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Abstract: The rapidly evolving field of Virtual Reality (VR)-based Human–Computer Interaction
(HCI) presents a significant demand for robust and accurate hand tracking solutions. Current tech-
nologies, predominantly based on single-sensing modalities, fall short in providing comprehensive
information capture due to susceptibility to occlusions and environmental factors. In this paper, we
introduce a novel sensor fusion approach combined with a Long Short-Term Memory (LSTM)-based
algorithm for enhanced hand tracking in VR-based HCI. Our system employs six Leap Motion
controllers, two RealSense depth cameras, and two Myo armbands to yield a multi-modal data
capture. This rich data set is then processed using LSTM, ensuring the accurate real-time tracking
of complex hand movements. The proposed system provides a powerful tool for intuitive and
immersive interactions in VR environments.

Keywords: sensor fusion; hand tracking; human–computer interaction; neural networks; multi-
modal data

1. Introduction

Over the past few decades, human–computer interaction (HCI) has undergone signifi-
cant evolution, fundamentally transforming the way individuals engage with technology
and influencing a wide range of domains, including education, gaming, entertainment, and
healthcare [1–4]. Concurrently, virtual reality (VR) has witnessed substantial progress, en-
compassing advancements in high-resolution displays, enhanced tracking systems, realistic
haptic feedback, and the emergence of stand-alone VR headsets [5–8]. Of particular interest
is VR-based HCI, which has attracted considerable attention due to its immersive nature
and its potential to enrich user experiences across diverse fields [9]. Within VR-based HCI,
the tracking of multiple body parts, including the head, eyes, and hands, is a common
practice [10–12]. Hand tracking, in particular, plays a critical role as it enables users to
interact naturally and intuitively with the virtual environment through gestures, actions,
and manipulations.

However, existing hand-tracking technologies that rely on a single sensing modality
exhibit limitations [13]. Optical-based methods may be prone to occlusions and lighting
sensitivity, while depth sensors can be affected by environmental factors and may lack the
required resolution for accurate tracking [14,15]. EMG devices, although capturing muscle
activity, may not capture fine motor skills or subtle gestures precisely [16]. Additionally,
relying solely on data from a single sensing modality may lead to instability and reduced
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accuracy in hand tracking [17], which may significantly impact the effectiveness and
usability of hand-tracking technologies in HCI applications. To overcome these challenges,
it is crucial to explore novel approaches that integrate multiple sensing modalities to
enhance perception capabilities and ensure stable data sources for precise hand tracking in
VR-based HCI.

In light of these challenges, we present a novel sensor fusion scheme for precise
hand tracking in VR-based HCI applications. Our approach integrates the latest VR
headset, PICO 4, with a range of sensors, including six Leap Motion controllers, two
RealSense depth cameras, and two Myo armbands [18]. Figure 1 illustrates the potential
application scenarios of our system, such as rehabilitation training and medical skills
training. By leveraging these diverse sensors, our multi-modal hand-tracking acquisition
system captures a comprehensive and complementary set of information sources, enabling
more natural and intuitive human–computer interaction. Through the fusion of data from
these different sensors, our approach effectively overcomes the limitations inherent in
single-modality systems, providing a robust and accurate hand-tracking solution in various
VR environments.

Figure 1. The proposed system and related application scenarios.

The proposed approach offers several key contributions:

(1) This paper introduces a multi-modal hand-tracking acquisition system that achieves
enhanced tracking accuracy and reliability across diverse scenarios.

(2) The proposed method ensures real-time performance, enabling seamless integration
with existing VR applications.

(3) By facilitating more natural and immersive interactions, this approach opens up
possibilities for advancements in VR-based HCI across various domains, such as
gaming, education, and healthcare.

These contributions collectively contribute to the advancement and broader adoption
of VR technology in human–computer interaction.

This article is structured as follows: First, a comprehensive literature review is pre-
sented, examining the current landscape of hand-tracking technologies and sensor fusion
methods in VR-based HCI. Next, the methodology and system architecture of our multi-
modal hand-tracking acquisition system are described in detail, including the sensor
fusion approach and the employed algorithms. Subsequently, experimental results and
performance analyses are reported, highlighting the strengths of our proposed method in
comparison to existing techniques. Finally, conclusions are drawn, and potential directions
for future research in this field are discussed.
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2. Related Work

In this section, we provide a comprehensive review of the current state-of-the-art
hand-tracking technologies in the context of VR-based HCI. We particularly highlight the
limitations and challenges faced by single-sensor methods. Moreover, we make a table
to compare various hand-tracking systems, as shown in Table 1. Through an analysis
of previous research in this field, our aim is to identify the gaps in existing approaches
and emphasize the significance of advanced and precise methods, particularly those that
incorporate sensor fusion techniques.

