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Abstract: The wireless sensor network (WSN) is an essential technology of the Internet of Things
(IoT) but has the problem of low coverage due to the uneven distribution of sensor nodes. This paper
proposes a novel enhanced whale optimization algorithm (WOA), incorporating Lévy flight and a
genetic algorithm optimization mechanism (WOA-LFGA). The Lévy flight technique bolsters the
global search ability and convergence speed of the WOA, while the genetic optimization mechanism
enhances its local search and random search capabilities. WOA-LFGA is tested with 29 mathematical
optimization problems and a WSN coverage optimization model. Simulation results demonstrate that
the improved algorithm is highly competitive compared with mainstream algorithms. Moreover, the
practicality and the effectiveness of the improved algorithm in optimizing wireless sensor network
coverage are confirmed.

Keywords: whale optimization algorithm; Lévy flight; distributed generation; wireless sensor network

1. Introduction

The rapid development of Internet of Things (IoT) technology has significantly im-
proved people’s lives and productivity [1,2] in recent years. Fifth-generation mobile
communication technology (5G) advancement will further propel societal development [3].
Wireless sensor networks (WSN) consist of sensor nodes with sensing and communication
capabilities and are fundamental components of the IoT [4]. These nodes can perceive,
process, and transmit information within a target area, enabling monitoring across various
terminals and transforming human interaction with nature. Consequently, WSN research
has garnered increasing attention. WSNs have substantial research and application value
in diverse fields, such as healthcare, environmental protection, meteorological monitoring,
and military defense [5], and have profoundly impacted global technological progress. To
effectively monitor a target area, WSNs must provide sufficient coverage. The optimal
deployment of sensor nodes to cover a larger area with fewer nodes has become a research
hotspot in WSN optimization [6].

Many scholars have used various methods to address the coverage problem in wireless
sensor networks. Yoon Y. and Kim Y. H. [7] derived the upper and lower bounds on the cov-
erage of a 2D deployment of static sensors. They used these bounds to construct a method
of estimating the coverage of a deployment by assuming that there are only pairwise inter-
sections between the disks representing the range of each sensor. This MA outperforms
the previous techniques regarding both speed and coverage achieved. Liu, C and Du H [8]
propose an algorithm named 2-partition sweep coverage (2-PSC) based on a partition of
the coverage time requirements and positions to achieve t using a K-sweep coverage with
the minimum number of mobile sensor nodes, where t is the sweep period constraint to
complete the entire coverage process and K is the set of coverage time requirements. Wang
W.M. et al. [9] proposed a k-equivalent radius enhanced virtual force algorithm (k-ERVFA)
to optimize uneven regional coverage for different k-coverage requirements. Theoretical
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analysis and simulation experiments are carried out to demonstrate the effectiveness of our
proposed algorithm. Paulswamy S.L. et al. [10] proposed a new disc shape deployment
strategy. The proposed deployment strategy provides desirable coverage and requires an
increased number of sensor nodes when compared with the hexagon shape deployment
strategy. The authors employed different methods to achieve a network coverage of sensors,
and with the rise of artificial intelligence, more viable solutions have been proposed for
this type of problem.

The wireless sensor coverage optimization problem is solvable with optimization
strategies. Recently, numerous researchers have begun to propose different swarm in-
telligent optimization algorithms (SIA) to tackle such problems. SIAs are meta-heuristic
algorithms that simulate the behavior of animal groups such as fish, birds, bees, and
wolves, optimizing outcomes through simple, limited interactions between individuals
and information exchange and cooperation within groups. Priyadarshi, R and
Gupta, B [11] introduced an improved particle swarm optimization (PSO) algorithm to
optimize coverage with minimal nodes. Zhu, WB et al. [12] suggested a dual-tuned simpli-
fied group optimization (SSO) algorithm to maximize coverage areas and improve WSN
performance. Nematzadeh S et al. [13] presented a mutant GWO (MuGWO) to enhance re-
source utilization by maximizing coverage and maintaining connectivity. Dao, TK et al. [14]
proposed an improved Archimedes optimization algorithm (EAOA) to address optimal
node coverage in unbalanced WSN distribution during random deployment. ZainEldin,
H et al. [15] developed an improved dynamic deployment technique based on a genetic
algorithm (IDDT-GA) to maximize coverage with minimal nodes and reduce overlapping
areas between adjacent nodes. Although these intelligent optimization algorithms have
somewhat improved target area coverage in WSNs, they have limitations, such as low
search accuracy and susceptibility to locally optimal solutions in PSO and GWO, high time
complexity in ALO, and sensitivity to parameter settings in AOA. The whale optimization
algorithm (WOA) is a meta-heuristic optimization algorithm that simulates humpback
whale hunting behavior, and was proposed by Mirjalili, S and Lewis, A. D [16]. Compared
with other commonly used swarm intelligent optimization algorithms, WOA uses random
or optimal search agents to simulate whale hunting behavior and a spiral mechanism
to mimic the humpback whale’s bubble net attack method. The algorithm has a simple
mechanism, few parameters, and strong optimization capabilities, widely recognized in the
industry. However, WOA still requires improvement when solving optimization problems,
driving researchers to study it further and to propose various enhancement strategies for it.
Zhang, J and Wang, J.S. [17] introduced an improved WOA based on nonlinear adaptive
weight and golden sine operator (NGS-WOA) to enable search agents to adaptively explore
the search space and balance development and exploration phases. Liu, J.X. et al. [18]
proposed an enhanced global exploration WOA (EGE-WOA) to improve convergence
behavior and global exploration efficiency. Kaur, G and Arora, S [19] incorporated chaos
theory into WOA to improve global convergence speed and performance. Bozorgi, SM and
Yazdani, S [20] combined WOA’s development with DE’s exploration to offer a promising
candidate solution. Luo, J, and Shi, BY [21] proposed a hybrid WOA called MDE-WOA,
embedding an improved differential evolution operator to accelerate convergence and
improve accuracy.

Mafarja M. et al. [22] introduced SWOA and VWOA and used them as search strategies
in a wrapper feature selection model. They tested the algorithms on nine different high-
dimensional medical datasets, with a low number of samples and multiple classes. Their
results reveal superior performance of the VWOA over the SWOA and other approaches
used for comparison purposes. Zhang M.L. et al. [23] proposed an efficient, intelligent
prediction model based on the machine learning approach, which combines the improved
whale optimization algorithm (RRWOA) with the k-nearest neighbor (KNN) classifier
to offer early identification and intervention of critical illnesses in patients. The model
offers a scientific framework to support clinical diagnostic decision making. Shivahare B.D.
and Gupta S.K. [24] addressed automated segmentation and classification of COVID-19
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and normal chest CT scan images. They introduced a variant of the whale optimization
algorithm named the improved whale optimization algorithm (IWOA). The IWOA is
efficient and achieved better segmentation evaluation measures and better segmentation
masks than other methods. It can detect COVID-19 disease from chest CT scan images
within a shorter period and can help doctors to start COVID-19 treatment at the earliest.

In the process of improving the WOA algorithm, many scholars have also incorporated
ideas from other intelligent optimization algorithms and combined one or more different
algorithms with WOA to form new algorithms. Tong W.Y. [25] embedded the DE/rand/1
operator of differential evolution (DE) and the mutation operator of the backtracking search
optimization algorithm (BSA) into WOA to form two new algorithms under the proposed
framework, called WOA-DE and WOA-BSA. WOA-DE and WOA-BSA are competitive
compared with some state-of-the-art algorithms. Prabhakar D. and Satyanarayana M. [26]
combined salp swarm optimization (SSA) and whale optimization algorithm (WOA) to
propose a new algorithm called salp swarm whale optimization algorithm (SSWOA). In this
new algorithm, the SSA algorithm guides the evolution and the WOA algorithm provides
assistance. This new algorithm exhibits high convergence accuracy and fast convergence
speed. Mohammed H. and Rashid T. [27] have proposed a new algorithm called WOAGWO
based on the whale optimization algorithm (WOA) and grey wolf optimization (GWO).
They embedded GWO’s hunting mechanism into the development phase of WOA and
added a new technique in the exploration phase to improve the solution after each iteration.
Their experimental results also confirm that the algorithm performs well and can achieve
optimal solutions. All of the above algorithms have shown good optimization performance
on existing problems.

This paper presents a novel enhanced WOA (WOA-LFGA) based on the Lévy flight
and genetic algorithm optimization problem mechanism applied to the coverage optimiza-
tion problem of wireless sensor networks.

The remainder of this paper is organized as follows: The remaining part of this section
covers the traditional WOA concept and mathematical model, the basic principles of Lévy
flight, the genetic algorithm’s crossover and mutation processes, and the wireless sensor
coverage optimization model; Section 2 presents the basic framework of the new enhanced
WOA (WOA-LFGA) based on Lévy flight and genetic algorithm optimization problem
mechanism; Section 3 tests the improved algorithm using 29 standard test functions and
applies it to the wireless sensor coverage optimization problem, comparing the proposed
algorithm with other mainstream swarm intelligent optimization algorithms; Section 4
concludes the paper and proposes future work.

