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Abstract: The study of the human visual system not only helps to understand the mechanism of
the visual system but also helps to develop visual aid systems to help the visually impaired. As the
systematic study of neural signal processing mechanisms in early biological vision continues, the
hierarchical structure of the visual system is gradually being dissected, bringing the possibility of
building brain-like computational models from a bionic perspective. In this paper, we follow the
objective facts of neurobiology and propose a parallel distributed processing computational model
of primary visual cortex orientation selection with reference to the complex process of visual signal
processing and transmission between the retina to the primary visual cortex, the hierarchical receptive
field structure between cells in each layer, and the very fine-grained parallel distributed characteristics
of cortical visual computation, which allow for high speed and efficiency. We approach the design
from a brain-like chip perspective, map our network model on the field programmable gate array
(FPGA), and perform simulation experiments. The results verify the possibility of implementing our
proposed model with programmable devices, which can be applied to small wearable devices with
low power consumption and low latency.

Keywords: brain-like model; retina; orientation selection; programmable devices; primary
visual cortex

1. Introduction

Advanced primates have evolved over a long time to optimize powerful and well-
developed visual systems. The human visual system, as a sophisticated and complex
information acquisition and perception system, provides a solid foundation for people
to accomplish tasks such as awareness, cognition, and understanding. However, visual
impairment and lesions cause great inconvenience to people with visual impairment. Some
diseases, such as glaucoma, are caused by the axonal death of ganglion cells in the retina,
resulting in impaired visual fields. Macular degeneration is caused by the degeneration of
retinal pigment epithelial cells, leading to the degeneration and death of photoreceptors.
Due to the insufficient bionics, no major practical application breakthroughs have emerged
from the prospect of applications in biomedical engineering and functional rehabilitation.
On the one hand, the lack of understanding of brain-coding mechanisms leads to uncoor-
dinated human–machine interfaces. On the other hand, the implementation of previous
computational models usually requires a large amount of hardware resources, ignoring
the need for portability and low power consumption. For example, the impaired need
functional assistive devices respond instantly and reliably with a low cost, which places
high demands on portability and computational efficiency. We hope to design wearable
brain-like visual aids device to solve similar problems, and it is a good choice to develop
tools from an embedded perspective in terms of hardware implementation [1].
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In terms of approaches to solving visual tasks, we prefer to study the processing of
objects in the human visual system from the direction of bio-vision theory rather than
computer vision theory because it is supported by more direct and reliable biological
arguments and has a certain interpretability and robustness. Although computational
models utilizing deep learning have emerged and shown good accuracy, they also suffer
from network structures that do not facilitate understanding, are vulnerable to attacks [2,3],
and generate high power consumption [4,5]. Bio-vision systems solve all these problems
extremely well and achieve an excellent balance between real-time processing, accuracy,
robustness, and energy consumption. At the same time, the biological mechanism can
effectively simulate the function of visual structures, which helps make designs that more
easily achieve information transfer with the brainand has broad application prospects in
the fields of biomedical engineering.

One way of researching brain-like computing is to study how the brain’s structure is
adapted to its functional needs. Some researchers have constructed brain-like computing
models based on certain parts of the brain structure and neurocomputational principles.
For example, Salamat et al. proposed a brain-like unsupervised clustering method based
on hyperdimensional computing, which maps low-dimensional data to high-dimensional
data for processing clusters [6]. Wei et al. proposed computational models that simulate the
structure of functional columns of the visual cortex and nonclassical receptive fields [7–10].
These studies show how to design computational models from a neuromorphic perspective
with the potential of in-memory computing.

Tanaka et al. proposed a brain-like learning model based on the amygdala, which
was implemented with hardware and used in a robot [11,12]. Based on the spatial and
memory functions of the hippocampus and its spatial navigation function, Aggarwal et al.
developed a mathematical model of hippocampal structure, and then implemented the
model on the circuit [13]. Cho et al. modeled the behavior of simple cells of the visual
cortex by using Gabor functions and implemented the mapping in hardware [14].

Brain-like computing is moving toward the goals of high performance, high par-
allelism, and low power consumption. These advantages are difficult to achieve with
current traditional computing architectures. Designing dedicated architectures and con-
ducting research from the perspective of in-memory computing facilitates the achievement
of these goals. The development of storage-based systems has led to an increase in the
efficiency of in-memory computing, providing the conditions for reducing hardware re-
sources, on which biologically inspired computing can be used for the purpose of scaling
the devices down [15].

We design specific architecture for our computational models on FPGAs. FPGAs are
highly customizable and configurable devices that can be customized to better fit the circuit
structure of the target system, providing extreme flexibility and reconfigurability for the
hardware acceleration of software algorithms. Designing such dedicated architectures can
effectively reduce memory bottlenecks, improve overall system computational efficiency,
and reduce hardware cost and power consumption.

There has been a great deal of practice in implementing many different kinds of neural
networks with FPGAs. Several studies have successfully mapped convolutional neural
networks onto FPGAs, exhibiting minimal loss of accuracy while achieving significant
improvements in speedup ratios and energy efficiency [16,17]. Some studies implement
spiking neural networks on FPGAs and realize model acceleration, indicating that FPGAs
are suitable for large-scale cortical simulations [18–20]. However, there has been relatively
little research into using FPGAs to implement non-traditional multi-level neurocompu-
tational models that strictly mimic visual neurobiological mechanisms and follow visual
conduction pathways, which is not just a hardware acceleration of multilayer feedfor-
ward networks.

With the continuous development of physiology and anatomy, the principles of the
human visual system have been roughly explained from the neuronal level. Some previous
research studies build and implement visual computational models on circuits [21–25].
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These studies are either limited to individual neural connections or information pathways,
while ignoring the overall representation of the early visual system. Based on a large
number of physiological and anatomical experiments, there is a certain understanding
of the functional hierarchical division of the primary visual cortex, which gives us the
possibility to build a visual model based on fundamental physiological knowledge. We
simulate these physiological structures and model networks with orientation selectivity.
If these orientation signals are transmitted to the visual nerve, it will greatly facilitate the
construction of the visual repair system.