To propose a novel approach for precise hand tracking, it is essential to have a compre-
hensive understanding of the evolution of hand tracking technologies. During the 1960s and
1970s, capacitive sensors were the primary method for hand tracking [19], but they suffered
from issues such as low accuracy, poor reliability, and high cost. In the 1980s and 1990s,
wired glove-based input devices, such as the DataGlove and the CyberGlove, were widely
used [20]. They incorporated embedded sensors in the gloves to detect hand movements
and gestures but turned out to be very cumbersome. Technological advancements led to
the development of more accurate techniques, such as the utilization of accelerometers [21],
infrared cameras [22], and fiber-optic bend sensors [23]. Such advancements resulted in
improved precision for glove-based control interfaces. Furthermore, the introduction of
wireless and easy-to-wear gloves further enhanced the usability of these systems. Subse-
quently, vision-based hand-tracking methods emerged with the advent of digital cameras
and computer vision algorithms [24,25] that utilized cameras to capture hand images and
employed various image processing techniques, such as skin color segmentation and con-
tour extraction, to track hand positions and movements. Vision-based methods offered
contactless tracking, providing a more natural and comfortable user experience compared
to non-vision-based recognition methods like data gloves or electromagnetic waves [26].
However, they were often sensitive to lighting conditions and susceptible to occlusions.

In the late 2000s and early 2010s, depth cameras like Microsoft’s Kinect and Intel’s
RealSense have played a significant role in advancing hand-tracking technology [27]. These
depth-based methods leverage depth information to address some limitations of vision-
based approaches, such as sensitivity to lighting conditions and occlusions. However,
challenges still existed in terms of tracking accuracy, especially with complex hand poses
and self-occlusions [28]. To overcome the limitations of previous methods, researchers
began applying machine learning techniques in the mid-2010s, specifically convolutional
neural networks (CNNs) and other deep learning models, to hand tracking [29,30]. These
approaches demonstrated higher tracking accuracy and robustness compared to earlier
methods. Notably, the availability of large-scale hand pose datasets and the utilization
of data augmentation techniques have played a crucial role in the success of machine
learning-based hand tracking methods [31,32].

Despite the advancements in machine learning-based hand tracking methods that
have improved tracking accuracy, the utilization of a single sensor for hand tracking still
imposes several limitations, including data instability [33–35], limited field of view [36],
low tracking accuracy [13], and sensor-specific characteristics [37]. To overcome the above-
mentioned limitations, sensor fusion approaches have been proposed to integrate multiple
sensors and enhance the effectiveness of hand tracking methodologies. For instance, the
fusion of Magnetic/Angular-Rate/Gravity (MARG) sensors and IMUs offers the potential
to compensate for individual sensor limitations and achieve precise hand tracking across
a broad range of motions [38]. However, challenges arise when the sensor module expe-
riences significant accelerations or rotations, which can adversely affect the performance
of the tracking algorithm and result in suboptimal accuracy. Furthermore, the fusion of
electromyography and depth sensors allows for the accurate tracking of arm and hand
poses, thereby supporting supplementary applications such as held object recognition and
environment mapping [39]. Nevertheless, accurately estimating hand poses in the presence
of significant self-occlusion remains a highly complex challenge.
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In the domain of VR-based HCI, hand tracking holds significant importance due to
its potential to enable more natural and intuitive interactions between users and virtual
environments [40,41]. Hand tracking in VR-based HCI finds numerous critical applica-
tions, showcasing its crucial role in shaping immersive experiences. Gesture recognition, a
fundamental aspect of hand tracking, allows users to communicate with virtual environ-
ments through a variety of hand gestures. In the study by Liliana et al. [42], a pipeline
combining movement sensors, a binary image representation of a gesture shape, and a
density-based CNN was proposed. This pipeline, combined with HTC Vive, Kinect, and
Leap Motion, has achieved accurate hand gesture recognition with a remarkable 97.7%
accuracy. Additionally, hand tracking enables the design of innovative control interfaces
for VR-based HCI systems [43]. In the study by Song et al. [44], an improved hand ges-
ture control interface called GaFinC was developed for 3D modeling manipulation tasks.
GaFinC reduced user physical fatigue while maintaining high intuitiveness, providing
users with greater freedom and flexibility when interacting with virtual environments. In
the study by Ovur et al. [45], an adaptive multisensor fusion methodology is proposed
for hand pose estimation with two Leap Motions, which can perform stable and steady
hand pose estimation in real-time, even when a single sensor is unable to detect the hand,
improving the smoothness of pose estimations without being affected by occlusion on
one sensor. In the study by Rigas et al. [46], a hybrid eye-tracking technique that fuses
photosensor and video oculography to provide robustness to sensor shifts for high-speed
eye tracking is proposed and evaluated for use in emerging head-mounted devices, which
is exceptionally enlightening.