The main contributions of this paper include:
1. The proposal of an improved WOA called WOA-LFGA, based on Lévy flight and

genetic algorithm optimization problem mechanism, significantly enhancing the global
optimization ability and convergence accuracy of the algorithm.

2. The introduction of a WSN coverage optimization method based on WOA-LFGA.
Simulation results demonstrate that, compared with other mainstream algorithms, the
proposed algorithm exhibits strong competitiveness, further validating the practicability
and effectiveness of WOA-LFGA in optimizing wireless sensor network coverage.

1.1. Wireless Sensor Network Coverage Model

Assume that m sensor nodes are deployed in a two-dimensional monitoring area
S = {s1, s2,. . ., sm}, where the coordinate of si is denoted by (xi, yi) and that i = 1, 2, . . ., m.
This paper adopts the Boolean model as the node perception model, and the monitoring
area is discretized into a rectangle with L ×W pixels. The probability of the monitoring
point tj being perceived by node si is:

p
(
si, tj

)
=

{
1 i f d

(
si, tj

)
≤ rs

0 otherwise
(1)
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where, rs is the sensing radius of the sensor, and d
(
si, tj

)
is the Euclidean distance between

the sensor node and the monitored node, expressed as:

d
(
si, tj

)
=
√(

xi − xj
)2

+
(
yi − yj

)2 (2)

Then the probability of tj being covered in WSN is:

P
(
S, tj

)
= 1−∏m

i=1
[
1− p

(
si, tj

)]
(3)

where, S is all wireless sensor nodes in the region. Assuming that the monitoring area is
equivalent to L ×W pixel points, and the coverage rate of the sensor deployment area can
be defined as:

f =
∑L

i=1 ∑W
j=1 P

(
S, t(i−1)W+j

)
L×W

(4)

To further evaluate the algorithm’s performance, we introduce a coverage efficiency
metric C, which is defined as the ratio of the total coverage area of all nodes to the total
sensing area of all sensor nodes in a wireless sensor network. Formula (5) describes
its definition.

C =
f × L×W
N × π × r2

s
(5)

The coverage efficiency metric C quantitatively reflects the redundancy of deployed
sensor nodes, where a higher value of C indicates a lower redundancy of nodes and a more
even distribution of nodes, while a lower value of C indicates a higher redundancy of nodes
and more node clustering.

In this optimization model, our objective is to maximize f and C by altering the
positions of the wireless sensors, denoted as S. The range of S is constrained by the region
size, which means that the wireless sensor nodes must move within a specified space.

1.2. Overview of Whale Optimization Algorithm (WOA)

In the whale optimization algorithm, the position of each whale represents a feasible
solution to the problem. During whale hunting, each humpback whale’s hunting methods fall
into two categories: encircling the prey and using a bubble net attack, spiraling up to repel
and encircle the prey. During each iteration, the whales randomly choose to prey with one of
these two behaviors. The algorithm generates a random number p, in the range of [0, 1]. When
p < 0.5, the whale performs the encircling behavior as described by Formulas (7) or (9).
When p ≥ 0.5, the whale attacks the prey using bubble net as described by Formula (12). In
the process of encircled humpback whale hunting, whales will choose to move towards
the best-known individual whale in the current population when |A| < 1, which can be
described by Formulas (6) and (7), or randomly select a whale and move in its direction
when |A| ≥ 1, which can be described by Formulas (8) and (9). In the following formula,

we define
→
X (t) as the position vector of the whale in the current iteration, and

→
X (t + 1) as

the new position vector of the whale in the next iteration.

−→
D1 = |

→
C ·
−→
X∗ (t)−

→
X (t)| (6)

→
X (t + 1) =

−→
X∗(t)−

→
A·
→
D1 (7)

−→
D2 = |

→
C ·
−−→
Xrand −

→
X (t)| (8)

→
X (t + 1) =

−−→
Xrand −

→
A·
→
D2 (9)
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where t is the current iteration number; the dot notation “·” is an element-by-element

multiplication; | | is the absolute value;
→
A and

→
C are coefficient vectors;

−→
X∗ is used to

obtain the current position of the optimal individual whales;
−−→
Xrand is used throughout the

whale populations to obtain randomly selected individual whale position vectors. The

coefficient vector
→
A and

→
C computation formula is as follows:

→
A = 2

→
a ·→r −→a (10)

→
C = 2

→
r (11)

Including
→
a in an iterative process, linear cut from 2 to 0;

→
r is the range of random

vectors between [0, 1].
Bubble net hunting is another method by which humpback whales hunt. While using

bubble net to drive away prey, whales will constantly update their position. This process
stimulates the spiral attack of the whales, and the formula is as follows:

→
X (t + 1) =

−→
D′ ·ebl · cos(2πl) +

−→
X∗ (t) (12)

−→
D′ = |

−→
X∗ (t)−

−→
X (t)| (13)

where b is the constant used to define the shape of the logarithmic spiral and l is a random
number in the range [−1, 1].

1.3. The Lévy Flight Method

Lévy flight has been widely used in various optimization algorithms, and the results
show that it can provide good global search capability for algorithms. The Lévy flight method
not only ensures the diversity of the population but also improves the convergence speed and
accuracy of the algorithm. During the flight, short-distance movements with smaller steps
and long-distance movements with larger steps are carried out alternately. This is conducive
to increasing the diversity of the population and avoiding the algorithm falling into a local
optimal solution. In this paper, we integrate the Lévy flight method [28] into the exploration
phase of WOA, the formula improved by Lévy flight can be expressed as:

→
X (t + 1) =


sign

(
rand− 1

2

)
·α·
[−−→

Xrand −
→
X (t)

]
⊕ Lévy(s) i f p2 > 0.95

−→
X∗ (t) +

→
F ·α·

[−→
X∗ (t)−

→
X (t)

]
⊕ Lévy(s) otherwise

(14)

where p2 is a random number within the range of [0, 1], Lévy flight is a non-Gaussian
random process with smooth increments obeying Lévy stable distribution, and its formula
is expressed as (15).

Lévy (s) ∼ |s|−1−β, 0 < β ≤ 2 (15)

where s refers to the Lévy flight of step length and β the index, which we will assign to 1.5.
s can be calculated by the formula as follows:

s =
u

|v|1/β
, u ∼ N(0, σu), v ∼ N(0, σv) (16)
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where, u and v are subject to normal distributions, enabling individuals to obtain effective
positioning in the search space and thus enhancing the algorithm’s exploration ability. σu
and σv are expressed in the following formula:

σu =

 Γ(1 + β)· sin
(

πβ
2

)
β·Γ((1 + β)/2)·2(β−1)/2

1/β

(17)

σv = 1 (18)

where, Γ is the standard gamma function.
In this study, to enhance the global exploration capability of the improved algo-

rithm, we replaced Formula (8) in the original algorithm with Formula (14). In other
words, when the conditions p < 0.5 and |A| ≥ 1 are satisfied, the algorithm employs
Equation (14) to update the position of the whales. This equation is specifically utilized to
perform position updates using a Lévy flight approach, which enhances the algorithm’s
global exploration capabilities.

1.4. Genetic Algorithm

The genetic algorithm is a swarm intelligent optimization algorithm based on Dar-
winian evolution. Its main idea simulates the natural selection law of survival of the
fittest. In the genetic algorithm, each solution is encoded as a chromosome, and the fitness
function in the optimization algorithm calculates the adaptability of each chromosome to
the living environment. The better the fitness value is, the stronger the adaptability of the
individual to the environment, and the higher the probability of being retained in nature;
conversely, the worse the fitness value is, the weaker the adaptability of the individual
to the environment, and the easier it is to be eliminated in the process of iteration. The
genetic algorithm evolves the optimal solution of the problem through N generations of
heredity, variation, crossover, and replication. Crossover and mutation are at the heart of
the algorithm.

Mutation refers to randomly replacing values on a chromosome with other values and
comparing the mutated chromosome with the original, keeping the one with better fitness.
The process can be clearly shown in Figure 1.
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Figure 1. The crossover strategy in the genetic algorithm.

2. Proposed WOA-LFGA

This section introduces the details of WOA-LFGA, an improved algorithm based on
WOA. The improvement of WOA in this paper includes the initialization phase, devel-
opment phase, genetic optimization mechanism, and boundary processing strategy. The
mathematical model and pseudo code of WOA-LFGA are presented.

