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Abstract: To solve the problems of low convergence accuracy, slow speed, and common falls into
local optima of the Chicken Swarm Optimization Algorithm (CSO), a performance enhancement
strategy of the CSO algorithm (PECSO) is proposed with the aim of overcoming its deficiencies.
Firstly, the hierarchy is established by the free grouping mechanism, which enhances the diversity of
individuals in the hierarchy and expands the exploration range of the search space. Secondly, the
number of niches is divided, with the hen as the center. By introducing synchronous updating and
spiral learning strategies among the individuals in the niche, the balance between exploration and
exploitation can be maintained more effectively. Finally, the performance of the PECSO algorithm
is verified by the CEC2017 benchmark function. Experiments show that, compared with other
algorithms, the proposed algorithm has the advantages of fast convergence, high precision and strong
stability. Meanwhile, in order to investigate the potential of the PECSO algorithm in dealing with
practical problems, three engineering optimization cases and the inverse kinematic solution of the
robot are considered. The simulation results indicate that the PECSO algorithm can obtain a good
solution to engineering optimization problems and has a better competitive effect on solving the
inverse kinematics of robots.

Keywords: chicken swarm optimization; free grouping mechanism; niche technology; spiral learning
strategy; synchronous update; optimization problems

1. Introduction

Swarm intelligence algorithms have been widely recognized since they were pro-
posed in the 1990s [1]. They have a simple structure, good scalability, wide adaptability
and strong robustness. Based on different biological habits and social behaviors, scholars
have proposed numerous swarm intelligence algorithms, such as particle swarm optimiza-
tion algorithm (PSO) [2], genetic algorithm (GA) [3], bat algorithm (BA) [4], social spider
optimizer [5], CSO algorithm [6], moth–flame optimization algorithm (MFO) [7], whale
optimization algorithm (WOA) [8], marine predators algorithm [9], battle royale optimiza-
tion algorithm (BRO) [10], groundwater flow algorithm [11], egret swarm optimization
algorithm [12], coati optimization algorithm [13], wild geese migration optimization algo-
rithm [14], drawer algorithm [15], snake optimizer [16], fire hawk optimizer [17], etc. The
algorithms are studied in terms of parameter set, convergence, topology and application.
Among them, the CSO algorithm is a bionic swarm intelligent optimization technology
proposed by Meng et al., named after the foraging behavior of chickens. Its main idea is to
construct a random search method by simulating the behavior of roosters, hens and chicks
in a chicken flock. On this basis, the optimization problem is solved through three chicken
position update equations in the hierarchy. The principle of this algorithm is simple and
easy to implement.

The algorithm has the advantages of simple principles, easy implementation and
simple parameter setting. It has been widely used in the fields of trajectory optimization,
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economic dispatching, power system, image processing, wind speed prediction [18], and
so on. For example, Mu et al. [19] used the CSO algorithm to optimize a robot trajectory
for polishing a metal surface. The target of the optimization is to minimize the running
time under kinematic constraints such as velocity and acceleration. Li et al. [20] applied
a CSO algorithm to hypersonic vehicle trajectory optimization. Yu et al. [21] proposed a
hybrid localization scheme for mine monitoring using a CSO algorithm and wheel graph,
which minimized the inter-cluster complexity and improved the localization accuracy.
Lin et al. [22] designed a CSO algorithm (GCSO) based on a high-efficiency graphics pro-
cessing unit, which increased the population diversity and accelerated the convergence
speed through parallel operations.

With the continuous expansion of application fields and the increase in problem com-
plexity [23], the CSO algorithm has shown some deficiencies in solving these complex,
high-dimensional problems, including low convergence accuracy and poor global explo-
ration ability [24]. To solve these problems, many scholars have improved it, and now there
are many variants of the CSO algorithm. In terms of initializing the population, the diversity
of the population is enhanced by introducing a variety of strategies, such as chaos theory,
mutation mechanisms, elimination–dispersion operations and deduplication factors [25,26],
which are more conducive to finding the optimal solution to the problem. However, most
means of improvement have been designed for individual update methods. Meng and
Li [27] proposed to improve the CSO algorithm by using quantum theory to modify the
update method of chicks. The algorithm was applied to the parameter optimization of
the improved Dempster–Shafer structural probability fuzzy logic system, achieving good
results for wind speed forecasting. Wang et al. [28] introduced an exploration–exploitation
balance strategy in the CSO algorithm; 102 benchmark functions and two practical prob-
lems verified its excellent performance. Liang et al. [29] innovated an ICSO algorithm by
using Lévy flight and nonlinear weight reduction to verify its outstanding performance in
robot path planning. The other type is hybrid meta-heuristic algorithms, the combination
of CSO with other algorithms. Wang et al. [30] provided an effective method to solve
the multi-objective optimization problem based on an optimized CSO algorithm. The
improved scheme includes dual external archives, a boundary learning strategy and fast,
non-dominated sorting, and its superior performance has been verified by 14 benchmark
functions. Li et al. [31] introduced the information-sharing strategy, spiral motion strategy
and chaotic perturbation mechanisms into the CSO algorithm, which improved the identity
of the photovoltaic model’s parameters. In addition, the combination of multiple algorithms
is also a hot research topic. Deore et al. [32] integrated a chimp–CSO algorithm into the
training of the network intrusion detection process. Torabi and Safi-Esfahani [33] combined
the improved raven roosts optimization algorithm with the CSO algorithm to solve the task
scheduling problem. Pushpa et al. [34] integrated a fractional artificial bee–CSO algorithm
for virtual machine placement in the cloud. These hybrid algorithms have proved to have
superior computational performance.

In summary, the CSO algorithm outperforms many naturally inspired algorithms for
most benchmark functions and when solving practical problems. However, the “no free
lunch theorem” shows that it is of great significance to further research the improvement
of the CSO algorithm [35]. Therefore, an improved CSO algorithm with a performance-
enhanced strategy is proposed, named the PECSO algorithm. It introduces the free grouping
mechanism, synchronous updates and spiral learning strategy. The position updating
method of the roosters, hens and chicks is redesigned.

The main contributions of this paper are summarized as follows:

1. A hierarchy using a free grouping mechanism is proposed, which not only bolsters
the diversity of individuals within this hierarchy but also enhances the overall search
capability of the population;

2. Synchronous updating and spiral learning strategies are implemented that fortify the
algorithm’s ability to sidestep local optima. This approach also fosters a more efficient
balance between exploitation and exploration;
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3. PECSO algorithm exhibits superior global search capability, faster convergence speed
and higher accuracy, as confirmed by the CEC2017 benchmark function;

4. The exceptional performance of the PECSO algorithm is further substantiated by its
successful application to two practical problems.

The rest of this paper is organized as follows: Section 2 explains the foundational
principles of the CSO algorithm. Section 3 introduces our proposed PECSO algorithm
and elaborates on its various facets. In Section 4, we conduct benchmark function experi-
ments using the PECSO algorithm. Section 5 demonstrates the resolution of two practical
problems employing the PECSO algorithm. Finally, in Section 6, we provide a compre-
hensive summary of the paper, discuss the study’s limitations, and suggest directions for
future research.

2. Chicken Swarm Optimization Algorithm

The classical CSO algorithm regards the solution of the problem as a source of food
for chickens, and the fitness value in the algorithm represents the quality of the food.
According to the fitness value, individuals in the chicken flock are sorted, and the flock is
divided into several subgroups. Each subgroup divides the individuals into three levels:
roosters, hens and chicks, and the proportions of roosters, hens and chicks are Nr, Nh and
Nc, respectively.

In the algorithm, xt
i,j represents the position of the i-th chicken in the t-th iteration of

the j-dimensional search space. The individuals with the lowest fitness value are selected as
the roosters. The roosters walk randomly in the search space, and their position is updated,
as shown in Equation (1).

xt+1
i,j = xt

i,j ∗
(

1 + randn
(

0, σ2
))

(1)

where randn
(
0, σ2) is a Gaussian distribution random number. The calculation of σ2 is

shown in Equation (2).

