simulations driven by real-time data to generate an optimal
linkage operation strategy and process regulation [27–29]. Digital twins accurately describe
and optimize the physical entity using an optimization model [30]. They make up for
the deficiency of traditional modeling and simulation methods by reflecting the physical
object’s essential characteristics [24,31,32].

The digital twin platform is divided into three linkage stages [24,33,34]. In the initial
planning stage, digital twins collect real-time operation data on factors such as personnel,
equipment, materials, methods, and the environment, creating a virtual object layer. In
the dynamic revision planning stage, the virtual object layer in the digital twins-enabled
architecture reflects the target. It dynamically evaluates and optimizes the process based on
relevant models while comparing the actual operation state of the system with the dynamic
optimization state. At the dynamic coordination and control stage, the feeding back of the
results of the dynamic revision planning to relevant units in real time realizes the online
adjustments of the system [24,33,35].
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The virtual twin can adapt to changes in its physical counterpart, just as the physical
object responds to interventions in the virtual twin [36–38]. Digital twins follow the
coevolution of digital objects and physical entities by continuously collecting relevant data
and improving themselves [31,39]. The model adapts using monitoring, collection, and
processing of the associated sensors’ data on the system, enabling digital twins to make
predictions about their corresponding physical counterparts [24,40]. Digital twins allow
for forecasting and interventions to prevent problems under ever-changing real-world
conditions [27,28]. The deviation between the digital twin’s prediction and the actual state
warns of a problem [29]. Digital twins are self-improving as they continuously monitor the
divergence between predictions and observations and use these discrepancies to improve
their accuracy [41–43].

A digital twin focuses on manufacturing operations by gathering data from physical
sources and information technology [44]. The engineering of digital twin services is
challenged by the complexity of interactions and the heterogeneous nature of these services.
The concurrent use of models and data (e.g., model-based systems engineering (MBSE)) is
considered for complex systems in service-oriented engineering projects. It was recently
proposed that recalling information systems can improve workflow among enterprises and
servitization [44].

5. Using Digital Twin Systems in Biology

The design of a digital twin model in biology is based on selecting a specific purpose
and identifying the components of the targeted biological system and the interactions
between them [45]. It implies capturing the mechanisms and features relevant to the
selected purpose and the possible interventions, generating a conceptual map of the model
that integrates all pre-defined components [46]. The model is validated using human or
other preclinical data. These steps are followed by uncertainty quantification of the model’s
behavior [29].

A model’s personalization requires using the appropriate patient-specific data to
generate a subject-specific digital twin [47]. The model inputs consist of single-time or
repeated clinical and laboratory biomarker measurements during diagnosis and therapeutic
intervention. The model output consists of binary outputs, i.e., whether to intervene or
not, or dynamic outputs, such as changes over time from a predetermined set of health
parameters [24,29]. The final model requires extensive testing under numerous conditions
and the adjustment of its features and parameters to improve accuracy [24].

Digital twins in biology are data-driven, based on mechanistic computational models
that use data that inform the models at the individual scales integrated into a comprehen-
sive multiscale model [29]. Digital twins enable the construction of a “core” model that
represents commonly shared features in a biological system, which can be extended and
customized with additional parameters and personalized using data from an individual
subject [29,48]. Modules combining plug-and-play methods, such as the Python-based
architecture, ease the collaboration between centers to improve the datasets used and
support interactions between several resources [36,49].

6. Applications of Digital Twins in Healthcare

The use of digital twins in healthcare is enhanced by improved computer capacity
and the development of wearable and smart devices, which provide abundant data that
require correct interpretation [37,38]. Nevertheless, implementing digital twins in medicine
presents challenges due to the complexity and variability of biological processes, which are
translated into noisy dynamic data [50].

Digital twins in healthcare provide advantages such as the remote visibility of patients
and their internal organ systems and processes, and their physical devices’ behavior [51].
Digital twin models assist in drug development, early diagnosis, treatment optimization,
and precision medicine [52]. Digital twins provide personalized medicine by bridging
the inter-individual variability in the inputs and the response to treatment and disease



Biomimetics 2023, 8, 359 4 of 16

trajectories [53]. They use individual cell, genetic, longitudinal clinical, and wellness data
to produce distinct personalized models and collect continuous data on parameters from
subjects and the environment. A virtual replica can test a therapeutic regimen for its twin’s
illness, identifying the best-fitting treatment [41,42].