2.1. Initialization Based on Chaotic Map

This section introduces the details of an improved algorithm WOA-LFGA based on
WOA. Although WOA has a good convergence rate, it still cannot perform well in the global
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search process. Therefore, to ensure that individual whales have strong searching abilities
at the beginning, this paper introduces chaotic mapping to initialize the population. Chaotic
mapping has randomness, ergodicity, and initial value sensitivity, which can make the
algorithm converge faster. In [19], 10 different chaotic maps are described. After conducting
multiple experiments, we ultimately selected tent mapping to generate chaotic sequences
and initialize the population, so that the initial solutions are distributed as evenly as possible
in the solution space. This paper’s improvements to WOA include the initialization phase,
development phase, genetic optimization mechanism, and boundary processing strategy.
The mathematical model and pseudo code of WOA-LFGA are presented.

−−→
Xk

t+1 =

{
Xk

t
u , 0 ≤ Xk

t − lb ≤ (ub− lb) ∗ u
1−Xk

t
1−u , otherwise

(19)

where k is the population dimension; t is the number of current iterations; lb is the lower
boundary value of the search space; and ub is the upper boundary value of the search space.
To maintain the randomness of the initialization information of the algorithm, the value of
u in this algorithm is, after many experiments, 0.3.

2.2. Enhanced Exploitation Phase

The Lévy flight method can provide the algorithm with a good global search capability.
In this paper, we integrate the Lévy flight method into the exploration phase of WOA, so
that individual whales can have a relatively high probability of taking long strides in the
iterative process, to expand the search scope and to improve the global search capability of
the algorithm. To a certain extent, the introduction of the Lévy flight can also accelerate the
cover algorithm’s convergence rate. The iterative formula improved by Lévy flight can be
expressed as Equation (14).

Where t is the number of current iterations;
−−→
Xrand is used throughout the whale

populations to obtain randomly selected individual whale position vectors; rand and p2 are

random numbers in the range [0, 1];
→
F is the length and

→
X (t) is the same random vector (t),

in the range [2, 2]; The specific mathematical model of Lévy(s) has been introduced in the
previous section; α is step size parameter, which can be expressed in the following formula:

α = rand(1, dim) ∗ α0 (20)

where the value of α0 is 1.6, the rand (1, dim) ranges in a random number between 1 and
whale individual dimension value.

2.3. An Improved Method Based on Genetic Algorithm

The genetic algorithm simulates the process of natural selection, and its core is
crossover and variation. We integrate the ideas of crossover and mutation in genetic
algorithm into WOA. Crossover can improve the local optimization ability of the algorithm,
and mutation can improve the random search ability of the algorithm. At the end of each
iteration, the algorithm will select the top 10% of individuals with the best fitness in the
population as elite individuals and the bottom 20% of individuals with the worst fitness
as elimination individuals. Through crossover and mutation strategies, new chromosome
vectors are generated to replace the chromosome vectors of eliminated individuals. In the
selected individuals, the variation rate was 0.2.

The crossover process involves randomly selecting two chromosomes from elite indi-
viduals’ chromosomes, one for the father and one for the mother. The two chromosomes
are then cut off at one point and spliced together to create a new chromosome. This new
chromosome contains both a certain amount of the father’s genes and a certain amount of
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the mother’s genes. The process of mutation uses Formula (21) to update the new position
of the eliminated individual:

→
X (t + 1) = (ub− lb) ∗ exp

(
t

maxiter

)
+ lb (21)

where t is the number of current iterations; maxiter is the total number of iterations; lb is
the lower boundary value of the search space; and ub is the upper boundary value of the
search space. The curve of Equation (20) can be visualized in Figure 2.
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Through many experiments, we found that, for the optimization of a problem, it is best
to introduce a genetic algorithm optimization mechanism when the number of iterations of
that algorithm reaches 20% of the maximum number of iterations.

2.4. Boundary Processing Strategy

When the individual whale exceeds the boundary, which strategy to employ to pull the
individual whale back into the search space becomes a problem that all variation strategies
must deal with. The processing strategy of the original WOA is to place the offending whale
individuals on the boundary or the multiple of the boundary, which causes a problem.
After the completion of an iteration, many whale individuals will be reset on the boundary,
and the number of whale individuals in the search space will be reduced. Equation (22) is
used in this paper to deal with individual whales that cross the boundary. This strategy will
ensure that the entire whale population is randomly distributed in the space, increasing the
utilization rate of the entire whale population.

→
X (t + 1) =

(→
X (t)− lb

)
% (ub− lb) + lb (22)

where t is the number of current iterations; lb is the lower boundary value of the search
space; ub is the upper boundary of the search space and % is the mod operator.

The pseudocode of the improved algorithm WOA-LFGA can be described by Algorithm 1.
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Algorithm 1: WOA-LFGA

Input: Fitness function
Output: Available optimal solution
(i) Initialization process
Step1: Initialize parameter and variable values used in the algorithm.
Step2: Initialize the whales population X = Xi (i = 1, 2,. . ., N) using chaotic mapping by
Equation (19).
Step3: Calculate the fitness for X and select the best individual and assign it to X*.
Step4: Set the iteration counter to t = 0.
(ii) Iterative process
Step5: While t < maxiter, Do.
Step6: Update the position for Xi by Equation (7) (if p < 0.5 and |A| < 1) or Equation (14) (if
p < 0.5 and |A| ≥ 1) or Equation (12) (if p ≥ 0.5).
Step7: Select the best 10% and the worst 20% of individuals and use crossover and mutation
strategies to update individuals for the worst 20% based on the best 10% of individuals.
Step8: Return the search agents that go beyond the boundaries of the search space using
Equation (22).
Step9: Calculate the fitness for X and update X* if there is a better solution.
Step10: Iterate the counter t = t + 1.
End.
(iii) Results obtained
Step11: Output the best agent X*.
The end.

3. Results and Discussion

In this section, we use MATLAB R2016 to conduct simulation experiments. The
algorithm runs on Windows 10 64-bit system with 8GB memory. The improved algorithm
is tested with 29 standard test functions and applied to the wireless sensor coverage
optimization problem. The improved algorithm proposed in this paper is compared with
several other mainstream swarm intelligent optimization algorithms.

3.1. WOA-LFGA for Function Optimization

In this section, the numerical efficiency of the WOA-LFGA algorithm that is improved
in this paper is verified by solving 35 mathematical optimization problems. The 35 refer-
ence functions can be divided into three categories. Among these, F1–F10 is a single-mode
reference function, which reflects the exploration performance of the algorithm. F11–F29
is a multi-modal reference function, which challenges the exploration capability of the
algorithm and reflects the development capability of the algorithm. F30–F35 is a composite
reference function proposed in CEC 2005. These reference functions are shift, rotation,
expansion, and combination variables of some mathematical optimization problems, which
are used to test the global optimization ability of the algorithm. These functions can reflect
the ability of the algorithm to escape from the local optimal. We compare the WOA-LFGA
algorithm with several other recently proposed population intelligent optimization algo-
rithms. The search range space and optimal value f min of test functions and individuals
are listed in Tables 1–3.
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Table 1. Description of unimodal benchmark functions.

Function D Range fmin

F1(x) =
D

∑
i=1

x2
i

30 [−100, 100] 0

F2(x) =
D

∑
i=1

|xi|+
D

∏
i=1

|xi| 30 [−10, 10] 0

F3(x) =
D

∑
i=1

 i

∑
j−1

xj

2
30 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ D} 30 [−100, 100] 0

F5(x) =
D−1

∑
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30 [−30, 30] 0

F6(x) =
D

∑
i=1

([xi + 0.5])2 30 [−100, 100] 0

F7(x) =
D

∑
i=1

ix4
i + random[0, 1) 30 [−1.28, 1.28] 0

F8(x) =
D

∑
i=1

|xi|i+1 30 [−1, 1] 0

F9(x) =
D

∑
i=1

 D

∑
j=1

xj

2
30 [−100, 100] 0

F10(x) =
D

∑
i=1

x2
i +

 D

∑
i=1

0.5ixi

2

+

 D

∑
i=1

0.5ixi

4
30 [−5, 10] 0

Table 2. Description of multimodal benchmark functions.

Function D Range fmin

F11(x) =
D

∑
i=1

− xisin
(√
|xi|
)

30 [−500, 500] −418.98 × D

F12(x) = 1 +
D

∑
i=1

sin2(xi)− exp

 D

∑
i=1

x2
i

 30 [−10, 10] 0

F13(x) = 0.5
D

∑
i=1

(
x4

i − 16x2
i + 5xi

) 30 [−5, 5] −39.166 × D

F14(x) =
D

∑
i=1

[x2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0

F15(x) = −20exp

−0.2

√√√√ 1
n

D

∑
i=1

x2
i

− exp

 1
n

D

∑
i=1

cos(2πxi)

+ 20 + e 30 [−32, 32] 0

F16(x) = 1
4000

D

∑
i=1

x2
i −

D

∏
i=1

cos
(

xi√
i

)
+ 1

30 [−600, 600] 0
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Table 2. Cont.