σ2 =

{
1, fi ≤ fk

exp(( fk − fi)/| fi + ε|), otherwise
(2)

Individuals with better fitness are selected as hens, which move following the rooster.
The hen’s position is updated as shown in Equation (3).

xt+1
i,j = xt

i,j + S1 ∗ rand ∗
(

xt
r1,j − xt

i,j

)
+ S2 ∗ rand ∗

(
xt

r2,j − xt
i,j

)
(3)

where r1 is the individual rooster followed by the i-th hen. The r2 is a randomly selected
rooster or hen (r2 6= r1). Calculate the weights S1 = exp(( fi − fr1)/(abs( fi) + ε)) and
S2 = exp( fr2 − fi). fr1 and fr2 are fitness values corresponding to r1 and r2, respectively.

Except for the roosters and hens, other individuals are defined as chicks. The chicks fol-
low their mother’s movement, and the chick’s position is updated, as shown in Equation (4).

xt+1
i,j = xt

i,j + FL ∗
(

xt
m,j − xt

i,j

)
(4)

where FL ∈ [0, 2], xt
m,j is the position of the i-th mother chick.

3. Improved CSO Algorithm

Many variants of the CSO algorithm have been proposed. However, slow conver-
gence speed and falling into local optimization are still the main shortcomings of the CSO
algorithm in solving practical optimization problems. Therefore, to improve the conver-
gence accuracy and speed of the CSO algorithm, a better balance between exploitation and
exploration has been achieved. In this paper, we propose the PECSO algorithm, which is
based on a free grouping mechanism, synchronous update and spiral learning strategies.



Biomimetics 2023, 8, 355 4 of 24

We present the PECSO algorithm in detail, give the mathematical model and pseudocode
of the PECSO algorithm, and perform a time complexity analysis.

3.1. New Population Distribution

The hierarchy structure of the CSO algorithm is established by the fitness value,
which is simple but suffers from the disadvantage of the low diversity of individuals
in the hierarchy. Therefore, we introduced a free grouping mechanism to redesign the
swarm hierarchy, which improves the diversity of individuals in different hierarchies of
the algorithm. Firstly, the method freely divides the randomly initialized population into
0.5Nr groups. Within each group, roosters (nr), hens (nh) and chicks (nc) are selected based
on the size of the fitness value. Secondly, multiple niches are established within the group,
with the hens as the center and L as the radius, as shown in Equation (5). Finally, the
hen summons her chicks within the niche, as shown in Equation (6). The population
distribution state is formed as shown in Figure 1.

L = α(ubd − lbd)/Nh (5)

xc = xh + (2rand− 1) ∗ L (6)

where ubd/lbd is the upper/lower boundary of the D-dimensional solution space. α is the
radius factor of the niche.
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3.2. Individual Updating Methods

This subsection introduces several updating methods that we propose, including a
best-guided search for roosters, a bi-objective search for hens and a simultaneous and spiral
search for chicks.

3.2.1. Best-Guided Search for Roosters

Roosters are the leaders carrying the excellent message, and their selection and updat-
ing is important. Therefore, this paper proposes the best-guided search method for roosters.
Specifically, we discarded the practice of selecting a single rooster in the traditional CSO
algorithm and instead selected multiple individuals with better fitness values within the
group as roosters. Meanwhile, the exploration is carried out with the goal of the global
optimal individual (xbest). The improved roosters can effectively utilize the historical expe-
rience of the population and have a stronger exploitation ability to overcome the problem



Biomimetics 2023, 8, 355 5 of 24

of low convergence accuracy of the CSO algorithm. The updating step of the roosters is
shown in Equation (7).

SR = xbest − xt
i,r (7)

The updated position of the roosters is shown in Equation (8).

xt+1
i,r = xt

i,r + randn
(

0, σ2
)

SR (8)

3.2.2. Bi-Objective Search for Hens

Hens are the middle level of the CSO population and should have both exploration
and exploitation capabilities and coordinate the roles of both. On the one hand, they can
inherit the excellent information of the rooster. On the other hand, they repel other hens
and protect the chicks from being disturbed while performing their exploratory functions.
On this basis, this paper reconsiders the search goal of hens and proposes a bi-objective
search strategy. Specifically, (1) combining the current optimal solution position with the
position of the optimal rooster r1 in the group realizes the full utilization of the optimal
information and improves the exploitation ability of the hen. (2) Combining the position of
rooster r2 within the group (r1 6= r2) with the hen positions within other niches. It enhances
diversity and enables large-scale exploration. The updating step (SL) of the hens is shown
in Equation (9).

SL =

c1

(
xt

i,r1 − xt
i,h

)
+ c2

(
xbest − xt

i,h

)
i f p < 0.9

c3

(
xt

i,r2 − xt
i,h

)
+ c4

(
xt

i,k − xt
i,h

)
else

(9)

The updated position of the hens is shown in Equation (10).

xt+1
i,h = xt

i,h + ηSL (10)

where p ∈ [0, 1]. c1, c2, c3, c4 are random numbers between 0 and 1. xt
i,r1 is a rooster indexed

by a hen, xt
i,r2 is a randomly selected rooster (r2 6= r1), and xt

i,k is a competing hen (k 6= h).
xt

i,r1 and xt
i,h are the position of the i-th rooster and hen at the t-th iteration, respectively.

η ∈ (0, 1) is the moving step factor of the niche.

3.2.3. Simultaneous and Spiral Search for Chicks

The chicks are followers of the hen and develop excellent exploration abilities by
observing and learning the exploration behavior of the hen. Based on this, we propose
synchronous updating and spiral learning strategies for chicks. Synchronized updating
means that all chicks follow the same direction and step size as the hen for updating
movement within a niche. This method can ensure the consistency of the hen and the chicks
in the niche, which enhances the local exploration ability and jointly explores the potential
solution space. The process of synchronous update is shown in Figure 2. Spiral learning
means that individual chicks can move towards the hen (central point) in the niche, and
the step size is gradually reduced during the movement, thus searching for the optimum
more accurately. Specifically, the distance between the current individual chick and the hen
is calculated, and the spiral radius is determined according to certain rules. Afterwards,
the chick’s position is updated through the spiral radius and angle increments, and the
movement trajectory is shown in Figure 3. Compared with the traditional linear updating
method, the spiral update can expand the updating dimension of the chick’s position, make
it more diverse and enhance the exploration ability of the algorithm. Through the synergy
of synchronous updating and spiral learning, we can obtain the spiral updating step of the
chicks, as shown in Equation (11).
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SO =
→
S ∗ eβϑ ∗ cos(2πϑ) + xt

i,h (11)

The updated position of the chicks is shown in Equation (12).

xt+1
i,c = xt

i,c + ηSL + ϕSO (12)

where
→
S =

∣∣∣xt
i,c − xt

i,h

∣∣∣, β = 1 is the logarithmic helix coefficient, and ϑ ∈ [−1, 1], ϕ ∈ (0, 1)
is a random number.
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3.3. The Implementation and Computational Complexity of PECSO Algorithm
3.3.1. The Implementation of PECSO Algorithm

The PECSO algorithm is used to optimize the diversity and update methods of in-
dividuals in different levels of the CSO algorithm. The specific pseudocode is given in
Algorithm 1, and Figure 4 shows the flowchart of the PECSO algorithm.
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Algorithm 1: Pseudocode of PECSO algorithm

Initialize a population of N chickens and define the related parameters;
While t < Gmax

If (t % G == 0)
Free grouping of populations and selection of roosters and hens within each group based
on fitness values;
Many niches are established with the hens as the center and L as the radius, according to
Equations (5) and (6);
Chicks are summoned by hens within the niche to recreate the hierarchy mechanism and to
mark them.

End if
For i = 1: Nr

Update the position of the roosters by Equation (8);
End for
For i = 1: Nh

Synchronous update step of the niche is calculated by Equation (9);
Update the position of the hens by Equation (10);

End for
For i = 1: Nc

Spiral learning of chicks by Equation (11);
Update the position of the chicks by Equation (12);

End for
Evaluate the new solution, and update them if they are superior to the previous ones;
End while

Biomimetics 2023, 8, x FOR PEER REVIEW 7 of 23 
 

 

For i = 1: Nr 
Update the position of the roosters by Equation (8); 

End for 
For i = 1: Nh 

Synchronous update step of the niche is calculated by Equation (9); 
Update the position of the hens by Equation (10); 

End for 
For i = 1: Nc 

Spiral learning of chicks by Equation (11);  
Update the position of the chicks by Equation (12); 

End for 
Evaluate the new solution, and update them if they are superior to the previous ones; 
End while 

 
Figure 4. Flowchart of the PECSO algorithm. 