Virtual twins can identify a pre-illness condition, enabling preventive measures to be
taken [43,54]. The historical and real-time data of individuals and the population assist
machine learning (ML) algorithms in predicting future outcomes [55–57]. An example is a
virtual representation of a single person where every known medicine for that subject’s
illness is tested, enabling the improvement of therapeutic regimens [58]. The systems
monitor the virtual “person” and provide notifications about side effects, enabling preven-
tive action [54,59]. Historical and real-time data assist ML systems in predicting future
conditions [55,60,61]. Models are generated for predicting the efficacy of a particular treat-
ment based on frequent measurements of a patient’s clinical or laboratory biomarkers, or
“offline”, using simulated patient populations for developing new drugs [29]. Using digital
twins enables the exploration of the effects of treatments in an individualized manner while
searching for personalized biomarkers [48,52].

In cardiology, digital twins can improve planning and decision-making in cardiac
interventions by creating individual structural and functional heart models [37,43,62]. The
models simulate drug impact and responses to the implementation of devices, and can
refine their output based on real-time intraoperative data [37,63]. This method applies to
cardiac resynchronization therapy, valve replacement surgeries, catheter ablation proce-
dures, and the correction of congenital heart diseases [37,63,64]. For patients with heart
failure who require pacemakers designed for cardiac resynchronization therapy (CRT), a
digital twin of the patient’s heart uses data from MRI, ECG, and blood pressure monitoring,
assisting in defining the position of the pacemaker lead before surgery [65,66]. A digital
twin was designed as a virtual three-dimensional model of the coronary blood to calculate
the fractional flow reserve as an alternative to cardiac catheterization and assess the severity
of carotid artery stenosis based on head vibrations [67]. Another regulatory-approved
digital twin is that of an arterial aneurysm and its adjacent vasculature. It optimizes en-
dovascular interventions by performing multiple simulations of endovascular implants
during the procedure based on an angiography image [68].

An artificial pancreas for treating type 1 diabetes mellitus comprises a closed-loop
system that incorporates real-time glucose levels into an algorithm that directs insulin
delivery [69]. It contains several features of digital twins, including collecting and analyzing
patient-specific online data and generating clinically meaningful outputs [70–72]. For
patients with type 2 diabetes mellitus, data on blood sugar levels, vital signs, lifestyle, and
daily nutritional habits are incorporated into a model that generates recommendations
regarding dietary modifications and drug prescriptions [73–75]. The model follows weight
reduction, improved glycemic control, and insulin sensitivity, reducing the need for anti-
diabetic medications [73–76].

In oncology, digital twin systems are developed for predicting outcomes and opti-
mizing therapies [62,77]. Digital twins of the immune system have been developed while
facing the challenge if its inherent complexity and the difficulty of measuring multiple
variables of a patient’s immune state [29]. These models represent numerous autoimmune,
inflammatory, infectious, and malignant diseases [62]. Digital twins were introduced as a
tool for patients with multiple sclerosis to improve diagnosis, monitor disease progression,
and adjust therapy [78]. Systems have been developed for modeling inflammatory bowel
disease [79]. Digital twins have emerged in infectious diseases, driven by the coronavirus
pandemic. These systems integrate patient-specific clinical data with computer simulations
of the viral infection and immune response to produce predictive outcomes and guide
treatment [55,80].

In orthopedics, a digital twin of the human vertebra, simulating its structure and
response to physical stress, predicts the risk of fractures in predisposed subjects [64]. A limb
model simulating its anatomy and range of motion facilitates planning and improves the
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outcome of arthroplasty procedures [57,81]. A digital twin of long bone fractures simulates
stabilization modalities to guide intervention and postoperative management [79]. These
applications are extended to other surgical domains for planning and training for invasive
procedures and predicting complications [55,60].

The use of digital twins for image and pattern analysis is being developed to interpret
CT or MRI images and describe drug absorption distribution metabolism and elimina-
tion [42,82]. Digital twins can be used for designing virtual representations of medical
facilities or services, for the pharmaceutical industry, and for educational purposes [37,61].

While promising, these models suffer from a lack of accounting for the inherent noise
of biological systems and the difficulties of dealing with unwanted noise and uncertainties.