Function D Range fmin

F17(x) =

 D

∑
i=1

sin2(xi)− exp

− D

∑
i=1

x2
i


exp

− D

∑
i=1

sin2
√
|xi|


30 [−10, 10] −1

F18(x) = π
D

10sin(πy1) +
D−1

∑
i=1

(yi − 1)2
[
1 + 10sin2(πyi+1)

]
+(yn − 1)2

}
+

D

∑
i=1

u(xi, 10, 100, 4)

30 [−50, 50] 0

F19(x) = 0.1

sin2(3πx1) +
D

∑
i=1

(xi − 1)2
[
1 + sin2(3πxi + 1)

]

+(xn − 1)2[1 + sin2(2πxD)
]}

+
D

∑
i=1

u(xi, 5, 100, 4)

30 [−50, 50] 0

F20(x) =

 1
500 +

25

∑
j=1

1
j+∑2

i=1(xi−aij)
6

−1
2 [−65, 65] 1

F21(x) =
11

∑
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

F22(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −10.316

F23(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

F24(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2

+6x1x2 + 3x2
2)] ×[30 + (2x1 − 3x2)

2

×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)
]

2 [−2, 2] −3

F25(x) = −
4

∑
i=1

ciexp

− 3

∑
j=1

aij

(
xj − pij

)2
 3 [1, 3] −3.86

F26(x) = −
4

∑
i=1

ciexp

− 6

∑
j=1

aij

(
xj − pij

)2
 6 [0, 1] −3.32

F27(x) = −
5

∑
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

F28(x) = −
7

∑
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

F29(x) = −
10

∑
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363
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Table 3. Description of composite benchmark functions.

Function D Range fmin

F30(CF1): f1, f2, f3,. . ., f10 = Sphere Function
[σ1, σ2, σ3,. . ., σ10] = [1, 1, 1,. . ., 1]
[λ1, λ2, λ3,. . ., λ10] = [5/100, 5/100, 5/100,. . ., 5/100] 10 [−5, 5] 0

F31(CF2): f1, f2, f3,. . ., f10 = Griewank’s Function
[σ1, σ2, σ3,. . ., σ10] = [1, 1, 1,. . ., 1]
[λ1, λ2, λ3,. . ., λ10] = [5/100, 5/100, 5/100,. . ., 5/100] 10 [−5, 5] 0

F32(CF3): f1, f2, f3,. . ., f10 = Griewank’s Function
[σ1, σ2, σ3,. . ., σ10] = [1, 1, 1,. . ., 1]
[λ1, λ2, λ3,. . ., λ10] = [1, 1, 1,. . ., 1] 10 [−5, 5] 0

F33(CF4): f1, f2 = Ackley’s Function, f3, f4 = Rastrigin’s Function,
f5, f6 = Weierstrass Function, f7, f8 = Griewank’s Function,
f9, f10 = Sphere’s Function

[σ1, σ2, σ3,. . ., σ10] = [1, 1, 1,. . ., 1]
[λ1, λ2, λ3,. . ., λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100] 10 [−5, 5] 0

F34(CF5): f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function, f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,
f9, f10 = Sphere’s Function

[σ1, σ2, σ3,. . ., σ10] = [1, 1, 1,. . ., 1]
[λ1, λ2, λ3,. . ., λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100] 10 [−5, 5] 0

F35(CF6): f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function, f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,
f9, f10 = Sphere’s Function

[σ1, σ2, σ3,. . ., σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
[λ1, λ2, λ3,. . ., λ10] = [0.1 × 1/5, 0.2 × 1/5, 0.3 × 5/0.5, 0.4 × 5/0.5, 0.5 × 5/100, 0.6 × 5/100, 0.7 × 5/32, 0.8 × 5/32,
0.9 × 5/100, 1 × 5/100] 10 [−5, 5] 0

For each reference function, the number of iterations of the algorithm is set to 500 and
the population size is 30. The program is repeated 30 times, and its mean and variance are
calculated. We compared WOA-LFGA with PSO [29], AOA [30], GWO [31], SSA [32], and
WOA, and reported the statistical results in Tables 4 and 5.

The functions F1–F10 are single-mode reference functions with only one global op-
timal value in the search space. They are used to evaluate the development capability
of the studied meta-heuristic algorithm. As can be seen from Table 4, WOA-LFGA has
strong competitiveness compared with other meta-heuristic algorithms, especially the most
effective optimization effect in functions F1–F5 and F8–F10, and the optimization effect in
F6 and F7 are also more robust than most optimization algorithms. Therefore, WOA-LFGA
has excellent exploration performance and local optimization ability.

Functions F11–F29 are multi-modal reference functions. Different from single-modal
functions, multi-modal functions contain many locally optimal solutions, and the number
of optimal local values increases exponentially with the increase of function dimension.
Therefore, these functions are well suited to test the development capabilities of algorithms.
As can be seen from Table 4, WOA-LFGA has excellent development capability in both
multi-modal reference functions and fixed dimensional multi-modal reference functions. In
most test problems, this algorithm is always either the most efficient, sub-optimal, or close
to the optimal value. It has been proved that WOA-LFGA has good global search ability
and can jump out of optimal local ability.

Functions F30–F35 are some composite reference functions, and optimizing such
functions is challenging. According to the optimization data in Table 5, WOA-LFGA
achieved the best fitness in three test problems and had strong competitiveness in the
results of the remaining three tests. This proves that WOA-LFGA has strong global
optimization ability.

The comparison of convergence curves between WOA-LFGA and other population
intelligent algorithms is shown in Figure 3. To establish a more intuitive picture, a semi-
logarithmic graph is used in this paper to reflect the decline rate of the fitness curve,
meaning that the part not shown in the graph indicates the way in which its fitness value
has declined to infinitesimal.
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Table 4. Comparison of optimization results obtained for the unimodal and multimodal benchmark functions.

PSO AOA GWO SSA WOA WOA-LFGA

ave std ave std ave std ave std ave std ave std

F1 0.01145 0.016214 1.82 × 10−20 9.99 × 10−20 2.71 × 10−27 7.04 × 10−27 1.42 × 10−07 1.62 × 10−07 2.31 × 10−71 1.14 × 10−70 0 0
F2 2.020543 4.065539 0 0 1.08 × 10−16 8.93 × 10−17 2.285371 1.666859 1.07 × 10−50 4.58 × 10−50 0 0
F3 2444.118 1926.835 0.003659 0.007401 9.85 × 10−06 1.90 × 10−05 1382.524 777.8525 71.50822 172.5122 0 0
F4 7.036386 1.311499 0.025943 0.019751 8.16 × 10−07 8.64 × 10−07 11.60046 3.603777 1.293207 1.217586 1.65 × 10−10 7.94 × 10−10

F5 237.9364 552.168 28.43077 0.241825 27.0996 0.744425 358.5001 543.5524 27.72318 0.381725 20.77285 10.26487
F6 0.008698 0.014406 3.18966 0.252549 0.767048 0.393704 2.80 × 10−07 5.94 E−07 0.263031 0.199383 0.070958 0.122792
F7 0.049637 0.017275 6.93 × 10−05 6.73 E−05 0.001663 0.0008 0.190837 0.075292 0.003031 0.002759 0.001748 0.003825
F8 1.62 × 10−18 7.45 × 10−18 0 0 1.60 × 10−94 8.74 × 10−94 1.60 × 10−06 1.04 × 10−06 8.07 × 10−101 4.42 × 10−100 0 0
F9 3715.167 3804.074 0.006306 0.015188 1.00 × 10−05 1.44 × 10−05 1543.173 827.1876 139.0415 349.0566 3.84 × 10−26 1.99 × 10−25

F10 135.1749 86.41104 278.754 50.12035 3.35 × 10−07 7.80 × 10−07 43.32593 15.77741 25.84223 104.563 6.12 × 10−17 3.35 × 10−16

F11 −8588.58 743.6667 −5347.08 428.9775 −5856.44 736.0021 −7429.88 767.0725 −10327.8 1815.032 −62304.4 2.22 × 10−11

F12 1.85834 0.705254 0 0 2.08691 2.001494 1 1.48 × 10−09 0.129003 0.407659 0 0
F13 −1010.53 32.04003 −488.895 65.78818 −906.163 66.86702 −999.69 41.44037 −1173.67 3.427174 −1174.98 0.005266
F14 54.17668 12.63687 0 0 1.948371 3.150168 47.85746 15.99706 1.89 × 10−15 1.04 × 10−14 0 0
F15 0.768649 0.668676 8.88 × 10−16 0 1.03 × 10−13 1.69 × 10−14 2.481978 0.913383 4.20 × 10−15 2.46 × 10−15 8.88 × 10−16 0
F16 0.035694 0.042562 0.182622 0.131219 0.004629 0.008419 0.015976 0.00876 0.01046 0.039824 0 0
F17 7.94 × 10−15 4.29 × 10−14 7.38 × 10−08 6.46 × 10−08 1.19 × 10−15 3.31 × 10−16 2.39 × 10−16 1.31 × 10−15 −1 4.61 × 10−17 −1 0
F18 0.170733 0.276331 0.521644 0.051792 0.054542 0.02857 6.834328 2.62791 0.01398 0.016893 0.006835 0.019706
F19 0.156988 0.196888 2.840098 0.098464 0.628701 0.19635 13.60701 14.96327 0.278207 0.185077 0.208052 0.199385
F20 0.998004 5.83 × 10−17 8.2796 4.850009 3.676116 3.874222 1.295293 0.827786 2.865604 2.997616 1.687328 1.873362
F21 0.002626 0.006021 0.012879 0.022459 0.004451 0.008095 0.001558 0.003563 0.000612 0.000297 0.000362 0.000218
F22 −1.03163 6.45 × 10−16 −1.03163 1.30 × 10−07 −1.03163 2.57 × 10−08 −1.03163 2.67 × 10−14 −1.03163 9.35 × 10−10 −1.03163 4.91 × 10−16