Table 1. Comparison of hand-tracking systems.

Features This System
Optical

Marker-Less
Hand-Tracking

Systems
NUI ADAS HPE Fast Mobile Eye

Tracking

Sensing Modalities EMG, Hand
tracking Hand tracking Motion tracking,

Triangulation
Lidar, Camera,

Radar
RGB, RF, Radio

frequency-tracking IR, Eye tracking

Stereo Vision Yes No No No Yes Yes

Capture Depth
Information of A

Large Area
Yes No No Yes No No

Inside-out
Tracking Yes Yes No Yes Yes No

3D Environment Yes No Yes No, 2D lidar Yes No

Research Grade Yes Yes Yes Yes Yes Yes

The field of VR-based HCI has witnessed advancements in various applications and
technologies, including sensor algorithms and user-independent gesture classification
methods [47–49]. In a study by Butt et al. [50], an adaptive covariance-based Extended
Kalman Filter (EKF) algorithm was proposed for sensor fusion in ambulatory motion
capture and gait analysis using wearable MEMS-based MIMUs. The algorithm effectively
addressed challenges related to degraded performance due to prolonged use and inhomo-
geneous magnetic fields. It featured gyro bias updates and accurate orientation estimation,
along with a novel correction term to mitigate drift in individual joint angles. Alfaro
and Trejos [51] presented a user-independent gesture classification method that combines
EMG and IMU data through sensor fusion. This approach enables enhanced control of
wearable mechatronic devices during robot-assisted therapies, achieving impressive classi-
fication accuracies of up to 92.9%. Furthermore, advancements in VR-based HCI can be
observed in intelligent vehicle applications. In a study by Vu et al. [52], a novel algorithm
for object detection, tracking, and classification was introduced. The algorithm leveraged
multiple sensors and employed raw sensor data processing and fusion techniques. It
demonstrated improved reliability and accuracy in real-life traffic testing scenarios. To en-
hance tracking accuracy in VR-based HCI, Bazo et al. [53] proposed a system that integrates
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radiofrequency-based positioning with computer vision-based human pose estimation
techniques. By fusing radiofrequency sensor identities with unidentified body poses and
estimated body parts, the system achieved a substantial reduction in positioning errors of
nearly 46%. Advancements in sensor algorithms, sensor fusion, and gesture classification
methods underscore the progress in VR-based HCI, offering promising avenues for more
precise and immersive user experiences across diverse domains.

Previous investigations have primarily focused on single-sensor or two-sensor ap-
proaches, exhibiting inherent constraints such as data instability, susceptibility to occlusions,
and diminished tracking accuracy. To surmount these challenges, we propose an innova-
tive methodology that synergistically integrates four types of sensors: Kinect, RealSense,
Leap Motion and Myo armband, to facilitate the meticulous monitoring of intricate hand
movements and gestures. By harnessing the complementary attributes of multiple sensors,
this approach effectively circumvents the limitations associated with individual sensors,
thereby furnishing heightened precision and comprehensive hand-tracking insights.

3. Systems Overview

This part details the advancement of each module covered in our system with their
characteristics and the embedded systems utilized for their integration.

