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Abstract: The features of the kernel extreme learning machine—efficient processing, improved
performance, and less human parameter setting—have allowed it to be effectively used to batch
multi-label classification tasks. These classic classification algorithms must at present contend with
accuracy and space–time issues as a result of the vast and quick, multi-label, and concept drift features
of the developing data streams in the practical application sector. The KELM training procedure still
has a difficulty in that it has to be repeated numerous times independently in order to maximize
the model’s generalization performance or the number of nodes in the hidden layer. In this paper,
a kernel extreme learning machine multi-label data classification method based on the butterfly
algorithm optimized by particle swarm optimization is proposed. The proposed algorithm, which
fully accounts for the optimization of the model generalization ability and the number of hidden layer
nodes, can train multiple KELM hidden layer networks at once while maintaining the algorithm’s
current time complexity and avoiding a significant number of repeated calculations. The simulation
results demonstrate that, in comparison to the PSO-KELM, BBA-KELM, and BOA-KELM algorithms,
the PSOBOA-KELM algorithm proposed in this paper can more effectively search the kernel extreme
learning machine parameters and more effectively balance the global and local performance, resulting
in a KELM prediction model with a higher prediction accuracy.

Keywords: kernel extreme learning machine; butterfly optimization algorithm; particle swarm
optimization; parameter optimization; generalization ability

1. Introduction

Data classification is one of the most important research hotspots in the field of high-
tech at present. It uses certain features to discriminate or classify a group of objects. The
information involved in data classification often has the characteristics of high dimensions,
many influencing factors, and complex relationships [1]. It is often difficult to effectively
determine its laws by human thinking alone, and it needs to be completed through certain
mathematical methods with the help of computers. How to discover more and more
valuable, associated information from this complex data information, find its internal laws,
and establish a model that can better reflect the actual characteristics of the research object,
be easily integrated with prior knowledge, and be adaptable to large-scale data-processing
requirements are gradually becoming the focus of current data classification [2]. Multi-
label classification, or MLC, or the study of a thing according to many class label ideas,
has become particularly significant in order to address the inadequacies of conventional
single-label classification. The multi-label data flow exhibits the features of vast speed
and idea drift in the sphere of practical application, making the conventional multi-label
classification algorithm unable to directly address such issues. Designing a reliable multi-
label data flow classification approach has therefore emerged as a crucial and difficult
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challenge due to the need to process these new data fast while having limited time and
memory as well as to adjust the concept drift in the data flow environment [3].

In engineering applications, learning for data classification is very desirable. Tradi-
tional learning techniques, such as artificial neural networks (ANN) and support vector
machines (SVM), appear helpless in the face of the twin needs of quicker training speed
and greater learning accuracy [4,5]. Huang et al.’s extreme learning machine (ELM) is a
single-layer feedforward network learning technique (single-hidden layer feedforward
neural networks, SLFNs) that does not need changing the hidden layer neuron network
settings. It offers quick training and effective learning outcomes, which are important char-
acteristics. Due to this, the distributed extreme learning machine (D-ELM) avoids reading
all samples into memory at once by partitioning matrix operations, but it also resolves the
issue of memory shortage while training vast amounts of sample data [6,7]. Every time
they run, they only train an ELM network with a certain amount of hidden layer nodes.
Similar to cross-validation, they do not take into account the generalization capacity under
various training and test set divisions. They want to improve their generalization skills
and accuracy. Numerous runs of the solution to must be performed. When comparing the
generalization capacity or the network performance of various hidden layer node numbers,
it is impossible to ensure that the hidden layer network parameters are consistent, making
it difficult to accurately and intuitively learn their impact on the model [8]. This is due to
the random generation of hidden layer network parameters.

1.1. Problem Description and Research Motivation

In recent years, many scholars have applied neural network-based algorithms to data
classification research, such as BP neural network, discrete Hopfield network, support
vector machine, self-organizing network, fuzzy neural network, and generalized neural
network, and achieved many results. Since most neural networks use the gradient descent
method, there are often shortcomings, such as slow training speed, easy to fall into local
minimum, and learning rate sensitivity. Therefore, it is necessary to explore a fast-training
speed, accurate optimal solution, and good generalization The performance of the training
algorithm is the main goal of improving the performance of the neural network.

The KELM model relies on both feature selection and parameter optimization, and
these two processes are complementary and cooperative. To avoid overfitting and lower
the computational cost of the training model, feature selection chooses the most pertinent
and discriminative feature subset from the original feature space and eliminates redundant
and unimportant features [9]. A proper parameter setup can significantly enhance the
KELM model’s classification performance and yield superior classification outcomes. These
two elements are taken into account during the design and are optimized simultaneously
to increase the KELM model’s capacity for generalization [10].

Due to its strong search capabilities, the meta-heuristic algorithm has received consid-
erable attention recently. Numerous study findings have established that this algorithm
is superior to conventional approaches for solving optimization issues [11]. Researchers
working on this project have to date suggested a few optimization strategies for parameter
and feature selection. For instance, Alcin et al. introduced the genetic algorithm (GA) to
KELM model in 2014 after using the GA method to improve the sparse output weight
vector of the KELM model. The kernel KELM model’s parameters were optimized using
the particle swarm optimization (PSO) technique by Bin Li et al. in the same year [12,13].

The primary issues with KELM’s categorization model are:
The selection of pertinent parameters is a significant issue for both the KELM study

model and the SVM model, although there are not many studies on this topic [14].
It is common to conduct feature selection and parameter optimization independently.

In essence, the two cooperate and support one another. The best model cannot be assured
if they are optimized individually [15].

A novel classification method for kernel extreme learning machines (PSOBOA-KELM)
based on the modified PSO butterfly optimization algorithm is suggested in order to solve
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the aforementioned issues. This technique concurrently performs parameter optimization
of the kernel ELM model and feature selection based on the enhanced butterfly algorithm
(PSOBOA) to increase KELM’s generalization performance [16,17]. The particle swarm
optimization algorithm is introduced at the same time to improve the GSA algorithm’s
performance in optimization by addressing the latter stages of iteration’s slow convergence
speed and weak local search ability, and the chaos control strategy is intended to broaden the
group’s diversity. The PSOBOA-KELM technique suggested in this work simultaneously
maximizes the number of hidden layer nodes and generalization ability. It saves a vast
amount of time by dividing training into segments based on samples. Thus, potential
solutions should be investigated.