This study integrates multiple bottom–up visual pathways in the visual system from
the retina, to the lateral geniculate nucleus (LGN), to the visual cortex and proposes a
bionic hierarchical network to approximate the process of object formation representation
in the visual system, which can also lay a foundation for subsequent higher-level visual
tasks. In addition, circuit-based design took a long time to develop and was also expensive
to develop and modify according to changes of models. Our proposed FPGA-based
network model mimicking the visual system has a multi-layered structure based on both
the physiological structure and signal-processing mechanisms, and it follows the anatomical
and biological evidence of human visual neural mechanisms more closely. Based on this
model, we generate cortical orientation maps that are surprisingly similar to the actual
cortical maps and functionally have orientation selectivity.

In researching visual impairment aid devices, there are a variety of research studies
that build assistive devices from different perspectives. For example, some studies use
sensors, such as ultrasound and laser to locate and distance objects [26–28]. Some studies
use cameras to acquire images and run computer vision algorithms to calculate obstacle
data [29]. There are also papers that use positioning technologies, such as GPS, to build a
complete set of hardware wearable devices for the visually impaired [30].

However, the implementation of biological mechanisms is always based on larger
hardware resource, ignoring the need for portability and low power consumption. From
the perspective of embedded, it is more appropriate to use FPGA as the implementation
device for developing wearable devices. Wearable embedded devices are ideal form for
medical or assistive devices, which further increase the requirements for size, quality and
energy consumption. It needs to be worn on the body and carried around, where portability
and durability are necessary. In addition, with the optimization of software algorithms and
functional changes, the programmability of the device is also necessary. Multilayer network
model design on FPGAs can gain advantages in these aspects. In terms of performance per
watt, FPGAs can achieve relatively low energy consumption, which gives longer endurance
to portable devices.

In order to find an explainable image representation model and image-processing
method, we explore the brain-like mechanism and make the following contributions:

1. We developed a bionic vision model that simulates the process from the retina to
the primary visual cortex, which is capable of representing images and giving a
neuroscientific explanation of this process.

2. We meticulously mapped the visual pathway model onto FPGAs, effectively integrat-
ing biological cell functions with hardware features to achieve parallel distributed
neural computation.

3. We performed hardware simulations and parallelism experiments, and the results show
that it outperforms the implementation on the central processing unit (CPU) and graphics
processing unit (GPU) in terms of parallelism, latency and power consumption.

2. Background
2.1. Early Visual System

In the human visual system, the visual signals received by the human eye pass through
the retina, the LGN, the primary visual cortex, and the upper layers of the higher visual
system. Each of these layers has a complex physiological structure and unique visual
functions for information processing. The retina is responsible for receiving, sampling,
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and converting incident light stimuli into bioelectrical signals; the LGN is responsible for
collecting the information processed by the lower layers and transmitting it to the upper
layers, acting as a relay; and the primary visual cortex and the higher visual cortex are
responsible for extracting and recognizing representation information.

2.1.1. Retina

The retina is a cellular layer at the posterior side of the eye, mainly composed of
photoreceptor cells, horizontal cells, bipolar cells, anaglyph cells, and ganglion cells (GCs).
The photoreceptor cell layer mainly consists of cone cells, which are sensitive to strong light
stimuli and have the ability to distinguish colors, and rod cells, which are sensitive only
to low light. The horizontal cell layer consists of axon and non-axon horizontal cells, the
former receiving input from red-sensitive and green-sensitive cone cells and rod cells, and
the latter receiving input from blue-sensitive cone cells, and initially forming the receptive
field. The bipolar and anaglyph cells sort and converge on the transmitted information
to obtain different signals of high visual acuity in light and dark conditions. The GCs are
the last and most functionally important processing layer in the retina. And several layers
of cells in front of them form the receptive field, which collects signals for the ganglion.
It mainly consist of magno (M) cells and parvo (P) cells. M cells are sensitive to small
differences in light intensity, and P cells are sensitive to color contrasts.

2.1.2. Lateral Geniculate Nucleus

The LGN, a visual information processing structure in the thalamic receptive nucleus,
consists mainly of the parvocellular and magnocelluar layers, which have the same recep-
tive fields as the GCs and both receive projections from the retinal nasal and temporal GCs,
and are very important signal caches and relay stations.

2.2. Visual Cortex

The visual cortex is distributed in both the left and right brain and performs advanced
processing of information transmitted from lower layers.

2.2.1. Primary Visual Cortex

The primary visual cortex, also known as Brodmann’s area 17, is a well-studied area
that receives information from the LGN layer and starts the primary processing of visual
information. The primary visual cortex is composed of six layers, with different divisions
of labor among the layers, mainly consisting of simple and complex cells. Simple cells
are mainly distributed in area 17, layer 4, which has a small receptive field and does not
respond to diffuse light over a large area, while they have a strong response to bar stimuli
in a certain direction at the edge of the receptive field [31]. Complex cells are mainly
located in area 17 and area 18. In contrast to simple cells, they have certain requirements
for their length in order to respond to strip stimuli. The different reactions of various cells
are abstracted to give rise to the concepts of the cortical functional column, the ocular
dominance column, etc.

2.2.2. Other Visual Cortex

In addition to the primary visual cortex, there are also visual cortices, such as V2, V3,
V4, and V5 (MT), which are in the upper layers of the primary visual cortex. V2 receives
information from V1 and gives strong feedback to it, and continues to pass it upward,
V4 is sensitive to higher geometric shapes [32], and V3 and V5 play an important role in
motion perception [33].

3. Methods

We focus on this existing knowledge in anatomical structure and information process-
ing functions and use it as basic constraints for brain-like computational model design.
We develop a hierarchical network model of visual pathways based on neurobiological
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mechanisms. Each layer of the network architecture is an abstract model of a particular
function of the visual system. Also, we conduct some experiments to verify the feasibility
of model.

3.1. Hierarchical Network Computational Model

By studying the physiological structure and function of the retina, LGN, and primary
cortex, it can be found that primary visual cortex cells have orientation selectivity, which is
important for object contour extraction and representation. In order to simulate the infor-
mation processing mechanism of human vision, we abstract the main cellular structures in
the physiological visual system and establish an orientation-selective model of the early
visual system.