3.3.2. The Computational Complexity of PECSO Algorithm 
The computational complexity refers to the amount of computational work required 

during the algorithm’s execution. It mainly depends on the number of problems executed 
repeatedly. The computational complexity of the PECSO algorithm is described by BigO 
notation. According to Algorithm 1, the population size, maximum number of iterations 
and dimension are represented by N, T and D, respectively.  

The computational complexity of the CSO algorithm mainly includes population in-
itialization 𝑂(2𝑁 × 𝐷), population update 𝑂(2𝑁 × 𝑇 × 𝐷) and regime update 𝑂(𝑁 × 𝑇 ×𝐷/𝐺). Therefore, 𝑂(CSO) is shown in Equation (13). 𝑂(CSO) = 𝑂(2𝑁 × 𝐷) + 𝑂(2𝑁 × 𝑇 × 𝐷) + 𝑂(𝑁 × 𝑇 × 𝐷/𝐺)  (13)

Figure 4. Flowchart of the PECSO algorithm.



Biomimetics 2023, 8, 355 8 of 24

3.3.2. The Computational Complexity of PECSO Algorithm

The computational complexity refers to the amount of computational work required
during the algorithm’s execution. It mainly depends on the number of problems executed
repeatedly. The computational complexity of the PECSO algorithm is described by BigO
notation. According to Algorithm 1, the population size, maximum number of iterations
and dimension are represented by N, T and D, respectively.

The computational complexity of the CSO algorithm mainly includes population initial-
ization O(2N×D), population update O(2N× T×D) and regime update O(N× T×D/G).
Therefore, O(CSO) is shown in Equation (13).

O(CSO) = O(2N × D) + O(2N × T × D) + O(N × T × D/G) (13)

The computational complexity of the PECSO algorithm mainly includes the popula-
tion initialization O(2N × D), the position update of individuals within the population
O(2N × T × D), and the establishment of hierarchy O((N + N + Nh)× T × D/G) based
on the free grouping strategies (messing up the order, free grouping, summoning chicks).
Therefore, O(PECSO) is shown in Equation (14).

O(PECSO) = O(2N × D) + O(2N × T × D) + O((N + N + Nh)× T × D/G) (14)

It can be seen from Equations (13) and (14) that the computational complexity of the
PECSO and CSO algorithms is of the same order of magnitude. However, the PECSO
algorithm adds two steps in updating the hierarchical relationship every G time, including
the disruption of the population order and the summoning of the chicks by the hens.
Therefore, the computational complexity of the PECSO algorithm is slightly higher than
the CSO algorithm.

4. Simulation Experiment and Result Analysis

In this section, first, we perform the experimental settings, including the selection
of parameters and benchmark functions. Secondly, the qualitative analysis of the PECSO
algorithm is carried out in terms of four indexes (2D search history, 1D trajectory, average
fitness values and convergence curves). Finally, the computational performance of the
PECSO algorithm is quantitatively analyzed and compared with the other seven algorithms,
in which three measurement criteria, including mean, standard deviation (std) and time,
are considered; the unit of time is seconds (s).

4.1. Experimental Settings

Parameters: the common parameters of all algorithms are set to the same, where
N = 100, T = 500, D = 10, 30, 50. All common parameters of the CSO algorithm include
Nr = 0.2, Nh = 0.2N, Nc = N − Nr − Nh, G = 10. Other main parameters of the algorithm
are shown in Table 1. In addition, the experiment of each benchmark function is repeated
50 times to reduce the influence of random factors.

Table 1. The main parameters of the 8 algorithms.

Algorithms Parameters

PSO The inertia weight is w = 0.8, the two learning factors are c1 = c2 = 2, Vmax = 1.5, Vmin = −1.5
CSO FL ∈ [0, 2]
MFO b = 1, t = [−1, 1], a ∈ [−1, −2]
WOA a is decreasing linearly from 2 to 0, b = 1
BRO Maximum damage is 3

ICSO1 FL ∈ [0.4, 1], c = 10, λ = 1.5
ICSO2 FL ∈ [0.4, 0.9], ωmax = 0.9, ωmin = 0.4, K = 200
PECSO η = 0.5, α = 1
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Benchmark Function: this paper selects the CEC2017 benchmark function for experi-
ments (excluding F2) [36]. The unimodal functions (F1, F3) have only one extreme point
in the search space, and it is difficult to converge to the global optimum. Therefore, the
unimodal function is used to test the search accuracy. The multimodal functions (F4–F10)
have multiple local extreme points, which can be used to test the global search performance.
The hybrid functions (F11–F20) and composition functions (F21–F30) are a combination
of unimodal and multimodal functions. More complex functions can further test the
algorithm’s ability to balance exploration and exploitation.

4.2. Qualitative Analysis

The qualitative results of the PECSO algorithm are given in Figure 5, including the
visualization of the benchmark function, the search history of the PECSO algorithm on the
2D benchmark test problem, the first-dimensional trajectory, the average fitness and the
convergence curve. The discussion is as follows.
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The second column of search history shows the location history information of each
individual in the search space. It can be seen that the individuals are sparsely distributed in
the search space, mostly clustered around the global optimal solution. This indicates that
individuals reasonably cover a large area of the search space, and the PECSO algorithm
has the exploration and exploitation abilities. However, the search history cannot show the
exploratory order of individuals during the iterative process. Therefore, the third column
gives the first-dimensional trajectory curves of representative individuals in each iteration.
It shows the mutation of the individual during the initial iteration, which is gradually
weakened throughout the iterations. According to references [37,38], this behavior ensures
that the PECSO algorithm eventually converges to one point of the search space. The
average fitness values and convergence curves are given in the fourth and fifth columns;
it is known that the PECSO algorithm gradually approaches the optimal solution in the
iterative process. Multiple convergence stages indicate that the PECSO algorithm can jump
out of the local optimal value and search again, which shows that the PECSO algorithm has
good local optimal avoidance ability and strong convergence ability. In brief, the PECSO
algorithm effectively maintains a balance between exploitation and exploration, exhibiting
advantages such as rapid convergence speed and robust global optimization capability.

4.3. Quantitative Analysis

This section compares the PECSO algorithm with the other seven algorithms, including
PSO, CSO, MFO, WOA, and BRO, as well as the ICSO algorithm (ICSO1) proposed by
Liang [29] and the improved CSO algorithm (ICSO2) proposed by Li [39], through the
fitness value evaluation. The results are shown in Tables 2–7, and we can draw the
following conclusions.

1. From the unimodal and multimodal functions, we can find that the PECSO algorithm
achieves the minimum mean and standard deviation. From the hybrid and composi-
tion functions, the PECSO algorithm obtained the best value of 80%. This shows that
the PECSO algorithm has high convergence accuracy and strong global exploration
ability, and its computing performance is more competitive;

2. The experimental results show that the solving ability of unimodal and multimodal
functions is not affected by dimensional changes, while hybrid and composite func-
tions get more excellent computational results in higher dimensions. This indicates
that the PECSO algorithm can balance the exploitation and exploration well and has a
strong ability to jump out of the local optimum. The possible reason is that the free
grouping mechanism improves the establishment of the hierarchy and increases the
diversity of roosters in the population. Meanwhile, synchronous updating of individ-
uals in niche and spiral learning of chicks can effectively improve the exploitation
breadth and exploration depth of the PECSO algorithm;

3. The running time of the PECSO algorithm is slightly higher than that of the CSO
algorithm, but they have the same order of magnitude. It shows that the PECSO
algorithm effectively improves computational performance;

4. We rank the test results of all algorithms on the benchmark function, and the average
value is the indicator. Figure 6 finds that the convergence results of the PECSO
algorithm are outstanding in different test dimensions.
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Table 2. Results and comparison of all algorithms on unimodal and multimodal functions (D = 10).