1.2. Contribution

Compared with the traditional method, the butterfly optimization algorithm optimized
by particle swarm optimization proposed in this paper comprehensively considers issues,
such as improving the classification accuracy of the algorithm and the generalization
performance of KELM. The main contributions of this paper are as follows:

1. Characterize the swarm intelligence optimization algorithm/butterfly optimization
algorithm and classify the current data classification methods.

2. Propose a novel data classification method of kernel extreme learning machine based
on the butterfly optimization algorithm optimized by particle swarm optimization
(PSOBOA-ELM).

3. Provide extensive simulation results to demonstrate the use and efficiency of the
proposed data classification method.

4. Evaluate the performance of the proposed algorithms by comparing them with the
data classification methods of other algorithms.

The remainder of this paper is organized as follows: Section 2 discusses the related
work. Section 3 describes the basic principles of kernel extreme learning machine. Section 4
describes the principles of the butterfly optimization algorithm optimized using particle
swarm optimization. Section 5 describes the implement steps of the proposed algorithm
design idea of the kernel extreme learning machine method based on the butterfly op-
timization algorithm optimized by particle swarm optimization. Section 6 provides the
parameters and simulation results that validate the performance of the proposed algorithm.
Section 7 concludes the paper.

2. Related Work

Data categorization is frequently employed as the fundamental processing technique in
contemporary intelligent data processing. Machine learning is a powerful tool for achieving
the objective of data processing since it makes use of data sets to create classification models
with great generalization capabilities.

Support vector machines are at present being used by some academics to handle
multi-instance learning challenges. The conventional SVM is particularly sensitive to noisy
points and singular points in the sample. The CA-SVM based sentiment analysis model
that Cyril et al. suggested uses automatic learning to read Twitter datasets, analyze them,
and extract features to provide a list of phrases [18]. More characteristics in the input
electrocardiosignal (ECG) signal were classified using the SVM model and weighted kernel
function approach by Varatharajan et al. At present, the existing multi-label classification
methods mainly include: batch processing methods and online learning methods. Among
them, the batch processing method defaults to the one-time arrival of each training and
testing data set, and uses problem transformation and algorithm self-adaptation to solve
multi-label classification problems based on all existing information. The extreme learning
machine (ELM) proposed by Huang and its improved algorithm have the characteristics of
high speed and high efficiency, avoiding the cumbersome iterative learning process [19].
The random setting of learning parameters caused by the iterative learning of the traditional
feed-forward neural network can easily encounter problems, such as the local minima,
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while improving the algorithm can further improve the classification accuracy. Therefore,
related research based on (kernel) extreme learning machines has been widely applied to
multi-label classification problems, and a series of results has been achieved [20]. However,
due to the characteristics of massive and fast data streams emerging in the practical ap-
plication field, it is difficult to obtain them all at once. At the same time, when new data
arrives, these batch-processing algorithms continue to retrain new data and discard old
models, resulting in a large loss of effective historical data [21]. Therefore, learning models
that can handle data stream environments are receiving more and more attention.

Ensemble techniques have been one of the most significant advancements in ma-
chine learning over the past ten years. In actuality, the kernel function is utilized as a
crucial theoretical tool in the data preprocessing since the data in the data set are linearly
indistinguishable, making it necessary to build an appropriate data classification proce-
dure. The goal of the kernel function is to discover the classification hyperplane of the
low-dimensional, indistinguishable data in the new high-dimensional space by nonlinear
transformation, allowing for the separation of the data. The construction and parameter
selection of the kernel function are at present its key areas of emphasis. To address the
multi-class unbalanced data classification problem, Zhang et al. suggested a support vector
machine (SVM) technique based on a proportional kernel and proposed a scaling kernel
function, which employs weighting factors to compute its parameters. The issue of skewed
distribution-induced classifier performance reduction has a high degree of generalizabil-
ity [22]. To discriminate between various kinds of ground objects, Chen et al. presented a
novel hybrid kernel function SVM point cloud classification technique, and they created a
Gaussian and polynomial hybrid kernel function to increase the classification accuracy [23].
Xie et al. calculated the similarity of samples with several unknown attributes using the
characteristics of kernel functions. To compute the kernel function and solve additive kernel
singular values, an effective technique was also shown [24]. Zhang et al. developed a novel
conformal function to scale the kernel matrix of ODM in order to increase the separability
of the training data in the feature space. They also presented a kernel modified ODM kernel
function (KMODM) to remove the unbalanced data classification approach [25]. When
tackling small sample, nonlinear, and high dimensional problems, it demonstrates several
distinct benefits and may be successfully applied to various machine learning disciplines.

Although it has been demonstrated that the Ada Boost approach, which uses a neural
network as the basic classifier, has a high generalization performance, training is still not
without its challenges. Diversity has undergone extensive research as a crucial component
in the generalization performance of classifiers, and certain approaches to assess diversity
have also been presented. In order to overcome the limitations of fixed representations,
Deng et al. used deep learning to perform large-scale task-driven feature learning from big
data. They also demonstrated its utility in image classification, high-frequency financial
data prediction, and brain MRI And how well these three duties may be divided [26].
Saritas et al. assessed the classification performance of a Bayesian classifier and an artificial
neural network applied to nine inputs and one output and compared the findings [27].
By fusing morphological neurons with perceptrons, Gerardo et al. suggested two novel
hybrid neural architectures. They then evaluated them using 25 low-dimensional standard
data sets and a large data set. The suggested approach achieved improved accuracy
while using fewer learning parameters [28]. In contrast to conventional techniques and
other state-of-the-art techniques, Wu et al. used a convolutional recurrent neural network
(CRNN) to learn more discriminative features for hyperspectral data classification, using
recurrent layers to further extract spectral context information from features generated by
convolutional layers. The suggested technique offers improved classification performance
for hyperspectral data classification when compared to deep learning methods [29].

At present, some achievements have used the sliding window technology to apply
extreme learning machines to solve the multi-label classification of data streams, but this
method does not consider the problem of class label correlation between multiple labels
and concept drift in the data stream environment. On the other hand, some researchers
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pointed out that, when dealing with data streams, it is necessary to consider the model to
make accurate predictions under limited time and memory and include solutions to the
problem of concept drift. These requirements pose more challenges to the classification
of multi-label data streams. Most of the multi-label classification algorithms in the data
flow environment use problem transformation to convert classification into a series of
stable learning tasks. Although this method can be applied to a certain extent, it ignores
the correlation between labels. At the same time, it does not take into account the high-
speed and changeable characteristics of the newly arrived data, and the implicit concept
drift problem is also difficult to solve by the problem transformation method. One of
the challenging issues in data mining is data categorization, a topic that has attracted
considerable attention from both domestic and international scholars studying artificial
intelligence. It is required to fundamentally optimize the imbalanced data in order to
address the issue of unbalanced data categorization. At present, the outcomes of academic
research are improving yearly. Nearly 900 scholarly publications on unbalanced data
categorization were published between May 2018 and 2022, a significant increase over the
preceding ten years.