The model is shown in Figure 1. The receptive field layer simulates the oculomotor
scanning process of the human eye and simulates some cells in the retina to segment the
image in the receptive field into separate receptive fields; the retinal and LGN layers carry
out the difference-of-Gaussians (DOG) processing of pixels in the receptive fields as a GC
model, and the primary visual cortex carries out the orientation processing of the results of
the upper layer processing as an orientation column model to present the representational
information and form a cortical orientation map as the output.

Figure 1. Primary visual cortex orientation selection hierarchical network. The input of the model
is a natural image. Processing units include the receptive field layer, retinal and LGN layers, and
primary visual cortex, and each layer of the computational model simulates the processing of images
by cells in a layer of the early visual system.

3.2. Modeling of Ganglion Cells

When we view an image, the visual information within a certain field of vision enters
the photoreceptor cells as the eye turns. The visual information is gradually processed
through the retinal layer to form the concentric receptive field. Bipolar cells generate
graded potentials from information in the receptive field and transmit them to ganglion
cells. The receptive field formed during this process has a central peripheral antagonistic
mechanism [34]. It is impossible to create a negative firing frequency; the retina splits its
information pathways to OFF and ON to encode both positive and negative derivatives.
For the on-center and off-center areas of the receptive field, when both are stimulated with
the same degree of light intensity, a bipolar cell shows no significant response to it, and the
output of this cell to the upper layer is almost zero. A bipolar cell responds significantly to
the stimulus only when the contrast between the stimuli in the two areas is greater. And
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the DOG model [35] can simulate the physiological properties of this receptive field very
well. Based on the two-dimensional DOG model, the output values of the cells in receptive
field at position (x0,y0) are determined by a combination of excitation and inhibition input
photoreceptor cells at (xi,yi). And the following simulation function is used to represent it:

R(x0, y0, σ) =
n

∑
i=0

p(xi, yi)×
1

√
2πσe−

(xi−x0)
2+(yi−y0)

2

2σ2

(1)

where σ denotes the parameter of the Gaussian function, R is the output of cells in the recep-
tive field, x, y are the relative positions of cells, and p(x, y) is the output of photoreceptor
cells in relative position (x, y).

Since on-center parvo cells (On-P) and off-center parvo cells (Off-P) make up approxi-
mately 90% of GCs, we mainly model these two types of cells. The response function is
as follows:

GCon(x0, y0) = R(x0, y0, σcen−on)− R(x0, y0, σsur−on) (2)

GCo f f (x0, y0) = R(x0, y0, σcen−o f f )− R(x0, y0, σsur−o f f ) (3)

where σcen−on, σsur−on , σcen−o f f , σsur−o f f are the parameters of central and peripheral
receptive field of On-P and Off-P.

The GCs then process the received information and perform selective output, which
in physiology is the process of converting graded potentials into action potentials. GCs
are also the first cells to emit action potentials during information processing. Only when
the signal strength is greater than its own threshold potential value does the GC generate
an action potential to transmit the information backward. According to the relationship
between the resting potential, threshold potential, and peak action potential of the cell
(the resting potential is approximately −70 mv, while the potential causing the opening of
sodium channels is approximately −50 mv and the action potential peak is approximately
+35 mv), we set the threshold value of the model to 0.2:

Threshlod = (GCmax − GCmin)× α (4)

where GCmax, GCmin, and α are the maximum and minimum of the GC responses, and a
hyperparameter related to the type of GC.

3.3. Modeling of Orientation Columns in the Primary Visual Cortex

When visual information is transmitted to the visual cortex via the LGN, a variety
of cells in the primary visual cortex are activated to varying degrees to form an initial
orientation representation of the object. According to biological discoveries, cortical cells
are orientation selective and arranged in a specific structural manner. Cortical puncture
experiments showed that when microelectrodes are inserted perpendicular to the surface
of the visual cortex, the receptive fields of various cells are found to be mostly overlapping,
and the preferred optimal orientation is similar. When microelectrodes are inserted in an
approximately horizontal orientation to the surface, the orientation selectivity of the cells
changes continuously.

Subsequently, the cortical ice block model [36] was proposed to simulate two func-
tional structures of the cortex, the ocular dominance column and the orientation column.
The former indicates which eye is more likely to influence visual processing, while the
latter detects orientation features. We use the orientation column as the main bionic and
computational modeling object in this study.

We establish an orientation column model to represent the concept of the functional
column in the cortex, which is a functional module with orientation selection. It consists of
orientation chips and receives processing information from GCs, and the logical structure
of a orientation column is shown in Figure 2a. Considering the scalability of the orientation
chip and orientation column structure, we design the structure of the orientation chips in
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such an arrangement shown in Figure 2b. The orientation chips represent different kinds
of cells sharing the same receptive field under the same orientation column. Figure 2b
expresses the relationship between the GC array and orientation column array as well. The
receptive field of the orientation column is composed of receptive fields of all cells in it as
shown in Figure 2c.

(a) Structure of a orientation column. (b) Orientation chip array and GC array.

(c) Overlap and spatial arrangement of receptive fields.

Figure 2. Orientation columns. (a) The logical structure of a orientation column. (b) Orientation
chip array will receive input from GC cell array within receptive field. (c) In terms of their range
of receptive fields, the mutual receptive fields will overlap. In terms of the logic array, they have a
specific, non-overlapping alignment.

3.4. Training Orientation Columns by SOM

In biological neural networks, neurons have competitive relationships with each other,
and such relationships are self-learned by neurons when they compete. There is a clustering
effect between neurons.

Often, neurons cluster together to accomplish similar functions, such as functional
columns, and changes in neurons simultaneously affect surrounding neurons to varying de-
grees and produce a lateral inhibitory effect, i.e., they will send activation signals to neurons
that are relatively close and inhibition signals to neurons that are relatively far away.