3.1. Leap Motion Controllers

The Leap Motion controller is widely recognized for its sub-millimeter precision, mak-
ing it a pioneering system for tracking gestures and positions. This surface-independent
sensor is specifically designed for immersive stereo 3D interaction systems, providing
notable advantages over conventional multi-touch solutions. It enables the natural ma-
nipulation of stereoscopically presented objects, offering a more intuitive and immersive
experience. Leveraging stereo vision, Leap Motion operates as an optical tracking sys-
tem, enabling the monitoring and tracking of hands, fingers, and finger-like tools with
exceptional accuracy and real-time tracking frame rates. Moreover, the gesture recognition
controllers exhibit the capability to capture individual motion parameters within their
visual range, which resembles a pyramid with the device’s center as the apex. The dimen-
sions of the controller are 80 mm in length, 30 mm in width, and 113 mm in height. It has
a preferred tracking depth range of 10 cm to 60 cm, with a maximum depth capability of
80 cm. The field of view typically spans 140◦ × 120◦, and the operating frequency stands at
120 Hz, allowing for the capture of images in a fraction of 1/2000 s. By analyzing changes
in displacement, rotation, and scale between consecutive frames, the gesture recognition
controller software efficiently extracts comprehensive movement information.

3.2. RealSense Depth Cameras

Numerous stereoscopic depth cameras have been developed, often employing similar
imagers or imaging processors. However, our approach differs in certain aspects. RealSense
depth cameras have been specifically designed to capture the precise and detailed depth
information of a scene, with cameras employing active infrared stereo depth-sensing
technology to capture accurate depth data. Additionally, RealSense cameras offer additional
features, including RGB color imaging, infrared imaging, and seamless compatibility with
Intel’s RealSense SDK, providing access to a range of tools and capabilities. The compact
depth-aware camera, measuring 90 mm× 25 mm× 25 mm, provides a depth stream output
resolution of 1920 × 1080 at 90 fps. With a minimum depth distance (Min-Z) of 28 cm, it
can track up to 22 joints in each hand, enabling precise hand and finger tracking. Operating
as a stereo-tracking solution, the depth-aware camera leverages the power of stereo vision
to enhance depth perception and improve tracking accuracy. The RealSense depth camera
has a wide field of view (FOV) of 87◦ × 58◦ (+3), capturing depth information across a
large area, which is particularly valuable for robotics, augmented reality, and virtual reality
applications. It covers a depth range of 0.2 m to 10 m, allowing for reliable depth sensing in
various scenarios. Additionally, RealSense cameras can be easily connected to a computer
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via USB and are compatible with multiple operating systems, including Windows, Linux,
and macOS. One of the notable advantages of RealSense cameras is their ability to capture
depth information at high frame rates, reaching up to 90 frames per second. This high frame
rate enables real-time tracking and enhances responsiveness in interactive applications.

3.3. EMG Sensors

The EMG signal control armband offers a distinct approach compared to the so-
matosensory interaction methods discussed earlier. It serves as a device for somatosensory
control by capturing the bioelectric changes in the user’s arm muscles. Currently, the
EMG signal control armband is effective in recognizing actions such as fist gestures, arm
swinging, and hand and finger spreading. However, due to the weak nature of the muscle
signals, precise collection and processing of the EMG signal are crucial for optimal perfor-
mance. The Myo electric signal control armband comprises eight bioelectric sensor units of
various sizes and thicknesses, each equipped with three electrodes. A total of 24 electrodes
play a vital role in capturing the bioelectrical variations produced during arm muscle
movements. Furthermore, the Myo electric signal control armband incorporates a built-in
three-axis accelerometer, a three-axis gyroscope, and an ARM processor akin to that found
in mobile phones for data processing. It employs Bluetooth 4.0 for data transmission and
features a Micro-USB interface for charging. With a weight of 95 g, the armband ensures
the precise detection of subtle changes in muscle activity while minimizing the impact of
noise interference.