3. Kernel Extreme Learning Machine

The extreme learning machine consists of three parts: input layer, hidden layer, and
output layer. For a given training sample, continuously optimize the input weights and
bias values between the connected input layer and the hidden layer, and maintain them
unchanged during the training process. Assume a training sample set of {xi, ci}, i = 1, 2,
. . . , N is given, where xi is the input value of the training sample and ci is the corresponding
output value. Let the limit learning machine have h hidden layer nodes, the network output
is f, and g(*) is the activation function; then, the input and output model of the limit learning
machine can be expressed by Formula (1) [30].

f (xj) =
h

∑
i=1

βig(ωi × xj + bi), j = 1, 2, . . . N (1)

In the formula, the output weight of the input node and the i-th hidden layer node
are represented by βi. The input weight of the i-th hidden node and the input node are
represented by ωi. The offset value of the i-th hidden node is represented by bi.

H =


g(ω1 × x1+b1) · · · g(ωL × x1+bL)
g(ω1 × x2+b1) . . . g(ωL × x2+bL)
...

. . .
...

g(ω1 × xN+b1) · · · g(ω1 × xN+b1)


N×L

β =


β1
β2
...

βL


L×1

, T =


c1
c2
...

cL


L×1

(2)

The output weight can be expressed by Formula (3).

β̂ = H∗T (3)

In the equation, H∗ is the inverse of matrix H.
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Replace the hidden layer in the extreme learning machine with the idea of kernel
function mapping in the support vector machine. Then, the kernel extreme learning
machine can be expressed by Formula (4) [31].

minPELM = 1
2‖β‖

2 + C
2

N
∑

i=1
ξ2

i

s.t.h(xi)β = ci − ξi

(4)

Therefore, the input and output model of the kernel extreme learning machine is as
shown in Formula (5).

f (x) = h(x)β = h(x)HT(
I
C
+ HHT)

−1
T (5)

Define the extreme learning machine kernel matrix as Formula (6) [32].

ΩELM = HHT

ΩELMi,j = h(xi)•h(xj) = K(xi, xj)
(6)

The corresponding input–output model can be expressed as shown in Formula (7).

f (x) =


K(x, x1)
K(x, x2)
...
K(x, xN)


T

(
I
C
+ ΩELM)

−1
T (7)

The feature mapping h(x) of the hidden layer is unknown in kernel limit learning
machines, but it is usually calculated using the kernel K(µ, ν) (K(µ, ν) = exp(−γ‖µ− ν‖2))
to reduce the impact of poor classification results caused by the unreasonable setting of the
number of hidden layer nodes (the dimension of feature space).

As a result, kernel ELM has the benefit of effective ELM SVM classification. The
number of hidden layer nodes need not be predetermined because KELM determines the
hidden layer mapping kernel function in the form of an inner product by introducing a
kernel function. As a result, the generalization of the KELM-based electric load forecasting
model results in significantly increased capacity and stability.

4. Butterfly Optimization Algorithm Optimized by PSO
4.1. Butterfly Optimization Algorithm

A novel meta-heuristic algorithm called the butterfly optimization algorithm (BOA)
mimics the foraging and courting behavior of butterflies. It has a high resilience and global
convergence ability while solving complicated functions [33,34]. The BOA algorithm has
two crucial inputs: switching probability and scent. The switching probability determines
the likelihood that the butterfly will select one of two movement modes, either global or
local, and the smell stands in for the quality of the particular butterfly’s current position [35].
The butterfly colony is first dispersed at random in the solution space, and the butterflies
that have a strong scent draw other individual butterflies to them. The aim optimization is
accomplished by consistently updating the butterfly colony’s location [36]. Each butterfly
in the butterfly optimization algorithm has a distinct scent and perception ability, and
the strength of smell perception varies between individuals. Formula (8) illustrates how
strongly other butterflies can smell a person among them:

f (x) = cIa (8)
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Among them, f (x) represents the odor intensity function; c represents the sensory
shape coefficient; I represents the stimulus intensity, that is, the fitness value of the function;
and a represents the intensity coefficient, and the value is in [0, 1].

The sensory shape coefficient c can theoretically take any value within [0, ∞), and its
calculation is shown in Formula (9):

ct+1 = ct + [0.025/(ct·Tmax)] (9)

Among them, the initial value of c is 0.01, and Tmax is the maximum number of
iterations of the algorithm. The BOA algorithm determines the global search and local
search of the algorithm according to the switching probability p, and the position update
formula is shown in Formula (10):

xi
t+1 =

{
xi

t + (r2 · g∗ − xi
t) · fi, p < rand

xi
t + (r2 · xj

t − xk
t) · f , p ≥ rand (10)

Among them, g* is the best position of all butterflies in the current iteration; xt
j and xt

k
represent the spatial positions of the j-th butterfly and the k-th butterfly in the t-th iteration,
respectively; the value of r is a random number of [0,1] number; and fi is the fitness value
of the i-th butterfly.

4.2. Particle Swarm Optimization Algorithm

A swarm intelligence optimization system called particle swarm mimics how birds fly
while looking for food in a multidimensional search environment. Particle position and
velocity are the two key aspects of the PSO method optimization [37,38]. Each one of them
is referred to as a particle, and each particle’s initial position and velocity in the search
space are initialized at random [39]. The particles’ positions and velocities are updated in
accordance with Formulas (11) and (12):

vi
t+1 = ω · vi

t + c1 · rand1 · (pbest − xi
t) + c2 · rand2 · (gbest − xi

t) (11)

xi
t+1 = xi

t + vi
t+1 (12)

Among them, vt
i and vi

t+1 represent the velocities of the i-th particle at the t and t + 1
iterations, respectively; and pbest and gbest represent the initial and global optimal positions
of particles, respectively. Generally, the hyperparameter c1 = c2 = 2; rand1 and rand2 are
random numbers of (0, 1); and ω represents the inertia weight coefficient.