The self-organizing map (SOM) [37], an artificial neural network for multidimensional
classification, is an unsupervised learning network that mimics the structural relationships
between neurons better than other neural networks. It can both classify the input data
effectively and express the topology of the upper layer neural units, and it can represent the
competitive yet cooperative relationship between cortical neurons well. In SOM training,
when the winning neural node wins, it causes the neural nodes near its topology to receive
some of the learning gain, which is extremely consistent with neurobiology.

Unlike traditional self-competitive networks, our self-competitive model is not fully
connected to the lower layer inputs but instead has limited connections. The upper layer
neurons compete and learn from the output of lower layer GCs within the same receptive
field in terms of orientation columns as shown in Figure 3.
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Figure 3. SOM with restricted connectivity. The upper part represents the array of GCs and the lower
part represents the array of orientation chips. GCs under the same receptive field are only competed
by the orientation chips in the same orientation column, and the same location in the image may be
processed by different GCs and subsequently compete with different orientation chips.

3.5. Feasibility Verification Experiment

In order to verify the feasibility of the above hierarchical network computational
model, we conduct several image-processing experiments on the model.

Figure 4a shows the map of cortical functional features. The cortical pinwheel is a
unique phenomenon in the cortical orientation map in which singularities, i.e., orderly and
uniform increases in orientation selectivity, are produced, which is more likely to occur
at the adjacent boundaries of multiple orientation columns. The appearance of cortical
pinwheels verifies the validity of the model developed. Training by our theoretical model
leads to the results shown in Figure 4b. Our results have a high similarity to the orientation
map of biological staining with voltage-sensitive dyes. To some extent, this generated
cortical orientation map already has some of the functions of a real cortical column. Putting
this to good use might be an aid in repairing visual impairment.

(a) (b)

Figure 4. The cortical pinwhee experiment results. (a) Stained organisms map [38]. (b) Orientation
columns map.

In the orientation chip layer, each orientation chip activated by the orientation column
is identified, and a roughly characterized pattern of the object is derived. As shown in
Figure 5, in this representation mode, the representation results of the same or similar
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objects are approximately the same. Figure 5a is formed by object rotated by a certain
angle, and its representation results are also rotated by a certain angle, which can be seen
to have rotation invariance. However, the representation results are very different among
different objects and present different distributions on the orientation feature space as
shown in Figure 5b.

(a)

(b)

Figure 5. Representation of objects.

4. FPGA Design of Bionic Vision Model

We explore the advantages and possibilities of implementing the primary visual
cortex computing model with FPGAs. Then we propose the FPGA-V1 orientation selection
computing model (where V1 refers to the primary visual cortex), design processing modules
corresponding to each level of the model, and achieve parallelization and pipelining on it.

4.1. Mimick Cortical Computing with FPGA

Many neural computations are implemented through software programming via von
Neumann-type computers, whose hardware structures are often fixed and much lower
in parallelism granularity than those between biological neural networks. FPGAs are
currently faster, more efficient, flexibly configurable, and support non-von Neumann
structured designs that can achieve higher processing speeds than CPUs with a high degree
of parallelism.

There are many applications using FPGAs, such as in embedded applications, where
iterative product updates can be performed quickly due to their programmability, reducing
development costs in biomedical applications such as ultrasonic scanning and medical
optical imaging, where image reconstruction and image analysis can be performed instantly
at a faster rate than software.
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Considering the following characteristics, we use FPGAs as the hardware to implement
neural computing.

• In the human visual system, there is a huge variety of neurons with different functions,
which are distributed in different layers of the visual system and uniquely arranged
into cell arrays. There are various kinds of memory types in FPGAs, and storing these
cells in FPGAs according to the functional characteristics of the cells is more suitable
for simulating the processing and transmission between cell layers compared to a
computer, which only uses memory. FPGAs are also more capable of performing
large-scale neural computation.

• In the human visual system, neural transmission is accomplished by chemicals or
electrical signals at extremely fast speeds. One of the outstanding advantages of
FPGAs is the speed of processing information. Unlike CPUs, FPGAs do not need
to go through fixed cycle operations, such as fetching, translating, and executing.
Furthermore, FPGAs do not require shared memory to maintain consistency, enabling
faster data processing calculations and lower data transmission latency.

• In the human visual system, cells are individual entities that collaborate with each
other, and this parallel distributed processing should be imitated to achieve multi-level
computing. FPGAs are inherently highly parallel and are essentially a complex array
of circuit combinations that can well reflect the highly parallel distributed processing
characteristics of brain-like computing. Compared to GPU, it can achieve not only
data parallelism but also pipeline parallelism.

• The efficiency of neuronal computation transfer is very high, and the energy consump-
tion is very low. FPGAs can achieve the same computational efficiency with lower
power consumption than CPU or GPU.

• If we consider the brain as a computer, its power is only nearly 20 W, possessing an
extremely excellent energy-consumption ratio. The core of brain-like computing is
the “computing-in-memory” structure. To some extent, we can reduce the power
consumption of memory access by FPGAs. Moving toward storage and computing
integration can significantly improve system efficiency and energy consumption.

• Brain-like bionic mechanisms help us transfer information to the brain. Bionic compu-
tational models can be used in a wide range of biomedical engineering applications,
such as functional compensation and repair for people with certain visual impairments.
It is also a very necessary choice to design an embedded system based on bio-vision
and aiming at portable and low-energy image processing modules.

4.2. FPGA Architecture for Primary Visual Cortex Computing Model

In the orientation selection model of the early visual system presented above, we
include the receptive field layer, the retinal and LGN layers, and the primary visual cortex.
According to the model, we map it to the FPGA architecture in terms of layer. As shown in
Figure 6, we use the grayed-out RGB format image as the input. And the output should be
a series of indexes activated orientation chips. We expect the processing to be parallelized
from the input to the output. Each processing unit is used to correspond to the function of
a cellular layer of the visual processing.
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Figure 6. Architecture of orientation selection model. The receptive field extractor is designed to map
the computational unit arrays of the simulated retinal and LGN layers. It segments and combines them
into a GC receptive field array. The DOG process module, which corresponds to the retinal and LGN
layers, performs DOG processing and outputs the results to the orientation chip array. The orientation
chip selector, which corresponds to the primary visual cortex, performs orientation chips selection in
terms of orientation columns, and then it outputs the index of the activated orientation chips.

