

Article Reptile Search Algorithm Considering Different Flight Heights to Solve Engineering Optimization Design Problems

Liguo Yao^{1,2}, Guanghui Li^{1,2}, Panliang Yuan^{1,2}, Jun Yang^{1,2}, Dongbin Tian¹ and Taihua Zhang^{1,2,*}

- ¹ School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550025, China; lgyao@gznu.edu.cn (L.Y.); ghli@gznu.edu.cn (G.L.); yuanpanl2020@163.com (P.Y.); juny@gznu.edu.cn (J.Y.); 202201001@gznu.edu.cn (D.T.)
- ² Technical Engineering Center of Manufacturing Service and Knowledge Engineering, Guizhou Normal University, Guiyang 550025, China
- * Correspondence: zhangth542@gznu.edu.cn; Tel.: +86-135-1851-5198

Abstract: The reptile search algorithm is an effective optimization method based on the natural laws of the biological world. By restoring and simulating the hunting process of reptiles, good optimization results can be achieved. However, due to the limitations of natural laws, it is easy to fall into local optima during the exploration phase. Inspired by the different search fields of biological organisms with varying flight heights, this paper proposes a reptile search algorithm considering different flight heights. In the exploration phase, introducing the different flight altitude abilities of two animals, the northern goshawk and the African vulture, enables reptiles to have better search horizons, improve their global search ability, and reduce the probability of falling into local optima during the exploration phase. A novel dynamic factor (*DF*) is proposed in the exploitation phase to improve the algorithm, the test results were compared with ten state-of-the-art (SOTA) algorithms on thirty-three famous test functions. The experimental results show that the proposed algorithm has good performance. In addition, the proposed algorithm and ten SOTA algorithms were applied to three micromachine practical engineering problems, and the experimental results show that the proposed algorithm has good problem-solving ability.

Keywords: reptile search algorithm; engineering optimization design; northern goshawk optimization; artificial vulture optimization algorithm

1. Introduction

With the deeper exploration of natural laws by humans, more and more practical problems have emerged in fields such as control [1,2], manufacturing [3,4], economics [5,6], and physics [7]. Most of these problems have characteristics such as a large scale, multiple constraints, and discontinuity [8]. Traditional algorithms often optimize the objective function results through the gradient of the objective function, a deterministic search method that makes it difficult for people to use existing traditional methods to solve such problems.

Basically, the characteristic of most heuristic algorithms is random search, and through this characteristic, higher global optimal possibilities are obtained [9]. Due to their independence from utilizing function gradients, heuristic algorithms do not require the objective function to have continuously differentiable conditions, providing optimization possibilities for some objective functions that cannot be optimized through gradient descent. Heuristic algorithms can be roughly divided into three categories based on the different ideas of imitation: simulating biological habits [10,11], cognitive thinking [12,13], and physical phenomena [14,15]. Among these, due to the abundance of natural organisms, heuristic algorithms that simulate bodily patterns are primarily used, such as the genetic algorithm (GA) [16], particle swarm optimization (PSO) [17], ant colony optimization (ACO) [18],

Citation: Yao, L.; Li, G.; Yuan, P.; Yang, J.; Tian, D.; Zhang, T. Reptile Search Algorithm Considering Different Flight Heights to Solve Engineering Optimization Design Problems. *Biomimetics* **2023**, *8*, 305. https://doi.org/10.3390/ biomimetics8030305

Academic Editors: Heming Jia, Laith Abualigah and Xuewen Xia

Received: 20 June 2023 Revised: 6 July 2023 Accepted: 8 July 2023 Published: 11 July 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Grey wolf optimizer (GWO) [19], etc. However, no free lunch globally exists, and no single algorithm is suitable for solving all optimization problems [20]. In recent years, in pursuit of the effectiveness of heuristic algorithms, many improved algorithms have emerged, mainly consisting of strategy-based improvement and algorithm combinations. In recent years, our research team has been committed to obtaining better-performing heuristic algorithms through algorithmic combinations, such as the beetle antenna strategy based on grey wolf optimization [21], grey wolf optimization based on the Aquila exploration method (AGWO) [22], hybrid golden jackal optimization and the golden sine algorithm [23], enhanced snake optimization [24], etc.

The reptile search algorithm (RSA) is a novel intelligent optimization algorithm based on crocodile hunting behavior that was proposed by Laith et al. in 2022 [25]. The RSA has the characteristics of fewer parameter adjustments, strong optimization stability, and easy implementation, achieving excellent results in optimization problems. Ervural and Hakli proposed a binary RSA to extend the RSA to binary optimization issues [26]. Emam et al. proposed an enhanced reptile search algorithm for global optimization. They selected the optimal thresholding values for multilevel image segmentation [27]. Xiong et al. proposed a dual-scale deep learning model based on ELM-BiLSTM and improved the reptile search algorithm for wind power prediction [28]. Elkholy et al. proposed an AI-embedded FPGAbased real-time intelligent energy management system using a multi-objective reptile search algorithm and a gorilla troops optimizer [29].

However, due to the physiological limitations of any animal, there are corresponding drawbacks to algorithms that simulate biological habits. This also leads to the RSA, like other algorithms that simulate physical patterns, having a slow convergence speed, low optimization accuracy, and being prone to falling into local optima. This article aims to solve this problem by studying the natural patterns of organisms inspired by natural laws. Crocodiles have good hunting ability as land animals but need a better observation field due to height constraints. Therefore, in the search section, the performance could be better (in line with the RSA's slow convergence speed, low optimization accuracy, and quick fall into local optima). Inspired by the different flight heights and search horizons of natural organisms, this article introduces the African vulture optimization algorithm (AVOA) [30] and northern goshawk optimization (NGO) [31], utilizing the high-altitude advantages of birds to explore accordingly. Considering the sizeable spatial range, the northern goshawk algorithm is used in the high-altitude field, and African vulture optimization is used in the mid- to high-altitude range. In the exploration phase, the hunting advantages of crocodiles are utilized. On this basis, a reptile search algorithm considering different flight heights (FRSA) is proposed.

To verify the effectiveness of the FRSA, a comparison was made with ten SOTA algorithms on two function sets (thirty-three functions) and three engineering design optimization problems, demonstrating significant improvements in both the algorithm's performance and its practical problem-solving capabilities. The highlights and contributions of this paper are summarized as follows: (1) The reptile search algorithm considering different flight heights is proposed. (2) Wilcoxon rank sum and Friedman tests are used to analyze the statistical data. (3) The FRSA is applied to solve three constrained optimization problems in mechanical fields and compared with ten SOTA algorithms.

The rest of this article is arranged as follows: Section 2 reviews the RSA, and Section 3 provides a detailed introduction to the FRSA, including all the processes of exploration and exploitation. Section 4 describes and analyzes the results of the FRSA and other comparative algorithms on the two sets of functions. Section 5 represents the FRSA's performance on three practical engineering design issues. Finally, Section 6 provides a summary and the outlook of the entire article.

2. RSA

The RSA is a novel, naturally inspired meta-heuristic optimizer. It simulates the hunting behavior of crocodiles to optimize problems. Crocodiles' hunting behavior is divided into two phases: implement encirclement (exploration) and hunting (exploitation). The implementation of hunting is achieved through high walking or belly walking, and hunting is achieved through hunting cooperation.

In each optimization process, the first step is to generate an initial population. In the RSA, the initial population of crocodiles is randomly generated, as described in Equation (1), and the rules for randomly generating populations are shown in Equation (2).

$$P = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_m \end{bmatrix}_{m \times n} = \begin{bmatrix} p_{1,1} & p_{1,2} & \dots & p_{1,n} \\ p_{2,1} & p_{2,2} & \dots & p_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{m,1} & p_{m,2} & \dots & p_{m,n} \end{bmatrix}_{m \times n}$$
(1)

where *P* denotes randomly generated initial solutions, and $p_{m,n}$ represents the position of the *m*-th solution in the *n*-th dimension. m denotes the number of candidate solutions, and *n* denotes the dimension of the given problem.

$$p_{i,i} = rand_1 \times (ub - lb) + lb, \ j = 1, 2, \cdots, n$$
 (2)

where $rand_1$ denotes a random value between 0 and 1, and lb and ub denote the lower and upper bounds of the given problem, respectively.

The RSA can transition between encirclement (exploration) and hunting (exploitation), and each phase can be divided into two states according to different situations. Therefore, the RSA can be divided into four other parts.

During the exploration phase, there are two states: high-altitude walking and abdominal walking. When $t \le T/4$, the crocodile population enters a high-altitude walking state, and when $T/4 < t \le T/2$, the crocodile population enters an abdominal walking state. Different conditions during the exploration phase benefit the population by conducting better searches and finding better solutions. The position update rules of the population during the exploration phase are shown in Equation (3).

$$p_{i,j}^{t+1} = \begin{cases} Best_j^t \times \delta_{i,j}^t \times 0.1 - R_{i,j}^t \times rand_2 & t \le \frac{T}{4} \\ Best_j^t \times p_{r_{1},j} \times ES^t \times rand_3 & \frac{T}{4} < t \le \frac{T}{2} \end{cases}$$
(3)

where $Best_j^t$ denotes the position of the optimal solution at time *t* in the *j*-th dimension, *T* is the maximum number of iterations per experiment, and $rand_2$ and $rand_3$ denote a random value between 0 and 1. $\delta_{i,j}^t$ denotes the hunting operator for the *j*-th dimension of the *i*-th candidate solution, which can be calculated by Equation (4). $R_{i,j}^t$ is a scaling function used to reduce the search area, which can be calculated by Equation (5). r_1 is a random number between 1 and *m*, and ES^t is an evolutionary factor, with a randomly decreasing value between 2 and -2, which can be calculated by Equation (6).

$$S_{i,j}^t = Best_j^t \times d_{i,j} \tag{4}$$

$$R_{i,j}^{t} = \frac{Best_{j}^{t} - p_{r_{2},j}}{Best_{i}^{t} + \theta}$$
(5)

$$ES^{t} = 2 \times rand_{4} \times (1 - \frac{t}{T})$$
(6)

where θ is a near-zero minimum, which is to prevent cases where the denominator is zero, *rand*₄ is an integer between -1 and 1, and $d_{i,j}$ represents the percentage difference between

the best solution and the current solution in the *j*-th dimension position, which can be calculated by Equation (7).

$$d_{i,j} = 0.1 + \frac{p_{i,j} - \frac{1}{n} \sum_{j=1}^{n} p_{i,j}}{Best_i^t \times (ub_j - lb_j) + \theta}$$
(7)

In the exploitation phase, there are two states based on the hunting behavior of crocodiles: hunting coordination and hunting cooperation. Crocodile hunting coordination and cooperation enable them to approach their target prey easily, as their reinforcement effect differs from the surrounding mechanism. Therefore, exploitation search may discover near-optimal solutions after several attempts. When $T/2 < t \leq 3T/4$, the crocodile population enters a hunting coordination state, when $3T/4 < t \leq T$, the crocodile population enters a hunting cooperative state. Different states during the exploitation phase are beneficial in avoiding optimization from falling into local optima and helping to determine the optimal solution during the exploitation phase. The location update rules of the population during the exploration phase are shown in Equation (8).

$$p_{i,j}^{t+1} = \begin{cases} Best_j^t \times d_{i,j}^t \times rand_5 & \frac{T}{2} < t \le \frac{3T}{4} \\ Best_j^t - \delta_{i,j}^t \times \theta - R_{i,j}^t \times rand_6 & \frac{3T}{4} < t \le T \end{cases}$$
(8)

where $Best_j^t$ denotes the position of the optimal solution at time *t* in the *j*-th dimension, and $rand_5$ and $rand_6$ denote random values between 0 and 1. $R_{i,j}^t$ is a scaling function used to reduce the search area, which can be calculated by Equation (5). θ is a minimal value.

The pseudo-code of the RSA is shown in Algorithm 1.

Algorithm 1. Pseudo-code of RSA
1. Define <i>Dim</i> , <i>UB</i> , <i>LB</i> , Max_Iter(<i>T</i>), Curr_Iter(<i>t</i>), α , β , etc
2. Initialize the population randomly $p_i(i = 1, 2,, m)$
3. while $(t < T)$ do
4. Evaluate the fitness of each p_i ($i = 1, 2,, m$)
5. Find Best solution
6. Update the <i>ES</i> using Equation (6).
7. for $(i = 1 \text{ to } m)$ do
8. for $(j = 1 \text{ to } n)$ do
9. Update the η , <i>R</i> , <i>P</i> and values using Equations (4), (5) and (7), respectively.
10. If $(t \leq T/4)$ then
11. Calculate $p_{i,j}^{t+1}$ using Equation (3)
12. else if $(t \le 2T/4 \text{ and } t > T/4)$ then
13. Calculate $p_{i,j}^{t+1}$ using Equation (3)
14. else if $(t \le 3T/4 \text{ and } t > 2T/4)$ then
15. Calculate $p_{i,j}^{t+1}$ using Equation (8)
16. else
17. Calculate $p_{i,j}^{t+1}$ using Equation (8)
19. end if
20. end for
21. end for
22. $t = t+1$
23. end while
24. Return the best solution.

3. Proposed FRSA

As a heuristic algorithm, the RSA has achieved good results in solving optimization problems due to its novel imitation approach. However, due to the limitations of natural biological behavior, this algorithm still has some drawbacks. In the process of individual optimization, multiple complex situations may be encountered, and the steady decrease in evolutionary factors does not conform to the nonlinear optimization law of algorithms when dealing with complex optimization problems. The team collaboration, search scope, and hunting mechanism of the crocodile population are all updated around the current optimal value. The iterative updating process of individuals lacks a mutation mechanism. Suppose the present optimal individual falls into a local optimum. In that case, it is easy for the population to aggregate quickly, resulting in the algorithm being unable to break free from the constraints of the local extremum.

In this section, based on the shortcomings of the RSA, the FRSA is proposed by introducing different search mechanisms (based on the exploration altitude) in the exploration phase of the algorithm and introducing fluctuation factors in the exploration phase.

3.1. High-Altitude Search Mechanism (Northern Goshawk Exploration)

The northern goshawk randomly selects prey during the prey identification stage of hunting and quickly attacks it. Due to the random selection of targets in the search space, this stage increases the exploration capability of the NGO algorithm. This stage conducts a global search of the search space to determine the optimal region. At this stage, the behavior of northern goshawks in prey selection and attack is described using Equations (9) and (10).

$$p_{i,j}^{t+1} = \begin{cases} p_{i,j}^t + \left(y_{i,j}^t - I \times p_{i,j}\right) \times rand_7 & F_{y_i} < F_i \\ p_{i,j}^t + \left(p_{i,j} - y_{i,j}^t\right) \times rand_8 & F_{y_i} \ge F_i \end{cases}$$
(9)

$$P_i^{t+1} = \begin{cases} P_i^{t+1} & F_i^{new} < F_i \\ P_i^t & F_i^{new} \ge F_i \end{cases}$$
(10)

where y_i is the prey position of the *i*-th northern hawk, F_{y_i} is the objective function value of the prey position of the *i*-th northern hawk, P_i^{t+1} is the position of the *i*-th northern hawk, $p_{i,j}^{t+1}$ is the position of the *i*-th northern hawk in the *j*-th dimension at time *t*, F_i^{new} is the updated objective function value of the *i*-th northern hawk, *I* is a random integer of 1 or 2.