4.3. Butterfly Optimization Algorithm Optimized by PSO (PSOBOA)

(1) Algorithm population initialization
Assume that, in the D-dimensional search space, the greedy strategy is used to generate

a new race to generate the initial solution expression, which is shown in Formula (13):

Xi = Lb + (Ub − Lb) ·O (13)

Among them, Xi represents the spatial position of the i-th butterfly (i = 1, 2, 3, . . . , N)
in the butterfly population, and N represents the number of initial solutions. Lb and Ub
represent the upper and lower bounds of the search space, respectively; and O represents a
matrix of random numbers with elements (0, 1).

(2) Algorithmic Global Search
The global search phase of butterfly optimization algorithm optimized by PSO (PSOBOA)

can be expressed by Formulas (14) and (15):

Xi
t = ω · Xi

t−1 + (r2 · gbest −ω · Xi
t−1) · fi (14)



Biomimetics 2023, 8, 306 8 of 23

Xi
t+1 = Xi

t + ω ·Vi
t + C1 · r1 · (pbest − Xi

t) + C2 · r2 · (gbest − Xi
t) (15)

Among them, ω represents the inertia weight coefficient, and Vt
i and Vi

t+1 represent
the velocities of the i-th particle at time t and t + 1, respectively. The hyperparameter
C1 = C2 = 2, and the values of r1 and r2 are random numbers (0, 1).

(3) Local search of algorithms
The local search stage of the PSOBOA algorithm can be represented by Equations (16)

and (17):
Xi

t = ω · Xi
t−1 + (r2 × Xk

t−1 −ω · Xj
t−1) · fi (16)

Xi
t+1 = Xi

t + ω ·Vi
t + C1 · r1 · (pbest − Xi

t) + C2 · r2 · (gbest − Xi
t) (17)

Among them, Xk
t−1 and XJ

t−1 are the positions of the k-th and j-th butterflies randomly
selected from the solution space of the t − 1 iteration, respectively; and ω represents
the inertia weight coefficient. C1 = C2 = 2, r1, and r2 are random numbers with the
values of (0, 1).

(4) Control strategy
Chaos theory has many applications in swarm intelligence optimization algorithm,

such as chaos population initialization and chaos adjustment strategy of control parameters.
Logistic mapping is a classical chaotic mapping method in chaos theory, and its expression
is shown in Formula (18):

zl+1 = µzl(1− zl) (18)

Among them, l represents the number of iterations of the chaotic map and µ is the
chaotic parameter, and its value is in [0, 4]. The chaotic sequence of logistic mapping is
(0, 1); when µ = 4, the mapping produces a chaotic phenomenon.

The Lyapunov index is an important index to distinguish the characteristics of chaos.
The larger the maximum Lyapunov exponent of the chaotic map, the more obvious its
chaotic characteristics and the higher the degree of chaos. The index expression is shown
in Formula (19):

λ = lim
n→∞

1
nh

nh−1

∑
i=0

ln
∣∣ f ′(zi)

∣∣ (19)

where λ represents the Lyapunov exponent; f ′(·) represents the first derivative of the
chaotic mapping function; and nh represents the number of iterations of the chaotic map-
ping.

The expression of the sensory shape coefficient c in the PSOBOA algorithm is shown
in Formula (20):

c(t) = 4 · c(t− 1) · (1− c(t− 1)) (20)

The inertia weight coefficient ω has a direct impact on the particle flight speed of the
PSO algorithm and can adjust the global search and local search capabilities of the algorithm.
In this paper, an adaptive adjustment strategy was adopted, as shown in Formula (21):

ω(t) = ωmax − ((ωmax −ωmin) · Ti)/Tmax (21)

Among them, ωmax = 0.9, ωmin = 0.2, and Tmax is the maximum number of iterations of
the algorithm.

(5) Algorithm complexity analysis
Assuming that the number of populations of the algorithm is N, the dimension of

the search space is D, and the maximum number of searches is Tmax, the complexity of
PSOBOA includes: the initialization complexity of the population O(ND), the fitness value
calculation complexity O(ND), the global and the position update complexity of local search
O(N2logN), the fitness value sorting complexity of the algorithm O(N2), and the control
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parameter update complexity of the algorithm O(ND). Then, the complexity of PSOBOA
algorithm is shown in Formula (22):

O(HPSBA) = O(ND) + O(Tmax)O(ND + N2 log N + N2 + ND) (22)

The algorithm time complexity of PSOBOA is shown in Formula (23):

O(BOA) = O(ND) + O(Tmax)O(N2 log N + N + ND) (23)

5. Data Classification of KELM Based on PSOBOA Algorithm

The regularization coefficient C and the kernel function parameter S of the kernel
extreme learning machine were optimized using the particle swarm optimization butterfly
technique, which raises the network’s classification recognition accuracy. We created the
data categorization mathematical model after obtaining the optimal parameters. The
following are the precise PSOBOA-KELM steps:

(1) Establish a classification database, divide it into training and testing sets, and normal-
ize them.

(2) Train KELM using the training set as the input vector.
(3) The PSOBOA algorithm was used to optimize the regularization coefficient C and

kernel function S in KELM. Select the optimal C and S and reconstruct KELM.
(4) Train the KELM algorithm optimized by PSOBOA again and compare the results.
(5) Determine whether the termination conditions are met. If satisfied, exit the loop and

output the prediction result. Otherwise, it is recalculated.
(6) Input the test set into the optimized KELM and output the prediction results.

According to the above steps, the flow chart of the PSOBOA-KELM algorithm is shown
in Figure 1.
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Figure 1. Flow chart of the PSOBOA-KELM algorithm.

6. Algorithm Simulation and Result Analysis
6.1. Benchmark Function Test

In order to test the performance of the PSOBOA algorithm, eight test functions were
used for testing, and it was compared with the particle swarm optimization algorithm
(PSO), crow search algorithm (CSA), binary bat algorithm (BBA), and butterfly optimization
algorithm (butterfly optimization algorithm, BOA). The improved PSOBOA algorithm
was compared and analyzed. The eight test functions in CEC2017 were all evaluated
as minimization problems, which were divided into multimodal test functions, mixed
functions, and composite functions. The test functions are shown in Table 1. For fair
comparison, the solution dimension of all test functions was 30, the population size was set
to 30, the search space was all [−100, 100], all algorithms were run independently on each
test function 30 times, and the maximum number of iterations for each run was for 100.
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Table 1. Test functions.