F23 0.397887 0 0.40893 0.008738 0.397889 2.69 × 10−06 0.397887 3.68 × 10−14 0.397891 8.11 × 10−06 0.397887 6.37 × 10−15

F24 3 1.24 × 10−15 6.60127 9.334635 3.00005 6.62 × 10−05 3 2.13 × 10−13 3.900112 4.929503 3 1.63 × 10−06

F25 −3.86278 2.65 × 10−15 −3.85196 0.004077 −3.8615 0.00228 −3.86278 1.89 × 10−11 −3.85717 0.009316 −3.86278 2.14 × 10−15

F26 −3.26514 0.07867 −3.06929 0.075255 −3.25627 0.085463 −3.21838 0.05356 −3.25865 0.122607 −3.28633 0.055417
F27 −6.01714 3.525257 −3.58449 1.100864 −8.51535 2.579639 −8.65039 2.831563 −6.57441 2.361348 −10.1532 3.51 × 10−14

F28 −8.44332 3.329769 −4.01415 1.838357 −10.4014 0.000913 −8.44212 3.093598 −7.38245 2.669453 −10.4029 2.28 × 10−13

F29 −7.2628 3.864573 −3.45313 1.352861 −9.81322 2.238027 −8.03092 3.636316 −7.68458 2.925501 −10.5364 1.29 × 10−12
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Table 5. Comparison of optimization results obtained for the composite benchmark functions.

PSO AOA GWO SSA WOA WOA-LFGA

ave std ave std ave std ave std ave std ave std

F30 188.4598 104.2843 429.9201 122.6024 165.2451 120.3013 143.3333 138.1736 147.113 109.1869 81.9337 109.8375
F31 210.1492 147.6265 603.8082 141.238 217.9645 110.3465 193.744 119.9475 212.4452 102.3541 167.121 119.973
F32 254.4012 118.5757 739.0197 169.9494 218.669 100.6576 329.7179 239.0358 494.4398 203.5997 438.3484 132.1945
F33 497.786 191.054 853.3283 70.53408 709.6582 188.0356 630.5518 272.5582 633.3295 174.6679 576.9929 128.6628
F34 249.408 231.7561 493.5288 182.9644 187.0822 137.7849 182.7982 202.8263 206.8386 159.906 165.38 111.3664
F35 826.5022 155.8774 877.2691 66.94098 837.5018 152.0384 762.027 185.1875 824.9949 159.4651 814.3615 167.8058
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As seen in the figure, WOA-LFGA exhibits three distinct convergence trends during
the iterative process. In some cases, the algorithm converges to the optimal global solution
in less than half of the iterations. This is attributed to the introduction of the Lévy flight
method, which enhances the global search scope and convergence speed of the algorithm.
As a result, WOA with Lévy flight can locate the optimal global solution more quickly
than other algorithms. This behavior is evident in F1, F3, F8, and F14. In other instances,
the convergence rate accelerates when the algorithm is near 20% of the total iterations.
This phenomenon results from the incorporation of the genetic algorithm optimization
problem mechanism. The crossover strategy strengthens the algorithm’s local optimization
ability near the optimal individual, while the mutation strategy increases the population’s
diversity. This behavior is apparent in F4, F7, F9, and F28. Finally, rapid convergence
in the initial steps of iteration is achieved due to the introduction of chaotic mapping
for initialization. This approach allows whale individuals to distribute and search the
space more evenly during initialization, thereby finding the optimal solution more quickly.
This behavior is evident in F5, F11, F19, and F21. In summary, the results of this section
show that the improved WOA’s global search and local optimization abilities have been
significantly enhanced. Specifically, compared with other population-based intelligent
algorithms, the fitness of the proposed algorithm decreases rapidly within fewer iterations
and reaches the lowest fitness result more quickly.

To test the scalability of WOA-LFGA, we conducted experiments on 19 benchmark
functions (F1–F19) in 4 dimensions (30, 50, 100, 500) and compared them with several
metaheuristic algorithms as shown in Table 6. For each algorithm, the population size
and maximum number of iterations were fixed at 30 and 500, respectively, and we ran the
experiments independently 30 times.
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Table 6. Results of test functions (F1–F19) with 30, 50, 100 and 500 dimensions.

PSO AOA GWO SSA WOA WOA-LFGA

D ave std ave std ave std ave std ave std ave std

F1 50 10.86347 14.44537 0.000863 0.001639 6.16 × 10−20 4.36 × 10−20 0.85548 1.003725 1.66 × 10−73 7.15 × 10−73 0 0
100 2316.109 3668.931 0.021699 0.008517 1.75 × 10−12 1.2 × 10−12 1471.517 385.5454 3.39 × 10−72 1.51 × 10−71 0 0
500 235236.4 25977.07 0.6333 0.037321 0.001453 0.000521 96418.89 5452.527 1.71 × 10−73 5.04 × 10−73 0 0

F2 50 10.53083 11.77191 2.3 × 10−147 1 × 10−146 2.51 × 10−12 1.32 × 10−12 8.895375 2.801584 2.35 × 10−49 1.05 × 10−48 0 0
100 65.36263 22.83761 2.42 × 10−53 1.08 × 10−52 4.11 × 10−08 1.52 × 10−08 48.25606 7.948359 8.59 × 10−50 1.89 × 10−49 0 0
500 1390.407 110.3861 0.001232 0.001668 0.010938 0.00145 541.6126 19.43979 3.87 × 10−49 1.68 × 10−48 0 0

F3 50 16884.77 4607.752 0.103386 0.097921 0.333669 0.597959 9735.95 5803.166 565.1298 762.9405 3.86 × 10−19 1.73 × 10−18

100 101956.4 11759.16 1.127456 1.75346 636.1386 928.2477 64451 32153.11 4706.516 7708.618 3.07 × 10−17 1.37 × 10−16

500 2764988 318150.2 33.67954 16.67636 334085.1 95550.54 1275053 728370.7 88474.96 146520.3 2.52 × 10−12 1.13 × 10−11

F4 50 17.96243 1.707676 0.046721 0.015961 0.000272 0.000202 20.63042 4.258961 2.152591 2.361506 2.43 × 10−10 1.07 × 10−09

100 40.44695 3.397269 0.092903 0.010875 0.587254 0.433484 27.99427 2.744113 3.388053 2.958831 1.38 × 10−10 4.27 × 10−10

500 76.60742 3.587335 0.180715 0.013151 65.33815 5.519397 40.29455 2.292022 3.380097 2.410942 9.41 × 10−09 3.08 × 10−08

F5 50 5662.017 19968.47 48.77104 0.157029 47.43632 0.947389 3276.49 5682.868 48.04747 0.403162 34.7513 20.54994
100 203892.7 68214.38 98.87163 0.115737 97.96276 0.542074 156566.4 75343.73 98.13826 0.19119 49.03683 48.75961
500 4.59 × 10+08 1.37 × 10+08 499.0966 0.064668 498.083 0.237754 37597520 3829547 495.8758 0.415621 161.4206 225.6898

F6 50 8.762354 7.964543 7.148222 0.382553 2.763138 0.603988 0.594813 0.590689 0.838658 0.362111 0.528771 0.43255
100 2473.402 3667.765 18.2289 0.63456 10.5705 1.229664 1426.96 511.486 2.277557 0.810151 2.215489 1.824284
500 229660.1 31072.21 116.0074 1.081187 92.01562 1.958327 93586.05 6284.008 19.57877 7.912018 19.30641 21.22633

F7 50 0.596402 1.806843 7.14 × 10−05 5.37 × 10−05 0.003166 0.001527 0.564758 0.128404 0.003614 0.004185 0.002136 0.003517
100 6.536545 8.826638 6.06 × 10−05 5.39 × 10−05 0.006948 0.004253 2.843964 0.659053 0.003686 0.003096 0.001628 0.004275
500 3707.805 687.6992 8.02 × 10−05 8.17 × 10−05 0.049075 0.012875 276.4369 53.53303 0.003276 0.004661 0.000924 0.000913