7. The Need to Model Uncertainties and Noise in Complex Systems

Despite the achievements of the digital twin systems, uncertainties are an integral part
of the inference process [38,68]. Uncertainties can result from multiple structural, para-
metric, algorithmic, and observational variables. If these uncertainties are not adequately
addressed, the allegedly optimal solutions or predictions generated by the model may fail
in real life [41]. Inaccuracy or uncertainty in biology may cause misleading inferences and
inadequate decision-making, potentially jeopardizing a patient’s health [37]. Confidence in
prediction is also valuable for establishing clinicians’ trust in new technologies [38,68].

Digital twins can be designed to deal with the uncertainty and unpredictability that
are part of the life cycle of complex systems [83]. Uncertainty quantification of digital
twin models is necessary to improve their accuracy under dynamic internal and external
environmental conditions. The current models aim to estimate and reduce the effect of
uncertainties on model predictions [29,83,84].

Uncertainties in medical digital twin systems arise from the inherent complexity and
variability of biological processes, which are reflected by the inaccuracy of the computa-
tional models [41]. The two primary sources of uncertainty that have been described are
‘aleatoric uncertainty’ and ‘epistemic uncertainty’ [41,85]. The former relates to statistical
or data uncertainty and stems from unpredictable randomness, stochasticity, and the in-
trinsic noise of the measured variables [38,41,85]. This type of uncertainty is not reduced,
even with more data collected [38,68]. Epistemic uncertainty refers to model or systematic
uncertainty. It originates from the structure and parameters of the mathematical algorithms
used for data analysis, including their assumptions and approximations, and from missing
values and errors in the measurements [41,68,70,85]. It reflects incomplete or inadequate
knowledge and can be reduced by adding data to the system [41,71,85].

These two types of uncertainty reflect the differences between noise and variability
that characterizes biological systems for which models need to account, and the unwanted
noise that results from a lack of data, inaccuracies in measurements, and confounding
variables in the data.

As each subject changes over time concerning its inherent noise, as determined by the
CDP, the model requires periodic recalibration to maintain its relevance. This is an ongoing
learning process that augments the model’s performance [44]. Incorporating machinery
for continuous model improvement, where deviations between model predictions and
outputs and actual observations are followed, can refine model parameters and reduce
uncertainty [29,72]. In addition, each time a digital twin model is used, all similar digital
twin models are improved based on the learned experience [48,78].

8. Digital Twins’ Methods for Dealing with Uncertainties

Neural network (NN) decisions are unreliable because they lack expressiveness and
transparency [73]. An NN cannot understand or resonate with the content of the data it is
trained on and cannot explain its decisions [74,75]. NNs are sensitive to small data distribu-
tion changes, making it difficult to rely on their predictions, and they show overconfidence
and are vulnerable to adversarial attacks [76,86]. Several methods have been applied to
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medical deep learning systems for identifying and quantifying uncertainties, including
Bayesian inference, fuzzy systems, and ensemble methods [41].

Considering uncertainties during data processing provides better verification and
validation of the output and improves the system’s reliability [38,41,85]. Several Bayesian
inference methods are explored:

i. Complete Bayesian analysis is a component of probability statistics derived from
the Bayesian theorem used for uncertainty quantification [41,87]. Bayesian inference
estimates the probability of a hypothesis under updated knowledge (i.e., posterior
probability). It uses prior probability (the probability of the hypothesis occurring
irrespective of the updated knowledge), model evidence (the observation of experi-
mental or simulated data), and likelihood (the probability of specific parameters being
observed if the hypothesis is correct) [85,87]. Under the Bayesian principles, a prior
distribution for the uncertain parameters is assumed based on expert knowledge.
Using model evidence, the posterior distribution of these uncertain parameters is
estimated via the formula, and a confidence interval reflecting the reliability of the
result is extracted [38,68,85,87]. As more evidence accumulates in subsequent simu-
lations, the parameters are updated, and the posterior distribution shows improved
accuracy [41]. Combining the Bayesian approach with deep learning is helpful for
uncertainty quantification, providing a framework for the training process, Bayesian
deep learning [41,87].