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F1
Mean 1.19 × 109 2.08 × 109 7.77 × 103 8.84 × 106 1.7 × 109 3.44 × 106 6.76 × 107 1205.033

Std 8.40 × 108 1.81 × 109 5.18 × 103 7.28 × 106 3.5 × 108 1.03 × 107 2.74 × 108 1358.712
Time 0.13 0.27 0.20 0.17 2.24 0.87 0.28 0.43

F3
Mean 7607.653 1.65 × 104 4505.391 1505.661 1214.764 2539.529 9645.902 0.00211

Std 4050.991 8819.233 5588.509 962.3674 374.3617 1392.153 8211.638 0.00220
Time 0.13 0.26 0.20 0.17 2.48 0.85 0.27 0.41

F4
Mean 64.25915 105.1704 12.03310 41.85066 117.9152 16.23396 35.22256 3.47833

Std 33.79702 118.5975 16.94665 29.63701 33.33364 24.35405 36.09982 2.21821
Time 0.13 0.25 0.20 0.16 2.61 0.85 0.27 0.41

F5
Mean 51.23975 36.93607 28.44677 40.73687 49.00566 25.46498 31.51915 14.01220

Std 7.510360 15.42578 10.77455 9.579730 9.96857 9.699020 12.83864 6.215580
Time 0.15 0.27 0.22 0.18 2.54 0.85 0.29 0.43

F6
Mean 21.27100 3.531760 0.522634 38.14514 28.20401 2.464216 6.380108 0.011514

Std 5.764562 4.680841 1.625069 12.80828 6.99729 2.294613 6.776781 0.077628
Time 0.21 0.34 0.28 0.25 2.66 0.93 0.35 0.50

F7
Mean 94.9378 40.82997 34.41994 68.27110 50.69352 37.71385 35.06131 27.01692

Std 13.70433 11.94847 13.11673 15.43730 12.08821 10.29097 9.679454 7.839129
Time 0.16 0.27 0.23 0.20 2.56 0.86 0.30 0.44

F8
Mean 54.88400 25.66856 26.53715 55.4255 33.15502 24.21200 28.89014 15.50151

Std 7.907872 11.31825 10.50200 16.73376 10.29395 9.128454 12.48659 4.807887
Time 0.15 0.28 0.22 0.19 2.53 0.86 0.29 0.43

F9
Mean 248.4728 325.4400 7.10053 761.833 201.9952 54.94315 169.3408 0.009137

Std 133.3334 323.3972 28.2465 336.279 117.3242 97.29246 263.7057 0.064244
Time 0.16 0.27 0.23 0.19 2.47 0.86 0.30 0.43

F10
Mean 1145.507 1080.774 868.3683 832.6663 1137.677 947.9620 1008.287 580.5303

Std 235.2473 368.7106 278.4062 297.1957 263.6751 306.0519 314.4698 227.9308
Time 0.17 0.28 0.24 0.20 2.57 0.87 0.31 0.44

Table 3. Results and comparison of all algorithms on hybrid and composition functions (D = 10).

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F11
Mean 311.2918 278.9675 28.77234 159.7373 90.95789 65.08224 184.2798 22.71487

Std 142.0046 417.4833 43.16772 75.32435 26.06289 51.13908 187.4143 13.87131
Time 0.14 0.26 0.22 0.18 2.49 0.86 0.28 0.42

F12
Mean 7.32 × 106 5.06 × 107 1.16 × 106 2.99 × 106 1.06 × 106 3.73 × 106 5.73 × 106 2.25 × 104

Std 5.24 × 106 1.47 × 108 3.51 × 106 3.08 × 106 6.33 × 105 5.43 × 106 6.98 × 106 1.76 × 104

Time 0.14 0.27 0.22 0.18 2.61 0.86 0.28 0.42

F13
Mean 1.30 × 105 2.08 × 104 9173.812 3.78 × 104 2.39 × 104 1.69 × 104 2.87 × 104 1.22 × 104

Std 8.75 × 104 1.41 × 104 1.04 × 104 4420.481 6179.173 1.14 × 104 2.55 × 104 7825.147
Time 0.15 0.27 0.22 0.19 2.74 0.86 0.28 0.43

F14
Mean 237.0072 1915.462 886.1556 360.5561 748.7817 394.2500 830.6854 208.7593

Std 114.1593 1134.785 992.0691 534.7172 841.1497 532.2103 829.9934 225.2404
Time 0.16 0.28 0.24 0.20 2.72 0.88 0.30 0.44

F15
Mean 1.08 × 104 1.51 × 104 3901.560 2445.835 5238.864 2894.893 1.79 × 104 635.7582

Std 1.26 × 104 2.37 × 104 4555.720 1718.992 3064.849 4904.754 2.58 × 104 898.4517
Time 0.14 0.26 0.21 0.18 2.77 0.85 0.27 0.42

F16
Mean 95.86476 246.3651 96.77121 76.65239 221.5054 127.2405 189.5364 128.5848

Std 39.74258 193.3885 101.9082 60.69622 94.56331 96.35577 162.7510 133.6224
Time 0.15 0.28 0.22 0.20 2.81 0.87 0.29 0.43
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Table 3. Cont.

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F17
Mean 115.8047 78.98954 39.90501 100.6452 79.91754 51.40780 75.76799 34.72186

Std 22.39313 59.79084 17.90421 23.62764 14.18924 20.63777 47.81470 18.89641
Time 0.20 0.32 0.28 0.24 2.79 0.92 0.35 0.49

F18
Mean 9.44 × 104 1.38 × 104 1.98 × 104 3677.271 2341.611 2.07 × 104 1.63 × 104 4234.677

Std 8.17 × 104 1.41 × 104 1.37 × 104 5591.377 3629.037 1.80 × 104 1.40 × 104 4720.534
Time 0.15 0.27 0.23 0.19 2.66 0.87 0.29 0.43

F19
Mean 3185.175 1.57 × 104 3953.265 3.59 × 104 5630.787 3064.998 2.55 × 104 2063.317

Std 4483.488 3.58 × 104 6371.632 1.72 × 104 3265.784 4810.707 4.74 × 104 1732.792
Time 0.47 0.55 0.55 0.51 3.06 1.19 0.61 0.75

F20
Mean 114.1371 81.40005 40.45046 163.3919 115.7927 69.73579 71.57455 31.83129

Std 26.52308 68.79990 26.45577 68.67892 48.15426 55.64153 47.16772 23.36321
Time 0.21 0.33 0.28 0.25 2.68 0.93 0.35 0.50

F21
Mean 108.5544 175.3791 179.7778 113.0315 121.3235 116.6314 132.7406 124.6529

Std 3.916455 69.59982 61.90168 18.75488 7.038273 25.59729 35.70672 49.31258
Time 0.21 0.33 0.28 0.25 2.60 0.93 0.34 0.49

F22
Mean 160.7779 189.0434 103.9039 124.7609 179.4140 103.5302 146.9429 103.5816

Std 25.27810 181.7540 11.49952 19.32559 27.03703 27.94584 80.23289 13.24524
Time 0.24 0.33 0.32 0.28 2.67 0.94 0.39 0.52

F23
Mean 354.0431 335.8440 323.8059 347.7348 378.6894 327.7684 327.9389 319.8174

Std 14.31813 13.69908 7.757381 13.54920 37.65398 10.78876 11.14153 7.389369
Time 0.26 0.35 0.34 0.30 2.69 0.95 0.39 0.54

F24
Mean 390.1786 380.6473 342.3239 390.7160 278.5041 321.0273 357.7536 342.1947

Std 12.02908 16.33176 59.20593 19.66264 135.5445 93.89438 46.84364 50.68501
Time 0.26 0.37 0.35 0.31 2.74 0.97 0.41 0.55

F25
Mean 474.3985 488.2035 435.5922 450.2481 477.5108 438.5894 457.1487 429.4796

Std 24.39434 58.48867 20.18933 12.66054 15.21807 23.67865 32.58971 22.76244
Time 0.23 0.33 0.31 0.28 2.82 0.94 0.37 0.51

F26
Mean 480.2783 546.6617 391.4012 669.7582 709.4012 410.5817 440.7229 343.9639

Std 66.33779 208.9693 29.35429 186.9457 145.4170 69.87310 102.7568 178.5598
Time 0.29 0.37 0.36 0.33 2.82 1.00 0.43 0.57

F27
Mean 421.9835 404.2941 392.2372 400.5075 459.2579 394.4270 398.4692 378.7198

Std 22.36179 10.36445 1.768843 6.300893 21.39002 3.466860 14.86603 2.289450
Time 0.29 0.40 0.37 0.34 2.72 1.00 0.44 0.55