Function Equation Dimension Bounds Optimum

F1 d
∑

i=1

(
i

∑
j=1

xj

)2
30 [−100, 100] 0

F2 max{|xi|, 1 ≤ i ≤ d} 30 [−100, 100] 0

F3 d
∑

i=1
|xi sin(xi) + 0.1xi| 30 [−10, 100] 0

F4 −20 exp

(
−0.2

√
1
d

d
∑

i=1
x2

)
− exp

(
1
d

d
∑

i=1
cos(2πxi)

)
+ 20 + exp(1) 30 [−5.12, 5.12] 0

F5 −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij(xj − pij)

2

)
30 [1, 3] −3.86

F6 −
7
∑

i=1
[(X− ai)(X− ai)

T + ci]
−1 30 [0, 10] −10.4

F7 −
10
∑

i=1
[(X− ai)(X− ai)

T + ci]
−1 30 [0, 10] −10.5

F8 −
5
∑

i=1
[(X− ai)(X− ai)

T + ci]
−1 30 [0, 10] −10.1

In this paper, the results of PSO, CSA, BBA, BOA, and PSOBOA algorithms indepen-
dently running 30 times on eight test functions were counted. The iterative calculation
results of the test functions of the five algorithms are shown in Figure 2.
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It can be seen from Figure 2 that, when solving the test function, the optimization
results of the BBA, BOA, and PSOBOA algorithms are not much different, but they are
all significantly better than the PSO algorithm and CSA algorithm. When solving the
multi-peak test function, although the CSA algorithm achieves better results on the two test
functions, according to the average ranking of the five algorithms on the multi-peak test
function, the PSOBOA algorithm is better than the other four algorithms, the convergence
speed is faster. When solving the mixed function, the PSOBOA algorithm achieved the best
results on the test functions. When solving the composite function, the optimization effect
of the PSOBOA algorithm is not significant compared with the BBA algorithm and BOA
algorithm, but it can be seen from the comprehensive mean and standard deviation that
the PSOBOA algorithm has high optimization and stable results.

At the same time, it can be seen from the experimental data in Figure 2 that for F3, F4,
F6, and F8, PSOBOA has the strongest optimization performance, which is obviously better
than PSO, CSA, BOA, and BBA, and F1, F2, F3, and F4 can directly find the optimal value
of 0. For F7, the optimization performance of PSOBOA and BOA is almost the same, the
average of optimization is slightly better than BBA, and the effect of PSO is the worst. For
F6, the optimization performance of PSOBOA algorithm is obviously better than that of
PSO, CSA, BOA and BBA, and the optimization stability is the best. The above analysis
shows that the overall optimization ability of PSOBOA is better than that of PSO, CSA,
BOA, and BBA.

6.2. Simulation Environment Construction

The proposed algorithm was tested using the database’s standard classification data
set, and a number of comparisons and experiments were conducted with conventional
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PSO-KELM [40], BBA-KELM [41], BOA-KELM, and other algorithms in order to confirm
its viability and effectiveness. Windows 10 (64-bit), MATLAB 2020b, a 12th Gen Intel(R)
Core(TM) i9-12900 CPU running at 3.20 GHz, and 32G of RAM were used as the simulation
experiment setting.

We evaluated the classification performance of this method, which are classification
accuracy (ACC), sensitivity (SEN), specificity (SPE), precision(PRE), and F-measure, which
are defined as follows:

Accuracy is the proportion of the total number of correct predictions. Use the following
methods to determine it:

ACC =
TP + TN

TP + TN + FN + FP
× 100% (24)

Sensitivity is an index used to measure the classifier’s recognition of abnormal records,
and is also often expressed as the TP rate.

SEN =
TP

TP + FN
× 100% (25)

Specificity is often used to estimate the ability of a classification model to identify
normal examples, which is also often expressed as the TN rate.

SPE =
TN

TN + FP
× 100% (26)

Precision is the correct proportion of positive instances of prediction, calculated using:

PRE =
TP

TP + FP
× 100% (27)

Among them, TP, FP, TN, and FN represent true positive, false positive, true negative,
and false positive, respectively.

Lewis and Gale proposed the F-measure in 1994, which is defined as follows:

F− =
(β2 + 1)× Precision× Sensitivity

β2 × Precision + Sensitivity
(28)

In Equation (28), there is a value from 0 to infinity to control the weights assigned to
the precision and sensitivity. If all positive instances are classified incorrectly, any classifier
evaluated using the above will have a metric of 0. In this experiment, the β value was set
to 1.

6.3. Algorithm Test Comparison and Result Analysis

In order to verify the effectiveness of the proposed method, this part experiments
on the PSOBOA-KELM algorithm on seven classification data sets, which are BreastEW,
CongressEW, Hepatitis, JPNdata, Parkinson, SpectEW, and Wdbc. The data sets are from
the UCI Machine Learning Library (http://archive.ics.uci.edu/mL/datasets, accessed on
1 October 2022). These data sets are mainly divided into binary classification problems,
multi-classification problems, and regression fitting problems. The Breastcancer dataset
has 699 data, including 9 features and two categories; the Parkinson dataset has 195 data,
including 23 features and two categories; the BreastEW dataset has 569 data, including
30 features and two categories; and the Dermatology dataset has 358 data, including
35 features and six categories. The experiments selected seven real datasets widely used for
multi-label classification. The learning factor (c1 = c2 = 2) in the important parameters of the
particle swarm optimization algorithm was the inertia weight factor w1 = 0.9 and w2 = 0.4.
Table 2 summarizes the data size, attribute dimension, number of tags, and cardinality of
the seven datasets. The specific description information of the dataset is shown in Table 2.

http://archive.ics.uci.edu/mL/datasets
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Table 2. Detailed description of the dataset.

Number Data Set Number of
Categories Sample Size Number of

Features

1 BreastEW 2 569 9
2 CongressEW 2 435 16
3 Hepatitis 2 1385 29
4 JPNdata 4 148 18
5 Parkinson 2 197 23
6 SpectEW 2 267 22
7 wdbc 2 569 30

The data set had to be preprocessed before the experiment, and certain features were
missing. These records were averaged in this experiment to guarantee the accuracy of the
sample data. To reduce the gap between the eigenvalues and prevent the larger eigenvalues
from adversely affecting the smaller eigenvalues, we normalized each eigenvalue to the
[−1, 1] interval. The normalized calculation formula is:

x′ =
(

x−mina

maxa −mina

)
∗ 2− 1 (29)

where x is the original value of the data, x′ is the normalized value, maxa is the maximum
value in feature a, and maxa is the minimum value in feature a.