3.2. Low-Altitude Search Mechanism (African Vulture Exploration)

Inspired by the speed at which vultures feed or starve, mathematical modeling is performed using Equation (11), which can be used to simulate the exploration and exploration phases. The satiety rate shows a decreasing trend, and this behavior is simulated using Equation (12).

$$\tau = h \times \left(\sin^{\theta} \left(\frac{\pi}{2} \times \frac{t}{T} \right) + \cos \left(\frac{\pi}{2} \times \frac{t}{T} \right) - 1 \right)$$
(11)

$$\eta = (2 \times rand_9 + 1) \times z \times \left(1 - \frac{t}{T}\right) + \tau \tag{12}$$

where η represents the hunger level of vultures, *t* is the current number of iterations, *T* is the maximum number of iterations, *z* denotes a random value between -1 and 1, and *h* denotes a random value between -2 and 2. When $|\eta| > 1$, the vultures are in the exploration phase. Based on the living habits of vultures, there are two different search methods in the exploration phase of the African vulture optimization algorithm, as shown in Equation (13).

$$p_{i,j}^{t+1} = \begin{cases} Best_j^t - \left| 2 \times rand_{10} \times Best_j^t - p_{i,j}^t \right| \times \eta & \delta \le 0.6\\ Best_j^t - \eta + rand_{11} \times ((ub - lb) \times rand + lb) & \delta > 0.6 \end{cases}$$
(13)

3.3. Novel Dynamic Factor

In the exploration phase of the RSA, due to the lack of the random walkability of the algorithm, the convergence speed of the algorithm is slow, and the optimization accuracy is low at this stage. Therefore, this paper proposes a new *DF* on the original basis to add disturbance factors and to improve the random walkability of the algorithm in the exploration stage, enable the population to explore local regions in small steps, reduce the probability of individuals falling into the local extremum under the influence of fluctuations, and improve the optimization accuracy of the algorithm. The new *DF* is calculated by Equation (14). The *DF* graph for 500 iterations is shown in Figure 1.

$$DF = 0.4 \times (2 \times r - 1) \times e^{\left(-t/T\right)^2}$$
⁽¹⁴⁾

where *t* is the current number of iterations, *T* is the maximum number of iterations, and *r* denotes a random value between 0 and 1.

Figure 1. The dynamic factor graph for 500 iterations.

After adding disturbance factors, the position update rules of the FRSA during the exploration phase are shown in Equation (15).

By utilizing the proposed strategy to improve the RSA, the optimization ability and efficiency of RSA can be effectively improved. The cooperative hunting mode of the FRSA is shown in Figure 2. The pseudocode of the FRSA is shown in Algorithm 2. And the flowchart of FRSA is shown in Figure 3.

3.4. Computational Time Complexity of the FRSA

In the process of optimizing practical problems, in addition to pursuing accuracy, time is also an essential element [32]. The time complexity of an algorithm is an important indicator for measuring the algorithm. Therefore, it is necessary to analyze the time complexity of the improved algorithm compared to the original algorithm. The time complexity is mainly reflected in the algorithm's initialization, fitness evaluation, and update solution.

When there are *N* solutions, the time complexity of the initialization phase is O(N), and the time complexity of the update phase is $O(T \times N) + O(T \times N \times D)$. Therefore,

the algorithm complexity of the RSA can be obtained as $O(N \times (T \times D + 1))$. Compared to the RSA, the time complexity of the FRSA only increases the part of the evolution factor. Assuming the time of the evolution factor is *t*, the time complexity of the FRSA is $O(N \times (T \times D + 1) + t) = O(N \times (T \times D + 1))$. From this, the FRSA proposed in this article does not increase the time complexity.

Figure 2. Cooperative hunting mode of FRSA.

Algorithm 2. Pseudo-code of FRSA

- 1. Define *Dim*, *UB*, *LB*, Max_Iter(*T*), Curr_Iter(*t*), α , β , etc
- 2. Initialize the population randomly p_i (i = 1, 2, ..., m)
- 3. **while** (t < T) **do**
- 4. Evaluate the fitness of each p_i (i = 1, 2, ..., m)
- 5. Find Best solution
- 6. Update the *ES* using Equation (6).
- 7. **for** (i = 1 to m) **do**
- 8. **for** (j = 1 to n) **do**
- 9. Update the η , *R*, *P* and values using Equations (4), (5) and (7), respectively.
- 10. **if** $(t \le 3T/10)$ **then**
- 11. Calculate $p_{i,j}^{t+1}$ using Equation (10)
- 12. **else if** $(t \le 6T/10 \text{ and } t > 3T/10)$ **then**
- 13. Calculate $p_{i,j}^{t+1}$ using Equation (14)
- 14. **else if** $(t \le 8T/10 \text{ and } t > 6T/10)$ **then**
- 15. Calculate $p_{i,j}^{t+1}$ using Equation (15)
- 16. else
- 17. Calculate $p_{i,j}^{t+1}$ using Equation (15)
- 18. **end if**
- 19. end for
- 20. end for
- 21. t = t + 1
- 22. end while
- 23. Return best solution.

Figure 3. Flowchart of FRSA.

4. Analysis of Experiments and Results

4.1. Benchmark Function Sets and Compared Algorithms

This section uses the classic function set and the CEC 2019 set as the benchmark test functions for this article. There are 33 functions, including 7 unimodal, 6 multimodal, and 20 fixed-dimensional multimodal functions. Unimodal functions were used to test the exploration ability of the optimization algorithms due to having only one extreme value. Multimodal functions were used to test the exploration ability of optimization algorithms due to the existence of multiple extreme values. Finally, fixed dimensional parts were used to evaluate the algorithm's total capacity for exploration and exploration. The details of the classic function set are shown in Table 1. The details of the CEC 2019 set are shown in Table 2.

To better compare the results with other algorithms, this study used ten well-known algorithms as benchmark algorithms, including the GA [16], PSO [17], ACO [18], GWO [19], GJO [33], SO [34], TACPSO [35], AGWO [36], EGWO [36], and the RSA [25]. These benchmark algorithms have achieved excellent results in function optimization and are often used as benchmark comparison algorithms. The details of the parameter settings for the algorithms are shown in Table 3. To be fair, the setting information for these parameters was taken from the original literature that proposed these algorithms.

To fairly compare the results of the benchmark algorithms, all algorithms adopted the following unified parameter settings: the number of independent continuous runs of the algorithm was 30, the number of populations was 50, the number of algorithm iterations was 500, and the comparison indicators included the mean, the standard deviation, the *p*-value, the Wilcoxon rank sum test, and the Friedman test [37,38]. The best results of the test are displayed in bold. This simulation testing environment was carried out on a computer with the following features: Intel(R) Core (TM) i5-9400F CPU @ 2.90 GHz and 16 GB RAM, Windows 10, 64-bit operating system.

Function

_

ction set				
	Dim	Range	F _{min}	Туре
	30,100,500	[-100, 100]	0	Unimod
	30,100,500	[-1.28, 1.28]	0	Unimod
	30,100,500	[-100, 100]	0	Unimod

Table 1. The classic func

$f_1(x) = \sum_{i=1}^n x_i^2$	30,100,500	[-100, 100]	0	Unimodal
$f_2(x) = \sum_{i=1}^{i=1}^{n} x_i + \prod_{i=1}^{n} x_i $	30,100,500	[-1.28, 1.28]	0	Unimodal
$f_3(x) = \sum_{i=1}^n \left(\sum_{j=1}^i x_j\right)^2$	30,100,500	[-100, 100]	0	Unimodal
$f_4(x) = \max_i \{ x_i , 1 \le i \le n \}$	30,100,500	[-100, 100]	0	Unimodal
$f_5(x) = \sum_{i=1}^{n-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + (x_i - 1)^2 \right]$	30,100,500	[-30, 30]	0	Unimodal
$f_6(x) = \sum_{i=1}^{n} [x_i + 0.5]^2$	30,100,500	[-100, 100]	0	Unimodal
$f_7(x) = \sum_{i=1}^{n} ix_i^4 + random[0, 1]$	30,100,500	[-1.28, 1.28]	0	Unimodal
$f_8(x) = \sum_{i=1}^n -x_i \sin(\sqrt{ x_i })$	30,100,500	[-500, 500]	-418.9829 imes n	Multimodal
$f_9(x) = \sum_{i=1}^{i-n} [x_i^2 - 10\cos(2\pi x_i) + 10]$	30,100,500	[-5.12, 5.12]	0	Multimodal
$f_{10}(x) = -20 \exp(-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$	30,100,500	[-32, 32]	0	Multimodal
$f_{11}(x) = \frac{1}{4000} \sum_{i=1}^{n} x_i^2 - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$	30,100,500	[-600, 600]	0	Multimodal
$f_{12}(x) = \frac{\pi}{n} \left\{ \begin{array}{c} 10\sin(\pi yi) + \sum_{i=1}^{n-1} (y_i - 1)^2 [1 + 10\sin^2(\pi y_{i+1})] \\ + (y_n - 1)^2 \end{array} \right\} +$				
$\sum_{i=1}^{n} u(x_i, 10, 100, 4)$	30,100,500	[-50, 50]	0	Multimodal
$y_{i} = 1 + \frac{a_{i-1}}{4}$ $u(x_{i}, a, k, m) = \begin{cases} k(x_{i} - a)^{m}, x_{i} > a \\ 0, -a < x_{i} < a \\ k(-x_{i} - a)^{m}, x_{i} < -a \end{cases}$				
$f_{13}(x) = 0.1 \left\{ \begin{array}{c} \sin^2(3\pi x_1) + \sum_{i=1}^{n} (x_i - 1)^2 \left[1 + \sin^2(3\pi x_i + 1) \right] \\ + (x_n - 1)^2 \left[1 + \sin^2(2\pi x_n) \right] \end{array} \right\} + $	30,100,500	[-50, 50]	0	Multimodal
$f_{14}(x) = \left(\frac{1}{500} + \sum_{j=1}^{25} \frac{1}{j + \sum_{i=1}^{2} (x_i - a_{ij})^6}\right)^{-1}$	2	[-65.536, 65.536]	1	Multimodal
$f_{15}(x) = \sum_{i=1}^{N} \left[a_i - \frac{x_1(b_i^2 + b_i x_2)}{b_i^2 + b_i x_2 + x_4} \right]^2$	4	[-5, 5]	0.0003	Multimodal
$f_{16}(x) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$	2	[-5,5]	-1.0316	Multimodal
$f_{17}(x) = \left(x_2 - \frac{5.1}{4\pi^2}x_1^2 + \frac{5}{\pi}x_1 - 6\right)^2 + 10\left(1 - \frac{1}{8\pi}\right)\cos x_1 + 10$	2	[-5, 5]	0.398	Multimodal
$f_{18}(x) = \left[1 + (x_1 + x_2 + 1)^2 (19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)\right]$	2	[2 2]	2	Multin adal
$\times \left[30 + (2x_1 - 3x_2)^2 \times \left(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2 \right) \right]$	2	[-2, 2]	3	Multimodal
$f_{19}(x) = -\sum_{i=1}^{4} c_i \exp\left(-\sum_{j=1}^{3} a_{ij} (x_j - p_{ij})^2\right)$	3	[0, 1]	-3.86	Multimodal
$f_{20}(x) = -\sum_{i=1}^{4} c_i \exp\left(-\sum_{j=1}^{6} a_{ij} (x_j - p_{ij})^2\right)$	6	[0, 1]	-3.32	Multimodal
$f_{21}(x) = -\sum_{i=1}^{5} \left[(X - a_i)(X - a_i)^T + c_i \right]^{-1}$	4	[0, 10]	-10.1532	Multimodal
$f_{22}(x) = -\sum_{i=1}^{7} \left[(X - a_i)(X - a_i)^T + c_i \right]^{-1}$	4	[0, 10]	-10.4029	Multimodal
$f_{23}(x) = -\sum_{i=1}^{10} \left[(X - a_i)(X - a_i)^T + c_i \right]^{-1}$	4	[0, 10]	-10.5364	Multimodal

No.	Functions	Dim	Range	$F_i^* = F_i(X^*)$
F1	Storn's Chebyshev Polynomial Fitting Problem	9	[-8192, 8192]	1
F2	Inverse Hilbert Matrix Problem	16	[-16,384, 16,384]	1
F3	Lennard–Jones Minimum Energy Cluster	18	[-4, 4]	1
F4	Rastrigin's Function	10	[-100, 100]	1
F5	Griewangk's Function	10	[-100, 100]	1
F6	Weierstrass Function	10	[-100, 100]	1
F7	Modified Schwefel's Function	10	[-100, 100]	1
F8	Expanded Schaffer's F6 Function	10	[-100, 100]	1
F9	Happy Cat Function	10	[-100, 100]	1
F10	Ackley Function	10	[-100, 100]	1

Table 2. The CEC 2019 set.

Table 3. Parameter settings for algorithms.

Algorithms	Parameters and Assignments
GA	$lpha \in [-0.5, \ 1.5]$
PSO	$c_1 = 2, c_2 = 2, W_{\min} = 0.2, W_{\max} = 0.9$
ACO	$\alpha = 1, \ \beta = 2, \ \rho = 0.05$
GWO	$a = 2$ (linearly decreases over iterations), $r_1 \in [0, 1]$, $r_2 \in [0, 1]$
GJO	a = 1.5(linearly decreases over iterations)
SO	a = 2(linearly decreases over iterations)
TACPSO	$c_1 = 2, c_2 = 2, W_{\min} = 0.2, W_{\max} = 0.9$
AGWO	B = 0.8, $a = 2$ (linearly decreases over iterations)
EGWO	$a = 2$ (linearly decreases over iterations), $r_1 \in [0, 1]$, $r_2 \in [0, 1]$
RSA	$\varepsilon = 0.1, \ \omega = 0.1$
FRSA	$\varepsilon = 0.1, \ \theta = 2.5, \ L_1 = 0.8, \ L_2 = 0.2,$

4.2. Results Comparison and Analysis

To fully validate the robustness and effectiveness of the algorithm for different dimensional problems, this study adopted three dimensions (30, 100, 500) for the non-fixed dimensional functions (unimodal and multimodal functions).

Table 4 shows the results of the non-fixed dimensional functions in 30 dimensions, including the mean (Mean), standard deviation (Std), and Friedman test of 11 algorithms. Figure 4 shows the iterative curves of these 11 algorithms for solving 13 non-fixed dimensional functions. Figure 5 is a boxplot of the results obtained by these 11 algorithms after solving 13 functions with non-fixed dimensions. The boxplot results were analyzed from five perspectives: the minimum, lower quartile, median, upper quartile, and maximum. By convergence curves and boxplots, the algorithm can be more intuitively and comprehensively characterized for solving functional problems. Out of 13 non-fixed dimensional functions, the FRSA achieved ten optimal values, with the highest number among all 11 algorithms. The Friedman value shows the overall results obtained by each algorithm in 13 functions. In the Friedman value, the FRSA achieved the mark of 2.2115, ranking first in the Friedman rank, indicating that the FRSA achieved better results than the other algorithms in 30 dimensions.

Table 5 shows the results of the non-fixed dimensional functions in 100 dimensions, including the Mean, Std, and Friedman test of 11 algorithms. Figure 6 shows the iterative curves of these 11 algorithms for solving 13 non-fixed dimensional functions. Figure 7 is a boxplot of the results obtained by these 11 algorithms after solving 13 functions with non-fixed dimensions. The boxplot results were analyzed from five perspectives: the minimum, lower quartile, median, upper quartile, and maximum. By convergence curves and boxplots, the algorithm can be more intuitively and comprehensively characterized for solving functional problems. Out of the 13 non-fixed dimensional functions, the FRSA achieved 11 optimal values, with the highest number among all 11 algorithms. The Friedman value shows the overall results obtained by each algorithm in the 13 functions. For the Friedman

value, the FRSA achieved a mark of 2.0192, ranking first in the Friedman test, and indicating that the FRSA achieved better results than the other algorithms in 100 dimensions.