4.2.1. Splitting the Receptive Field

In the retinal structure, numerous horizontal cells receive photoreceptor signals and
form individual receptive fields through electrical coupling between horizontal cells, which
overlap with each other. How can the image be segmented into many receptive fields in the
FPGAs so that the pixel data contained in them can be uploaded to a specific computational
unit? We form a vector of each field into dynamic random access memory (DRAM) (the
size of the receptive field is relatively small, and the number of ganglion cells is large, so
using distributed memory storage can save storage resources). We design an index matrix
method, which is able to split all the receptive fields by scanning the image only once, and
it can cope with the case of discontinuous and irregular receptive fields. In the current
overlapping approach, a pixel is shared by up to four receptive fields. Each index matrix
stores the information of multiple receptive fields corresponding to a pixel at a certain
location, and there are four such matrices.

Figure 7 analyzes the overlap of receptive fields, where a pixel is shared by at most four
receptive fields. Figure 7a shows the partitioning of the M × N size image into m × n 9 × 9
size receptive fields. Figure 7b shows the different cases, where the overlapping pixels
are shared, e.g., the nine blue pixels are shared by the four surrounding 9 × 9 receptive
fields and are stored into receptive field vectors. In Figure 7c, the index matrix is used
to record the receptive fields to which the pixel belong, and the indexes are resolved and
stored in DRAM in the storage process to facilitate parallelization. The structure of the
index is shown as well, where the first 10 bits represent the index of receptive fields, and
the last 7 bits represent the offset of the storage location within the block. The index value
of each location is generated by the index generation algorithm (Algorithm 1), and the
index matrices are pre-written into the FPGA storage. Finally, the pixel values are written
to different receptive field DRAMs according to the index values. The writing timing of
receptive field is shown in Figure 8. As the input signal is converted to valid, numerous
receptive field DRAMs are pipelined to write the pixel values and move to the next process
with the convolution signal after the writing is completed.
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Figure 7. Overlap, segmentation and storage of receptive fields.

Algorithm 1 Index Generation

Require: width: width of picture
length: length of picture
nrow: number of receptive field in one row
ncol: number of receptive field in one column

Ensure: IndexMatrix
1: list← null
2: map← null
3: sidelen← width/(2 ∗ nrow + 1) ∗ 3
4: for i = 0→ nrow do
5: for j = 0→ ncol do
6: cor_base← i ∗ 6 ∗ length + j ∗ 6
7: for a = 0→ sidelen− 1 do
8: for b = 0→ sidelen− 1 do
9: list.add(cor_base + length ∗ a + b)

10: end for
11: end for
12: end for
13: end for
14: for i = 0→ width ∗ length ∗ sidelen ∗ sidelen do
15: temp← list[i]
16: map[temp].add(i)
17: end for
18: return map
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Figure 8. Timing diagram for extracting receptive fields. The writing of pixels to the receptive fields
starts after every six clock periods and takes a total of 8 ∗ width + 9 cycles, with each receptive field
being written independently.

4.2.2. DOG Module

In the previous section, we introduced the DOG computational model for the simula-
tion of the central–peripheral antagonistic mechanism, which is able to mathematically well
simulate the processing of input signals by retinal and LGN cells. Then we design a DOG
processing module to complete the DOG calculation, in which all pixels in the receptive
field are ordered, and the output values of GCs are calculated and flow into the orientation
chip selection module.

We consider the computation of pixels in the receptive field using pipelining to be
a convolution process. We set the parameters of the convolution kernel according to the
definition of the DOG function, the number of cells, and the size of the receptive field, and
perform efficient convolution calculation by using multiple access channel (MAC) units.
We store the receptive field in the FPGA in one-dimensional form, and if it needs to be
converted to a two-dimensional form for the convolution operation, we need to set up the
cache line with the help of first input first output (FIFO) blocks as shown in Figure 9a. We
set up three line vectors according to the size of the convolution kernel, we deposit the
pixel inflow into the line vectors at any time clock, and we design a signal to indicate when
all the line vectors are read in full, which makes the MAC unit start the calculation.

The design of the MAC calculation unit is shown in Figure 9b. The accumulation of
the convolutional values of a column is calculated according to different cycles in turn. To
improve the computational efficiency, three accumulation units are set up simultaneously
for parallel processing according to the size of the convolution kernel, and pipelined
computation is performed at different clock intervals. The processed data are thresholded
as intermediate nodes, which are binarized and subsequently stored into the GC DRAM
array as the final output of the retinal and LGN layers.
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(a) DOG unit.

(b) Mac unit.

Figure 9. DOG module. Use MAC units parallelly to complete DOG calculations.

4.2.3. Orientation Chip Selector

Based on the primary visual cortex, the orientation columns serve as the basic unit for
the selection of orientation chips for inputs from the previous layer. Multiple orientation
columns are set up, each containing multiple orientation chips arranged in a specific way.
The generation of orientation chip weights is conducted offline on the computer by SOM
training. The update of the weight, the topological neighborhood neuron distances and the
time-dependent indices are calculated as follows:

Wt+1(r) = Wt(r) + ασ(r, x)[Vt+1 −Wt(r)] (5)

σ(r, x) = e−‖r,x‖2
(6)

α =
1

1 + t
T

(7)

where W , V, σ, α, x, t, and T denote the orientation chip weight, input vector, neighborhood
function value, learning rate, winning node, number of iterations, and total number of
iterations, respectively.



Biomimetics 2023, 8, 314 15 of 27

The completed training orientation chip weights are stored in DRAM for orientation
chip selection. When the pixels in the receptive field are processed by the DOG block, the
distance selection calculation is performed with the pre-trained orientation chip array. The
training process can be performed quickly using only the CPU. As shown in Figure 10, all
the orientation chips in the same orientation column perform vector distance calculations.
The most responsive orientation chip will be selected according to the selection algorithm
and its index will be stored. The selection of the calculation block is shown in Figure 11a,
which is designed by using a finite state machine approach and decomposing the calculation
block into three steps: accumulation, division, and comparison. The distance is calculated
by choosing Euclidean distance or cosine similarity. In the distance comparison of multiple
orientation chips, the comparison can be accelerated with a comparator tree as shown
in Figure 11b.