F8 50 1.44 ×
10−14

3.85 ×
10−14 0 0 1.86 × 10−88 6.35 × 10−88 2.19 ×

10−06
1.69 ×
10−06 1.2 × 10−107 5.5 × 10−107 0 0

100 2.64 ×
10−11

8.42 ×
10−11 0 0 2.15 × 10−35 9.61 × 10−35 2.29 ×

10−06
1.67 ×
10−06 9.8 × 10−104 2.8 × 10−103 0 0

500 1.88 ×
10−05 4.2 × 10−05 0 0 0.000271 0.001131 5.71 ×

10−06
7.21 ×
10−06 1.3 × 10−110 5.7 × 10−110 0 0

F9 50 18886.55 5430.519 0.05631 0.049453 0.367136 0.657843 10379.31 5073.609 711.4174 1668.814 1.98 × 10−14 8.84 × 10−14

100 106450 15037.64 1.059031 0.969092 641.6541 619.2241 43718.87 25770.16 5269.864 7375.078 1.21 × 10−20 5.02 × 10−20

500 2696744 385835 38.4927 28.86932 328280.4 66473.19 1217109 526500.8 1625552 6833751 3.41 × 10−18 1.36 × 10−17

F10 50 624.1645 207.4525 798.6709 98.33566 0.073548 0.07947 391.2071 89.38285 46.64148 192.6738 0.004231 0.018922
100 2536.807 451.22 2051.827 173.7202 122.6674 52.30159 1956.498 227.5388 227.8372 676.5795 4.18 × 10−05 0.000187
500 24484.75 1175.066 8.84 ×10+14 3.54 ×10+15 3854.575 356.6187 10441.52 642.2583 559.5588 1632.451 500.7807 1714.189
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Table 6. Cont.

PSO AOA GWO SSA WOA WOA-LFGA

D ave std ave std ave std ave std ave std ave std

F11 50 −12786.3 798.5763 −6730.6 555.5429 −9006.98 796.4451 −11829.8 1409.544 −17237.6 3259.934 −103841 2.99 × 10−11

100 −21997.3 1611.842 −9932.03 556.0954 −16523.7 1163.17 −22109.6 1951.76 −33053 6993.32 −207681 5.97 × 10−11

500 −65272.3 2572.758 −22147.4 1418.863 −53823.4 13825.98 −60450.6 5024.125 −183344 28730.99 1038407 1.19 × 10−10

F12 50 3.512278 1.823459 0 0 1.997852 0.767904 1.00591 0.009882 0 0 0 0
100 8.708894 3.634477 0 0 2.969532 0.649941 3.56948 0.820859 0.052619 0.235318 0 0
500 116.9072 9.152489 6.35 × 10−06 1.81 × 10−06 28.20371 59.83419 107.274 4.117031 5.55 × 10 −18 2.48 × 10 −17 0 0

F13 50 −1681.47 45.5754 −675.226 76.99906 −1352.15 90.40042 −1648.11 38.54963 −1956.64 1.398103 −1958.07 0.215703
100 −3303.19 63.15214 −1084.03 124.9054 −2299.99 157.4946 −3023.55 71.17438 −3910.89 5.958551 −3915.88 0.840303
500 −12380.6 261.834 −3680.81 261.3991 −7753.78 531.8809 −10816.8 224.6012 −19540.2 34.90968 −19567.5 37.75219

F14 50 119.9365 28.58934 0 0 4.178933 4.74967 88.4886 30.73374 0 0 0 0
100 382.7355 54.84386 0 0 10.74289 7.341498 230.9327 35.07983 0 0 0 0
500 4449.093 186.3669 5.97 × 10−06 5.37 × 10−06 70.76179 18.02281 3151.214 160.9733 4.55 × 10−14 2.03 × 10−13 0 0

F15 50 2.715587 0.484115 8.88 × 10−16 0 4.53 × 10−11 3.17 × 10−11 4.635025 1.206284 4.26 × 10−15 2.44 × 10−15 8.88 × 10−16 0
100 6.525648 2.065837 0.000484 0.000793 1.22 × 10−07 4.02 × 10−08 10.2093 1.047667 4.26 × 10−15 2.7 × 10−15 8.88 × 10−16 0
500 18.05284 0.448287 0.007914 0.000662 0.001876 0.000293 14.24981 0.224026 3.55 × 10−15 2.27 × 10−15 8.88 × 10−16 0

F16 50 1.059217 0.145573 1.062206 0.144497 0.003473 0.007606 0.508193 0.177961 0.008673 0.038785 0 0
100 35.28278 50.71112 585.2056 187.6203 0.003466 0.008471 12.83264 2.844918 5.55 × 10 −18 2.48 × 10 −17 0 0
500 2133.145 209.9714 10516.47 2772.351 0.004728 0.020304 867.917 65.88722 0 0 0 0

F17 50 1.53 ×
10−21

1.16 ×
10−21 2.82 × 10−12 3.22 × 10−12 2.6 × 10−22 6.62 × 10−22 1.47 ×

10−21
8.59 ×
10−22 −1 6.24 × 10−17 −1 0

100 6.52 ×
10−41 1.2 × 10−40 2.17 × 10−23 2.7 × 10−23 8.56 × 10−41 1.9 × 10−40 3.66 ×

10−41
4.07 ×
10−41 −0.85 0.366348 −1 0

500 4.8 × 10−177 0 1.3 × 10−111 4.4 × 10−111 1.1 × 10−173 0 1.4 × 10−182 0 −0.7 0.470162 −1 0

F18 50 3.386843 1.228704 0.734116 0.044766 0.106871 0.047385 11.49135 2.713314 0.012943 0.007324 0.012762 0.020302
100 2936.118 6291.82 0.901293 0.025436 0.276781 0.060778 31.0403 10.6664 0.020269 0.011114 0.016797 0.022049
500 4.79 × 10+08 2.04 × 10+08 1.082153 0.010931 0.766924 0.058279 1530375 926662 0.024601 0.011647 0.044441 0.070781

F19 50 42.53796 20.41387 4.875282 0.080773 2.085256 0.373575 76.36419 12.04896 0.413098 0.227486 0.314442 0.409962
100 73149.61 62122.54 9.968205 0.057886 6.84329 0.459763 9531.26 15735.96 1.139066 0.584451 1.134865 1.559223
500 1.5 × 10+09 2.72 × 10+08 50.221 0.039006 50.05496 1.3932 34036361 9213893 7.216821 3.138501 4.851414 6.68935
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These results indicate that WOA-LFGA outperforms the compared algorithms in most
cases, as it achieves the best average value in 53 out of 57 cases (92.98%). This is higher
than other algorithms such as AOA (17.54%) and WOA (8.77%), among others (0%). WOA-
LFGA is competitive in searchability and convergence rate, demonstrating universality,
robustness, and high stability. In the following chapters, WOA-LFGA will be tested in the
application of more challenging wireless sensor coverage optimization problems.

3.2. WOA-LFGA for WSN Coverage Optimization Problem

To verify the effectiveness of WOA-LFGA in the WSN coverage optimization problem,
we compare the proposed algorithm with several other population intelligent algorithms
and several other improved WOAs. Equations (4) and (5) are together used as the objective
function when solving the WSN coverage optimization model. During the experiment,
we found that WOA-LFGA was unable to manage its optimal performance in the cov-
erage optimization problem of wireless sensors. After several experiments, we updated
Formulas (21)–(23) for the coverage optimization problem of a wireless sensor:

→
X

t+1

j =
−−→
cand [ind] (23)

where
−−→
cand is a vector subject to rectangular distribution, its range is between (lb, ub + r),

its dimension is (ub − lb + r)/r; r is the node radius of the wireless sensor; ind is the index
coefficient, and its calculation formula is expressed as Formula (24):

ind =

{
j%r + 1 i f j is odd⌊
−cos π j

2 ∗
(⌈

j
r

⌉
%2
)
+
∣∣∣1 + ∣∣∣cos π j

4

∣∣∣+ ⌊ 2j−2
r

⌋∣∣∣⌋ i f j is even
(24)

where j is the dimension index of the whale individual, and % is the mod operator.
The aim of this experiment is to test and compare the improved WOA algorithm

with the above five algorithms. The evaluation index is the average overall coverage
rate and algorithm stability, which is represented by variance. We tested the coverage of
27 target points within an area of 100 m× 100 m, in which the coverage radius of each target
point was 11 m. To make the experimental conclusions more persuasive, we conducted
30 experiments, with 200 iterations for each experiment. The parameter settings of the
experiment are shown in Table 7.

Table 7. Parameters of WSN coverage optimization problem in Section 3.2.