3.4. VR Headset

The PICO 4 VR headset provides users with a truly immersive virtual reality expe-
rience, allowing for natural and intuitive interactions in virtual environments. Unlike
traditional headsets, the PICO 4 is a standalone device, eliminating the need for a com-
puter or gaming console. It is powered by a Qualcomm Snapdragon 845 processor with
4 GB of RAM and 128 GB of storage, ensuring powerful performance and ample storage
capacity. Equipped with 6 degrees of freedom (6DoF) tracking and two 6DoF controllers,
the PICO 4 ensures precise and responsive hand tracking in all directions. The headset
features a wide field of view (FOV) of 101 degrees, providing users with an expansive visual
experience. The 75 Hz refresh rate contributes to a smooth and seamless VR experience,
reducing motion sickness and maximizing user comfort during prolonged use. Connectiv-
ity is made seamless with Wi-Fi 6 and Bluetooth 5.0 support, allowing for easy integration
with other devices. The lightweight design, adjustable head strap, and comfortable fit of
the PICO 4 make it ideal for extended VR sessions, ensuring user comfort throughout.

3.5. System Framework

The integration of hand-tracking technologies and sensor fusion methods in VR-
based HCI has significant implications for various domains, including education, gaming,
entertainment, and healthcare. This integration capitalizes on high-resolution displays,
advanced tracking systems, realistic haptic feedback, and state-of-the-art standalone VR
headsets, resulting in enhanced user experiences. The system framework, as depicted in
Figure 2, provides a comprehensive overview of the proposed approach, which facilitates
the fusion of multiple sensing modalities to enhance perception capabilities and ensure
stable data sources for precise hand tracking in VR-based HCI applications. During the
training phase, annotations from different observers, such as researchers, supervisors, ex-
perts, and other participants, can be added to enrich the dataset. This inclusion contributes
to a more diverse and comprehensive dataset for training and evaluation purposes. A
well-structured timeline allows for the playback and analysis of historical data, facilitating
research evaluation. Human factors indicators can be obtained through this integration,
laying the foundation for a robust and accurate hand-tracking solution in diverse VR envi-
ronments. By leveraging the capabilities of the PICO 4 VR headset and a combination of six
Leap Motion controllers, two RealSense depth cameras, and two Myo armbands, improved
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tracking accuracy and reliability can be achieved across various scenarios. This study em-
ploys a methodology that combines experimental and comparative analysis methods with
literature analysis methods. The experimental approach allows for the evaluation of the
naturalness and immersiveness of interactions in multiple domains, while the comparative
analysis provides insights into the strengths and limitations of different approaches. These
findings, along with the literature analysis, form the basis for a conceptual case study,
highlighting the potential of the proposed framework in enabling intuitive and immersive
interactions in VR-based HCI applications.

Figure 2. The integration overview framework.

3.6. Construction of Hand Tracking System

Our hand tracking system comprises two subsystems (Figure 3), one for each hand,
which utilize multiple technologies to achieve high-precision tracking of hand and finger
movements. The primary motivation behind this design is to maximize the accuracy of
hand motion recognition by utilizing sensor fusion techniques and avoiding the possibility
of tracking loss due to interference or occlusion.

Figure 3. The developed hand tracking device.

Each subsystem incorporates three Leap Motion controllers that collaboratively track
hand motion, mitigating the risk of tracking loss compared to using a single controller. Leap
Motion, as a gesture recognition technology, provides high-resolution tracking capabilities
down to the level of individual joints in the fingers. Its tracking capabilities are accurate to
22 minor joints, enabling the detection and monitoring of fine-grained movements.
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In addition to the Leap Motion controllers, each subsystem is equipped with a Re-
alsense depth camera to capture depth images of hand activities. This additional perception
layer enhances the system’s understanding of the spatial configuration and motion of the
hand, further enhancing tracking accuracy.

Our current setup, as shown in Figure 4, predominantly features sensors directed
towards the center of the interaction cubes to effectively capture the majority of the hand
movements and interactions within this area. We acknowledge the potential issue of
self-occlusion where fingers or hand parts may occlude themselves from the sensor’s
perspective. To mitigate this, sensors have also been placed at the front, establishing three-
dimensional tracking from different angles. A Kalman filtering algorithm is further imple-
mented to reduce occlusion-induced tracking errors, thereby enhancing tracking reliability.

However, we recognize that there could still be self-occlusion instances in some areas
due to the lack of sensors on each face of the cubes, which remains a limitation of our
current system design. In this study, our primary aim was to develop a tracking setup
that offers improved reliability compared to single-tracker systems. We acknowledge that
the specific arrangement of sensors significantly impacts the accuracy of tracking, which
warrants further exploration. Future work will focus on experimenting with various sensor
placements to minimize self-occlusion and improve overall tracking accuracy.