Figure 4. The convergence curves of the 11 algorithms with Dim = 30.

Figure 5. Boxplot analysis of classic functions (F1–F13) with Dim = 30.

Table 4. Results and comparison of	f 11 algorithms on 13 classic function	ons with $Dim = 30$.
------------------------------------	--	-----------------------

F(x)		GA	PSO	ACO	GWO	GJO	SO	TACPSO	AGWO	EGWO	RSA	FRSA
-	Mean	$2.0706 imes 10^4$	3.3853×10^{2}	$4.5737 imes 10^{-3}$	$1.0329 imes 10^{-27}$	$1.7311 imes 10^{-54}$	$3.9891 imes 10^{-94}$	$1.5111 imes10^{-1}$	$3.2767 imes 10^{-317}$	$1.2009 imes 10^{-30}$	$0.0000 imes 10^0$	$0.0000 imes 10^0$
F1	Std	7.1489×10^3	1.6168×10^2	6.7589×10^{-3}	1.0808×10^{-27}	4.1785×10^{-54}	1.0339×10^{-93}	2.3348×10^{-1}	$0.0000 imes10^{0}$	$3.8756 imes 10^{-30}$	$0.0000 imes 10^0$	$0.0000 imes 10^0$
FO	Mean	$5.6471 imes 10^1$	$1.7592 imes 10^1$	2.5207×10^{-3}	1.0724×10^{-16}	$2.0077 imes 10^{-32}$	$1.8981 imes 10^{-42}$	$1.5195 imes 10^{0}$	$6.1333 imes 10^{-175}$	$8.6619 imes 10^{-20}$	$0.0000 imes10^{0}$	$0.0000 imes 10^0$
F2	Std	$9.9694 imes10^{0}$	$9.9392 imes 10^0$	1.9247×10^{-3}	$8.1353 imes 10^{-17}$	$2.6567 imes 10^{-32}$	$7.8124 imes 10^{-42}$	$3.0452 imes 10^0$	$0.0000 imes10^{0}$	$2.0027 imes 10^{-19}$	$0.0000 imes 10^0$	$0.0000 imes 10^0$
E2	Mean	5.2325×10^4	8.7587×10^3	$3.2509 imes 10^4$	1.0617×10^{-5}	$8.0928 imes 10^{-18}$	$8.5384 imes 10^{-56}$	$1.1348 imes 10^3$	$5.2178 imes 10^{-264}$	$1.2199 imes 10^{-3}$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F3	Std	$1.5868 imes 10^4$	5.3330×10^3	$7.1037 imes 10^3$	$2.7063 imes 10^{-5}$	$2.6301 imes 10^{-17}$	$3.6611 imes 10^{-55}$	$1.1917 imes 10^3$	$0.0000 imes10^{0}$	$4.0506 imes 10^{-3}$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
E4	Mean	7.0290×10^1	1.0057×10^1	$8.3925 imes 10^1$	$7.6327 imes 10^{-7}$	$5.5119 imes 10^{-16}$	$5.6706 imes 10^{-40}$	$9.7094 imes 10^0$	$8.5240 imes 10^{-155}$	3.5666×10^{-1}	$0.0000 imes 10^0$	$0.0000 imes 10^0$
F4	Std	7.2884×10^0	2.6342×10^0	$1.1652 imes 10^1$	$8.4243 imes10^{-7}$	$1.3025 imes 10^{-15}$	$1.9765 imes 10^{-39}$	$3.4154 imes 10^0$	$4.3706 imes 10^{-154}$	1.3297×10^0	$0.0000 imes 10^0$	$0.0000 imes 10^0$
DE.	Mean	$2.1143 imes 10^7$	$1.3458 imes 10^4$	$6.3852 imes 10^2$	$2.6950 imes 10^1$	$2.7744 imes 10^1$	$2.0242 imes 10^1$	$4.2784 imes 10^2$	$2.8334 imes 10^1$	$2.7928 imes 10^1$	$1.7547 imes 10^1$	$9.0588 imes 10^{-29}$
F5	Std	$1.5073 imes 10^7$	$9.7957 imes 10^3$	$9.3899 imes 10^2$	$7.1489 imes 10^{-1}$	$7.5092 imes 10^{-1}$	$1.1160 imes 10^1$	$9.0541 imes 10^2$	$3.9161 imes 10^{-1}$	$8.8237 imes 10^{-1}$	1.4272×10^1	$1.3586 imes 10^{-29}$
E6	Mean	2.2120×10^4	3.3844×10^2	$2.8991 imes10^{-3}$	$6.9336 imes 10^{-1}$	2.5998×10^{0}	$7.4686 imes 10^{-1}$	$2.8608 imes 10^{-1}$	$5.1108 imes 10^0$	$3.1744 imes 10^0$	$6.9887 imes 10^0$	$9.3967 imes 10^{-3}$
го	Std	8.1756×10^{3}	1.3189×10^{2}	$4.3952 imes10^{-3}$	$3.2769 imes 10^{-1}$	$4.5246 imes 10^{-1}$	$7.2966 imes 10^{-1}$	$7.1367 imes 10^{-1}$	$3.2531 imes 10^{-1}$	$6.9967 imes 10^{-1}$	$4.0996 imes 10^{-1}$	$7.3219 imes 10^{-3}$
F7	Mean	$1.4246 imes 10^1$	$1.4084 imes 10^0$	$9.2893 imes 10^{-2}$	$2.1075 imes 10^{-3}$	$5.1434 imes10^{-4}$	$2.9363 imes10^{-4}$	$8.4275 imes 10^{-2}$	$1.2253 imes10^{-4}$	$7.9773 imes 10^{-3}$	$1.2720 imes10^{-4}$	$3.2019 imes10^{-4}$
F7	Std	$6.4862 imes 10^0$	$5.8085 imes 10^0$	$3.6308 imes 10^{-2}$	$1.4913 imes 10^{-3}$	$3.3543 imes10^{-4}$	$2.2856 imes 10^{-4}$	$3.3336 imes 10^{-2}$	$9.7020 imes10^{-5}$	$4.0919 imes10^{-3}$	$1.4087 imes10^{-4}$	$3.1313 imes10^{-4}$
EQ	Mean	-2.1820×10^{3}	-8.0517×10^{3}	-7.2210×10^{3}	-5.8586×10^{3}	-4.3233×10^{3}	$-1.248 imes10^4$	-8.6030×10^{3}	-2.7317×10^{3}	-6.5965×10^{3}	-5.4035×10^{3}	-1.1553×10^{4}
10	Std	4.0040×10^2	9.6639×10^2	1.0003×10^{3}	7.5792×10^{2}	1.2048×10^{3}	$2.3899 imes 10^2$	4.6512×10^{2}	4.6201×10^{2}	7.6715×10^{2}	3.1866×10^{2}	1.6853×10^{3}
FQ	Mean	2.5863×10^{2}	2.0098×10^{2}	2.4292×10^{2}	$1.8876 imes 10^{0}$	$0.0000 imes10^{0}$	5.2470×10^{0}	$7.3533 imes 10^1$	$0.0000 imes10^{0}$	1.5967×10^{2}	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
1.9	Std	$4.5208 imes 10^1$	2.1856×10^{1}	2.2226×10^{1}	$2.5924 imes 10^{0}$	$0.0000 imes10^{0}$	$1.2881 imes 10^1$	$1.8901 imes 10^1$	$0.0000 imes10^{0}$	$3.8336 imes 10^1$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F10	Mean	$1.9867 imes 10^1$	$5.3154 imes 10^0$	1.2859×10^{1}	$1.0297 imes 10^{-13}$	$7.2831 imes 10^{-15}$	$2.8853 imes 10^{-1}$	2.2423×10^{0}	$1.7171 imes 10^{-15}$	$1.9107 imes 10^{-1}$	$8.8818 imes 10^{-16}$	$8.8818 imes 10^{-16}$
F10	Std	$4.6960 imes 10^{-1}$	$1.0010 imes 10^0$	$9.8810 imes 10^0$	$1.8565 imes 10^{-14}$	$1.4454 imes 10^{-15}$	$7.5143 imes 10^{-1}$	$7.3942 imes 10^{-1}$	$1.5283 imes 10^{-15}$	$7.3243 imes 10^{-1}$	$0.0000 imes10^{0}$	$0.0000 imes 10^0$
E11	Mean	1.8735×10^{2}	$4.0848 imes 10^0$	$1.7211 imes 10^{-1}$	$4.9998 imes 10^{-3}$	$0.0000 imes10^{0}$	$9.1944 imes 10^{-2}$	$1.3227 imes 10^{-1}$	$0.0000 imes10^{0}$	1.1550×10^{-2}	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
L11	Std	$6.6774 imes 10^1$	1.8224×10^0	$2.7165 imes 10^{-1}$	$8.7540 imes 10^{-3}$	$0.0000 imes10^{0}$	$1.7896 imes 10^{-1}$	$1.5411 imes 10^{-1}$	$0.0000 imes10^{0}$	$2.1161 imes 10^{-2}$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F12	Mean	1.7475×10^{7}	5.9962×10^{0}	$3.2016 imes 10^{0}$	4.7372×10^{-2}	$2.1168 imes 10^{-1}$	$1.2141 imes 10^{-1}$	$1.7178 imes 10^0$	$6.7014 imes 10^{-1}$	3.1555×10^{0}	1.2588×10^{0}	$6.1299 imes10^{-4}$
1.17	Std	2.4583×10^{7}	3.0819×10^{0}	$5.8093 imes 10^{0}$	3.6729×10^{-2}	$6.8287 imes 10^{-2}$	$2.4035 imes 10^{-1}$	1.6616×10^{0}	$1.4300 imes 10^{-1}$	$3.1014 imes 10^{0}$	$3.4982 imes 10^{-1}$	$4.8674 imes10^{-4}$
F13	Mean	5.7420×10^{7}	$2.8474 imes 10^1$	2.2313×10^{0}	$6.8191 imes 10^{-1}$	1.7212×10^{0}	$4.8266 imes 10^{-1}$	$4.1897 imes 10^0$	2.5629×10^{0}	2.6787×10^{0}	$4.1579 imes 10^{-1}$	$3.8688 imes 10^{-31}$
	Std	4.5158×10^{7}	2.9526×10^{1}	5.0535×10^{0}	2.5619×10^{-1}	$2.4044 imes 10^{-1}$	$6.9409 imes 10^{-1}$	4.8206×10^{0}	8.7892×10^{-2}	5.8772×10^{-1}	8.3308×10^{-1}	$2.0585 imes 10^{-31}$
Friedm	an value	1.0423×10^1	9.2692×10^{0}	$8.3846 imes 10^0$	$5.1538 imes 10^0$	$4.6923 imes 10^0$	$4.7308 imes 10^0$	$7.5385 imes 10^0$	$3.5385 imes 10^0$	$6.8077 imes 10^0$	$3.2500 imes 10^0$	2.2115×10^{0}
Friedm	an rank	11	10	9	6	4	5	8	3	7	2	1

 Table 5. Results and comparison of 11 algorithms on 13 classic functions with Dim =100.