At the same time, in order to obtain an unbiased estimate of the algorithm’s general-
ization accuracy, k-fold CV is generally used to evaluate the classification accuracy. In this
method, all test sets are independent, which can improve the reliability of the results. In
this study, the k value was set to 10, that is, each experimental data set was divided into
10 subsets, one of which was taken as the test set each time, and the rest was used as the
training set, and then the average value of 10 experiments was calculated as the result of
the ten-fold crossover. Each of the above classification experiments was run independently
20 times to ensure the stability of the algorithm.

The parameter settings of the contrast swarm intelligent optimization algorithm in-
volved in this paper are shown in Table 3.

Table 3. Parameter settings of the swarm intelligence optimization algorithm.

Algorithm Parameters

PSO Vmax = 4, wMax = 1, wMin = 0.9, c1 = 1.5, c2 = 2.
BBA [ fmin, fmax] = [0, 2]; A = 0.5; r = 0.5; α = 0.9; γ = 0.05
BOA p = 0.8, power_exponent = 0.1, sensory_modality = 0.01.

PSOBOA p = 0.8, power_exponent = 0.1, sensory_modality = 0.01. wMax = 0.2, wMin = 0.9.

From the results of Tables 4 and 5, it can be seen that the method proposed in this
paper is accurate in accuracy, precision, F-measure, sensitivity, specificity, and MCC. The
indicator performs significantly better than other comparative feature selection methods.
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Table 4. Experimental results of four datasets: BreastEW, CongressEW, Hepatitis, and JPNdata.

Metrics Algorithm BreastEW CongressEW Hepatitis JPNdata

Accuracy

PSO-KELM 0.95583 0.93182 0.80625 0.80625

BBA-KELM 0.95583 0.90909 0.87083 0.74167

BOA-KELM 0.9646 0.95455 0.87083 0.79286

PSOBOA-KELM 0.96491 0.96564 0.87868 0.83958

precision

PSO-KELM 0.94666 1 0.5 0.76389

BBA-KELM 0.9452 0.96 1 0.77778

BOA-KELM 0.94666 1 0.875 0.77778

PSOBOA-KELM 0.9598 1 1 0.78889

F-measure

PSO-KELM 0.96517 0.9434 0.57143 0.82353

BBA-KELM 0.96611 0.92308 0.5 0.76842

BOA-KELM 0.9726 0.96154 0.66667 0.80065

PSOBOA-KELM 0.97297 0.97097 0.70833 0.84034

Sensitivity

PSO-KELM 0.98611 0.9245 0.66667 0.875

BBA-KELM 1 0.92593 0.33333 0.86607

BOA-KELM 1 0.92593 0.58333 0.875

PSOBOA-KELM 1 0.94373 0.58333 0.9375

Specificity

PSO-KELM 0.90909 1 0.88141 0.73214

BBA-KELM 0.90476 0.94118 1 0.71429

BOA-KELM 0.90476 1 1 0.75

PSOBOA-KELM 0.92857 1 1 0.75

MCC

PSO-KELM 0.90622 0.86923 0.45227 0.64569

BBA-KELM 0.90731 0.81597 0.536 0.57071

BOA-KELM 0.92547 0.9102 0.61899 0.58872

PSOBOA-KELM 0.92582 0.93158 0.66387 0.68104

Table 5. Experimental results of three datasets: Parkinson, SpectEW, and Wdbc.

Metrics Algorithm Parkinson SpectEW Wdbc

Accuracy

PSO-KELM 0.84605 0.81456 0.95659

BBA-KELM 0.82105 0.7967 0.9469

BOA-KELM 0.875 0.81481 0.96491

PSOBOA-KELM 0.9 0.84615 0.97383

precision

PSO-KELM 0.89904 0.58333 1

BBA-KELM 0.83333 0 1

BOA-KELM 0.87451 0.63333 1

PSOBOA-KELM 0.92857 0.875 1

F-measure

PSO-KELM 0.89606 0.36508 0.93841

BBA-KELM 0.87778 0 0.92308

BOA-KELM 0.9233 0.39286 0.95

PSOBOA-KELM 0.9375 0.33333 0.964

Sensitivity

PSO-KELM 0.93095 0.26667 0.8842

BBA-KELM 0.92857 0 0.85714

BOA-KELM 1 0.28333 0.90476

PSOBOA-KELM 1 0.2 0.93074
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Table 5. Cont.

Metrics Algorithm Parkinson SpectEW Wdbc

Specificity

PSO-KELM 0.675 0.95346 1

BBA-KELM 0.4 1 1

BOA-KELM 0.6 1 1

PSOBOA-KELM 0.75 1 1

MCC

PSO-KELM 0.59994 0.30364 0.90873

BBA-KELM 0.46155 0 0.88901

BOA-KELM 0.65248 0.40005 0.92582

PSOBOA-KELM 0.72809 0.40988 0.94514

For the accuracy indicator, the PSOBOA-KELM feature selection method proposed in
this paper has an accuracy rate of 96.49%, 96.56%, 87.87%, 83.96%, and 90% on BreastEW,
CongressEW, hepatitisfulldata, JPNdata, Parkinson, SpectEW, and wdbc data sets, respec-
tively. Compared with the PSO-KELM, BBA-KELM, and BOA-KELM feature selection
methods, the method proposed in this paper has the highest accuracy rate. For example, in
the BreastEW dataset, the accuracy of the method proposed in this paper is 0.91% higher
than the PSO-KELM method, 0.91% higher than the BBA-KELM method, and 0.03% higher
than the BOA-KELM method. For the precision indicator, on the BreastEW, CongressEW,
hepatitisfulldata, JPNdata, Parkinson, SpectEW, and wdbc data sets, the accuracy of the
PSOBOA-KELM feature selection method proposed in this paper is 95.98%, 100%, 100%,
78.89%, 92.86%, 87.5%, and 100%, respectively. Compared with the PSO-KELM, BBA-
KELM, and BOA-KELM feature selection methods, the proposed method has the highest
accuracy. For example, in the BreastEW dataset, the accuracy of the method proposed in
this paper is 1.31% higher than the PSO-KELM method, 1.46% higher than the BBA-KELM
method, and 1.31% higher than the BOA-KELM method. For the F-measure index, on the
BreastEW, CongressEW, hepatitisfulldata, JPNdata, Parkinson, SpectEW, and wdbc data
sets, the F-measure of the PSOBOA-KELM feature selection method proposed in this paper
is 97.3%, 97.10%, 70.83%, 84.03%, 93.75%, 33.33%, and 96.4%, respectively. Compared with
the PSO-KELM, BBA-KELM, and BOA-KELM feature selection methods, the proposed
method’s F-measure works better. For example, in the CongressEW dataset, the F-measure
value of the method proposed in this paper is 2.76% higher than the PSO-KELM method,
4.79% higher than the BBA-KELM method, and 0.95% higher than the BOA-KELM method.