Figure 4. The detailed information of the developed hand tracking device. A high-level system
diagram illustrating the integration of various components of our hand tracking system. For each
hand, three Leap Motion controllers, a Realsense camera, and a Myo Armband are managed by
a computer running ROS. Processed data are communicated to a VR environment running on a
PICO 4 device. (a): Hardware composition; (b–d): Component parts; (e–g): Signal acquisition.

Alongside these vision-based sensors, each subsystem includes a Myo Armband worn
on the forearm to collect electromyography (EMG) data. These data reflect the electrical
activity of muscles and provides insights into central control factors, characteristics of
muscle excitation conduction speed, and fatigue level. This feature is particularly beneficial
for users undergoing limb rehabilitation assessments or those unable to wear gloves due to
various reasons. The system can measure joint mobility, physiological signals, and EMG
signals to provide a comprehensive evaluation of hand function.

The system runs on six computers, each installed with Ubuntu 20 and running the
Robot Operating System (ROS) for the seamless integration and management of the various
sensors. Data collected by the ROS are then forwarded to an external computer running
MATLAB for processing. The processed data are then communicated in real-time with a
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virtual reality (VR) environment running on a PICO 4 device, developed using Unity. This
connection allows for the real-time interaction between the user’s hand movements and
the VR environment, creating a fully immersive and responsive experience.

This robust design of our hand tracking system, which combines hand motion capture
technology, comprehensive detection technology, EMG signal collection, Realsense depth
perception camera, and Leap Motion gesture recognition, provides an accurate and sensi-
tive tool for understanding hand and finger motion across a wide range of applications.
Moreover, to better present our work, Table 2 summarizes the key technical specifications
of the hand tracking systems.

Table 2. Key technical specifications of the hand tracking systems.

Technical Specifications Details

Hand Tracking Method Multi-sensor fusion incorporating Leap Motion,
Realsense depth camera, and Myo Armband

Number of Sensors per Hand 5 (3 Leap Motion controllers, 1 Realsense camera,
1 Myo Armband)

Computer System Ubuntu 20.04 LTS running ROS Noetic Ninjemys

Data Processing MATLAB 2023a

Virtual Reality Environment Unity 2023.1.0, running on PICO 4

Number of Joints Tracked 22 minor joints per hand

Depth Perception Provided by Realsense depth camera

EMG Data Collection Myo Armband

Tracking Accuracy 0.7 mm (typical for Leap Motion)

Depth Image Resolution 1280 × 720 (typical for Realsense camera)

EMG Sampling Rate 200 Hz (typical for Myo Armband)

Latency 10 ms (average for sensor data fusion systems)

4. Sensor Fusion Solution
4.1. Extended Kalman Filter

The employed sensor fusion approach is based on the Extended Kalman Filter (EKF)
framework. To estimate the hand movement, the state of the system x is defined as the po-
sition and velocity of each joint in the hand, which are observed through different sensors.

The state update equation is given by

xk = f (xk−1, uk−1) + wk−1 (1)

where f (·) represents the state transition function, uk−1 is the control input (from Myo
Armband EMG readings), and wk−1 is the process noise.

The measurement equation is

zk = h(xk) + vk (2)

where h(·) is the measurement function, which maps the true state space into the observed
space, zk is the combined observation from the Leap Motion and Realsense sensors, and vk
is the observation noise.

The prediction step in the EKF algorithm is as follows:

x̂k|k−1 = f (x̂k−1|k−1, uk−1)

Pk|k−1 = FkPk−1|k−1FT
k + Qk

where Fk = ∂ f
∂x

∣∣∣
x̂k−1|k−1,uk−1

is the Jacobian matrix of partial derivatives of the function f ,

Pk|k−1 is the a priori estimate error covariance, and Qk is the process noise covariance.
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The update step in the EKF algorithm is

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1))

Pk|k = (I − Kk Hk)Pk|k−1

where Kk is the Kalman gain, Hk = ∂h
∂x

∣∣∣
x̂k|k−1

is the Jacobian matrix of partial deriva-

tives of the function h, zk is the observation from sensors, and Rk is the observation
noise covariance.