Parameter Value

Region size 100 m × 100 m
Sensing range 11 m
Sensor nodes number N 27
Individual number 50
Iterations 200
Test times 30

3.2.1. Comparison of WOA-LFGA with Other Basic Algorithms

In this section, the effectiveness of WOA-LFGA is measured by comparing it with
SMA [33], DOA [34], AOA, BWO [35], and WOA. The parameter settings of the comparison
algorithm are all taken from the corresponding literature. In this experiment, the algorithm
proposed in this paper is compared with the above five population intelligent algorithms,
and the program operation results are shown in Table 8 and Figure 4.
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Table 8. Coverage ratio comparison of WOA-LFGA with other basic algorithms.

Method ave std C

SMA 68.9237% 0.0173 0.6715
DOA 76.2457% 0.0183 0.7429
AOA 68.3437% 0.0137 0.6659
BWO 64.1613% 0.0205 0.6251
WOA 79.6813% 0.0231 0.7763
WOA-LFGA 90.9703% 0.0019 0.8863
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(f) WOA-LFGA.

It can be seen from Table 8 that, compared with SMA, DOA, AOA, BWO, and WOA,
WOA-LFGA has significantly improved the coverage optimization of WSN. Overall, the
optimization effect of SMA, AOA, and BWO in this experiment could be better, and the
average coverage rate is below 70%. The other three algorithms have relatively high target
point coverage and slight variance, which indicates that these algorithms play a role in the
coverage optimization of wireless sensors. Specifically, the optimization results of WOA
and DOA are similar, ranging from 75% to 80%, while the optimization effect of WOA is
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slightly higher, reaching 79.68%. However, the improved WOA in this paper achieves the
current best optimization results, with a coverage rate of 90.97%, higher than the second
place, 11.29% of the original WOA. WOA-LFGA has the lowest variance from the second
evaluation index, and its value is 0.0019. That is, the algorithm has the highest stability.
The improved WOA algorithm has certain advantages over the other five algorithms in
terms of performance, combining the two evaluation indexes. From the perspective of
coverage efficiency, WOA-LFGA also achieves the highest node coverage efficiency among
the optimized algorithms, which fully demonstrates that the algorithm has lower node
redundancy and a more even distribution of nodes in the area.

As seen in Figure 5, the WOA-LFGA proposed in this paper not only reaches the
highest coverage rate but also has the fastest convergence rate. When the number of
iterations reaches about 30% of the maximum number of iterations, it has reached the
optimum. Although BWO is an excellent algorithm, its performance could be better for the
problems proposed in this paper. The optimization effect of SMA and AOA is similar, and
the coverage rate calculated by them hardly changes during the iteration process. Although
the final coverage rate of WOA and DOA can reach nearly 80%, their convergence rate is
slower than that of WOA-LFGA, and they need to iterate more than 60% to get close to
the maximum coverage rate. The improved WOA in this paper is also superior to other
algorithms in terms of convergence speed and has strong practicability and effectiveness in
practical applications.
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Figure 5. Comparison of convergence curves of WOA-LFGA and other basic algorithms obtained in
WSN coverage optimization problem.

Using the sensor node configuration obtained from Figure 4, the Prim algorithm [36]
was employed to generate a corresponding minimum spanning tree between the nodes,
which was subsequently used to depict the communication network among the monitoring
nodes, as presented in Figure 6.
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(f) WOA-LFGA.

From the perspective of communication distance uniformity and as observed in the
results, the WOA-LFGA algorithm outperforms the other five compared algorithms. More-
over, the optimized communication network generated by the WOA-LFGA algorithm
features more convergence nodes located near the edge, which is conducive to shortening
the distance and saving energy consumption between the nodes during data transmission.
Overall, in the process of node deployment, all six algorithms are capable of optimizing
the placement of the nodes, thereby enhancing the coverage of the network. However,
the network coverage optimized by the WOA-LFGA algorithm demonstrates the highest
level of performance, with a more uniform distribution of the nodes. This contributes to
improving the reliability of the overall network and reducing energy consumption during
data transmission, thus extending the working time of the network.

By varying the number of sensor nodes N deployed in the above experiment, we
investigate its impact on the network coverage. Specifically, we discuss the variation of
network coverage with N ranging from 10 to 30 with a step size of 5. The experimental
results are presented in Figure 7 and Table 9.
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Table 9. The variation of network coverage with different numbers of nodes between WOA-LFGA
and other basic algorithms.

N = 10 N = 15 N = 20 N = 25 N = 30

Method ave std ave std ave std ave std ave std

SMA 34.63% 0.00877 47.70% 0.01028 57.51% 0.01102 66.70% 0.01215 73.96% 0.02138
DOA 37.73% 0.00657 53.55% 0.01176 64.77% 0.01743 73.12% 0.02305 79.83% 0.01749
AOA 34.59% 0.00685 47.58% 0.01183 57.85% 0.0186 65.42% 0.01425 72.50% 0.01506
BWO 34.52% 0.00919 46.03% 0.01634 55.40% 0.02252 62.08% 0.02008 67.43% 0.02664
WOA 37.87% 0.00264 54.04% 0.01373 67.29% 0.01785 75.84% 0.02531 82.70% 0.02263
WOA-LFGA 38.29% 0.00042 56.72% 0.00381 72.16% 0.00747 88.75% 0.00105 93.71% 0.00272

The figure clearly demonstrates the trend of network coverage variation with the
change in the number of sensor nodes. Specifically, when the number of nodes is 20
or less, the difference in coverage between the different algorithms is not significant.
However, it gradually becomes apparent after this threshold. From the graph, it is evident
that WOA-LFGA can achieve a higher network coverage than the other algorithms with
the same number of nodes. Furthermore, the curve indicates that WOA-LFGA has the
fastest growth rate of coverage with the increasing number of nodes, demonstrating strong
competitiveness compared to the other algorithms.

3.2.2. Comparison of WOA-LFGA with Different Modified WOA

In this subsection, the effectiveness of WOA-LFGA is measured by comparison with
CWOA, WOABAT [37], RDWOA [38], WOAmM [39], EGE-WOA, where CWOA uses
tent mapping. The parameter settings of the comparison algorithm are taken from the
corresponding literature. In this experiment, the algorithm proposed in this paper is
compared with the above five population intelligent algorithms, and the program operation
results are shown in Table 10 and Figure 8.
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Table 10. Coverage ratio comparison of WOA-LFGA with different modified WOA.

Method ave std C

CWOA 68.3363% 0.0263 0.6658
WOABAT 78.0493% 0.0217 0.7604
RDWOA 81.9797% 0.0171 0.7987
WOAmM 81.2440% 0.0250 0.7916
EGE-WOA 56.2650% 0.0489 0.5482
WOA-LFGA 90.9703% 0.0019 0.8863
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It can be seen from Table 10 and Figure 9 that WOA-LFGA significantly improves the
coverage optimization of WSN compared with CWOA, WOABAT, RDWOA, WOAmM, and
EGE-WOA. In this experiment, the performance effect of EGE-WOA could be better. The
coverage rate of EGE-WOA is below 60%, while that of CWOA is 68.34%, slightly higher
than that of EGE-WOA. The coverage rate of WOA-BAT, RDWOA, and WOAmM reached
an average of about 80%, or individual rates of 78.05%, 81.98%, and 81.24%, respectively.
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The average coverage rate of WOA-LFGA proposed in this paper is 90.97%, which achieves
relatively adequate coverage and is 9% higher than the second place. WOA-LFGA has the
lowest variance from the second evaluation index, and the algorithm stability is the best
among several improved WOAs. Overall, WOA-LFGA has advantages over the other five
algorithms’ overall performances.
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Figure 9. Comparison of convergence curves of WOA-LFGA and different modified WOA obtained
in WSN coverage optimization problem.

Using the sensor node configuration obtained from Figure 8, the Prim algorithm was
employed to generate a corresponding minimum spanning tree between the nodes, which
was subsequently used to depict the communication network among the monitoring nodes,
as presented in Figure 10.
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From Figure 10, it is evident that WOA-LFGA still achieves more even communication
distances compared with other optimized algorithms. This reduces the transmission power
for information exchange, thus saving energy and extending the usage time of the entire
network.

By varying the number of sensor nodes N deployed in the above experiment, we
investigate its impact on the network coverage. Specifically, we discuss the variation of
network coverage with N ranging from 10 to 30 with a step size of 5. The experimental
results are presented in Figure 11 and Table 11.

Table 11. The variation of network coverage with different numbers of nodes between WOA-LFGA
and different modified WOA.