Figure 10. Process of selecting orientation chip. Each receptive field has a different set of orientation
columns corresponding to it. The most similar orientation chip will be selected by the selection module.

4.2.4. Orientation Column Storage Optimization

In the process of orientation chip selection, all GCs in the same receptive field are
connected to multiple orientation chips one by one, i.e., the GCs are calculated and com-
pared with 19 orientation chips, which makes the reading time delay much higher than the
calculation time delay, thus reducing the overall speed of the system. The storage of the
orientation column weights can now be optimized by using a binary storage method.

As shown in Figure 11c, the data within a certain receptive field are processed to
compare the distances orientation chips, and we use only one row of vectors to store
the information of the whole orientation column. Its length is the number of GCs in the
same receptive field, and its bit width is the number of orientation chips under the same
orientation column.
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(a) Selection and calculation unit.

(b) Compare Tree.

(c) Optimized storage for orientation column.

Figure 11. Selection module. (a) With the clock signal, the inner product of the vectors and the
modes of the vectors of the orientation chips are calculated respectively, and after completing the
calculation of the 19 orientation chips, the distance is solved by applying the division ip kernel.
(b) The comparator takes five clock cycles to produce the result, which will always be stored in the
X1 register as the output result. (c) X stores the decimal number of the 19 orientation chips in that
position. The i-th value of the 19 orientation columns is sequential to form a binary number, which is
stored in the i-th bit of the orientation column vector, corresponding to the i-th node.

The calculation of orientation chip selection is converted into a binary calculation, and
the intermediate results of one position are calculated at the same time, which can greatly
speed up the selection of the orientation chip.

5. Results

We program for the model by using Verilog Hardware Description Language (HDL)
and simulate it by Vivado and Modelsim. The input of the image is an 8-bit grayscale
image of 123 ∗ 183. It is a snapshot of the input image and belongs to the receptive field
layer. Eventually, we can obtain the sequence numbers of the activated orientation chips
from output.
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5.1. Simulation for Model

As shown in Figure 12a, with the change of the receptive field write signal (rf_valid),
the read of the index block random access memory (BRAM) is performed, and each clock
reads the four indexes corresponding to the current pixel at the same time.

Only the first index corresponding to each pixel is shown, indicated by the blue line
(index1). By the time the maximum jump is generated, the writing process of a receptive
field is completed. The image to be processed is read simultaneously with the index counter,
and the pixel values are obtained and written to the receptive field DRAM array.

When it comes to the DOG processing stage, with the validity of the conv_valid signal,
the read and convolution operations are performed on a certain receptive field with the self-
increasing address signal as shown in Figure 12b. With the change of the conv_dout_valid
signal, the intermediate result of the processing (DoG pixel) is transferred to the storage of
the GC DRAM array.

(a) Writing of receptive field.

(b) DOG simulation.

Figure 12. Retina cell simulation. (a) The Index1_high represents the No. of the receptive field being
processed and the index1_low represents the position being written in the receptive field. Each small
jump is a read of a particular row of indexes, and a large jump represents the completion of reading a
particular row of the receptive field array. (b) Due to the line cache setting, it takes 3 ∗ width clock
periods for the read pixel value (pexel_1) to generate the convolution result.

Finally, the simulation will enter the orientation chip selection phase, where the trained
weights are expanded in bitwise form for distance calculation and comparison with the
intermediate calculation results. The orientation chip selection module performs the com-
putation after the select_valid signal is valid. Figure 13a,b show the parallel computation
of products of a set of orientation chips, with the distance computation performed after
81 (the number of GC cells in one receptive field) cycles. Figure 13c illustrates that the
distance comparison is performed for five clock cycles when the cmp_valid signal is valid,
and the optimal orientation chip sequence number is output after completion. We mark
the activated indexes in the orientation column map, thereby generating the result of the
orientation column representation of the object.
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(a) Calculation of the inner product. (b) Calculation of the distance.

(c) Distance comparison.

Figure 13. Three stages of calculation.

5.2. Resource Consumption

Having shown that the visual information is correctly processed by our FPGA visual
pathway model, let us look at its resource usage. With the analysis tool provided by
Vivado, we can identify the resources used by the designed computational module as
shown in Table 1. In our visual pathway model, information within a single receptive
field is the basic unit of visual processing. Here, we show the resources needed for a
single receptive field. BRAM resources are mainly used for image storage and index matrix
storage, whereas DRAM is used for the receptive field most, which occupies look-up table
(LUT) and flip-flop (FF) resources. Due to the conversion to binary image processing while
facilitating bitwise operations, the on-chip digital signal processor (DSP) is mainly used in
the distance comparison of the division calculation process and MAC of the DOG process.
However, since the pixel overlap makes the DOG double computed, the resource utilization
of the global-based DOG will be much lower than that of the receptive field-based DOG.
This means that the selector block takes up the majority of the DSP. Depending on the
resources required for a single receptive field during the whole process, we can determine
the parallelism of the model based on the amount of resources.

Table 1. Resource consumption of visual pathway.

LUTs FFs BRAM DSP

Index Matrix 40 8 11 0
FIFO 110 63 0 0
MAC 145 26 0 2

Receptive Field 16 8 0 0
Ganglion Cell 16 8 0 0

weight 28 7 0 0
Selector 336 461 0.5 2
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5.3. Parallelism Exploration

The resource utilization of a single receptive field is given above, and the overall
parallelism of the system will be constrained by the onchip resources. In terms of receptive
fields, we define RFL as the delay time required from the formation of a single receptive
field to the generation of activation indexes of orientation columns. Whereas the delay
in generating the receptive field DRAM array comes mainly from the image signal input,
segmenting and writing the receptive field is performed in real time. We simulate and
synthesize based on receptive fields in parallel and 400 receptive fields in parallel with the
xc7k325t chip, respectively. Our results are shown in Table 2. In the case of meeting the
timing requirements, our system can run at 235.8 Mhz in the former case, while the latter
can run at 222.5 Mhz. It can be found that the maximum frequency is less affected by the
parallelism in our design. Table 2 shows that as the parallelism increases, the number of
DSPs becomes the bottleneck first, followed by the number of LUTs bottleneck. Since DSPs
are mainly used on the division of the parallel division of orientation chips, for chips with
fewer computational resources, it may be necessary to reduce the division accuracy and
extend the division cycle, which will add several cycles of latency.