F(x)		GA	PSO	ACO	GWO	GJO	SO	TACPSO	AGWO	EGWO	RSA	FRSA
	Mean	2.2803×10^5	4.8382×10^3	1.1718×10^5	$1.2883 imes 10^{-12}$	$7.5690 imes 10^{-28}$	$7.3577 imes 10^{-82}$	6.3258×10^{3}	$2.3337 imes 10^{-244}$	$2.9059 imes 10^{-16}$	$0.0000 imes 10^0$	$0.0000 imes 10^{0}$
F1	Std	$2.6407 imes 10^4$	2.6614×10^3	1.2634×10^4	7.2714×10^{-13}	$2.0721 imes 10^{-27}$	1.6214×10^{-81}	$1.9044 imes 10^3$	$0.0000 imes10^{0}$	$4.3702 imes 10^{-16}$	$0.0000 imes 10^0$	$0.0000 imes10^{0}$
	Mean	1.3878×10^3	$7.9551 imes 10^1$	1.0183×10^{24}	4.0761×10^{-8}	$1.7716 imes 10^{-17}$	$1.1687 imes 10^{-35}$	$1.0765 imes 10^2$	$3.5171 imes 10^{-127}$	$2.1585 imes 10^{-10}$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F2	Std	$6.1674 imes 10^3$	$2.0688 imes 10^1$	4.2616×10^{24}	1.2357×10^{-8}	$1.9050 imes 10^{-17}$	1.1341×10^{-35}	$2.4822 imes 10^1$	$1.9264 imes 10^{-126}$	$2.7251 imes 10^{-10}$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
FO	Mean	$6.4151 imes 10^5$	1.2058×10^5	$5.4194 imes 10^5$	$5.4654 imes 10^2$	$1.1960 imes 10^0$	$1.9856 imes 10^{-27}$	7.9658×10^4	$9.4366 imes 10^{-220}$	$2.3095 imes 10^4$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F3	Std	$1.8635 imes 10^5$	$7.0068 imes 10^4$	$5.8785 imes 10^4$	$5.7433 imes 10^2$	$5.0520 imes 10^0$	$1.0876 imes 10^{-26}$	1.7856×10^4	$0.0000 imes10^{0}$	$1.5626 imes 10^4$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
Ε4	Mean	$9.4654 imes10^1$	$2.1438 imes10^1$	$9.7253 imes 10^1$	1.3792×10^0	$5.4031 imes 10^0$	$1.1115 imes 10^{-36}$	$4.4837 imes 10^1$	$1.4570 imes 10^{-130}$	$7.1629 imes 10^1$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F4	Std	$1.8813 imes 10^0$	$4.9340 imes 10^0$	$1.1638 imes 10^0$	$1.5201 imes 10^0$	$8.6012 imes 10^0$	$1.6885 imes 10^{-36}$	$3.1827 imes 10^0$	$5.4253 imes 10^{-130}$	$8.6435 imes 10^0$	$0.0000 imes 10^0$	$0.0000 imes10^{0}$
DE.	Mean	8.5046×10^8	$5.2446 imes 10^5$	$1.0445 imes 10^9$	$9.7690 imes 10^1$	$9.8283 imes 10^1$	$6.4281 imes 10^1$	3.2768×10^6	$9.8749 imes 10^1$	$9.8175 imes 10^1$	$9.8988 imes 10^1$	$3.8975 imes 10^{-28}$
гэ	Std	$1.4410 imes 10^8$	4.6652×10^5	$2.9092 imes 10^8$	$7.8639 imes 10^{-1}$	$4.8343 imes 10^{-1}$	$4.1497 imes10^1$	$2.0490 imes 10^6$	$2.4079 imes 10^{-1}$	$6.4582 imes 10^{-1}$	$3.7169 imes 10^{-3}$	$2.2620 imes 10^{-29}$
E 6	Mean	$2.1753 imes 10^5$	$3.9481 imes 10^3$	1.1119×10^5	$1.0013 imes 10^1$	$1.6765 imes 10^1$	$1.4058 imes10^1$	6.3639×10^3	$2.2476 imes 10^1$	$1.4930 imes 10^1$	$2.4607 imes 10^1$	$4.1033 imes 10^{-2}$
го	Std	2.1653×10^4	1.5048×10^3	$1.1425 imes 10^4$	1.2537×10^{0}	$7.1104 imes10^{-1}$	$1.0657 imes 10^1$	2.8579×10^{3}	$3.1181 imes 10^{-1}$	1.0606×10^{0}	$2.0760 imes 10^{-1}$	$2.9663 imes 10^{-2}$
F7	Mean	1.2316×10^3	$5.3044 imes 10^1$	8.4073×10^{2}	7.4525×10^{-3}	1.2061×10^{-3}	$2.2315 imes10^{-4}$	$8.4554 imes 10^0$	2.5098×10^{-4}	$2.9401 imes 10^{-2}$	$1.1850 imes10^{-4}$	$2.4755 imes 10^{-4}$
Γ7	Std	2.2446×10^{2}	$8.5484 imes 10^1$	3.3353×10^{2}	$2.8388 imes 10^{-3}$	$5.1273 imes 10^{-4}$	$2.4369 imes 10^{-4}$	$4.9534 imes 10^0$	$2.3744 imes 10^{-4}$	1.2773×10^{-2}	$9.1632 imes10^{-5}$	$2.2133 imes10^{-4}$
EQ	Mean	$-4.1683 imes10^3$	$-1.5010 imes10^4$	$-1.5812 imes10^4$	$-1.6026 imes10^4$	-9.1616×10^{3}	$-4.1583 imes10^4$	$-2.2513 imes10^4$	$-5.0509 imes10^3$	$-1.7702 imes 10^4$	$-1.7056 imes10^4$	$-3.6466 imes10^4$
го	Std	$9.7178 imes 10^2$	2.6230×10^{3}	2.7296×10^{3}	2.4537×10^{3}	4.2288×10^{3}	$5.2761 imes 10^2$	1.9590×10^{3}	$9.0114 imes 10^2$	1.4842×10^3	7.6478×10^2	7.1490×10^{3}
FO	Mean	1.5280×10^3	8.7473×10^{2}	1.3949×10^{3}	$1.0982 imes 10^1$	$1.5158 imes 10^{-14}$	$1.4159 imes 10^1$	4.6367×10^{2}	$0.0000 imes10^{0}$	8.3312×10^{2}	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
Г9	Std	$6.4386 imes 10^1$	$8.6547 imes 10^1$	$4.5366 imes 10^1$	8.3224×10^0	$5.7687 imes 10^{-14}$	$3.0090 imes 10^1$	5.1780×10^{1}	$0.0000 imes10^{0}$	1.4958×10^{2}	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
E10	Mean	2.0786×10^{1}	$9.0803 imes 10^0$	$2.0778 imes 10^1$	$1.1377 imes 10^{-7}$	$5.0271 imes 10^{-14}$	$4.4409 imes 10^{-15}$	1.2679×10^{1}	$4.2040 imes 10^{-15}$	$8.4006 imes 10^{-2}$	$8.8818 imes 10^{-16}$	$8.8818 imes 10^{-16}$
F10	Std	$1.0176 imes 10^{-1}$	2.4931×10^{0}	$4.0391 imes 10^{-2}$	$3.5782 imes 10^{-8}$	$9.8451 imes 10^{-15}$	$0.0000 imes 10^0$	1.0867×10^{0}	$9.0135 imes 10^{-16}$	$4.6012 imes 10^{-1}$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F 11	Mean	1.9914×10^3	3.5916×10^{1}	1.0510×10^{3}	5.6641×10^{-3}	$0.0000 imes10^{0}$	$0.0000 imes 10^0$	5.5387×10^{1}	$0.0000 imes10^{0}$	5.0051×10^{-3}	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
ГП	Std	2.1758×10^{2}	1.3366×10^{1}	1.1905×10^{2}	1.2302×10^{-2}	$0.0000 imes10^{0}$	$0.0000 imes 10^0$	1.6313×10^{1}	$0.0000 imes10^{0}$	$8.8528 imes 10^{-3}$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
E12	Mean	1.7624×10^9	2.4562×10^{3}	3.1606×10^{9}	$2.5960 imes 10^{-1}$	$6.0942 imes 10^{-1}$	$1.7964 imes 10^{-1}$	$1.4874 imes 10^5$	$1.0179 imes 10^0$	$1.0922 imes 10^1$	$1.2477 imes 10^{0}$	$2.3383 imes10^{-4}$
F1Z	Std	$4.3233 imes 10^8$	$1.3099 imes 10^4$	$3.0994 imes 10^8$	5.0711×10^{-2}	$7.7430 imes 10^{-2}$	$3.7770 imes 10^{-1}$	4.4671×10^{5}	$6.5885 imes 10^{-2}$	$8.0541 imes 10^0$	$8.0783 imes 10^{-2}$	$2.0208 imes10^{-4}$
E12	Mean	$3.4134 imes 10^9$	4.4552×10^4	5.6359×10^{9}	$6.8948 imes 10^0$	8.3742×10^{0}	$2.1756 imes 10^0$	2.4624×10^6	9.6505×10^{0}	2.6571×10^{1}	9.6741×10^{0}	$6.2822 imes 10^{-31}$
F15	Std	6.5988×10^{8}	8.5336×10^{4}	$5.0013 imes 10^8$	4.6552×10^{-1}	$2.3595 imes 10^{-1}$	3.7113×10^{0}	2.2076×10^{6}	6.1528×10^{-2}	3.9839×10^{1}	$5.8643 imes 10^{-1}$	$1.8088 imes 10^{-31}$
Friedm	an value	$1.0077 imes 10^1$	8.4615×10^{0}	$9.6923 imes 10^0$	$5.4231 imes 10^0$	$5.0769 imes 10^0$	$3.8077 imes 10^0$	8.3077×10^{0}	$3.5385 imes 10^0$	$6.6923 imes 10^0$	2.9038×10^{0}	$2.0192 imes 10^0$
Friedm	nan rank	11	9	10	6	5	4	8	3	7	2	1

Figure 6. The convergence curves of the 11 algorithms with Dim = 100.

Figure 7. Boxplot analysis of classic functions (F1–F13) with Dim = 100.

Table 6 shows the results of non-fixed dimensional functions at 500 dimensions, including the Mean, Std, and Friedman test of 11 algorithms. Figure 8 shows the iterative curves of these 11 algorithms for solving 13 non-fixed dimensional functions. Figure 9 is a boxplot of the results obtained by these 11 algorithms after solving 13 functions with non-fixed dimensions. The boxplot results were analyzed from five perspectives: the minimum, lower quartile, median, upper quartile, and maximum. By convergence curves and boxplots, the algorithm can be more intuitively and comprehensively characterized for solving functional problems. Out of the 13 non-fixed dimensional functions, the FRSA achieved 11 optimal values, with the highest number among all 11 algorithms. The Friedman value shows the overall results obtained by each algorithm in the 13 functions. For the Friedman value, the FRSA achieved a mark of 1.9615, ranking first in the Friedman test, and indicating that the FRSA achieved better results than the other algorithms in 500 dimensions.

F(x)		GA	PSO	ACO	GWO	GJO	SO	TACPSO	AGWO	EGWO	RSA	FRSA
121	Mean	$1.5128 imes 10^6$	$3.9219 imes 10^4$	$1.5590 imes 10^6$	$1.8644 imes10^{-3}$	$9.6545 imes 10^{-13}$	$7.1375 imes 10^{-71}$	$2.9775 imes 10^5$	$1.9542 imes 10^{-16}$	$6.1307 imes10^{-6}$	$0.0000 imes 10^0$	$0.0000 imes10^{0}$
FI	Std	$3.6434 imes 10^4$	1.3201×10^4	$3.6597 imes 10^4$	7.6449×10^{-4}	$9.7800 imes 10^{-13}$	$2.4182 imes 10^{-70}$	$1.9178 imes 10^4$	$1.0703 imes 10^{-15}$	6.2289×10^{-6}	$0.0000 imes 10^0$	$0.0000 imes 10^0$
FO	Mean	$6.0554 imes 10^{226}$	4.5845×10^2	$4.1585 imes 10^{268}$	1.0881×10^{-2}	6.4312×10^{-9}	$1.2654 imes 10^{-31}$	6.3084×10^{17}	$9.6613 imes 10^{-12}$	1.8407×10^{-4}	$0.0000 imes10^{0}$	$0.0000 imes 10^0$
F2	Std	Inf	1.2379×10^2	Inf	$1.7840 imes10^{-3}$	4.2103×10^{-9}	$1.7875 imes 10^{-31}$	3.4548×10^{18}	$5.2623 imes 10^{-11}$	1.4881×10^{-4}	$0.0000 imes10^{0}$	$0.0000 imes 10^0$
FO	Mean	$2.1316 imes 10^7$	$2.8293 imes 10^6$	$1.3418 imes 10^7$	$3.1425 imes 10^5$	$5.1301 imes 10^4$	$8.2145 imes 10^2$	$2.0650 imes10^6$	1.2415×10^{-5}	$1.5987 imes 10^6$	$0.0000 imes10^{0}$	$0.0000 imes 10^0$
F3	Std	$6.9901 imes 10^6$	$1.4370 imes10^6$	$1.3908 imes10^6$	$7.7943 imes10^4$	$5.3267 imes10^4$	$4.4993 imes10^3$	$4.4012 imes 10^5$	4.9557×10^{-5}	$2.9634 imes10^5$	$0.0000 imes10^{0}$	$0.0000 imes 10^0$
Ε4	Mean	$9.9161 imes 10^1$	$3.5159 imes 10^1$	$9.9451 imes 10^1$	$6.5006 imes 10^1$	$8.2792 imes 10^1$	1.4350×10^{-33}	$7.0229 imes 10^1$	$9.2608 imes 10^1$	$9.6997 imes 10^1$	$0.0000 imes 10^0$	$0.0000 imes 10^0$
F4	Std	$2.3489 imes10^{-1}$	5.2254×10^{0}	$1.9881 imes10^{-1}$	$4.1463 imes 10^0$	$4.3209 imes 10^{0}$	1.9441×10^{-33}	$2.9160 imes 10^0$	$2.5175 imes 10^1$	$9.6498 imes10^{-1}$	$0.0000 imes10^{0}$	$0.0000 imes 10^0$
	Mean	$6.7974 imes 10^9$	$8.5251 imes 10^6$	$7.3446 imes 10^9$	$4.9803 imes10^2$	$4.9826 imes 10^2$	$3.3551 imes 10^2$	$4.1692 imes 10^8$	$4.9892 imes 10^2$	$2.0683 imes 10^5$	$4.9899 imes 10^2$	$2.3167 imes 10^{-27}$
F5	Std	$2.6217 imes10^8$	$5.6668 imes 10^6$	$3.3600 imes 10^8$	$3.5404 imes10^{-1}$	$1.4870 imes 10^{-1}$	$2.1069 imes 10^2$	$3.9772 imes 10^7$	6.8551×10^{-2}	$3.5928 imes 10^5$	6.2629×10^{-3}	$6.3915 imes10^{-29}$
E(Mean	$1.5114 imes 10^6$	3.5914×10^4	$1.5648 imes 10^6$	$9.1100 imes 10^1$	$1.1002 imes 10^2$	$6.6077 imes 10^1$	$2.9553 imes 10^5$	1.2326×10^2	$1.0553 imes 10^2$	$1.2463 imes 10^2$	$2.6280 imes10^{-1}$
F6	Std	$3.8311 imes 10^4$	$1.7013 imes 10^4$	$3.9734 imes10^4$	$1.8331 imes 10^0$	$1.2181 imes 10^0$	$5.6041 imes 10^1$	$1.6752 imes 10^4$	4.2145×10^{-1}	$1.6851 imes 10^0$	$2.1010 imes10^{-1}$	$2.2051 imes10^{-1}$
1.7	Mean	$5.6877 imes 10^4$	2.2092×10^3	$5.9688 imes10^4$	$5.1280 imes10^{-2}$	6.5673×10^{-3}	$2.4772 imes10^{-4}$	$5.5137 imes 10^3$	$4.1447 imes10^{-3}$	$2.2992 imes 10^0$	$1.6209 imes10^{-4}$	$2.8637 imes10^{-4}$
F7	Std	$1.7801 imes 10^3$	$1.1383 imes 10^3$	$2.5418 imes 10^3$	$1.2074 imes10^{-2}$	$3.9213 imes10^{-3}$	$1.6724 imes10^{-4}$	$1.0697 imes 10^3$	$2.4388 imes10^{-3}$	$2.0536 imes 10^0$	$1.9236 imes10^{-4}$	$2.5568 imes10^{-4}$
FO	Mean	$-8.6802 imes 10^3$	$-3.6383 imes10^4$	$-3.1971 imes10^4$	$-5.3591 imes10^4$	$-2.6579 imes10^4$	$-2.0786 imes10^5$	$-6.3227 imes10^4$	$-1.0502 imes10^4$	$-4.6206 imes 10^4$	$-6.1323 imes10^4$	-1.8676×10^{5}
F8	Std	1.6314×10^3	5.2307×10^3	$6.0899 imes 10^3$	$1.3793 imes 10^4$	$1.4002 imes 10^4$	$3.1591 imes 10^3$	$2.8055 imes 10^3$	$1.2858 imes10^3$	2.9204×10^3	$5.3327 imes 10^3$	$3.2489 imes 10^4$
FO	Mean	$8.6929 imes 10^3$	$4.4339 imes 10^3$	$8.8775 imes 10^3$	$7.5607 imes 10^1$	$7.3063 imes 10^{-12}$	$7.3183 imes10^{0}$	$4.4337 imes 10^3$	3.0028×10^{-10}	$5.0232 imes 10^3$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F9	Std	$1.2985 imes 10^2$	$5.4177 imes 10^2$	$1.0714 imes10^2$	$2.1468 imes 10^1$	$2.8809 imes 10^{-12}$	$3.9910 imes 10^1$	$1.3537 imes 10^2$	1.6447×10^{-9}	$1.1423 imes 10^3$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F10	Mean	$2.1105 imes 10^1$	$1.1398 imes 10^1$	$2.1018 imes10^1$	$1.8561 imes 10^{-3}$	3.1785×10^{-8}	$4.9146 imes 10^{-15}$	$1.8242 imes 10^1$	$2.6645 imes 10^{-15}$	1.5959×10^{-4}	$8.8818 imes10^{-16}$	$8.8818 imes10^{-16}$
F10	Std	$2.8935 imes 10^{-2}$	$3.5690 imes 10^0$	1.0087×10^{-2}	3.7330×10^{-4}	$1.5956 imes 10^{-8}$	$1.2283 imes 10^{-15}$	$1.9259 imes 10^{-1}$	$1.8067 imes 10^{-15}$	$9.5884 imes10^{-5}$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
544	Mean	1.3426×10^4	3.0914×10^2	$1.4057 imes 10^4$	$2.0278 imes 10^{-2}$	$1.0707 imes 10^{-13}$	$0.0000 imes10^{0}$	$2.6951 imes 10^3$	$0.0000 imes10^{0}$	1.6181×10^{-2}	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F11	Std	$3.5235 imes 10^2$	$9.0526 imes 10^1$	$3.4112 imes 10^2$	4.1331×10^{-2}	9.3215×10^{-14}	$0.0000 imes10^{0}$	$1.5936 imes 10^2$	$0.0000 imes10^{0}$	$3.4848 imes10^{-2}$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
F10	Mean	$1.7068 imes10^{10}$	$2.0914 imes 10^5$	1.8490×10^{10}	$7.6115 imes10^{-1}$	$9.3858 imes 10^{-1}$	$5.1918 imes10^{-2}$	$3.4826 imes10^8$	$1.1681 imes 10^0$	$5.9375 imes10^7$	$1.2016 imes 10^0$	$2.1631 imes10^{-4}$
F12	Std	7.0596×10^8	$3.1495 imes 10^5$	$6.2478 imes 10^8$	7.5436×10^{-2}	2.6207×10^{-2}	2.0980×10^{-1}	$7.1676 imes 10^7$	1.0173×10^{-2}	$6.2911 imes 10^7$	$2.9273 imes 10^{-3}$	$2.1681 imes10^{-4}$
F10	Mean	3.1399×10^{10}	$6.4059 imes 10^6$	3.3112×10^{10}	$5.0441 imes 10^1$	$4.7911 imes 10^1$	$7.2088 imes 10^{0}$	$1.1450 imes 10^9$	$4.9797 imes 10^1$	$1.1536 imes 10^7$	$4.9921 imes 10^1$	$2.0996 imes 10^{-30}$
F13	Std	1.3772×10^9	8.1295×10^6	$1.3777 imes 10^9$	$1.4970 imes 10^0$	$3.2400 imes10^{-1}$	$1.4763 imes 10^1$	1.5104×10^8	4.1931×10^{-2}	$1.7631 imes 10^7$	3.9674×10^{-2}	$9.4926 imes10^{-32}$
Friedva	dman lue	9.6346×10^{0}	8.0385×10^{0}	9.9808×10^{0}	5.9231×10^{0}	5.1154×10^{0}	3.5000×10^{0}	8.1538×10^{0}	4.3077×10^{0}	$6.7692 imes 10^0$	2.6154×10^{0}	$1.9615 imes10^{0}$
Friedm	an rank	10	8	11	6	5	3	9	4	7	2	1

Figure 8. The convergence curves of the 11 algorithms with Dim = 500.