F28
Mean 629.9686 593.1006 488.41981 549.12104 542.0223 567.1627 563.77963 477.4404

Std 48.01225 119.1607 94.850651 109.08613 114.3551 145.1582 131.39175 50.74241
Time 0.27 0.37 0.35 0.31 2.78 0.97 0.41 0.55

F29
Mean 440.9476 420.3877 307.4976 599.8618 385.9158 346.8368 378.78393 332.0303

Std 90.66713 78.36339 42.56096 100.5884 55.32008 68.56983 91.612929 51.85453
Time 0.27 0.37 0.34 0.31 2.88 0.99 0.41 0.55

F30
Mean 8.99 × 105 2.36 × 106 6.59 × 105 8.97 × 105 1.06 × 106 7.26 × 105 1.13 × 106 7980.850

Std 3.76 × 105 2.91 × 106 4.25 × 105 8.83 × 105 7.47 × 105 2.37 × 105 7.85 × 105 1.07 × 104

Time 0.53 0.62 0.62 0.58 2.98 1.26 0.67 0.82



Biomimetics 2023, 8, 355 13 of 24

Table 4. Results and comparison of all algorithms on unimodal and multimodal functions (D = 30).

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F1
Mean 1.34 × 1010 2.73 × 1010 4.483 × 109 5.09 × 108 2.17 × 1010 2.81 × 109 6.261 × 109 2739.501

Std 3.48 × 109 1.52 × 1010 3.413 × 109 2.78 × 108 1.80 × 109 1.23 × 109 4.036 × 109 3625.805
Time 0.95 0.44 0.34 3.62 0.65 2.42 0.70 0.58

F3
Mean 1.17 × 105 3.28 × 105 1.25 × 105 1.74 × 105 3.85 × 104 8.77 × 104 2.07 × 105 1.58 × 104

Std 2.71 × 104 1.09 × 105 3.50 × 104 2.16 × 104 4410.073 1.44 × 104 6.49 × 105 7661.569
Time 0.35 0.66 0.59 0.45 3.56 2.43 0.70 0.92

F4
Mean 1469.524 5544.343 390.5003 252.0710 5043.692 436.8082 609.4365 108.1792

Std 914.9974 3144.406 275.1218 53.93749 607.4736 147.1840 483.4547 24.44122
Time 0.34 0.65 0.57 0.44 3.54 2.42 0.70 0.90

F5
Mean 329.0702 241.3721 184.9542 338.5593 327.8808 173.2287 206.7531 134.8208

Std 34.11802 51.75799 41.84081 83.83817 35.88941 29.59733 44.61135 30.73982
Time 0.41 0.69 0.64 0.51 3.67 2.43 0.76 0.99

F6
Mean 58.26297 24.77571 28.89898 75.02079 71.26934 23.03547 29.41769 15.95344

Std 8.937212 8.318971 12.99185 7.375103 6.249166 6.259538 7.648161 5.371144
Time 0.62 0.93 0.86 0.71 3.82 2.69 0.98 1.20

F7
Mean 605.8144 566.8085 270.0943 496.9897 462.7574 305.4317 411.9734 236.5616

Std 92.37522 233.9484 94.55899 74.62911 69.88441 56.01690 146.0721 61.23752
Time 0.44 0.72 0.66 0.53 3.69 2.49 0.79 1.00

F8
Mean 321.0630 204.4143 188.0338 217.3065 268.7952 159.4270 189.6993 112.6484

Std 29.96028 44.23809 45.15304 51.75257 30.97851 27.43132 43.25428 21.42594
Time 0.42 0.70 0.65 0.52 3.65 2.47 0.77 1.00

F9
Mean 8833.940 7870.299 5318.818 8419.494 7220.843 3734.741 6789.744 2230.670

Std 2717.427 1822.299 1927.105 2392.576 1745.162 1155.832 2678.077 672.1063
Time 0.43 0.71 0.65 0.52 3.70 2.50 0.77 1.00

F10
Mean 7268.225 5052.111 4223.846 5851.981 7032.766 4593.454 4732.035 3558.053

Std 579.4093 1015.415 601.8196 624.8404 552.8582 1112.350 1007.524 512.6436
Time 0.47 0.73 0.70 0.56 3.67 2.51 0.83 1.04

Table 5. Results and comparison of all algorithms on hybrid and composition functions (D = 30).

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F11
Mean 3203.062 8204.801 415.7548 2976.849 1235.297 1163.585 2201.071 130.4050

Std 1116.118 5263.914 173.7117 771.5592 183.0142 424.4723 1927.311 46.74434
Time 0.38 0.70 0.62 0.48 3.70 2.46 0.74 0.96

F12
Mean 1.56 × 109 1.84 × 109 1.12 × 108 2.26 × 108 4.27 × 109 1.27 × 108 4.71 × 108 4.63 × 106

Std 7.45 × 108 1.71 × 109 1.76 × 108 8.09 × 107 7.23 × 108 1.15 × 108 7.89 × 108 6.48 × 106

Time 0.42 0.73 0.66 0.52 3.65 2.51 0.78 1.00

F13
Mean 4.82 × 108 6.96 × 108 7.60 × 106 4.94 × 105 1.49 × 109 7.07 × 106 8.29 × 107 8997.900

Std 6.87 × 108 1.32 × 109 2.16 × 107 4.03 × 105 6.69 × 108 1.71 × 107 2.79 × 108 7355.072
Time 0.41 0.71 0.64 0.50 3.69 2.49 0.76 0.98

F14
Mean 1.21 × 106 2.81 × 106 2.22 × 105 1.56 × 106 4.15 × 105 4.19 × 105 2.06 × 106 8.96 × 104

Std 8.21 × 105 4.52 × 106 3.02 × 105 8.01 × 105 1.80 × 105 3.84 × 105 3.40 × 106 6.69 × 104

Time 0.46 0.76 0.70 0.57 3.68 2.55 0.82 1.05

F15
Mean 4.73 × 107 6.83 × 107 4.57 × 104 2.94 × 105 1.76 × 104 1.19 × 105 1.82 × 107 2457.060

Std 3.88 × 107 2.76 × 108 5.23 × 104 2.75 × 105 8239.138 9.38 × 104 1.28 × 108 2232.645
Time 0.37 0.68 0.62 0.47 3.63 2.46 0.73 0.97

F16
Mean 2463.687 2046.790 1424.636 2526.603 2844.388 1573.644 1784.144 1024.343

Std 321.4705 444.9287 354.0005 457.4043 534.7903 335.2769 476.9434 296.9336
Time 0.42 0.72 0.65 0.52 3.66 2.50 0.77 0.99

F17
Mean 1244.203 1160.452 741.8861 1117.362 1097.900 888.3213 938.2913 594.9978

Std 166.6690 310.1898 230.2786 217.6323 245.0365 216.0549 234.7641 178.2540
Time 0.60 0.88 0.84 0.70 3.84 2.70 0.97 1.19
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Table 5. Cont.