Table 2. Synthesis results on xc7k325t.

Parallelism 100 400

LUT(203800) 21.1% 88.7%
FF(407600) 13.6% 55.9%
BRAM(445) 22.7% 56.4%

DSP(840) 24.5% 95.5%
Fmax 235.8 Mhz 222.5 Mhz
RFL 483 ns 520 ns

Power 1.61 W 5.34 W

We then take chip xc7k480t, which own more resources, to accomplish 600 receptive
fields in parallel. This is a degree of parallelism that allows the parallel processing of all the
receptive fields of the test images (123 × 183). Base on this parallelism, we can complete
the scanning process of the images, which corresponds to the receptive field layer of our
hierarchical network model. We also test all parallelism on this chip. As shown in Table 3,
it not only achieves a higher degree of parallelism compared to the xc7k325t, but also gains
about 3% frequency improvement. At the same time, compared to the previous chip, the
parallelism has less impact on the maximum clock frequency, thanks to its resource size.

Table 3. Synthesis results on xc7k480t.

Parallelism 100 400 600

LUT(298600) 14.4% 57.7% 88.74%
FF(597200) 8.6% 34.4% 51.6%
BRAM(955) 10.5% 26.2% 36.8%
DSP(1920) 24.5% 41.7% 62.6%

Fmax 241.0 Mhz 238.1 Mhz 236.4 Mhz
RFL 474 ns 479 ns 482 ns

Power 1.70 W 5.53 W 8.06 W

5.4. Comparison with CPU

We put this visual pathway processing flow on the CPU for testing. On the CPU side,
we choose AMD 4800H (8 cores and 16 threads) for test by Python. For the processing
latency of a single receptive field, we obtain the processing results on the CPU and FPGA,
respectively, as shown in Table 4. This shows that we reduce the latency on FPGA by about
4200 times. We set the throughput as the number of receptive fields that can be processed
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in one second. To speed up the CPU processing, we transform the receptive field data into
matrix form. Then we process the same number of receptive fields as the test image on the
CPU and set the parallelism to 600. Every clock cycle on the FPGA will get an active index
of the orientation columns. Table 4 shows that in terms of throughput, we also achieve a
speedup ratio of 3600 times. Also in terms of power consumption, there is no doubt that
FPGAs gain a huge advantage. The parallel computation on FPGAs is truly parallel in the
sense that it simulates the neuro-visual mechanism very well. For our orientation selection
model, both the longitudinal processing of visual pathways and the lateral processing of
multiple pathways in parallel are substantially improved.

Table 4. Comparison results with CPU.

Platform Latency (ns) Throughput (k) Power (W)

CPU(AMD 4800H) 2,030,372 61 45
FPGA(xc7k480t) 484 202,167 8

From the previous experiments, our model can generate cortical orientation maps with
a high degree of similarity and orientation selectivity for information within the receptive
field. Through the simulation and synthesis experiments, we can obtain that the system
has low latency with good real-time performance, and the overall power of the system is
low. If it is used in the visual aid system, it can obtain better endurance.

5.5. Comparison with GPU

We also set the visual pathway model to experiment on the GPU (RTX 3090Ti). From
Table 5, we can see that when dealing with the single receptive field, the latency is reduced
compared to the CPU but there is still distance from the FPGA implementation. As a part
of the computer system, the GPU still needs to interact with the computer CPU, etc., which
leads to a high latency. For portable wearable devices, low latency and good real-time
performance are necessary requirements. FPGAs have a great advantage in this regard.

Table 5. Comparison results with GPU.

Platform Latency (ns) Throughput (k) Power (W)

GPU(RTX 3090Ti) 151,157 335,432 450
FPGA(xc7k480t) 484 202,167 8

In terms of throughput, although it can be further improved with GPU, there is a huge
increase in power consumption. The power consumption of the graphics card alone reaches
450 W and requires additional heat dissipation. The GPU cannot run on its own and needs
to be run on the computer, which also needs to consider the overall power consumption.
There is no doubt that FPGAs achieve a higher power consumption ratio than GPU. At the
same time, due to the size of the computer itself, they do not have portability but also do
not meet our original intention of designing a brain-like application system.

5.6. Orientation Chip Training Performance

The training approach proposed in this paper differs slightly from traditional SOMs
due to the incorporation of connectivity optimization and topological structure optimiza-
tion. However, within a single receptive field, its connection scheme shares similarities with
conventional SOMs, making it practically significant when compared to other FPGA-based
SOM training studies. As shown in Table 6, the experimental results in this paper are
compared with the findings of a prior study [39], revealing that our approach achieves
higher CUPS (computations per second). This improvement in performance is attributed
to the optimized storage of the proposed approach and the rational design of numerical
representation and fixed-point decimal arithmetic modules, resulting in reduced hardware
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resource utilization, such as LUTs. One major advantage of our approach is its capability to
handle training on larger-scale neural layers, thereby achieving higher CUPS. However, the
high dimensionality of the input layer in this paper leads to significant delays in weight IO
operations, resulting in a slight reduction in the maximum clock frequency. Nevertheless,
this trade-off leads to a substantial overall improvement in CUPS.

Table 6. Hardware resource utilization in SOM training.