Figure 9. Boxplot analysis of classic functions (F1–F13) with Dim = 500.

Table 7 shows the results of the fixed dimensional functions, including the Mean, Std, and Friedman test of 11 algorithms. Figure 10 shows the iterative curves of these 11 algorithms for solving 10 fixed dimensional functions. Figure 11 is a boxplot of the results obtained by these 11 algorithms after solving 13 functions with non-fixed dimensions. The boxplot results were analyzed from five perspectives: the minimum, lower quartile, median, upper quartile, and maximum. By convergence curves and boxplots, the algorithm can be more intuitively and comprehensively characterized for solving functional problems. The FRSA achieved 8 optimal values out of the 10 fixed dimensional functions, with the highest number among all 11 algorithms. The Friedman value shows the overall results obtained by each algorithm in the 13 functions. For the Friedman value, the FRSA achieved a mark of 1.9615, ranking first in the Friedman test, and indicating that the FRSA achieved better results than other algorithms in 500 dimensions.

Table 7. Results and comparison of 11 algorithms of	on 10 classic functions with fixed dimensions.
---	--

F(x)		GA	PSO	ACO	GWO	GJO	SO	TACPSO	AGWO	EGWO	RSA	FRSA
	Mean	$1.1036 imes 10^0$	$9.9800 imes10^{-1}$	$2.8537 imes 10^{0}$	$5.0796 imes 10^{0}$	$5.3036 imes 10^0$	1.0022×10^0	$1.0311 imes 10^0$	$6.4801 imes 10^0$	$7.7381 imes 10^0$	$4.1376 imes 10^0$	$9.9823 imes10^{-1}$
F14	Std	3.3201×10^{-1}	$2.1481 imes10^{-10}$	3.8575×10^0	$4.1695 imes 10^0$	$4.4384 imes 10^0$	2.0981×10^{-2}	1.8148×10^{-1}	4.3221×10^0	$4.4611 imes 10^0$	3.1646×10^0	1.2224×10^{-3}
THE F	Mean	1.3902×10^{-2}	1.0272×10^{-2}	5.3931×10^{-3}	$3.0739 imes 10^{-3}$	8.5798×10^{-4}	6.0445×10^{-4}	5.2544×10^{-4}	1.4132×10^{-3}	$1.0979 imes 10^{-2}$	1.7245×10^{-3}	$4.1525 imes10^{-4}$
F15	Std	1.0043×10^{-2}	1.0209×10^{-2}	8.4021×10^{-3}	$6.8994 imes10^{-3}$	2.0507×10^{-3}	$3.3346 imes10^{-4}$	4.1271×10^{-4}	2.7639×10^{-3}	2.3937×10^{-2}	$1.4282 imes 10^{-3}$	$8.1372 imes10^{-5}$
F1 (Mean	$-9.4538 imes 10^{-1}$	$-1.0316 imes10^{0}$	$-1.0316 imes10^{0}$	$-1.0316 imes10^{0}$	$-1.0316 imes10^{0}$	$-1.0316 imes10^{0}$	$-1.0316 imes10^{0}$	$-1.0306 imes10^{0}$	$-1.0316 imes10^{0}$	$-1.0305 imes10^{0}$	$-1.0316 imes10^{0}$
F16	Std	1.1796×10^{-1}	1.5212×10^{-5}	$6.7752 imes 10^{-16}$	1.8976×10^{-8}	$2.5177 imes 10^{-7}$	$5.2964 imes10^{-16}$	$5.9036 imes 10^{-16}$	$5.7742 imes 10^{-3}$	5.6187×10^{-9}	1.4232×10^{-3}	$1.8373 imes 10^{-13}$
F17	Mean	4.0005×10^{-1}	$3.9789 imes10^{-1}$	$3.9789 imes10^{-1}$	$3.9789 imes10^{-1}$	$3.9789 imes10^{-1}$	$3.9789 imes10^{-1}$	$3.9789 imes10^{-1}$	$3.9794 imes 10^{-1}$	$3.9789 imes 10^{-1}$	$4.1970 imes 10^{-1}$	$3.9789 imes10^{-1}$
F17	Std	4.0846×10^{-3}	1.4541×10^{-5}	$0.0000 imes10^0$	$7.2876 imes 10^{-7}$	9.0667×10^{-6}	$0.0000 imes10^{0}$	$0.0000 imes 10^0$	$5.3183 imes10^{-5}$	5.9598×10^{-7}	2.4368×10^{-2}	$0.0000 imes 10^0$
E10	Mean	$1.0596 imes 10^1$	$3.0002 imes 10^0$	$3.0000 imes 10^0$	$3.0000 imes 10^0$	$3.0000 imes10^{0}$	$3.0000 imes 10^0$	$3.0000 imes 10^0$	$3.0000 imes10^{0}$	3.9001×10^0	$4.0014 imes 10^0$	$3.0000 imes 10^0$
F18	Std	$1.1443 imes 10^1$	2.8621×10^{-4}	$6.6995 imes10^{-16}$	4.8544×10^{-5}	$8.5395 imes 10^{-6}$	$2.7088 imes 10^{-15}$	$2.1599 imes 10^{-15}$	1.8450×10^{-6}	$4.9295 imes 10^0$	5.4822×10^0	$3.7510 imes 10^{-15}$
E 10	Mean	$-3.2754 imes10^{0}$	$-3.8614 imes10^{0}$	$-3.8628 imes10^{0}$	$-3.8612 imes10^{0}$	$-3.8581 imes10^{0}$	-3.8370×10^{0}	$-3.8628 imes10^{0}$	-3.8569×10^{0}	$-3.8618 imes10^{0}$	-3.7992×10^{0}	$-3.8628 imes10^{0}$
F19	Std	$3.2324 imes10^{-1}$	$2.9771 imes 10^{-3}$	$2.7101 imes 10^{-15}$	$2.6343 imes 10^{-3}$	$3.7740 imes 10^{-3}$	$1.4113 imes10^{-1}$	$2.6117 imes 10^{-15}$	2.6408×10^{-3}	2.6029×10^{-3}	$6.3061 imes 10^{-2}$	$2.0748 imes10^{-15}$
E20	Mean	$-1.4764 imes10^{0}$	$-3.0759 imes10^{0}$	$-3.2467 imes10^{0}$	$-3.2796 imes10^{0}$	$-3.0914 imes10^{0}$	$-3.2982 imes10^{0}$	$-3.2665 imes10^{0}$	$-3.1263 imes10^{0}$	$-3.2177 imes10^{0}$	-2.7566×10^{0}	$-3.3213 imes10^{0}$
F20	Std	$4.8085 imes10^{-1}$	$1.9536 imes 10^{-1}$	5.8273×10^{-2}	$6.9288 imes 10^{-2}$	1.3582×10^{-1}	4.8370×10^{-2}	6.0328×10^{-2}	$1.0519 imes 10^{-1}$	$9.9155 imes 10^{-2}$	3.4506×10^{-1}	$2.7018 imes10^{-3}$
E01	Mean	-8.5022×10^{-1}	$-9.0585 imes10^{0}$	-5.9936×10^{0}	$-9.0574 imes10^{0}$	-7.7219×10^{0}	$-1.0138 imes10^1$	$-6.8143 imes10^{0}$	-7.3462×10^{0}	$-6.2985 imes 10^0$	-5.0552×10^{0}	$-1.0105 imes 10^1$
Γ21	Std	$5.1246 imes 10^{-1}$	2.0337×10^0	3.7255×10^{0}	2.2621×10^{0}	2.9320×10^{0}	3.4059×10^{-2}	3.4941×10^0	$2.9488 imes 10^0$	3.1346×10^0	$3.1204 imes10^{-7}$	$7.9343 imes 10^{-2}$
EDD	Mean	-1.0336×10^{0}	$-9.0891 imes10^{0}$	$-7.4926 imes10^{0}$	$-1.0401 imes10^1$	$-9.8499 imes10^{0}$	$-1.0290 imes10^1$	$-7.1316 imes10^{0}$	$-8.5041 imes10^{0}$	$-7.1293 imes10^{0}$	$-5.0877 imes10^{0}$	$-1.0402 imes10^1$
FZZ	Std	$4.4156 imes 10^{-1}$	$2.6893 imes 10^0$	3.6556×10^0	$1.2043 imes 10^{-3}$	1.6359×10^{0}	$2.5749 imes 10^{-1}$	$3.4330 imes 10^0$	$2.5694 imes 10^0$	3.6624×10^0	$8.0616 imes10^{-7}$	$4.1384 imes10^{-3}$
EDD	Mean	-1.2002×10^{0}	$-9.0372 imes 10^0$	$-7.2815 imes 10^0$	$-9.9938 imes10^{0}$	$-9.6040 imes 10^0$	$-1.0469 imes 10^1$	$-9.4877 imes10^{0}$	-8.6658×10^{0}	$-6.4546 imes10^{0}$	$-5.1314 imes10^{0}$	$-1.0525 imes10^1$
F23	Std	$3.9772 imes 10^{-1}$	$2.6192 imes 10^0$	$3.8049 imes 10^0$	$2.0583 imes 10^0$	2.4090×10^{0}	1.4991×10^{-1}	$2.4300 imes 10^0$	$2.5916 imes 10^0$	$3.8996 imes 10^0$	1.6091×10^{-2}	$3.3992 imes 10^{-2}$
Frie va	dman llue	9.2000×10^{0}	6.4000×10^{0}	5.8250×10^{0}	5.1500×10^{0}	6.2000×10^{0}	3.4250×10^{0}	4.5250×10^{0}	7.3000×10^{0}	7.8500×10^{0}	7.8000×10^{0}	2.3250 × 10 ⁰
Friedm	nan rank	11	7	5	4	6	2	3	8	10	9	1

Figure 10. The convergence curves of the 11 algorithms with fixed dimensions.

Figure 11. Boxplot analysis of classic functions (F14-F23) with fixed dimensions.

To compare the results of the FRSA with 10 benchmark algorithms more comprehensively, this article introduces another statistical analysis method, the Wilcoxon rank sum test.

As a non-parametric rank sum hypothesis test, the Wilcoxon rank sum test is frequently used in statistical practice for the comparison of measures of location when the underlying distributions are far from normal or not known in advance [39]. The purpose of the Wilcoxon rank sum test is to test whether there is a significant difference between two populations that are identical except for the population mean. In view of this, this article uses the Wilcoxon rank sum test to compare the differences among the results of various algorithms.

For the Wilcoxon rank sum test, the significance level was set to 0.05, and the symbols "+", "=", and "-" indicate that the performance of the FRSA was superior, similar, and inferior to the corresponding algorithm, respectively. In Table 8, no underline represents "+", and "=" and "-" are represented by different underlines: "_" and "_". Thus, it is possible to evaluate the adopted algorithms from multiple perspectives. Table 8 shows the rank sum test results between the FRSA and the ten benchmark algorithms.

In order to better demonstrate the comparison of the results between the RSA and the FRSA, this study added a comparative analysis of the convergence of the two algorithms, as shown in Figure 12. There are five columns in Figure 12, which represent three dimensional plots of the benchmark function, the conversion curves of the RSA and FRSA, and the search histories, average fitness values, and trajectories. According to Figure 12, compared to the RSA, the FRSA proposed in this article had better exploration and development capabilities, and achieved higher exploration accuracy.

Table 8. Statistical analysis results of Wilcoxon rank sum test of classic functions.

30 F1 10 50	30 100 500	1.2118×10^{-12} 1.2118×10^{-12}	1.2118×10^{-12}	1 0110 10-12								
F1 10 50	100 500	1.2118×10^{-12}		1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	1.2118×10^{-12}	NaN	9/1/0
50	500	1.2110 / 10	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.9346 imes 10^{-10}$	NaN	9/1/0
		$1.2118 imes 10^{-12}$	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	9/1/0
3	30	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	9/1/0
F2 10	100	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	9/1/0
50	500	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	9/1/0
3	30	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	9/1/0
F3 10	100	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$4.5736 imes 10^{-12}$	NaN	9/1/0
50	500	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	NaN	9/1/0
3	30	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	9/1/0
F4 10	100	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	9/1/0
50	500	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	9/1/0
3	30	$3.0161 imes 10^{-11}$	3.0161×10^{-11}	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	3.0161×10^{-11}	10/0/0
F5 10	100	$3.0161 imes 10^{-11}$	3.0161×10^{-11}	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	3.0161×10^{-11}	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	10/0/0
50	500	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	10/0/0
3	30	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	2.3168×10^{-6}	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$1.0937 imes 10^{-10}$	$3.1573 imes 10^{-5}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	9/0/1
F6 10	100	3.0161×10^{-11}	3.0161×10^{-11}	$\overline{3.0161\times10^{-11}}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$8.9934 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	10/0/0
50	500	3.0199×10^{-11}	3.0199×10^{-11}	3.0199×10^{-11}	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$4.9752 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	10/0/0
3	30	3.0199×10^{-11}	$3.0199 imes 10^{-11}$	3.0199×10^{-11}	1.2057×10^{-10}	1.0315×10^{-2}	9.8231×10^{-1}	$3.0199 imes 10^{-11}$	3.3384×10^{-11}	$3.5010 imes 10^{-3}$	1.7666×10^{-3}	7/1/2
F7 10	100	$3.0161 imes 10^{-11}$	3.0161×10^{-11}	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	$7.3803 imes 10^{-10}$	6.7350×10^{-1}	$3.0199 imes 10^{-11}$	$\overline{3.0199 \times 10^{-11}}$	$7.0617 imes10^{-1}$	2.4157×10^{-2}	7/2/1
50	500	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$9.8231 imes 10^{-1}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.4742 imes 10^{-10}$	4.3584×10^{-2}	8/1/1
3	30	$3.0199 imes 10^{-11}$	1.2541×10^{-7}	$2.1947 imes10^{-8}$	$4.1997 imes 10^{-10}$	$7.3891 imes 10^{-11}$	1.3017×10^{-3}	3.3681×10^{-5}	2.2273×10^{-9}	$3.0199 imes 10^{-11}$	$2.6099 imes 10^{-10}$	9/0/1
F8 10	100	3.0161×10^{-11}	3.0161×10^{-11}	3.0161×10^{-11}	$3.0161 imes 10^{-11}$	$3.0161 imes 10^{-11}$	4.5146×10^{-2}	1.4110×10^{-9}	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$2.9878 imes 10^{-11}$	9/0/1
50	500	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	3.0199×10^{-11}	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$\overline{4.0595 \times 10^{-2}}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	9/0/1
3	30	1.2118×10^{-12}	1.2118×10^{-12}	1.2118×10^{-12}	$1.1378 imes 10^{-12}$	NaN	$\overline{1.9457 \times 10^{-9}}$	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	NaN	NaN	7/3/0
F9 10	100	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	1.6074×10^{-1}	$5.3750 imes10^{-6}$	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	NaN	NaN	7/3/0
50	500	1.2118×10^{-12}	1.2118×10^{-12}	1.2118×10^{-12}	1.2118×10^{-12}	1.0956×10^{-12}	$4.1926 imes 10^{-2}$	1.2118×10^{-12}	1.2118×10^{-12}	3.3371×10^{-1}	NaN	8/2/0
3	30	1.2118×10^{-12}	1.2118×10^{-12}	1.2118×10^{-12}	1.1001×10^{-12}	$1.5479 imes 10^{-13}$	1.2003×10^{-13}	$1.2118 imes 10^{-12}$	5.3025×10^{-13}	$5.4660 imes 10^{-3}$	NaN	9/1/0
F10 10	100	1.2118×10^{-12}	1.2118×10^{-12}	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.0171 imes 10^{-12}$	1.6853×10^{-14}	1.2118×10^{-12}	1.2118×10^{-12}	7.1518×10^{-13}	NaN	9/1/0
50	500	1.2118×10^{-12}	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	1.2118×10^{-12}	$8.6442 imes 10^{-14}$	1.2118×10^{-12}	1.2118×10^{-12}	$9.6506 imes10^{-6}$	NaN	9/1/0
3	30	1.2118×10^{-12}	1.2118×10^{-12}	1.2118×10^{-12}	$2.7880 imes 10^{-3}$	NaN	1.3702×10^{-3}	1.2118×10^{-12}	2.9343×10^{-5}	NaN	NaN	8/2/0
F11 10	100	1.2118×10^{-12}	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	NaN	1.2118×10^{-12}	$5.8153 imes10^{-9}$	NaN	NaN	6/4/0
50	500	1.2118×10^{-12}	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	NaN	1.2118×10^{-12}	1.2118×10^{-12}	NaN	NaN	7/3/0

Table 8. Cont.