The EKF-based sensor fusion algorithm offers a systematic approach to combining
information from various sensor modalities. By considering both the sensor measurements
and the dynamic model, it provides an estimation of the most likely hand movements. This
fusion of sensor data enables us to obtain a more accurate and comprehensive understand-
ing of the hand’s motion.

4.2. LSTM Optimization

We use a Long Short-Term Memory (LSTM) network within the EKF framework to
model the system dynamics. The LSTM model captures temporal dependencies in the
sensor data, providing a precise representation of the hand movements.

The LSTM is a type of RNN that includes a memory cell ct and three gating units—the
input gate it, the forget gate ft, and the output gate ot. They are updated as follows:

it = σ(Wuiut + Whiht−1 + Wcict−1 + bi) (3)

ft = σ(Wu f ut + Wh f ht−1 + Wc f ct−1 + b f ) (4)

ct = ft � ct−1 + it � tanh(Wucut + Whcht−1 + bc) (5)

ot = σ(Wuout + Whoht−1 + Wcoct + bo) (6)

ht = ot � tanh(ct) (7)

where Wxy are weight matrices, by are bias vectors, σ(·) is the sigmoid function, tanh(·) is
the hyperbolic tangent function, and � represents element-wise multiplication.

The updated state vector is defined as x′ = [xT , hT , cT , θT ]T , where x denotes the
previous state, h and c are the hidden state and cell state of the LSTM, respectively, and
θ = {Wui, Whi, Wci, bi, Wu f , Wh f , Wc f , b f , Wuc, Whc, bc, Wuo, Who, Wco, bo} are the parameters
of the LSTM. The state update equation becomes

x′k = f (x′k−1, uk−1, θk−1) + wk−1 (8)

where f (·) is the function represented by the LSTM.
The convergence of this system depends on two aspects: the convergence of the EKF

algorithm and the convergence of the LSTM. Provided that the LSTM can accurately model
the system, the error covariance Pk of the EKF will converge to a steady-state value.

The convergence of the LSTM depends on the chosen training algorithm and the
quality of the data. Given a suitable learning rate and optimization algorithm (like Adam
or RMSProp), and under the assumption that the system dynamics can be modeled by an
LSTM, the weights θ will converge to a set of values that minimize the prediction error.

5. Performance Validation

In our hand tracking system, we employed various methods, each with its specific
parameters.

The LSTM model utilized in our system has a hidden layer size of 256 and a dropout
rate of 0.2. It was trained using the Adam optimizer with a learning rate of 0.001 over
50 epochs. This model handles the sensor fusion part, where data from Leap Motion,
Realsense camera, and Myo Armband are combined. Its structure and training parameters
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are optimized to capture complex temporal dependencies in hand movement data, ensuring
high real-time performance and accuracy.

The Leap Motion controllers operate at a rate of 120 frames per second, providing
real-time positional and rotational information for each finger joint. The accuracy of these
readings is greatly influenced by the physical placement of the Leap Motion devices. In
our setup, we utilized three devices per hand to mitigate potential occlusion issues.

The Realsense depth cameras capture depth images at a resolution of 1280× 720 pixels
and 30 frames per second. These cameras provide valuable additional information about
the relative depth of different parts of the hand, enhancing tracking accuracy, particularly
in more complex gestures.

The Myo Armbands are configured to capture electromyography (EMG) signals at a
sampling frequency of 200 Hz. These signals offer an additional layer of detail to the hand
motion by monitoring the electrical activity of the forearm muscles.

In contrast, other methods, such as System A, B, C, and D, do not offer the same level
of detail or temporal resolution. For example, System A employs a simpler time-delay
neural network model with a hidden layer size of 128, which, although faster to train, does
not capture temporal dependencies as effectively as the LSTM model. System B relies solely
on Leap Motion data and thus suffers from occlusion issues in more complex hand gestures.
System C and D do not incorporate depth or EMG information, resulting in less detailed
hand movement tracking.

To ensure a fair comparison across different algorithms, we used the same dataset
obtained from all sensors as the input for all methods. The performance, accuracy, and
robustness of each method were evaluated based on the following metrics:

The real-time performance of a method was determined by its ability to process
the input data and provide results within a set timeframe. This was computed as the
percentage of data samples processed within this timeframe out of the total number of
samples. Accuracy was determined based on how well a method’s output matched the
ground truth. Specifically, for each sample, we compared the predicted hand pose with the
actual (ground truth) pose. The accuracy was then calculated as follows:

Accuracy =
ncorrect

N
× 100% (9)

where N is the total number of samples, and ncorrect is the number of samples for which the
predicted hand pose matched the actual pose within a predefined error margin.