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F18
Mean 1.10× 107 2.78 × 107 4.59 × 106 7.79 × 106 1.89 × 106 4.26 × 106 1.78 × 107 1.24 × 106

Std 2.16 × 107 4.76 × 107 6.17 × 106 6.71 × 106 1.29 × 106 5.93 × 106 2.10 × 107 1.22 × 106

Time 0.41 0.73 0.65 0.51 3.64 2.49 0.77 0.99

F19
Mean 9.85 × 107 7.53 × 107 1.16 × 107 7.90 × 106 3.20 × 106 6.46 × 106 3.63 × 107 1.31 × 104

Std 7.74 × 107 2.78 × 108 3.77 × 107 5.45 × 106 1.55 × 106 1.09 × 107 6.26 × 107 8282.171
Time 1.49 1.66 1.73 1.59 4.72 3.58 1.85 2.08

F20
Mean 875.0725 460.3876 600.2112 730.9683 698.5802 651.5624 682.8055 589.3753

Std 107.2989 157.7933 167.0108 135.9671 132.8971 187.7451 165.6334 154.3269
Time 0.64 0.91 0.88 0.74 3.86 2.70 1.01 1.22

F21
Mean 521.9030 435.4149 388.0635 504.4011 523.8071 361.9451 399.0245 331.2058

Std 37.39066 41.75662 42.00323 55.53786 38.01514 37.69702 46.96924 32.57443
Time 0.73 1.03 0.96 0.83 3.95 2.80 1.10 1.31

F22
Mean 1613.941 4313.309 535.5631 1411.673 3937.591 771.1468 1065.725 100.899

Std 382.6647 1549.842 339.0054 1276.843 470.3364 483.0173 716.9757 1.40774
Time 0.81 1.01 1.04 0.90 4.03 2.83 1.18 1.38

F23
Mean 852.2221 592.1274 516.2654 733.8387 1047.188 567.1112 564.7586 517.8929

Std 69.85124 62.10348 33.83017 88.55069 87.56876 58.05066 57.36734 34.17164
Time 0.87 1.10 1.11 0.98 4.12 2.90 1.26 1.46

F24
Mean 975.0453 707.0991 577.1475 801.7843 1161.468 638.8340 640.0261 577.9206

Std 63.80724 63.12925 32.179085 90.57335 74.83691 58.12701 53.00829 41.37280
Time 0.94 1.18 1.19 1.05 4.19 2.98 1.33 1.52

F25
Mean 1506.003 1705.441 490.2608 604.7758 982.2687 606.5717 765.2691 410.8481

Std 324.0564 946.0736 81.88208 28.95652 54.19007 79.75298 221.3287 17.81139
Time 0.86 1.13 1.09 0.96 4.09 2.96 1.24 1.43

F26
Mean 4852.768 4253.476 2722.607 5958.751 6565.972 3327.392 3697.881 3090.922

Std 533.5813 573.0618 274.6280 1007.016 473.8096 653.7841 651.5328 794.3931
Time 1.05 1.25 1.29 1.14 4.33 3.13 1.44 1.63

F27
Mean 937.8946 623.9552 535.5071 678.1779 1395.561 589.2438 608.5513 500.007

Std 106.1911 59.64512 18.59942 87.56073 151.7527 44.38437 55.08369 0.00022
Time 1.17 1.42 1.42 1.28 4.48 3.22 1.56 1.74

F28
Mean 1692.889 2461.631 849.0510 690.7208 2101.717 728.9605 1165.746 499.0489

Std 524.0667 1250.615 341.0864 66.65202 153.0218 113.1344 914.9074 25.70241
Time 1.03 1.28 1.27 1.14 4.28 3.13 1.42 1.60

F29
Mean 2052.864 1743.186 1112.501 2680.039 2848.197 1492.507 1647.332 957.8104

Std 317.6705 459.9219 239.7581 405.3932 436.8206 384.2833 373.5187 260.3517
Time 0.89 1.15 1.13 0.99 4.14 3.01 1.27 1.45

F30
Mean 1.41 × 108 4.20 × 107 2.24 × 105 7.23 × 107 7.52 × 107 7,37 × 106 1.61 × 107 7395.534

Std 4.34 × 107 1.76 × 108 3.11 × 105 3.01 × 107 3.70 × 107 1.13 × 107 2.21 × 107 8448.894
Time 1.78 1.94 2.01 1.88 5.02 3.89 2.15 2.34

Table 6. Results and comparison of all algorithms on unimodal and multimodal functions (D = 50).

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F1
Mean 5.63 × 105 3.49 × 109 4.41 × 1010 6.74 × 1010 7.75 × 1010 1.94 × 1010 2.66 × 1010 2.84 × 1010

Std 1.81 × 105 1.22 × 109 1.2 × 1010 3.75 × 109 2.05 × 1010 4.69 × 109 9.15 × 109 1.27 × 1010

Time 0.74 0.40 0.36 2.74 0.48 1.28 0.52 0.57

F3
Mean 3.44 × 105 6.02 × 105 3.29 × 105 1.68 × 105 1.24 × 105 2.06 × 105 4.26 × 105 1.09 × 105

Std 6.26 × 104 2.17 × 105 6.39 × 104 1.85 × 104 8174.464 3.29 × 104 8.94 × 104 2.13 × 104

Time 0.36 0.48 0.57 0.40 2.84 1.28 0.51 0.75
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Table 6. Cont.

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F4
Mean 5690.752 1.69 × 104 2609.911 1043.799 1.83 × 104 2672.436 3252.521 231.4210

Std 2289.673 1.09 × 104 1572.541 319.6070 1838.551 855.6603 2307.473 64.89824
Time 0.38 0.50 0.61 0.43 2.94 1.36 0.55 0.80

F5
Mean 650.2707 491.5995 430.7602 452.2232 541.0584 385.6534 443.5153 244.8575

Std 38.15368 60.02821 59.24524 72.94412 37.07843 42.89941 56.04680 36.71267
Time 0.46 0.52 0.67 0.50 2.96 1.31 0.62 0.90

F6
Mean 78.94875 42.80420 49.25934 93.77500 88.51010 41.33403 48.07438 34.50339

Std 11.71388 7.176038 9.031867 10.25064 7.601178 7.413033 8.657931 8.025067
Time 0.76 0.90 0.98 0.80 3.17 1.68 0.91 1.19

F7
Mean 1463.551 1514.436 1162.377 1049.873 1114.199 774.5831 1093.967 594.6951

Std 167.0322 410.5448 392.3836 125.5476 93.95031 92.84511 219.4935 98.13384
Time 0.47 0.54 0.69 0.52 2.95 1.37 0.63 0.91

F8
Mean 680.3976 532.7670 426.4445 550.0613 582.9400 412.1534 454.2666 282.2703

Std 59.53979 81.32572 62.91386 99.01249 37.21877 49.50979 55.77509 47.00482
Time 0.48 0.54 0.70 0.53 2.85 1.34 0.64 0.94

F9
Mean 3.54 × 104 3.53 × 104 1.53 × 104 2.79 × 104 2.98 × 104 1.68 × 104 2.55 × 104 8737.336

Std 7605.117 7445.706 4118.053 7288.775 4430.718 3228.336 8366.852 2363.323
Time 0.48 0.54 0.68 0.52 3.00 1.40 0.64 0.89

F10
Mean 1.29 × 104 8245.27 7648.661 1.14 × 104 1.31 × 104 9208.548 9198.573 6289.793

Std 939.4008 770.339 1052.331 1215.152 763.5311 1548.342 1202.687 761.1483
Time 0.54 0.57 0.75 0.58 3.10 1.38 0.69 0.95

Table 7. Results and comparison of all algorithms on hybrid and composition functions (D = 50).

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F11
Mean 1.49 × 104 1.39 × 104 3035.501 2262.674 9726.280 6716.607 1.08 × 104 297.8482

Std 4415.406 5694.763 2031.633 611.7686 1325.523 2346.000 3821.738 65.36438
Time 0.41 0.51 0.63 0.45 2.91 1.34 0.56 0.84

F12
Mean 1.10 × 1010 2.17 × 1010 2.82 × 109 5.86 × 108 3.84 × 1010 1.71 × 109 3.27 × 109 7.60 × 106

Std 4.34 × 109 1.24 × 1010 2.34 × 109 2.45 × 108 4.93 × 109 7.31 × 108 3.53 × 109 6.38 × 106

Time 0.49 0.58 0.70 0.53 3.06 1.44 0.64 0.90

F13
Mean 1.34 × 1010 4.92 × 109 3.03 × 108 2.14 × 107 1.35 × 1010 2.19 × 108 9.31 × 108 1.28 × 104

Std 7.95 × 109 5.59 × 109 6.37 × 108 1.93 × 107 3.35 × 109 2.14 × 108 2.25 × 109 5481.711
Time 0.43 0.53 0.65 0.48 2.89 1.36 0.58 0.86

F14
Mean 3.47 × 106 1.16 × 107 2.04 × 106 2.09 × 106 8.68 × 106 4.24 × 106 7.63 × 106 5.87 × 105

Std 1.33 × 106 2.06 × 107 2.71 × 106 1.19 × 106 4.27 × 106 3.71 × 106 1.14 × 107 4.96 × 105

Time 0.54 0.60 0.76 0.59 2.99 1.46 0.68 0.97

F15
Mean 9.36 × 108 6.9 × 108 4.82 × 107 3.85 × 106 1.55 × 109 2.09 × 107 3.59 × 108 6099.017