For the sensitivity index, on the BreastEW, CongressEW, hepatitisfulldata, JPNdata,
Parkinson, SpectEW, and wdbc data sets, the sensitivity values of the PSOBOA-KELM
feature selection method proposed in this paper are 100%, 94.37%, 58.33%, 93.75%, 100%,
20%, and 93.07%, respectively. Compared with the PSO-KELM, BBA-KELM, and BOA-
KELM feature selection methods, the proposed method has a higher sensitivity value.
For example, in the CongressEW dataset, the sensitivity value of the method proposed
in this paper is 1.92% higher than the PSO-KELM method, 1.78% higher than the BBA-
KELM method, and 1.78% higher than the BOA-KELM method. Compared with the
PSO-KELM, BBA-KELM, and BOA-KELM feature selection methods, the method proposed
in this paper has a higher specificity value. For example, in the BreastEW dataset, the
specificity value of the method proposed in this paper is 1.96% higher than the PSO-KELM
method, 2.38% higher than the BBA-KELM method, and 2.38% higher than the BOA-KELM
method. For the MCC index, the PSOBOA-KELM feature selection method proposed
in this paper has the MCC values of 92.58%, 93.16%, 66.39%, 68.1%, and 72.81% on the
BreastEW, CongressEW, hepatitisfulldata, JPNdata, Parkinson, SpectEW, and wdbc data
sets, respectively. Compared with the PSO-KELM, BBA-KELM, and BOA-KELM feature
selection methods, the method proposed in this paper has a higher MCC value. For
example, in the wdbc data set, the MCC value of the method proposed in this paper is
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3.64% higher than the PSO-KELM method, 5.61% higher than the BBA-KELM method, and
1.93% higher than the BOA-KELM method.

In addition, in order to compare the performance of these four algorithms more
intuitively, as shown in Figure 3, the performance evaluation indicators of these four
methods are compared in detail. At the same time, the calculation and simulation time
consumption of the four algorithms in the seven data sets are also presented, as shown in
Figure 4.
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According to the experimental findings, the PSOBOA-KELM technique has an accept-
able performance in terms of classification, and the calculation and simulation times are not
too long. It may choose an acceptable and constrained feature subset, and its classification
performance is noticeably better than that of comparable approaches. The algorithm also
performs well when it comes to the challenge of classifying various data sets. It takes a fair
amount of time and produces an excellent classification accuracy. The comparison of eight
datasets is shown in Tables 6 and 7. In addition, in order to compare the performance of
these four algorithms more intuitively, the performance evaluation indicators of these four
methods are compared in detail, as shown in Figure 5. At the same time, the calculation
and simulation time consumption of the four algorithms in the seven data sets are also
presented, as shown in Figure 6.

Table 6. Experimental results of the four datasets of Australian, Breastcancer, Dermatology, and
HeartEW.

Metrics Algorithm Australian Breastcancer Dermatology HeartEW

Accuracy

PSO-KELM 0.83333 0.85749 0.77533 0.85185

BBA-KELM 0.95583 0.90909 0.87083 0.74074

BOA-KELM 0.92702 0.9375 0.91667 0.85185

PSOBOA-KELM 0.94429 0.98571 0.97297 0.92593

precision

PSO-KELM 0.74074 0.73333 0.78571 0.70314

BBA-KELM 0.85185 0.83333 0.84615 0.77778

BOA-KELM 0.92593 0.83871 0.875 0.88889

PSOBOA-KELM 0.94118 0.97826 0.94444 0.92857

F-measure

PSO-KELM 0.66667 0.77778 0.63246 0.65327

BBA-KELM 0.85749 0.83333 0.77533 0.77778

BOA-KELM 0.86667 0.91667 0.92857 0.89655

PSOBOA-KELM 0.92308 0.98901 0.97222 0.9375

Sensitivity

PSO-KELM 0.7337 0.77778 0.70314 0.8325

BBA-KELM 0.82746 0.83333 0.85749 0.87607

BOA-KELM 0.88235 0.96296 0.91667 0.90909

PSOBOA-KELM 0.92308 0.97826 0.94444 0.93427

Specificity

PSO-KELM 0.79057 0.77533 0.83333 0.82353

BBA-KELM 0.875 0.85749 0.85185 0.92857

BOA-KELM 0.92702 0.91667 0.92593 0.92702

PSOBOA-KELM 0.96774 0.95842 0.94118 0.93667

MCC

PSO-KELM 0.78571 0.86923 0.70314 0.64569

BBA-KELM 0.90731 0.90323 0.86667 0.7532

BOA-KELM 0.88235 0.93333 0.88889 0.84615

PSOBOA-KELM 0.90889 0.96909 0.95366 0.85749

Table 7. Experimental results tested in the Diabetes, Glass, Heart, and Vote data sets.

Metrics Algorithm Diabetes Glass Heart Vote

Accuracy

PSO-KELM 0.81571 0.7619 0.66667 0.68182

BBA-KELM 0.88889 0.85714 0.77273 0.72127

BOA-KELM 0.91667 0.88727 0.81905 0.80952

PSOBOA-KELM 0.94444 0.97222 0.87868 0.88958
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Table 7. Cont.