Robustness refers to the ability of a method to maintain its performance in the face
of noise or disturbances in the input data. To evaluate robustness, we introduced a small
random disturbance to each input data sample and then measured how well the method’s
output matched the ground truth. The robustness was calculated as follows:

Robustness =
nrobust

N
× 100% (10)

where nrobust is the number of samples for which the method’s output matched the ground
truth within a predefined error margin, even when a small disturbance less than a threshold
value ε was introduced to the input data.

As shown in Table 3, our LSTM-based system demonstrates superior performance in
real-time responsiveness, accuracy, and robustness when compared to other methods like
Artificial Neural Networks (System A), Support Vector Machines (System B), Random For-
est (System C), and Naive Bayes (System D). This comparison underscores the effectiveness
of our approach in hand-motion tracking applications.
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Table 3. Comparison of the performance of different systems/algorithms for hand motion tracking.

System/ Real-Time Accuracy Robustness
Algorithm Performance (%) (%) (%)

Our System (LSTM based) 98.9 95.6 94.3

System A (ANN based) 88.4 85.7 80.3

System B (SVM based) 84.3 78.2 75.5

System C (Random Forest based) 83.6 77.4 70.3

System D (Naive Bayes based) 82.5 75.3 65.7

Figure 5 provides a visual representation of the performance comparison between
our system, leveraging a Long Short-Term Memory (LSTM) network, and two other sys-
tems (System A and System B) that do not employ LSTM. The metrics for comparison
include real-time performance, accuracy, and robustness, reflecting the critical aspects of
our application.

Our system demonstrates superior performance compared to both System A and
System B across all aspects evaluated. In terms of real-time performance, our system
achieves an impressive effectiveness rate of 98.9%. This high level of responsiveness
ensures that actions based on hand movement recognition can be processed and responded
to instantly, enhancing the overall user experience in interactive applications.

Furthermore, our system achieves an accuracy rate of 95.6%, significantly surpassing
the performance of the other two systems. This highlights the potential of LSTM networks
in recognizing complex, non-linear patterns in temporal data, thus enabling highly accurate
hand motion tracking.

The robustness of our system is also noteworthy. The LSTM-based system demon-
strates exceptional resilience in the face of noise, disturbances, and changes in the operating
environment. This underscores its suitability for reliable and practical deployment in
real-world settings.

In summary, the results presented in the table strongly support the superiority of our
LSTM-based hand motion tracking system in terms of real-time performance, accuracy,
and robustness. This reaffirms the selection of LSTM as the foundational technology for
our system.

Our System System A System B System C System D
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Figure 5. Real-time performance comparison.

6. Conclusions and Future Work

Our novel sensor fusion approach, combined with LSTM-based data processing,
demonstrates significant advancements in hand tracking accuracy and robustness for VR-
based HCI applications. By harnessing a multitude of sensors, we achieve comprehensive
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and complementary data capture, enabling the precise real-time tracking of complex
hand movements.

Future work can explore the integration of additional sensing modalities and improved
algorithms for data fusion to enhance the robustness and accuracy of the system further. As
VR technologies continue to evolve, the continuous refinement of sensor fusion techniques
and hand tracking algorithms is crucial for keeping pace with advancements in the field.
While our system has demonstrated impressive performance in a controlled environment,
its effectiveness in real-world applications and user acceptance remains to be validated in
future studies.

Furthermore, in this paper, a wall was implemented between the two interaction
cubes in this study to avoid cross-interference from simultaneous hand movements. We
acknowledge that this design choice might limit certain interaction scenarios where both
hands need to cooperate, such as one hand assisting the other, which is a frequent situation
in real-world tasks. While the current setup was designed this way to ensure precise data
collection and analysis in our initial explorations, we acknowledge this as a limitation of
the current work. We foresee future modifications of our system setup to better accom-
modate natural dual-hand interactions. Our future work will focus on eliminating the
physical barrier and instead employ advanced algorithms capable of distinguishing and
tracking individual hand movements in a shared space, thus facilitating more naturalistic
interaction scenarios.
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