These systems learn a distribution over each of the network’s weight parameters
instead of using deterministic single-point weights, and optimize the network by averaging
all possible weights [38,68]. This enables the estimation of all uncertainties associated with
the predicted output and yields a higher value in cases of insufficient data [68]. These
methods are used in medical digital twins to improve their prediction capabilities, guide
the timing of interventions, and enable early diagnosis [38,52,68,71,88–90].

ii. The Markov Chain Monte Carlo (MCMC) method is used to estimate the posterior
distribution, which is computationally intensive and sometimes cannot be calculated
analytically [41,68]. MCMC addresses the sampling problem via probability dis-
tribution and approximation methods (e.g., Variational Inference and Monte Carlo
dropouts) [68]. Monte Carlo (MC) simulations attempt to predict all the possible
results of a system with random variables [41]. The algorithm runs multiple possible
values within the known range of each input parameter, producing an output of
a probability distribution that reflects every possible result and its likelihood [70].
The MCMC method enables the expression of the posterior probability of complex
real-world processes by using computer simulations of random samplings from the
probability distribution [87]. MCMC is generated within the space of all possible
results. The progression from one possible value to the next is random, but using
different algorithms, it is set up so that values derived from more plausible models
appear more frequently [87]. This process approximates the most probable results
and achieves more accurate results as more samples are obtained [70].

MCMC is the most frequently used sampling method for Bayesian inference and
can be used when the analytical calculation of a posterior distribution is impossible or
laborious [41,68]. However, its application in deep learning models tackles computational
difficulties due to a need for multiple iterations to calculate the posterior probability,
resulting in scarce use in deep learning in medicine [68]. For this reason, approximation
algorithms for sampling distributions have been developed, enabling the application of
deep learning techniques in large and complex databases, although they generate less
accurate results [68].

iii. Variational inference (VI) for approximate Bayesian inference provides a computa-
tional approximation of the intractable posterior probability distribution by solving
an optimization problem and finding a tractable distribution similar to the unknown
one [68,70]. VI is faster than MCMC, and the convergence into a result is unequivo-
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cal [68]. However, it involves complex calculations, approximates the desired distribu-
tion rather than the theoretically optimal solution with considerably fewer samplings,
and is applicable to large-scale datasets and complex models [68,70].

iv. The Monte Carlo dropout method for approximate Bayesian inference prevents over-
fitting during the training of deep learning systems, improving generalization and
prediction abilities from unseen data during the testing phase [68]. Some neurons
within the hidden layers of a deep NN are randomly omitted, including their incom-
ing and outgoing connections, resulting in diminished network complexity. As the
neuron elimination is random, each training iteration is performed on a different
edited network, resulting in multiple predictions generated from the same data. The
output is a distribution of predictions produced by ensembles of smaller networks,
reflecting the model’s uncertainty [38,70]. This improves the system’s performance by
capturing randomness and quantifying uncertainties [38].

A fuzzy inference system represents inaccurate data for uncertain or approximate
reasoning and is not derived from the probability theory [91,92]—a fuzzy method models
a system with many unknown parameters and deals with epistemic uncertainties. Fuzzy
logic encodes vague values from 0 to 1, representing a degree of truth, in contrast to
traditional binary computer logic, enabling the encoding of a more complex representation
of reality, resulting in a more accurate output [41,91]. Distinct values are converted into
fuzzy variables, representing a degree of membership of a specific value to linguistic
categories according to membership functions, ranging from 0, meaning not belonging to
the fuzzy set, to 1, ultimately meaning belonging. Fuzzy logic rules are applied to these
variables (i.e., inference) to create new fuzzy variables, which are converted back into
crisp values (i.e., defuzzification) using functions of the desired output [41]. Integrating
fuzzy logic concepts into artificial NN architecture results in a hybrid system termed a
‘neuro-fuzzy system’ [92]. Fuzzy systems are applied to the early detection of chronic
diseases, in the treatment diabetic patients, and in artificial pancreases [41,82,92].

Ensemble methods combine predictions from several independent models of deep
neural networks, ensemble members, to generate an output [70]. This integration reduces
the model’s uncertainty, improves its accuracy, and quantifies its uncertainty by examining
the variance between the members’ predictions [70]. The limitation of ensemble methods
is the increased computing power and time required for simultaneously testing different
models [93–116].