Neurons Input Dimension Connections LUT Fmax (MHz) CUPS

Our model 19 81 1539 3224 1.05 1613
[39] 25 3 75 8845 1.51 113

Our proposed training approach is compared with other algorithms as shown in
Table 7. The table presents the performance of training with a single orientation column
(row 3) and dual orientation columns (row 6) when the neuron count is similar. Our training
system achieves higher CUPS compared to the first two systems when training with a
single orientation column. However, there is still a gap compared to the results of [40].
We optimize the connections between the input layer and the competition layer, removing
unnecessary connections that can be considered connections with update magnitudes of 0.
Similar connection optimizations have been used in other studies [41] to improve CUPS.
Considering the number of connections, our approach can further enhance CUPS when
training with dual orientation columns simultaneously.

Table 7. Performance comparison of CUPS.

Neurons CUPS

[42] 49 300
[43] 32 853

Single orientation column 19 1613
[44] 36 4200
[40] 25 5200

Dual orientation columns 38 6463

5.7. Representation Experiment of the Visual Pathway Model

The representation results of the orientation chips array are examined at two different
scales. Firstly, we observe the representation results of the orientation chips array on
images with a smaller resolution, such as the Mnist dataset, which has a resolution of
28 × 28 pixels. The array should be able to extract line segments of various orientations for
different digits. By using orientation chips instead of line segments, the array should be
capable of reconstructing the original image. The specific experimental results are shown
in Figure 14. As seen in the second column of the figure, the final representation results can
effectively reconstruct the original digits for different numbers. This indicates that the GCs
array trained in this study can represent and reconstruct images.

We conduct a statistical analysis of the activated orientation patch types for each digit,
which provides the proportions of different orientation patches activated by different digits
as shown in the third column. From the graph, it can be observed that for digit 0, the
activation of various types of orientation chips is evenly distributed. This can be attributed
to the circular structure of the digit. As the digit itself has a slender and tall shape, there
are more orientation chips biased towards the vertical direction compared to the horizontal
direction. On the other hand, for digit 1, a few specific types of orientation chips are
prominently activated, with their optimal orientations mostly close to the vertical direction.
This is likely due to the prevalence of inclined angles in handwritten characters, resulting in
a higher activation of orientation chips biased towards the vertical direction. As for digits
2 and 3, although their shapes are somewhat similar, digit 3 exhibits a higher activation
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of orientation chips along the main diagonal. The representation results of the orientation
chips array indicate the effectiveness of the multi-layer array proposed in this study.

Figure 14. The first column shows the original image from the Mnist dataset, the second column
displays the image restored using the orientation chips array representation, and the third column
represent the various orientations of the orientation patches activated by the same digit, with the
x-axis ranging from 0 to 180 degrees.

The ability to effectively represent low-resolution images is a prerequisite for achieving
the successful representation of higher-resolution images. We further conduct experiments
on images with higher resolutions. We capture partial images using CCD devices, and
some images are obtained from the BSD dataset [45].

As shown in Figure 15, the array captures the variations in brightness and darkness in
the edge regions, making the edges of the image more pronounced. However, the extracted
results are coarse and accompanied by a significant amount of salt-and-pepper noise. The
third column represents the results of the orientation chips array’s representation of the
image. The entire image is composed of multiple oriented chips resembling line segments,
with different colored lines representing patches with different optimal orientations. Com-
pared to the processing results of the GCs array, the OCs array significantly reduces noise
and eliminates numerous invalid edges, resulting in a clearer representation. From this
representation result, we can obtain both a feature descriptor to describe the entire image
and the distribution of features with the same orientation within the image.

Based on the results obtained after processing with the GCs array, we compare the ca-
pability of extracting and representing orientation information with the LSD algorithm [46]
using the orientation columns array. As shown in Figure 16, compared with the LSD
method, for relatively simple graphic features, such as the eagle in the third row, the
training results can better reflect the representation ability of the visual functional column
for edge orientation. For images containing complex information, such as an image with
three people, the model focuses more on extracting the excessively redundant features,
identifying key lines as a prerequisite, and then distinguishing the orientation. It can be
observed that the orientation column array extracts orientation line segments that exhibit
more continuity and form closed contours; one reason for this is that the model has a
smaller receptive field, allowing for more detailed representation. Furthermore, it can be
observed that within the same region, there are no multiple line segments of similar length
with different orientations. This indicates that the training of the orientation columns can
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better learn the features of natural images and activate orientation chips that best match
the edge information in the images.

Figure 15. The first column shows the original image, with a portion derived from the BSD dataset
and another portion captured by CCD devices, the second column shows the image after processing
with the GCs receptive field array, and the third column shows the image after activation of the
orientation chips array. Different colors correspond to different optimal orientations of the orientation
chips, which are consistent with the colors in the artificial cortical map.
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Figure 16. The first column represents the results obtained after processing with the GCs receptive
field array. The second column displays the results after activation of the OCs array, and the third
column presents the results obtained through the LSD algorithm. All the original images are sourced
from the BSD dataset.

6. Discussion and Conclusions

In this study, we propose a physiologically consistent hierarchical network model of
the primary visual cortex orientation selection, which is bionic and highly parallelizable.
The network dissects the physiological basis of orientation selection and generates highly
approximate maps of cortical orientation columns.

Then we map the network model hierarchy on FPGAs and simulate the orientation
selection of objects and implement it. The method achieves the integration of storage
and computation and realizes the functional decomposition and fine-grained mapping of
multi-level neuronal network computational architectures to FPGA functional components.

As [47] indicates, based on the neutron structure, brain-like chips can overcome the
von Neumann limitation and improve both the speed and complexity of the calculation.
The power consumption will decrease at the same time. Our FPGA design can dramatically
speed up the visual pathway processing speed and increase the parallelism. The low-
latency, low-power, and high-parallelism characteristics of the model are well suited for
building assistive systems to help the visually impaired. Simulating the signal processing
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in the biological cortex makes the input and output of the computing system biologically
interpretable and compatible with the interface protocol, which is helpful for the brain–
computer interface connection.

In the future, we will conduct larger-scale biocomputing and explore higher-level
visual models in other visual cortices and embedded wearable devices to help solve more
visual-impairment problems.
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FPGA field programmable gate array
LGN lateral geniculate nucleus
GCs ganglion cells
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SOM self-organizing map
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