Std 6.20 × 108 1.36 × 109 1.53 × 108 3.87 × 106 6.37 × 108 4.34 × 107 7.18 × 108 8801.897
Time 0.40 0.51 0.63 0.45 2.74 1.33 0.55 0.83

F16
Mean 4411.178 3637.562 2596.259 4285.890 5069.837 2921.396 3255.263 1616.872

Std 498.3067 650.2152 474.9358 1016.954 641.6171 542.7487 659.8195 413.2548
Time 0.46 0.54 0.67 0.50 2.91 1.37 0.61 0.84

F17
Mean 3593.128 4266.580 2120.972 2585.764 2456.910 2309.732 2834.776 1531.586

Std 421.8792 3966.818 526.7664 458.2317 379.7385 374.7005 699.3271 323.0368
Time 0.72 0.76 0.93 0.76 3.21 1.66 0.87 1.13

F18
Mean 2.39 × 107 3.67 × 107 7.77 × 107 1.54 × 107 1.97 × 107 1.35 × 107 2.78 × 107 3.63 × 106

Std 8.35 × 106 3.27 × 107 6.23 × 106 3.79 × 106 5.16 × 106 1.01 × 107 2.96 × 107 2.03 × 106

Time 0.45 0.55 0.65 0.49 3.02 1.37 0.59 0.86

F19
Mean 2.23 × 108 4.61 × 108 9.93 × 106 3.88 × 106 5.32 × 108 9.01 × 106 9.22 × 107 1.15 × 104

Std 7.95 × 107 6.02 × 108 3.53 × 107 2.95 × 106 2.42 × 108 9.42 × 106 2.69 × 108 6970.648
Time 2.06 1.95 2.28 2.10 4.62 3.00 2.22 2.48

F20
Mean 2101.191 1766.057 1504.138 1631.001 1658.922 1308.284 1588.465 1085.147

Std 206.0341 448.9127 328.6857 317.7398 260.7149 293.6980 349.2722 292.5697
Time 0.77 0.79 0.98 0.81 3.40 1.61 0.92 1.16
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Table 7. Cont.

Func. Index PSO CSO MFO WOA BRO ICSO1 ICSO2 PECSO

F21
Mean 883.4526 793.8037 603.0783 887.1336 914.5522 608.4892 638.0682 459.1692

Std 63.57980 85.17755 64.19765 93.94013 64.08551 60.57776 62.44263 55.04673
Time 1.07 1.14 1.29 1.12 3.66 1.95 1.24 1.51

F22
Mean 1.39 × 104 9626.454 8046.344 1.09 × 104 1.39 × 104 9342.175 9661.580 6939.285

Std 623.7961 1480.078 918.6019 1135.879 704.2688 1732.410 1083.247 795.9884
Time 1.19 1.11 1.40 1.23 3.77 1.96 1.35 1.59

F23
Mean 1611.490 1133.761 820.9687 1413.794 1916.904 971.2375 951.0280 782.8817

Std 156.8338 96.97311 52.54330 134.8206 122.3561 99.87764 101.2402 60.84830
Time 1.36 1.31 1.59 1.42 3.84 2.14 1.55 1.81

F24
Mean 1498.221 1128.335 804.2203 1338.020 2125.471 984.8015 1003.564 857.9812

Std 80.27079 103.4241 43.84820 133.5501 110.1762 90.13087 104.8743 60.08306
Time 1.47 1.45 1.71 1.54 4.04 2.26 1.66 1.91

F25
Mean 6779.704 7451.468 2327.757 1245.903 7023.516 2449.337 4074.011 682.3776

Std 1627.463 3851.606 1359.057 192.4039 423.6441 594.1324 2346.966 33.78171
Time 1.41 1.42 1.62 1.46 3.96 2.34 1.58 1.82

F26
Mean 9547.852 8824.932 5175.204 1.13 × 104 1.11 × 104 5531.918 6907.535 5999.610

Std 1455.845 1760.854 597.2284 1432.749 543.4698 1480.805 1277.411 1957.419
Time 1.71 1.61 1.92 1.75 4.30 2.63 1.87 2.10

F27
Mean 1671.716 1165.097 848.4837 1656.802 3582.809 1124.553 1184.41 500.0116

Std 298.3491 178.4079 96.35885 345.4130 270.3357 208.2852 231.698 0.000195
Time 1.95 1.95 2.20 2.02 4.60 2.79 2.13 2.36

F28
Mean 5902.595 7109.457 5508.645 2403.685 6397.092 2353.170 5400.214 508.2917

Std 1279.437 768.2124 593.6870 341.5047 335.9758 653.2835 2199.043 39.60585
Time 1.75 1.74 1.97 1.81 4.45 2.70 1.92 2.15

F29
Mean 5421.977 4928.239 2062.470 5966.120 9369.429 3161.540 3918.473 1545.224

Std 1141.993 3064.262 494.6879 1165.999 2320.738 795.2987 1796.600 369.3750
Time 1.25 1.26 1.47 1.30 3.81 2.20 1.41 1.65

F30
Mean 8.11 × 108 1.33 × 109 3.13 × 107 1.30 × 108 1.42 × 109 7.13 × 107 2.34 × 108 2.49 × 105

Std 4.13 × 108 1.24 × 109 7.12 × 107 3.44 × 107 5.09 × 108 5.83 × 107 2.73 × 108 6.59 × 105

Time 2.61 2.47 2.84 2.66 5.32 3.57 2.78 3.00
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concentrated the convergence results. It can be seen that the PECSO algorithm has strong 
stability. 

  
(a) (b) 

Figure 6. Average ranking of 8 algorithms in different dimensions.

The box plots of the eight algorithms for some benchmark functions (D = 30, in-
dependent experiments 50 times) are given in Figure 7. The solid line in the middle of
each box represents the median fitness value, and the shorter the box and whiskers, the
more concentrated the convergence results. It can be seen that the PECSO algorithm has
strong stability.
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Figure 8 shows the convergence curves on some benchmark functions in the case
of D = 30. Figure 8a–d shows the convergence curves of the PECSO algorithm on some
unimodal and multimodal functions, which achieve the best convergence accuracy and
speed. The convergence curves of the PECSO algorithm on some hybrid and composite
functions are given in Figure 8f–h. In fact, there are 20 functions of this type, and the
PECSO algorithm has achieved the best convergence effect on 17 benchmark functions,
ranking second on three functions (F20, F23, F26). This further demonstrates the excellent
convergence capability of the PECSO algorithm.
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5. Case Analysis of Practical Application Problems

In this section, we further investigate the performance of the PECSO algorithm by
solving three classical engineering optimization problems and robot inverse kinematics.
Moreover, compared with other algorithms reported in the literature.
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5.1. Engineering Optimization Problems

This section selects three classical engineering application problems to test the com-
putational potential of the PECSO algorithm in dealing with practical problems. This
mainly includes the three-bar truss design [40], pressure vessel design [41] and ten-
sion/compression spring design [42]; the constraint design can be regarded as the optimal
solution of the function F31, F32 and F33. For details, refer to Table 8. Their structures are
shown in Figure 9.

Table 8. The basic information of the engineering optimization problem.

Func. Name Expression Constraint Variable Scope

F31 Three-bar truss design F21(x) =
(

2
√

2x1 + x2

)
× l

(√
2x1 + x2/

√
2x2

1 + 2x1x2

)
P− σ ≤ 0(

1/
√

2x2 + x1

)
P− σ ≤ 0

0 ≤ xi ≤ 1
l = 100 cm

P = 2KN/cm2

σ = 2KN/cm2

F32 Pressure vessel design F22(x) = 0.6224x1x3x4 + 1.7781x2x3 +
3.1661x2

1 x4 + 19.84x2
1 x3

−x1 + 0.0193x3 ≤ 0
−x2 + 0.00954x3 ≤ 0

−πx2
3 x4 − 4πx3

3/3 ≤ −1, 960, 000
−x4 − 240 ≤ 0

0 ≤ x1, 2 ≤ 100
10 ≤ x3, 4 ≤ 200

x1, 2 is multiple of 0.0625.