An example of dealing with uncertainties includes an approach for personalizing
biophysically active models using a two-step multi-fidelity solution to reduce uncertainty
in digital twins in cardiology [83]. In the first step, dynamic mechanical behavior in a
given 3D electromechanics model is represented by a personalized low-fidelity model via
calibration to clinical cavity pressure data. In the second step, median traces of nodal
cellular active stress, intracellular calcium concentration, and fiber stretch personalize the
model at the cellular scale, creating a cardiac electromechanics model. The algorithm’s
robustness against uncertainty in the clinical data and variations in the initial guesses are
shown in the validation study [83].

Optimizing digital twins under uncertainty in nuclear power systems is based on
maximizing the information gain and performance of the physical asset [84]. Model-
free techniques are adopted to augment limitations in the model-based approaches. The
incorporation of uncertainty quantification (UQ) enables the propagation of uncertainty
from digital representations to predict the behavior of the physical asset. Inverse UQ allows
for the incorporation of data from new measurements, obtained from the physical asset,
into the digital twin [84].

Traditional optimization algorithms are based on a single initial value, making the pro-
cess cumbersome. A genetic algorithm (GA) is inspired by the process of natural selection
in evolutionary algorithms (EA), and is used for designing digital twins [117]. A GA relies
on biologically inspired operators such as mutation, crossover, and selection. Biological
individuals with strong adaptability have a high probability of survival against a dynamic
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environment using better genes [118,119]. Using a GA overcomes problems by determining
the optimal solution to problems through repetitive genetic operations [120]. Increasing
fitness improves the individual gene, bringing it closer to the optimal solution [121]. GA
fitness implies adaptability to the environment and solves problems by referring to chro-
mosomes made of genes, implying the evolutionary advantage of selected genes [122]. A
GA requires the conversion of problem parameters into chromosomes in a coding process
and the conversion of GA individuals into solutions in a decoding process [123]. A GA
eases the solving of problems using population search and probability for searching for a
specific population. It randomly searches for the problem solution, improving optimization
efficiency [124,125]. A GA uses a fitness-based search by constructing the fitness function
and determining a search range and direction according to fitness [126].

The above-described methods provide tools for dealing with noise and uncertainties;
nevertheless, they oversimplify the challenge of complex biological systems by ignoring the
inherent noise required for proper function and the need to personalize the noise. Using
means and distributions in analyzing these systems may be associated with biases that
ignore the dynamicity of these systems and the need to personalize the outputs [9,93,127].

9. Improving Digital Twins for Biological Systems by Differentiating between
Inherent Noise and Measurement-Related Unwanted Noise

The computerized architectures of biological systems must account for systems’ inher-
ent noise [6]. This requires differentiation between these systems’ inherent noise and noise
resulting from the uncleanliness of datasets and noisy measurements. This differentiation
is necessary for improving output accuracy. As the output characteristics of every system
need to comprise its noise, this implies that the exact type of noise needs to be part of the
output.

The CDP implies that every system is characterized by a constrained-disorder bounded
by dynamic boundaries [6,7,128]. Thus, differentiation between the two types of noise and
uncertainty is necessary for generating accurate outputs using digital twins and is a critical
element of their performance in complex biological systems in a personalized way [129].

The methods described above use approximations and distributions, which are ben-
eficial for learning about systems and determining their trajectories. However, these
methods are insufficient to reach the maximal accuracy required for analyzing dynamically
disordered internal and external environments in complex biological systems [9,93,127].
Approximations and distributions are sufficient for an overall analysis of systems but may
be insufficient for establishing personalized patient-based diagnoses, treatment plans, and
outcome predictions. Not accounting for noise can lead to biases in the outputs of digital
twins designed for generating treatment regimens. As noise is dynamic in a personalized
way, ignoring it can lead to bias.

10. Augmented Digital Twins Make Use of Noise to Improve the Performance of
Biological Systems

Second-generation AI systems are developed to use the inherent noise of biological
systems to improve model accuracies and, therefore, diagnoses, response to therapies, and
outcome predictions [113,130–132]. Based on the n = 1 concept, where the model generates
subject-tailored outputs, these systems are dynamic, comprising methods that account
for continuous alterations in the inherent noise of biological processes in a personalized
way [93,133,134].