N = 10 N = 15 N = 20 N = 25 N = 30

Method ave std ave std ave std Ave std ave std

CWOA 35.46% 0.0116 48.44% 0.0223 58.01% 0.0253 65.02% 0.0186 72.98% 0.0251
WOABAT 37.61% 0.0040 53.81% 0.0103 65.58% 0.0160 74.49% 0.0234 81.73% 0.0210
RDWOA 38.08% 0.0021 55.11% 0.0076 69.53% 0.0078 78.40% 0.0157 85.35% 0.0236
WOAmM 38.04% 0.0020 54.93% 0.0108 68.12% 0.0120 78.04% 0.0200 84.99% 0.0214
EGE-WOA 31.00% 0.0221 41.04% 0.0443 49.71% 0.0391 51.94% 0.0535 59.58% 0.0627
WOA-LFGA 38.29% 0.0004 56.72% 0.0038 72.16% 0.0074 88.75% 0.0010 93.71% 0.0027
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Clearly, the following algorithms did not show much difference in optimization
performance when the number of sensor nodes was less than 20. However, as the number
exceeded 20, the advantage of WOA-LFGA gradually became apparent. With the same
number of nodes, WOA-LFGA can better deploy wireless sensor nodes and maximize the
coverage of the entire network. In terms of standard deviation, regardless of the number of
sensor nodes, WOA-LFGA always has the smallest standard deviation, indicating that this
algorithm has the best stability and the fastest growth rate. All these indicators together
demonstrate the strong competitiveness of WOA-LFGA.

3.3. WOA-LFGA for WSN Coverage Practical Application

With the unprecedented development of big data, the widespread adoption of the fifth-
generation mobile communication technology (5G) has accelerated. Currently, telecommu-
nications operators worldwide are gradually rolling out 5G networks, and the development
and application prospects of 5G technology are extremely promising. It can support a
larger number of device connections and can contribute to the development of the Internet
of Things (IoT) and the construction of smart cities. In this section, we apply the wireless
sensor coverage optimization problem to real-life scenarios. Taking Jilin Jianzhu University
as an example, as shown in Figure 12a, its outline can be abstracted as an irregular pen-
tagon. For the sake of convenience in calculations, we rotate the shape counterclockwise by
90 degrees, as depicted in Figure 12b.

Equation (25) imposes constraints on the new boundary range.
0.325x < y < 0.077x + 950, 0 < x ≤ 260
0.325x < y < −0.281x + 1043.125, 261 < x ≤ 400
4.167x− 1536.667 < y < −0.281x + 1043.125, 401 < x ≤ 580

(25)

In this experiment, we tested the coverage of 13 target points within the aforemen-
tioned pentagonal area, in which the coverage radius of each target point was 100 m. To
ensure that the experimental conclusions are more persuasive, we conducted 30 experi-
ments, with 200 iterations for each experiment. The parameter settings of the experiment
are shown in Table 12.
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Jilin Jianzhu University.

Table 12. Parameters of WSN coverage optimization problem in Section 3.3.

Parameter Value

Region size 440,400 m2

Sensing range 100 m
Sensor nodes number N 13
Individual number 50
Iterations 200
Test times 30

3.3.1. Comparison of WOA-LFGA with Other Basic Algorithms

In this subsection, the effectiveness of WOA-LFGA is measured by comparison with
SMA, DOA, AOA, BWO, and WOA. Parameter Settings of the comparison algorithm are
all taken from the corresponding literature. In this experiment, the algorithm proposed
in this paper is compared with the above five population intelligent algorithms, and the
program operation results are shown in Table 13.

Table 13. Coverage ratio comparison of WOA-LFGA with other basic algorithms in practical application.

Method ave std C

SMA 11.4011% 0.0159 0.1229
DOA 53.0607% 0.0530 0.5722
AOA 52.3511% 0.0306 0.5645
BWO 52.2743% 0.0579 0.5637
WOA 37.2967% 0.0935 0.4022
WOA-LFGA 83.7718% 0.0035 0.9033

It can be seen from Table 13 that, compared with SMA, DOA, AOA, BWO, and
WOA, WOA-LFGA has significantly improved the coverage optimization of the WSN.
In comparison, DOA, AOA, and BWO demonstrate better optimization performance,
achieving coverage rates of over 50%. Both SMA and WOA also provided feasible solutions
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for wireless sensor coverage in this experiment. These algorithms have proven their
efficacy in practical applications. Specifically, AOA and BWO yield similar optimization
results, with coverage rates around 52%. DOA yields slightly higher optimization results,
surpassing 53% coverage. However, the improved WOA algorithm in this study achieved
the best optimization results, with an average coverage rate of 83.77%, surpassing the
second-ranked algorithm by 30.71%. This is mainly due to WOA-LFGA’s different boundary
handling strategy and excellent global search capabilities. In terms of variance, WOA-LFGA
has the lowest variance, with a value of 0.0035, indicating its good stability. In terms of
coverage efficiency, WOA-LFGA also achieves the highest node coverage efficiency among
all algorithms, demonstrating lower node redundancy and a more uniform distribution
of nodes in the area. Considering these three evaluation indexes, the improved WOA
algorithm has certain advantages over the other five algorithms in terms of performance.

As seen in Figure 13, the WOA-LFGA proposed in this paper not only reaches the
highest coverage rate but also has the fastest convergence rate. During the iteration process,
it remained in a state of growth. Specifically, the growth was rapid in the first 30% of the
iterations, but then slowed. The optimization effects of DOA and AOA are similar, as they
show minimal noticeable growth during the iteration process. BWO exhibits relatively
rapid growth, but the results are not significantly different from DOA. SMA and WOA are
also excellent algorithms, but their performance in this experiment was not very satisfactory.
The improved WOA presented in this paper outperforms other algorithms in terms of
convergence speed and accuracy and demonstrates strong practicality and effectiveness in
practical applications.
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Figure 13. Comparison of convergence curves of WOA-LFGA and other basic algorithms obtained in
WSN coverage practical application.

3.3.2. Comparison of WOA-LFGA with Different Modified WOA

In this subsection, the effectiveness of WOA-LFGA is measured by comparison with
CWOA, WOABAT, RDWOA, WOAmM, and EGE-WOA, where CWOA uses tent mapping.
The parameter settings of the comparison algorithm are taken from the corresponding
literature. In this experiment, the algorithm proposed in this paper is compared with the
above five population intelligent algorithms, and the program operation results are shown
in Table 14.



Biomimetics 2023, 8, 354 29 of 31

Table 14. Coverage ratio comparison of WOA-LFGA with different modified WOA in practical application.

Method ave std C

CWOA 53.4095% 0.0666 0.5759
WOABAT 37.4971% 0.0527 0.4043
RDWOA 51.3324% 0.0508 0.5535
WOAmM 38.7471% 0.0452 0.4178
EGE-WOA 43.9632% 0.0366 0.4741
WOA-LFGA 83.7718% 0.0035 0.9033

It can be seen from Table 14 and Figure 14 that WOA-LFGA significantly improves the
coverage optimization of WSN compared with CWOA, WOABAT, RDWOA, WOAmM,
and EGE-WOA. In this experiment, the average coverage obtained by different improved
whale algorithms varies. Among them, the evaluation coverage of WOABAT and WOAmM
is less than 40%, while the average coverage obtained by EGE-WOA is slightly higher,
reaching nearly 44%. The coverage of CWOA and RDWOA can exceed 50%, while the
average coverage of the WOA-LFGA proposed in this article can reach 83.77%, which
is 30.37% higher than the second place. The variance of WOA-LFGA is the smallest
among several algorithms, which fully demonstrates that the stability of the algorithm
is better than other algorithms. WOA-LFGA also has the highest coverage efficiency,
which fully proves that the algorithm has a lower node redundancy and a more uniform
regional node distribution. In summary, WOA-LFGA outperforms other algorithms in
practical applications.
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Figure 14. Comparison of convergence curves of WOA-LFGA and different modified WOA obtained
in WSN coverage practical application.

4. Conclusions

As IoT technology continues to advance, the internet of everything is becoming a
reality. The rapid development of 5G technology will push various industries towards
greater intelligence and efficiency. Smart cities, transportation, healthcare, and classrooms
are increasingly integrated into people’s lives. The widespread application of IoT relies
heavily on the rapid development of wireless sensors, which requires the reasonable
deployment of sensor nodes within the monitored space, enabling fewer nodes to achieve
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greater coverage. This paper reviews solutions from international scholars and their teams
that have addressed the coverage optimization problem of wireless sensors and conducts
in-depth research on WSN coverage optimization using swarm intelligence algorithms.

This paper proposes the WOA-LFGA based on Lévy flight and genetic optimization
mechanisms to comprehensively improve the effectiveness of the whale optimization al-
gorithm. The algorithm has been successfully applied to 35 benchmark test functions
and wireless sensor coverage problems. Comparative analysis of experimental simulation
results reveals that the WOA-LFGA exhibits excellent global and local search abilities. Tests
with single-mode and multi-mode reference functions demonstrate significant improve-
ments in the algorithm’s convergence speed and accuracy, and its stability and ability to
escape local optima are highly competitive compared with other intelligent optimization al-
gorithms. Moreover, when applied to WSN coverage optimization problems and compared
with other intelligent optimization algorithms, WOA-LFGA yields better optimization
results, substantially improving coverage, convergence, and algorithm stability. Based
on the experimental results presented in this paper, WOA-LFGA demonstrates strong
competitiveness in intelligent optimization. Its application to other practical problems will
become a more critical research direction in the future.
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