F(x)	Dim	GA	PSO	ACO	GWO	GJO	SO	TACPSO	AGWO	EGWO	RSA	Total
	30	$1.5099 imes 10^{-11}$	3.0199×10^{-11}	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	3.0199×10^{-11}	2.3897×10^{-8}	3.0199×10^{-11}	3.0199×10^{-11}	3.0199×10^{-11}	$3.0199 imes 10^{-11}$	10/0/0
F12	100	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$6.5183 imes10^{-9}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	10/0/0
	500	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$2.0338 imes10^{-9}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	10/0/0
	30	$3.0029 imes 10^{-11}$	3.0029×10^{-11}	$3.0029 imes 10^{-11}$	$3.0029 imes 10^{-11}$	$3.0029 imes 10^{-11}$	$3.0029 imes 10^{-11}$	$3.0029 imes 10^{-11}$	$3.0029 imes 10^{-11}$	$3.0029 imes 10^{-11}$	$3.0029 imes 10^{-11}$	10/0/0
F13	100	3.0142×10^{-11}	3.0142×10^{-11}	$3.0142 imes 10^{-11}$	$3.0142 imes 10^{-11}$	$3.0142 imes 10^{-11}$	$3.0142 imes 10^{-11}$	$3.0142 imes 10^{-11}$	$3.0142 imes 10^{-11}$	$3.0142 imes 10^{-11}$	$3.0142 imes 10^{-11}$	10/0/0
	500	3.0123×10^{-11}	3.0123×10^{-11}	$3.0123 imes 10^{-11}$	$3.0123 imes 10^{-11}$	$3.0123 imes 10^{-11}$	$3.0123 imes 10^{-11}$	$3.0123 imes 10^{-11}$	$3.0123 imes 10^{-11}$	3.0123×10^{-11}	$3.0123 imes 10^{-11}$	10/0/0
F14	2	1.4532×10^{-1}	1.3853×10^{-6}	1.8070×10^{-1}	$6.2828 imes10^{-6}$	$2.8790 imes 10^{-6}$	$\underline{1.7486\times10^{-4}}$	$1.4435 imes 10^{-10}$	$5.4485 imes10^{-9}$	3.8202×10^{-10}	$3.0199 imes 10^{-11}$	5/2/3
F15	4	3.0199×10^{-11}	3.0199×10^{-11}	3.0180×10^{-11}	$8.4180 imes10^{-1}$	$5.5546 imes 10^{-2}$	$\overline{6.3533 \times 10^{-2}}$	$3.9874 imes 10^{-4}$	6.1452×10^{-2}	1.6813×10^{-4}	$3.0199 imes 10^{-11}$	5/4/1
F16	2	$1.2624 imes 10^{-11}$	$1.2624 imes 10^{-11}$	$7.2549 imes 10^{-11}$	1.2624×10^{-11}	1.2624×10^{-11}	1.3070×10^{-2}	$\overline{1.0374\times10^{-4}}$	$1.2624 imes 10^{-11}$	1.2624×10^{-11}	$1.2624 imes 10^{-11}$	7/3/0
F17	2	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	$1.2118 imes 10^{-12}$	1.2118×10^{-12}	NaN	NaN	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	7/3/0
F18	2	$2.9561 imes 10^{-11}$	$2.9561 imes 10^{-11}$	9.1184×10^{-12}	$2.9561 imes 10^{-11}$	$2.9561 imes 10^{-11}$	1.6701×10^{-2}	5.1977×10^{-7}	$2.9561 imes 10^{-11}$	$2.9561 imes 10^{-11}$	$2.9561 imes 10^{-11}$	7/0/3
F19	3	$1.2007 imes 10^{-11}$	$1.2007 imes 10^{-11}$	$3.6197 imes 10^{-13}$	$1.2007 imes 10^{-11}$	$1.2007 imes 10^{-11}$	3.7428×10^{-5}	1.1707×10^{-9}	$1.2007 imes 10^{-11}$	$1.2007 imes 10^{-11}$	$1.2007 imes 10^{-11}$	7/0/3
F20	6	$3.0199 imes 10^{-11}$	$1.7769 imes 10^{-10}$	$\overline{7.2389\times10^{-2}}$	4.0840×10^{-5}	$5.4941 imes 10^{-11}$	8.0429×10^{-5}	$\overline{6.5763\times10^{-1}}$	9.8329×10^{-8}	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	7/2/1
F21	4	$3.0199 imes 10^{-11}$	1.6225×10^{-1}	$3.7558 imes 10^{-1}$	7.9782×10^{-2}	$4.0840 imes10^{-5}$	$3.4362 imes 10^{-5}$	$1.0000 imes 10^0$	2.2780×10^{-5}	$9.7555 imes 10^{-10}$	$3.0199 imes 10^{-11}$	5/4/1
F22	4	$3.0199 imes 10^{-11}$	4.6558×10^{-7}	1.8361×10^{-1}	1.1937×10^{-6}	$4.1997 imes 10^{-10}$	$\overline{2.6947\times 10^{-1}}$	$1.0000 imes 10^0$	$3.3520 imes10^{-8}$	3.3384×10^{-11}	$3.0199 imes 10^{-11}$	7/3/0
F23	4	3.0199×10^{-11}	1.0154×10^{-6}	$\underbrace{3.7432\times10^{-1}}_{\sim\sim\sim\sim\sim}$	7.2208×10^{-6}	3.0103×10^{-7}	$\underbrace{3.2458\times10^{-1}}_{\longleftarrow}$	7.7028×10^{-6}	2.8314×10^{-8}	3.3384×10^{-11}	$3.0199 imes 10^{-11}$	7/2/1

set is more complex and can be used to demonstrate the robustness and universality of the proposed FRSA. Table 9 shows the results of solving the CEC 2019 using the FRSA and benchmark algorithms, including the Mean, Std, and Friedman test of 11 algorithms. Table 10 shows the FRSA's Wilcoxon rank sum test results and those of the ten benchmark algorithms. According to Table 9, in the CEC 2019, the FRSA achieved optimal values for 4 functions, with the highest number among all 11 algorithms, in the Wilcoxon rank sum test and Friedman test. Wilcoxon's rank sum test compared the FRSA with other algorithms, achieving a result of 58/18/24. The Friedman value showed the overall results of each algorithm in 10 functions. In the Friedman value, the FRSA achieved a result of 3.5500, ranking first in the Friedman rank. Both statistical methods proved that the FRSA achieved better results than the other algorithms in the CEC 2019 function. Figure 13 shows the iterative curves of the 11 algorithms in solving CEC 2019. Figure 14 presents a more comprehensive representation of the results of the 11 algorithms on the CEC 2019 function in the form of a boxplot.

This section compares the non-fixed dimensional and fixed dimensional functions from two different sets of functions with ten advanced algorithms to verify the performance of the FRSA. It is proved that the improvement strategies proposed in this article can effectively improve the performance of the original RSA and obtain better solutions. The proposed FRSA algorithm has a strong exploration ability and efficient space exploration ability and can effectively solve optimization problems in different dimensions.

Figure 12. Cont.

Figure 12. Cont.

5

Parameter space

obtained so far

10⁰

000 10-10

Search history (x1 and x2 only)

50

N (

Convergence curve

FRSA RSA

×10⁹ Average Fitness

1.5

0.5

Figure 12. Cont.

Figure 12. Convergence analysis between RSA and FRSA.

Figure 13. The convergence curves of the 11 algorithms on CEC 2019 functions.

Figure 14. Boxplot analysis of CEC2019 benchmark functions.

C 2019 benchmark functions.
C 2019 benchmark functions

F(x)		GA	PSO	ACO	GWO	GJO	SO	TACPSO	AGWO	EGWO	RSA	FRSA
171	Mean	8.8777×10^{7}	$1.4936 imes 10^7$	1.0333×10^6	$2.7611 imes 10^4$	$7.4643 imes 10^3$	$7.7800 imes 10^4$	2.1715×10^5	$1.0000 imes 10^0$	$4.8953 imes 10^4$	$1.0000 imes 10^0$	$1.0000 imes 10^0$
FI	Std	$9.8039 imes 10^7$	$3.0138 imes 10^7$	$8.6424 imes 10^5$	$8.1437 imes10^4$	$3.0692 imes 10^4$	$1.4879 imes 10^5$	2.3490×10^{5}	$0.0000 imes10^{0}$	$1.3274 imes 10^5$	$0.0000 imes10^{0}$	$0.0000 imes10^{0}$
Т0	Mean	$7.7940 imes 10^3$	$4.1175 imes 10^3$	2.6302×10^3	4.7378×10^{2}	1.6396×10^{2}	2.8924×10^{2}	3.3182×10^{2}	8.2891×10^{2}	$1.6188 imes 10^3$	$4.9991 imes10^{0}$	$4.9473 imes10^{0}$
FZ	Std	2.5938×10^{3}	2.4895×10^{3}	$1.7641 imes 10^3$	2.2747×10^{2}	2.7699×10^{2}	1.7559×10^{2}	1.3204×10^{2}	1.7985×10^{3}	6.1388×10^{2}	$5.0323 imes10^{-3}$	$1.0717 imes 10^{-1}$
Г0	Mean	$1.1095 imes10^1$	$8.7904 imes10^{0}$	$5.9218 imes10^{0}$	$2.9330 imes10^{0}$	$4.4288 imes10^{0}$	$4.4866 imes10^{0}$	$2.9652 imes 10^0$	$5.9654 imes10^{0}$	$9.0727 imes10^{0}$	$8.0766 imes10^{0}$	$4.9149 imes10^{0}$
F3	Std	$9.1758 imes 10^{-1}$	$1.2335 imes 10^{0}$	$2.1958 imes10^{0}$	$2.0613 imes 10^0$	$2.5341 imes 10^{0}$	$1.9873 imes 10^0$	$1.8614 imes10^{0}$	$1.1606 imes10^{0}$	$1.9015 imes10^{0}$	$7.9195 imes10^{-1}$	$7.9953 imes 10^{-1}$
Π4	Mean	$3.6379 imes10^1$	$4.0010 imes 10^1$	$2.7100 imes 10^1$	$1.9449 imes10^1$	$3.2685 imes10^1$	$2.0590 imes 10^1$	$1.8148 imes10^1$	$5.8095 imes10^1$	$5.6902 imes10^1$	$8.9836 imes10^1$	$3.4525 imes 10^1$
F4	Std	$1.3237 imes 10^1$	$7.7174 imes10^{0}$	$1.1349 imes10^1$	$1.1020 imes 10^1$	$1.1314 imes 10^1$	$6.0431 imes10^{0}$	$7.9248 imes 10^0$	$1.0062 imes 10^1$	$2.6763 imes 10^1$	$1.3727 imes 10^1$	$8.6094 imes 10^0$
DF.	Mean	$6.4731 imes 10^0$	3.9550×10^{0}	$1.4494 imes10^{0}$	$2.1800 imes 10^0$	$3.8695 imes 10^0$	$1.1470 imes 10^0$	$1.1306 imes10^{0}$	$1.3549 imes10^1$	$1.3395 imes10^1$	$8.1605 imes10^1$	$1.6984 imes 10^0$
F5	Std	$5.5146 imes 10^0$	3.9669×10^{0}	$2.2462 imes 10^{-1}$	$1.1006 imes 10^0$	$2.6155 imes 10^0$	$1.5675 imes 10^{-1}$	$7.2699 imes 10^{-2}$	$7.7538 imes 10^0$	$1.6464 imes10^1$	$1.8506 imes 10^1$	$1.8171 imes 10^{-1}$
Е(Mean	$7.8132 imes 10^0$	$6.6746 imes 10^0$	$2.9025 imes 10^0$	$2.7449 imes 10^0$	$4.5758 imes 10^0$	$3.8464 imes 10^0$	$2.5324 imes 10^0$	$7.6616 imes 10^0$	$7.7690 imes 10^0$	$1.0850 imes10^1$	$2.4455 imes10^{0}$
FO	Std	$1.6857 imes 10^{0}$	$2.3143 imes 10^0$	$1.3796 imes 10^0$	$1.2443 imes 10^0$	$1.1042 imes 10^0$	1.2605×10^{0}	$1.2228 imes 10^0$	$1.1028 imes 10^0$	$2.1973 imes 10^0$	$9.5171 imes 10^{-1}$	$7.5682 imes10^{-1}$
TT	Mean	1.1598×10^{3}	1.2966×10^{3}	7.5342×10^{2}	8.1406×10^{2}	$1.2074 imes 10^3$	$6.9743 imes10^2$	7.4926×10^{2}	1.5199×10^{3}	$1.2985 imes 10^3$	1.7713×10^{3}	1.3839×10^{3}
F7	Std	$3.7858 imes 10^2$	3.3549×10^{2}	4.9219×10^2	3.2861×10^{2}	$4.4397 imes 10^2$	2.1649×10^{2}	3.1405×10^2	2.4732×10^{2}	3.4208×10^2	$1.8725 imes 10^2$	2.8138×10^{2}
ΓO	Mean	$5.1737 imes 10^{0}$	$4.5708 imes 10^{0}$	$3.9766 imes 10^{0}$	$3.8578 imes 10^{0}$	$4.2642 imes 10^0$	$3.9505 imes 10^{0}$	$3.8528 imes10^{0}$	$4.7386 imes 10^{0}$	$4.4702 imes 10^{0}$	$4.8492 imes 10^{0}$	4.2121×10^{0}
Fð	Std	$2.7203 imes 10^{-1}$	$3.3748 imes10^{-1}$	$4.1346 imes10^{-1}$	$4.8374 imes10^{-1}$	$3.3761 imes 10^{-1}$	$3.3910 imes 10^{-1}$	$3.0223 imes 10^{-1}$	$2.7315 imes 10^{-1}$	$4.2299 imes 10^{-1}$	$2.4832 imes10^{-1}$	$2.6721 imes 10^{-1}$
EO	Mean	$1.4357 imes 10^0$	$1.5591 imes 10^{0}$	$1.2542 imes 10^0$	$1.2314 imes 10^0$	$1.2813 imes 10^0$	$1.3432 imes 10^0$	$1.1940 imes10^{0}$	1.5505×10^{0}	$1.3960 imes 10^0$	$3.2085 imes 10^0$	$1.2964 imes 10^0$
F9	Std	$1.9960 imes 10^{-1}$	$3.5904 imes 10^{-1}$	$5.2841 imes 10^{-2}$	$7.6053 imes 10^{-2}$	$7.8476 imes 10^{-2}$	$8.8253 imes 10^{-2}$	$8.5805 imes 10^{-2}$	$3.4225 imes 10^{-1}$	$1.3667 imes 10^{-1}$	$6.4471 imes 10^{-1}$	$6.0916 imes 10^{-2}$
E10	Mean	$2.1548 imes 10^1$	$2.1479 imes10^1$	$2.1494 imes10^1$	$2.1445 imes 10^1$	$2.1172 imes 10^1$	$2.1477 imes10^1$	$2.0500 imes 10^1$	$2.1011 imes 10^1$	$2.1279 imes 10^1$	$2.1425 imes 10^1$	$2.0393 imes10^1$
F10	Std	$1.1314 imes10^{-1}$	$1.5156 imes 10^{-1}$	$1.0565 imes 10^{-1}$	$9.7992 imes 10^{-2}$	1.7941×10^{0}	$8.0458 imes 10^{-2}$	3.4673×10^{0}	$1.3787 imes 10^{0}$	$1.1003 imes 10^{-1}$	1.2053×10^{-1}	2.2190×10^{0}
Friedm	an value	$8.4500 imes10^{0}$	$8.0000 imes 10^0$	$6.3000 imes 10^0$	$4.7500 imes 10^0$	$5.7500 imes 10^0$	$4.4500 imes 10^0$	$3.8500 imes 10^0$	6.5500×10^0	$7.9000 imes 10^0$	$6.4500 imes 10^0$	$3.5500 imes 10^0$
Friedm	nan rank	11	10	6	4	5	3	2	8	9	7	1