Metrics Algorithm Diabetes Glass Heart Vote

Precision

PSO-KELM 0.65217 0.69565 0.71429 0.72853

BBA-KELM 0.72727 0.78381 0.85714 0.83636

BOA-KELM 0.86273 0.89667 0.8852 0.87273

PSOBOA-KELM 0.9219 0.95182 0.94182 0.91952

F-measure

PSO-KELM 0.71905 0.75429 0.73913 0.80952

BBA-KELM 0.77905 0.80953 0.79273 0.86667

BOA-KELM 0.8895 0.87818 0.89545 0.89143

PSOBOA-KELM 0.94545 0.96667 0.97429 0.97381

Sensitivity

PSO-KELM 0.68182 0.77533 0.85749 0.83333

BBA-KELM 0.77902 0.83333 0.87902 0.90235

BOA-KELM 0.91667 0.92593 0.9375 0.92702

PSOBOA-KELM 0.95749 0.97373 0.96189 0.98774

Specificity

PSO-KELM 0.66667 0.77533 0.59333 0.78571

BBA-KELM 0.73333 0.79057 0.75862 0.85743

BOA-KELM 0.88235 0.91667 0.90819 0.91751

PSOBOA-KELM 0.96296 0.94323 0.9775 0.96774

MCC

PSO-KELM 0.77533 0.81363 0.70314 0.78235

BBA-KELM 0.8523 0.88235 0.85749 0.88889

BOA-KELM 0.90667 0.91321 0.81279 0.92702

PSOBOA-KELM 0.93333 0.96774 0.97296 0.98774
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Figure 6. Comparison of the simulation time consumption of the four algorithms.

The four algorithms were tested in the Australian, Breastcancer, Dermatology, HeartEW,
Diabetes, Glass, Heart, and Vote8 data sets regarding accuracy, precision, F-measure,
sensitivity, specificity, MCC, and other six indicators, and achieved a good classifica-
tion performance. The calculation and simulation time were also relatively short for the
PSOBOA-KELM method. It may choose an acceptable and constrained feature subset, and
its classification performance is noticeably better than that of comparable approaches. In
addition to achieving an improved classification accuracy, the algorithm also performs well
while classifying data from various data sets.

In addition, the simulation experiment comparison of the Sinc function was conducted.
The four algorithms were compared by fitting the Sinc function. The expression of the Sinc
function is as follows:

f (x) =

{
sin(x)

x , x 6= 0
0 , x = 0

(30)

We set to generate 2000 [−10, 10] uniformly distributed data sets x, calculated 2000
data sets {xi, f (xi)}, i = 1, 2, 3, . . . , 2000, and then generated 2000 [−0.2, 0.2] uniformly
distributed noise ε. Let the training set be {xi, f (xi) + εi}, i = 1, 2, 3, . . . , 2000 and then
generate another set of 2000 data sets {yi, f (yi)}, i = 1, 2, 3, . . . , 2000 as the test set. In
addition, the root-mean-square error (RMSE), mean absolute error (MAE), and relative
standard deviation (RSD) were used as the evaluation indicators for error analysis. The
calculation formulas of the three indicators are as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(y(i)− y′(i))2 (31)

MAE =
1
N

N

∑
i=1

∣∣y′(i)− y(i)
∣∣ = 1

N

N

∑
i=1
|ei| (32)
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RSD =

√
N
∑

i=1
(y′(i)− y′(i))2

√
N
∑

i=1
(y(i)− y′(i))2

(33)

where parameter y(i) represents the measured value, y′(i) represents the predicted value,
parameter N is the number of samples, parameter ei=y′(i) − y(i) is the absolute error,
and the numerator and denominator of RSD are in the form of standard deviation. The
comparison of Sinc function fitting results is shown in Table 8.

Table 8. Comparison of the Sinc function fitting results.

PSO-KELM BBA-KELM BOA-KELM PSOBOA-KELM

Iteration RMSE MAE RSD RMSE MAE RSD RMSE MAE RSD RMSE MAE RSD

5 0.027 0.024 0.915 0.021 0.016 0.929 0.017 0.015 0.945 0.014 0.012 0.963
10 0.025 0.023 0.928 0.019 0.014 0.935 0.015 0.013 0.951 0.012 0.008 0.969
15 0.021 0.021 0.935 0.018 0.013 0.942 0.013 0.012 0.957 0.011 0.007 0.973
20 0.019 0.019 0.941 0.016 0.012 0.949 0.012 0.011 0.963 0.01 0.006 0.98
25 0.018 0.017 0.945 0.015 0.011 0.953 0.011 0.01 0.967 0.01 0.006 0.984
30 0.015 0.015 0.949 0.013 0.01 0.958 0.01 0.009 0.971 0.009 0.005 0.988
35 0.013 0.014 0.953 0.011 0.009 0.962 0.009 0.008 0.975 0.009 0.005 0.99
40 0.012 0.013 0.958 0.01 0.009 0.964 0.009 0.008 0.978 0.007 0.005 0.991
45 0.012 0.011 0.961 0.009 0.009 0.968 0.008 0.007 0.981 0.006 0.004 0.992
50 0.012 0.011 0.961 0.009 0.009 0.971 0.007 0.006 0.983 0.006 0.004 0.993

It can be seen from Table 8 that, calculated by the PSO-KELM algorithm, the index
values of RMSE and MAE are the largest, and the index value of RSD is closer to the
smallest, and the performance of the test results is poor. The index value is even smaller,
and the performance of the test result is average. The RMSE and MAE index values of
the BOA-KELM algorithm are smaller, the RSD index values are closer to larger, and the
test results have a better performance. The PSOBOA-KELM algorithm has the smallest
RMSE and MAE index values, the RSD index value is closer to the largest, and the test
results have the best performance. It shows that the error of the PSOBOA-KELM model
is relatively smaller, and the prediction accuracy is better than that of the PSO-KELM,
BBA-KELM, and BOA-KELM algorithms. At the same time, this can also be known from
the data change trend in Table 2, which indicates that the PSOBOA-KELM algorithm has
the best performance, and optimizing the KELM regularization parameter C and kernel
function S can improve the prediction accuracy of the KELM model.

7. Conclusions

The model selection problem of kernel extreme learning machines was investigated
in this paper utilizing an enhanced butterfly technique that is based on particle swarm
optimization (PSOBOA). This study compared the PSO-KELM, BBA-KELM, and BOA-
KELM approaches in-depth to the proposed PSOBOA-KELM model. To assess the model’s
performance, we used six indicators: accuracy, precision, F-measure, sensitivity, specificity,
and MCC. According to the experimental findings, PSOBOA-KELM can swiftly converge
to the best solution inside the search space. The model may combine the benefits of
the PSOBOA and KELM models and has a good optimization performance thanks to
the inclusion of the original butterfly optimization method in the particle swarm search
approach. Better performance, fewer algorithm parameters, and quick search times are
some of its features. The performance as well as the classification accuracy have both
dramatically increased.
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Research on the issue of vast sample sparsity in a high-dimensional space will be the
next stage, followed by the in-depth study of the categorization of large sample data by
logically making use of useful historical data.
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