An example is the use of these systems to overcome the loss of response to chronic
medical interventions. Partial or complete loss of response to chronic medications is a
significant obstacle to achieving the long-term benefits of treatment in patients suffering
from chronic diseases [133,135,136]. Regular dosing regimens are often associated with
developing drug tolerance and loss of responsiveness. Digital twins designed for selecting
the ideal therapy based on a large patient dataset are inadequate for resolving this problem
as they do not account for the personalized dynamic noise that characterizes the dynamic
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response of a subject to a drug, which is dependent on multiple changing hosts and
environmental variables [136].

Second-generation AI systems, which quantify signatures of biological variabilities
and implement them into treatment algorithms dynamically, were proposed for overcoming
the loss of response to medications [16,137–156,156–158]. Second-generation algorithms
were found to account for dynamicity in response to therapies that characterized each
subject [135]. This is based on evaluating the clinical outcome as an endpoint for the algo-
rithm, which is the most relevant parameter for patients and healthcare providers. Digital
twins that comprise the relevant noise-based signatures, such as HRV, or variability in
cytokines secreted by immune cells in inflammatory disorders, provide higher accuracy for
establishing diagnoses, generating treatment plans, and predicting outcomes dynamically
in a personalized way [113,130–132].

In patients with chronic heart failure and diuretic resistance, a CDP-based second-
generation AI system improved clinical and laboratory outcomes and reduced hospital-
izations. Similar results were demonstrated in patients with chronic pain and multiple
sclerosis [159].

Second-generation AI systems are an example of augmented digital twins that can
improve biological systems’ performance by incorporating noise in a subject-tailored way.

Figure 1 shows how the proposed digital twin system quantifies biological variabilities
and inserts them into the digital twin algorithm in a personalized and parallel way, reducing
unwanted noise and uncertainty.

1 
 

 
Figure 1. A schematic representation of methods for increasing the accuracy and effectiveness of
digital twins in biological systems. Augmented digital twins’ architectures require personalized
variability signatures while continuously adapting the models to changes in internal and external
noisy environments. In parallel, digital twins are required to reduce the amount of unwanted noise
and uncertainties in their inputs and outputs, including noise that results from the measurements
themselves.



Biomimetics 2023, 8, 359 10 of 16

11. Challenges Faced by Augmented Digital Twins in Medicine

The augmented digital twin architecture that accounts for the noise that characterizes
biological and other complex systems while reducing unwanted noise, including noise that
results from noisy measurements, impure datasets, and confounding variables in the input
data, raises several questions.

In biological systems, the number of variables contributing to noise is endless and
cannot be recognized in most cases. Accounting for those noisy variables that can be
measured improves the algorithm output but can never reach complete accuracy. This
means that an entirely accurate outcome may be unreachable. Nevertheless, implement-
ing any degree of noise into the algorithm, such as treatment regimens, can improve its
performance [16,137–154].

Attempts to improve accuracy using better measurement tools and multiple repetitions
for inputs can improve the output, albeit insufficiently to obtain an entirely accurate output
in biological systems under continuously changing conditions.

The amount of noise considered sufficient, based on personalized noise quantification,
and in parallel, the amount of unwanted noise that is “small enough” not to detract from
the model accuracy, can be validated using clinically meaningful outcome measures. Many
biological systems lack tools to account for all the random parameters to be inserted into a
model. This raises the question of whether implementing a fully randomized treatment
regimen that is not personalized and is not based on the quantification of signatures of
variability, can achieve a satisfactory result.

Per the CDP, the degree of randomness continuously changes [6]. Creating dynamic
augmented digital twins that continuously modify their outputs in a personalized way
requires the algorithm to have a high-speed response rate. This may not be applicable
when receiving patient measurements; even if wearables are used for continuous mea-
surements, they may be insufficient to keep up with the rapid changes in the host, their
disease, and their environment. A prominent British statistician, George Box, said, “All
models are wrong, but some are useful” [160]. Augmented digital twins comprise un-
personalized noise and can provide a degree of accuracy that is sufficient for some clinical
settings [93,133,134].

In summary, noise is inherent to complex biological systems, making accounting for it
in digital twins’ architectures necessary. The task of dynamically quantifying signatures
of variabilities from biological processes while reducing unnecessary noise that detracts
from systems’ functions represents a significant challenge in developing digital twins for
biological systems and other complex systems. Improved accuracy requires the imple-
mentation of biological noise into models in a continuous personalized manner. This
involves adopting the models to account for continuously changing internal and external
perturbations. Future studies will shed light on models that could achieve more accurate,
augmented digital twins.
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