 Table 10. Statistical analysis results of Wilcoxon rank sum test of CEC 2019 functions.

F(x)	Dim	GA	PSO	ACO	GWO	GJO	SO	TACPSO	AGWO	EGWO	RSA	Total
F1	9	1.2118×10^{-12}	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	$1.2118 imes 10^{-12}$	NaN	NaN	8/2/0
F2	16	$2.5206 imes 10^{-11}$	$2.5206 imes 10^{-11}$	$2.5206 imes 10^{-11}$	$2.5206 imes 10^{-11}$	$6.2862 imes10^{-8}$	$2.5206 imes 10^{-11}$	$2.5206 imes 10^{-11}$	$2.5206 imes 10^{-11}$	9.0983×10^{-2}	3.0922×10^{-4}	9/1/0
F3	18	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.3386 imes 10^{-3}$	2.1327×10^{-5}	3.2651×10^{-2}	2.2823×10^{-1}	$\underline{4.7445\times10^{-6}}$	2.4386×10^{-9}	$5.2640 imes 10^{-4}$	$3.6897 imes 10^{-11}$	6/1/3
F4	10	$9.7052 imes 10^{-1}$	$3.4029 imes 10^{-1}$	$2.3985 imes 10^{-1}$	$4.1127 imes 10^{-7}$	4.3584×10^{-2}	3.5201×10^{-7}	$1.5964 imes 10^{-7}$	2.3885×10^{-4}	$3.4971 imes 10^{-9}$	$3.0199 imes 10^{-11}$	3/3/4
F5	10	3.0199×10^{-11}	$3.3384 imes 10^{-11}$	7.1988×10^{-5}	5.2978×10^{-1}	2.3768×10^{-7}	3.4742×10^{-10}	3.0199×10^{-11}	4.4440×10^{-7}	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	6/1/3
F6	10	$3.0199 imes 10^{-11}$	$8.9934 imes 10^{-11}$	$\overline{3.5545 \times 10^{-1}}$	$6.9522 imes 10^{-1}$	$3.4971 imes 10^{-9}$	$\overline{2.4327\times 10^{-5}}$	$\overline{6.6273 imes 10^{-1}}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	$3.0199 imes 10^{-11}$	7/3/0
F7	10	1.0315×10^{-2}	3.2553×10^{-1}	5.8587×10^{-6}	1.0666×10^{-7}	1.3732×10^{-1}	8.8910×10^{-10}	7.7725×10^{-9}	1.9073×10^{-1}	7.4827×10^{-2}	$1.2541 imes10^{-7}$	1/4/5
F8	10	3.3384×10^{-11}	7.2951×10^{-4}	$1.8916 imes 10^{-4}$	$2.8389 imes 10^{-4}$	$2.8378 imes 10^{-1}$	6.3772×10^{-3}	4.4272×10^{-3}	9.0688×10^{-3}	$8.1200 imes 10^{-4}$	$1.3289 imes 10^{-10}$	5/1/4
F9	10	4.2259×10^{-3}	$2.0283 imes10^{-7}$	6.0971×10^{-3}	1.8575×10^{-3}	5.9969×10^{-1}	$\overline{4.8413 \times 10^{-2}}$	6.2828×10^{-6}	1.2362×10^{-3}	1.4110×10^{-9}	$3.0199 imes 10^{-11}$	6/1/3
F10	10	6.2027×10^{-4}	9.5207×10^{-4}	$\overline{1.6813\times 10^{-4}}$	$\overline{4.4272\times10^{-3}}$	2.4157×10^{-2}	2.2360×10^{-2}	1.0188×10^{-5}	2.7548×10^{-3}	$\underline{1.0547\times10^{-1}}$	3.3874×10^{-2}	7/1/2

5. Real-World Engineering Design Problems

In this section, the FRSA solves three engineering design problems: pressure vessel design [40,41], corrugated bulkhead design [42,43], and welded beam design [44]. Including multiple variables and multiple constraints, these problems are significant practical problems and are often used to verify the performance of heuristic algorithms. These engineering design problems have become a vital aspect of the practical application of meta-heuristic algorithms. To verify the performance of the FRSA more fairly, this section used ten advanced algorithms (GA, PSO, ACO, GWO, GJO, SO, TACPSO, AGWO, EGWO, and RSA) similar to the function testing section for testing.

5.1. Pressure Vessel Design

A pressure vessel is a closed container that can withstand pressure. The use of pressure vessels is pervasive, and they have an important position and role in many sectors, such as industry, civil service, military industry, and many fields of scientific research. In the design of a pressure vessel, under the constraints of four conditions, it is required to meet the production needs while maintaining the lowest total cost. The problem has four variables: the thickness of the shell $T_s(=x_1)$, the thickness of the head $T_h(=x_2)$, the inner radius $R(=x_3)$, and the length of the cylindrical section of the vessel, not including the head $L(=x_4)$. The mathematical model of the pressure vessel design is as follows:

 $\begin{array}{l} \mbox{Min } f(x) = 0.6224 x_1 x_3 x_4 + 1.7781 x_2 x_3^2 + 3.1661 x_1^2 x_4 + 19.84 x_1^2 x_3 \\ \mbox{Subject to} \\ g_1(x) = -x_1 + 0.0193 x_3 \leq 0 \\ g_2(x) = -x_2 + 0.00954 x_3 \leq 0 \\ g_3(x) = -\pi x_3^2 x_4 - \frac{4}{3}\pi x_3^2 + 1296000 \leq 0 \\ g_4(x) = x_4 - 240 \leq 0 \\ \mbox{where,} \\ 0 \leq x_1 \leq 99 \\ 0 \leq x_2 \leq 99 \\ 10 \leq x_3 \leq 200 \\ 10 \leq x_4 \leq 200 \end{array}$

The FRSA and ten other advanced algorithms proposed in this article were solved for the pressure vessel design problem. The minimum cost values required for pressure vessel production obtained by the 11 algorithms are shown in Table 11. According to the Table 11, the result obtained by the FRSA is $\vec{x} = \{0.77817, 0.38465, 40.32, 200, 5885.4\},\$ which is the optimal result achieved among all 11 algorithms. To better demonstrate the optimization process of 11 algorithms in pressure vessel design problems, Figure 15 shows the convergence curves of the 11 algorithms, including the FRSA. It provides the corresponding change angles for each variable to reflect the trend of differences among the parameters during multi-parameter design. To verify the robustness of the algorithm on this issue, statistical analysis was also conducted, and the relevant statistical analysis data are shown in Table 12. Among them, the unit of time was seconds per experiment, that is, the average running time of each algorithm in a single experiment. The Wilcoxson rank sum test counted the results of the FRSA compared with other algorithms, and the FRSA achieved a result of 9/1/0. Through the corresponding convergence curve and statistical analysis, the FRSA converged faster and had higher accuracy and obvious advantages compared to the other algorithms.

Algorithms	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	Best Value
GA	$1.1943 imes 10^0$	$5.6359 imes 10^{-1}$	$5.6935 imes 10^1$	$5.4332 imes 10^1$	7.4044×10^3
PSO	$7.7876 imes 10^{-1}$	$3.8637 imes 10^{-1}$	$4.0333 imes 10^1$	2.0000×10^{2}	5.8969×10^{3}
ACO	$7.8298 imes10^{-1}$	$3.8703 imes 10^{-1}$	$4.0569 imes 10^1$	1.9656×10^{2}	5.8936×10^{3}
GWO	$7.7826 imes 10^{-1}$	$3.8541 imes 10^{-1}$	$4.0323 imes 10^1$	1.9996×10^{2}	$5.8878 imes 10^3$
GJO	$7.8054 imes 10^{-1}$	$3.8666 imes 10^{-1}$	$4.0404 imes10^1$	$1.9884 imes 10^2$	5.8972×10^{3}
SO	$7.7817 imes 10^{-1}$	$3.8482 imes 10^{-1}$	$4.0320 imes 10^1$	2.0000×10^{2}	5.8858×10^{3}
TACPSO	$7.8287 imes 10^{-1}$	$3.8697 imes 10^{-1}$	$4.0563 imes10^1$	$1.9664 imes 10^2$	$5.8934 imes 10^3$
AGWO	$8.0092 imes10^{-1}$	$4.5311 imes 10^{-1}$	$4.1339 imes10^1$	1.8843×10^2	6.1686×10^{3}
EGWO	$7.7834 imes 10^{-1}$	$3.8642 imes 10^{-1}$	$4.0325 imes 10^1$	1.9995×10^{2}	5.8915×10^{3}
RSA	$1.0018 imes 10^0$	$5.1922 imes 10^{-1}$	$4.2327 imes 10^1$	1.7775×10^{2}	7.7528×10^{3}
FRSA	$7.7817 imes10^{-1}$	$3.8465 imes 10^{-1}$	$4.0320 imes10^1$	$2.0000 imes 10^2$	$5.8854 imes10^3$

 Table 11. Comparison results of pressure vessel design problem.

Table 12. Statistical analysis of pressure vessel design problem.

Algorithms	Best	Mean	Std	Worst	Time	<i>p</i> -Value	
GA	7.4044×10^3	8.8011×10^{3}	8.6900×10^{2}	1.1360×10^{4}	$1.7213 imes 10^{-1}$	3.0199×10^{-11}	+
PSO	$5.8969 imes 10^3$	$6.4337 imes 10^3$	$6.7244 imes 10^2$	7.5156×10^3	$1.2070 imes 10^{-1}$	$3.7704 imes 10^{-4}$	+
ACO	$5.8936 imes 10^3$	$6.3715 imes 10^3$	$4.8457 imes 10^2$	7.3190×10^3	$5.0267 imes 10^{-1}$	$1.4733 imes 10^{-7}$	+
GWO	$5.8878 imes 10^3$	$6.0336 imes 10^3$	3.2292×10^2	7.2513×10^3	$1.3380 imes10^{-1}$	$3.6322 imes 10^{-1}$	=
GJO	5.8972×10^{3}	6.3251×10^3	$5.9094 imes 10^2$	7.3194×10^3	$2.1300 imes10^{-1}$	$2.2658 imes 10^{-3}$	+
SO	$5.8858 imes 10^3$	6.2189×10^{3}	3.3475×10^{2}	7.1860×10^{3}	$1.4087 imes 10^{-1}$	$9.2113 imes 10^{-5}$	+
TACPSO	$5.8934 imes 10^3$	$6.3585 imes 10^3$	3.8150×10^2	7.2734×10^3	$1.2773 imes 10^{-1}$	$1.8500 imes 10^{-8}$	+
AGWO	6.1686×10^{3}	7.2195×10^{3}	$4.6584 imes 10^2$	7.7575×10^{3}	$6.5110 imes 10^{-1}$	$3.0199 imes 10^{-11}$	+
EGWO	$5.8915 imes 10^3$	$6.3177 imes 10^3$	3.7542×10^2	7.3258×10^3	$1.6837 imes 10^{-1}$	$3.0939 imes 10^{-6}$	+
RSA	7.7528×10^3	1.2201×10^4	$3.2025 imes 10^3$	$2.0883 imes 10^4$	$3.1713 imes 10^{-1}$	$3.0199 imes 10^{-11}$	+
FRSA	$5.8854 imes10^3$	$5.9418 imes 10^3$	$7.0609 imes10^1$	$6.1543 imes 10^3$	$4.0080 imes10^{-1}$		

Figure 15. The convergence curves of 11 algorithms for the pressure vessel design problem.

5.2. Corrugated Bulkhead Design

A corrugated bulkhead is made of a pressed steel plate, and then it is bent to replace the function of the stiffener. In the corrugated bulkhead design problem, the minimum weight is required under the constraints of six conditions. The issue has four variables, which are the width (x_1) , depth (x_2) , length (x_3) , and plate thickness (x_4) . The mathematical model of the corrugated bulkhead design is as follows:

$$\begin{aligned} \operatorname{Min} f(x) &= \frac{5.885x_4(x_1+x_3)}{x_1+\sqrt{|x_3^2-x_2^2|}} \\ \operatorname{Subject to} \\ g_1(x) &= -x_4x_2\left(0.4x_1+\frac{x_3}{6}\right) + 8.94\left(x_1+\sqrt{|x_3^2-x_2^2|}\right) \leq 0 \\ g_2(x) &= -x_4x_2^2\left(0.3x_1+\frac{x_3}{12}\right) + 2.2\left(8.94\left(x_1+\sqrt{|x_3^2-x_2^2|}\right)\right)^{\frac{4}{3}} \leq 0 \\ g_3(x) &= -x_4 + 0.0156x_1 + 0.15 \leq 0 \\ g_4(x) &= -x_4 + 0.0156x_3 + 0.15 \leq 0 \\ g_5(x) &= -x_4 + 1.05 \leq 0 \\ g_6(x) &= -x_3 + x_2 \leq 0 \end{aligned}$$
where,
$$0 \leq x_1, x_2, x_3 \leq 100 \ 0 \leq x_4 \leq 5 \end{aligned}$$

The FRSA and ten other advanced algorithms proposed in this article were solved for the corrugated bulkhead design problem. The corrugated bulkhead design values obtained by the 11 algorithms are shown in Table 13. According to the Table 13, the result obtained by the FRSA is $\vec{x} = \{57.692, 34.148, 57.692, 1.05, 6.8430\}$. Among all 11 algorithms, the FRSA achieved the best result. To better demonstrate the optimization process of the 11 algorithms in the corrugated bulkhead design problem, Figure 16 shows the convergence curves of the 11 algorithms, including the FRSA. It provides the corresponding change angles for each variable to reflect the trend of differences among the parameters during multi-parameter design. To verify the robustness of the algorithm on this issue, statistical analysis was also conducted, and the relevant statistical analysis results are shown in Table 14. The Wilcoxson rank sum test counted the results of the FRSA compared with the other algorithms, and the FRSA achieved a result of 9/0/1. Through the corresponding convergence curve and statistical analysis, the FRSA converged faster, had higher accuracy, and had obvious advantages compared to the other algorithms.