F33 Tension/compression
spring design F23(x) = (x3 + 2)x2x2

1

1− x3
2 x3/71.785x4

1 ≤ 0
4x2

2 − x1x2/12.566
(
x2x3

1 − x4
1

)
+ 1/5.108x2

1 ≤ 1
1− 140.45x1/x2

2 x3 ≤ 0
x1 + x2/1.5− 1 ≤ 0

0 ≤ xi ≤ 1
l = 100 cm

P = 2KN/cm2

σ = 2KN/cm2
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Figure 9. The schematic of three engineering optimization problems: (a) three-bar truss; (b) pressure 
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Table 9 shows the statistical results of the three engineering optimization problems. 
The PECSO algorithm performs better than the CSO algorithm on three engineering opti-
mization problems, and the results are compared with those of the FCSO algorithm in 
reference [43]. The results obtained by the PECSO algorithm are within the scope of prac-
tical applications and meet the constraint requirements. Meanwhile, the PECSO algorithm 
shows excellent applicability and stability in engineering optimization problems. 
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Table 9 shows the statistical results of the three engineering optimization problems.
The PECSO algorithm performs better than the CSO algorithm on three engineering op-
timization problems, and the results are compared with those of the FCSO algorithm in
reference [43]. The results obtained by the PECSO algorithm are within the scope of practi-
cal applications and meet the constraint requirements. Meanwhile, the PECSO algorithm
shows excellent applicability and stability in engineering optimization problems.

Table 9. Statistical results of three engineering optimization problems.

Func. Algorithm
Optimized Result Optimization Variable

Best Worst Std Mean x1 x2 x3 x4

F31
PECSO 263.8959 265.7756 0.4604 264.1986 0.78848 0.40879 - -

CSO 264.1046 267.4508 0.7792 265.1001 0.78186 0.42962 - -
FCSO 264.3374 267.2195 1.0166 265.2885 - - - -

F32
PECSO 6059.7143 7337.4904 376.0045 6355.1738 0.81250 0.43750 42.09845 176.6366

CSO 6112.6739 7512.0098 386.8835 6631.4332 0.87500 0.43750 45.19547 141.9197
FCSO 12272.28 1864.725 2945.724 4803.109 - - - -

F33
PECSO 0.0127 0.0163 0.0008 0.0132 0.05179 0.35902 11.15565 -

CSO 0.0127 0.0176 0.0011 0.0135 0.05180 0.35935 11.14283 -
FCSO 0.0128 0.0132 0.0001 0.0130 - - - -
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5.2. Solve Inverse Kinematics of PUMA 560 Robot

In this section, the PECSO algorithm is used to solve the inverse kinematics of the
PUMA 560 robot, which includes the kinematics modeling, the establishment of the objec-
tive function and the simulation experiment.

5.2.1. Kinematic Modeling and Objective Function Establishment

The kinematic modeling of the robots involves establishing a coordinate system on
each link of the kinematic chain, refer to Figure 10. The posture of the robot end effector is
described in cartesian space by a homogeneous transformation. The kinematic equation is
shown in Equation (15).

0
6T = 0

1T(θ1)·12T(θ2)·23T(θ3)·23T(θ3)·56T(θn) (15)
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The coordinate transformation relationship between adjacent links in the robot kine-
matic chain is obtained by the Denavit–Hartenberg (D-H) parameter method [10], as shown
in Equation (16).

i−1
i T =


cos θi − cos αi· sin θi
sin θi cos αi· cos θi

sin αi· sin θi ai· cos θi
cos θi· sin αi ai· sin θi

0 sin αi
0 0

cos αi di
0 1

 (16)

The positive kinematics equation of the PUMA 560 robot can be obtained by the
combination of Equations (15) and (16), as shown in Equation (17) [44].

nx ox
ny oy

αx px
αy py

nz oz
0 0

αz pz
0 1

 = 0
6T (17)

where n, o and α represent rotational elements of the pose matrix, and p represents the
elements of the position vector.

The objective function of the solution is the Euclidean distance between the desired
and actual end positions, as shown in Equation (18).

Error = ‖P− P′‖ (18)
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where P =
[
px, py, pz

]
represents the desired position, and P′ =

[
p′x, p′y, p′z

]
represents

the actual position.
Each joint variable needs to meet a different boundary constraint range, which is

restricted by the mechanical principle of the robot, as shown in Equation (19).

θi,min ≤ θi ≤ θi,max i = 1, 2 . . . 6 (19)

where θi,min/θi,max represents the upper/lower limits of the i-th joint variable, respectively.
The specific values are shown in Table 10.

Table 10. D-H parameters of PUMA 560 robot.

NO. Link Length (ai) Link Torsion Angle (αi) Link Offsets (di)
Range of Link Joint Angle (θi)

θi,min θi,max

1 0 90◦ 0 −160◦ 160◦

2 0 0◦ 0 −245◦ 45◦

3 0.4318 m −90◦ 0.1491 m −45◦ 225◦

4 0.0203 m 90◦ 0.1331 m −110◦ 170◦

5 0 −90◦ 0 −100◦ 100◦

6 0 0◦ 0 −266◦ 266◦

5.2.2. Simulation Experiment and Analysis

The simulation experiment for solving inverse kinematics is carried out by the PECSO
and CSO algorithms. The test point is a randomly selected end position within the range
of movement of the PUMA 560 robot. The relevant parameter settings are the same as in
Section 4.1, and the experimental results are shown in Table 11; among them, the results
of the BRO algorithm are taken from reference [10]. The results show that the PECSO
algorithm has higher solution accuracy than the CSO and BRO algorithms, which also
indicates that the PECSO algorithm is feasible for solving the robot kinematic inverse.
Moreover, with the increase in the N and the T, the computational performance of all
algorithms is gradually enhanced. We find that the change of the T has a greater impact on
the calculation results.

Table 11. Comparison results for inverse kinematics of PUMA 560 robot.

N T
PECSO CSO BRO

Mean Std Mean Std Mean Std

100 100 0.00177 0.00241 0.01086 0.00373 1.9146 × 10−5 3.7751 × 10−5

100 300 7.61 × 10−7 1.29 × 10−6 0.00880 0.00411 1.0689 × 10−4 2.1312 × 10−5

200 100 3.46 × 10−5 9.43 × 10−5 0.00840 0.00351 6.9530 × 10−5 2.3740 × 10−5

200 300 1.16 × 10−7 4.84 × 10−7 0.00701 0.00352 6.2040 × 10−6 1.5333 × 10−5

300 100 1.77 × 10−7 3.45 × 10−7 0.00778 0.00267 1.8821 × 10−6 3.8133 × 10−6

300 300 1.32 × 10−8 9.58 × 10−9 0.00633 0.00326 7.1473 × 10−7 2.7865 × 10−6

300 500 5.49 × 10−9 4.41 × 10−9 0.00507 0.00283 1.8914 × 10−7 6.4582 × 10−7

6. Conclusions

This paper proposes a CSO algorithm with a performance-enhanced strategy. The
algorithm utilizes a free grouping mechanism to establish a hierarchy and select the roosters
and hens. Establishing a niche centered around hens and gathering chicks. Roosters are
updated with the goal of global optimum, and hens and chicks are updated synchronously
in the niche. To increase exploration capability, chicks also perform spiral learning. They
improve the singularity of rooster selection and the simplicity of individual position
updating and effectively enhance the overall performance of the CSO algorithm. In the
simulation, 29 benchmark functions are utilized to verify that the PECSO algorithm has
outstanding performance in comparison with the other seven algorithms. In addition, three
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engineering optimization problems and PMUA 560 robot inverse kinematics solutions are
solved based on the PECSO algorithm. It shows that the PECSO algorithm has excellent
universality in complex practical problems and has certain practicability and development
prospects in solving optimization problems.

The high-performance PECSO algorithm is of great significance for solving complex
problems, improving search efficiency, enhancing robustness and adapting to dynamic
environments. However, there are still some limitations. From the qualitative analysis, it
can be found that the running time of the PECSO algorithm is slightly higher than that of
the CSO algorithm. When dealing with large-scale data and complex problems, it may lead
to an increase in computational complexity, and the running time of the PECSO algorithm
will also increase, which may result in a large distance from the CSO algorithm in terms of
running time. Next, to obtain better results, we can focus our main research direction on
reducing the computational complexity of the algorithms.
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