Table 13. Comparison of the results for the corrugated bulkhead design problem.

Algorithms	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4	Best Value
GA	$4.9344 imes 10^1$	3.4325×10^1	5.3525×10^1	1.0744×10^0	$7.1939 imes 10^0$
PSO	$5.6734 imes10^1$	$3.4160 imes 10^1$	$5.7676 imes 10^1$	$1.0502 imes 10^0$	$6.8516 imes10^{0}$
ACO	$5.7692 imes 10^1$	$3.4148 imes 10^1$	5.7692×10^{1}	$1.0500 imes 10^0$	$6.8430 imes10^{0}$
GWO	$5.7597 imes 10^1$	$3.4138 imes 10^1$	$5.7631 imes 10^1$	$1.0500 imes 10^0$	$6.8446 imes 10^0$
GJO	$5.7444 imes 10^1$	$3.4160 imes 10^1$	$5.7589 imes 10^1$	$1.0502 imes 10^0$	$6.8486 imes 10^0$
SO	$5.7692 imes 10^1$	$3.4148 imes 10^1$	$5.7692 imes 10^1$	$1.0500 imes 10^0$	$6.8430 imes10^{0}$
TACPSO	5.7692×10^{1}	$3.4148 imes 10^1$	5.7692×10^{1}	$1.0500 imes 10^0$	$6.8430 imes 10^{0}$
AGWO	$5.6150 imes 10^1$	$3.4178 imes 10^1$	$5.7086 imes 10^1$	$1.0514 imes10^{0}$	$6.8776 imes 10^0$
EGWO	$5.7645 imes 10^1$	$3.4159 imes 10^1$	$5.7672 imes 10^1$	$1.0500 imes 10^0$	$6.8444 imes 10^0$
RSA	$1.0786 imes 10^1$	$3.4025 imes 10^1$	$5.0382 imes 10^1$	$1.0613 imes 10^0$	$7.9687 imes 10^0$
FRSA	$5.7692 imes 10^1$	$3.4148 imes 10^1$	$5.7692 imes 10^1$	$1.0500 imes 10^0$	$6.8430 imes 10^{0}$

Figure 16. The convergence curves of 11 algorithms for the corrugated bulkhead design problem.

Table 14. Statistical analysis of corrugated bulkhead design problem.

Algorithms	Best	Mean	Std	Worst	Time	<i>p</i> -Value	
GA	$7.1939 imes 10^0$	$8.0055 imes 10^0$	$6.3630 imes 10^{-1}$	1.0132×10^1	1.0340×10^{-1}	$1.4157 imes 10^{-9}$	+
PSO	$6.8516 imes 10^0$	$6.8989 imes 10^0$	3.1823×10^{-2}	$6.9810 imes 10^0$	$4.4200 imes 10^{-2}$	1.4157×10^{-9}	+
ACO	$6.8430 imes10^{0}$	$7.4451 imes 10^0$	$8.3118 imes10^{-1}$	$1.0239 imes 10^1$	$4.1200 imes 10^{-1}$	$2.5585 imes 10^{-2}$	+
GWO	$6.8446 imes10^{0}$	$6.8501 imes 10^0$	$5.4757 imes 10^{-3}$	$6.8650 imes 10^0$	$5.8440 imes 10^{-2}$	$1.4157 imes10^{-9}$	+
GJO	$6.8486 imes 10^0$	7.2569×10^{0}	$6.4078 imes 10^{-1}$	$8.2682 imes 10^0$	$1.3556 imes 10^{-1}$	$1.4157 imes10^{-9}$	+
SO	$6.8430 imes10^{0}$	$6.8432 imes 10^0$	$7.1300 imes10^{-4}$	$6.8460 imes 10^0$	$6.1040 imes 10^{-2}$	$1.2780 imes 10^{-3}$	+
TACPSO	$6.8430 imes10^{0}$	$6.9001 imes 10^0$	$2.8554 imes 10^{-1}$	$8.2707 imes 10^0$	$4.8960 imes 10^{-2}$	$2.1634 imes10^{-8}$	-
AGWO	$6.8776 imes 10^0$	$7.0434 imes 10^0$	$2.5644 imes10^{-1}$	$8.1805 imes 10^0$	$4.8984 imes10^{-1}$	1.4157×10^{-9}	+
EGWO	$6.8444 imes 10^0$	$6.9353 imes 10^0$	$2.8175 imes 10^{-1}$	$8.1632 imes 10^0$	$8.8400 imes 10^{-2}$	1.4157×10^{-9}	+
RSA	$7.9687 imes 10^0$	$9.1028 imes 10^0$	$8.3088 imes 10^{-1}$	$1.0716 imes10^1$	$2.1428 imes10^{-1}$	$1.4157 imes10^{-9}$	+
FRSA	$6.8430 imes 10^{0}$	$6.8430 imes10^{0}$	$1.0000 imes10^{-7}$	$6.8430 imes10^{0}$	$1.8084 imes10^{-1}$		

5.3. Welded Beam Design

A welded beam is a simplified model obtained for the convenience of calculation and analysis in material mechanics. One end of a cantilever beam is fixed support, and the other is free. This problem is a structural engineering design problem related to the weight optimization of square-section cantilever beams. The beams consist of five hollow blocks with constant thickness. The mathematical description of the welded beam design problem is as follows:

$$\begin{aligned} &Min \ f(x) = 0.0624(x_1 + x_2 + x_3 + x_4 + x_5) \\ &Subject \ to \\ &g_1(x) = \frac{61}{x_1^3} + \frac{37}{x_2^3} + \frac{19}{x_3^3} + \frac{7}{x_4^3} + \frac{1}{x_5^3} \leq 0 \\ &where, \\ &0.01 \leq x_1, x_2, x_3, x_4, x_5 \leq 100 \end{aligned}$$

The FRSA and ten other advanced algorithms proposed in this article were solved for the welded beam design problem. The values of the welded beam design obtained by the 11 algorithms are shown in Table 15. According to the Table 15, the result obtained by the FRSA is $\vec{x} = \{0.20573, 3.4705, 9.0366, 0.20573, 1.7249\}$. Among all 11 algorithms, the FRSA achieved the best result. To better demonstrate the optimization process of the 11 algorithms in the welded beam design problem, Figure 17 shows the convergence curves of the 11 algorithms, including the FRSA. It provides the corresponding change angles for each variable to reflect the trend of differences among the parameters during multi-parameter design. To verify the robustness of the algorithm on this issue, statistical analysis was also conducted, and the relevant statistical analysis results are shown in Table 16. The Wilcoxson rank sum test counted the results of the FRSA compared with the other algorithms, and FRSA achieved a result of 9/1/0. Through the corresponding convergence curve and statistical analysis, the FRSA converged faster, had higher accuracy, and had obvious advantages compared to the other algorithms.

Table 15. Comparison of the results for the welded beam design problem.

Algorithms	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4	Best Value
GA	$1.7200 imes 10^{-1}$	4.7314×10^{0}	$8.7256 imes 10^0$	$2.2693 imes 10^{-1}$	1.9390×10^{0}
PSO	$2.0560 imes 10^{-1}$	$3.4728 imes10^{0}$	$9.0405 imes 10^0$	$2.0588 imes10^{-1}$	$1.7268 imes 10^0$
ACO	$2.0632 imes 10^{-1}$	$3.4629 imes 10^0$	$9.0235 imes 10^{0}$	$2.0633 imes 10^{-1}$	$1.7270 imes 10^0$
GWO	$2.0547 imes 10^{-1}$	$3.4781 imes 10^0$	$9.0365 imes 10^0$	$2.0574 imes 10^{-1}$	$1.7256 imes 10^0$
GJO	$2.0557 imes 10^{-1}$	$3.4733 imes10^{0}$	$9.0418 imes 10^0$	$2.0573 imes 10^{-1}$	$1.7259 imes 10^0$
SO	$2.0573 imes 10^{-1}$	$3.4705 imes10^{0}$	$9.0368 imes10^{0}$	$2.0573 imes 10^{-1}$	$1.7249 imes10^{0}$
TACPSO	$2.0573 imes 10^{-1}$	$3.4705 imes10^{0}$	9.0366×10^{0}	$2.0573 imes 10^{-1}$	$1.7249 imes10^{0}$
AGWO	$2.0261 imes 10^{-1}$	$3.5867 imes10^{0}$	9.0420×10^{0}	$2.0573 imes 10^{-1}$	$1.7366 imes 10^0$
EGWO	$2.0538 imes 10^{-1}$	$3.4793 imes10^{0}$	$9.0370 imes 10^{0}$	$2.0573 imes 10^{-1}$	$1.7256 imes 10^0$
RSA	$2.0413 imes10^{-1}$	$3.3786 imes10^{0}$	$1.0000 imes 10^1$	$2.0723 imes 10^{-1}$	$1.8881 imes 10^0$
FRSA	2.0573×10^{-1}	$3.4705 imes 10^0$	$9.0366 imes 10^0$	$2.0573 imes 10^{-1}$	$1.7249 imes 10^0$

Figure 17. Convergence curves for the welded beam design problem.

Algorithms	Best	Mean	Std	Worst	Time	<i>p</i> -Value	
GA	$1.9390 imes 10^0$	3.2100×10^0	$9.8809 imes10^{-1}$	$5.6391 imes 10^0$	$2.0927 imes10^{-1}$	$3.0199 imes 10^{-11}$	+
PSO	$1.7268 imes 10^0$	$1.8233 imes 10^0$	2.1321×10^{-1}	$2.4983 imes 10^{0}$	$1.5083 imes10^{-1}$	$3.0199 imes 10^{-11}$	+
ACO	1.7270×10^{0}	$2.1779 imes 10^0$	$4.3684 imes 10^{-1}$	$3.7688 imes 10^0$	$5.3960 imes 10^{-1}$	$3.0199 imes 10^{-11}$	+
GWO	$1.7256 imes 10^0$	$1.7281 imes 10^0$	$2.9589 imes 10^{-3}$	$1.7368 imes 10^0$	$1.6927 imes 10^{-1}$	$3.0199 imes 10^{-11}$	+
GJO	$1.7259 imes 10^0$	$1.7303 imes 10^0$	$4.2440 imes10^{-3}$	$1.7429 imes 10^0$	$2.4570 imes 10^{-1}$	$3.0199 imes 10^{-11}$	+
SO	$1.7249 imes10^{0}$	$1.7278 imes 10^0$	$6.9340 imes 10^{-3}$	$1.7533 imes 10^0$	$1.7103 imes 10^{-1}$	$1.8608 imes 10^{-6}$	+
TACPSO	$1.7249 imes10^{0}$	$1.7504 imes 10^{0}$	$5.3535 imes 10^{-2}$	$1.9215 imes 10^0$	$1.5860 imes 10^{-1}$	$4.2039 imes 10^{-1}$	=
AGWO	$1.7366 imes 10^0$	1.7725×10^{0}	1.8314×10^{-2}	$1.8307 imes 10^0$	$6.9630 imes 10^{-1}$	$3.0199 imes 10^{-11}$	+
EGWO	$1.7256 imes 10^0$	$1.7305 imes 10^0$	$4.7509 imes 10^{-3}$	$1.7462 imes 10^0$	$2.0027 imes10^{-1}$	$3.0199 imes 10^{-11}$	+
RSA	$1.8881 imes 10^0$	$2.1518 imes10^{0}$	$1.6396 imes 10^{-1}$	$2.6872 imes 10^0$	$3.5377 imes 10^{-1}$	$3.0199 imes 10^{-11}$	+
FRSA	$1.7249 imes10^{0}$	$1.7249 imes10^{0}$	$5.6900 imes10^{-5}$	$1.7252 imes 10^0$	4.8907×10^{-1}		

Table 16. Statistical analysis of welded beam design problem.

6. Conclusions and Future Work

To improve the global optimization ability of the RSA, inspired by the different search horizons of different flying heights of natural creatures, this paper proposes a reptile algorithm considering different flying sizes based on the original RSA. In the exploration phase, introducing the different flight altitude abilities of two animals, the northern goshawk and the African vulture, enables reptiles to have better search horizons, improve their global search ability, and reduce the probability of falling into local optima during the exploration phase. In the exploration phase, a new DF is proposed to improve the algorithm's convergence speed and optimization accuracy. To evaluate the effectiveness of the proposed FRSA, 33 benchmark functions were used for testing, including 13 non-fixed dimensional functions and 20 fixed dimensional functions. Among them, three different dimensions (30, 100, 500) were selected for the non-fixed dimensional functions for testing. The experimental and statistical results indicate that the FRSA has excellent performance and has certain advantages in accuracy, convergence speed, and stability compared to the ten most advanced algorithms. Furthermore, the FRSA was applied to solve three engineering optimization problems, and the results and comparison proved the algorithm's effectiveness in solving practical problems.

In summary, the FRSA proposed in this article has good convergence accuracy, fast convergence speed, and good optimization performance. Through the testing of fixed and non-fixed dimensional functions and the validation of practical optimization problems, it has been proven that the proposed method can adapt to a wide range of optimization problems, and the algorithm's robustness has been verified. In later research, the focus will be on evolving the proposed algorithm towards multi-objective optimization, such as path planning, workshop scheduling, and other fields, so that the proposed algorithm can generate more excellent value in practical life.

Author Contributions: Conceptualization, L.Y., T.Z. and D.T.; methodology, P.Y. and L.Y.; software, P.Y. and L.Y.; writing—original draft, L.Y.; writing—review & editing, L.Y., T.Z. and D.T.; data curation, G.L. and J.Y.; visualization G.L. and J.Y.; supervision, T.Z. and D.T.; funding acquisition, T.Z. All authors have read and agreed to the published version of the manuscript.

Funding: Guizhou Provincial Science and Technology Projects (Grant No. Qiankehejichu-ZK [2022] General 320), the Growth Project for Young Scientific and Technological Talents in General Colleges and Universities of Guizhou Province (Grant No. Qianjiaohe KY [2022]167), the National Natural Science Foundation (Grant No. 52242703, 72061006), and the Academic New Seedling Foundation Project of Guizhou Normal University (Grant No. Qianshixinmiao-[2021]A30).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Barkhoda, W.; Sheikhi, H. Immigrant imperialist competitive algorithm to solve the multi-constraint node placement problem in target-based wireless sensor networks. *Ad Hoc Netw.* **2020**, *106*, 102183. [CrossRef]
- Fu, Z.; Wu, Y.; Liu, X. A tensor-based deep LSTM forecasting model capturing the intrinsic connection in multivariate time series. *Appl. Intell.* 2022, 53, 15873–15888. [CrossRef]
- 3. Liao, C.; Shi, K.; Zhao, X. Predicting the extreme loads in power production of large wind turbines using an improved PSO algorithm. *Appl. Sci.* **2019**, *9*, 521. [CrossRef]
- 4. Wei, J.; Huang, H.; Yao, L.; Hu, Y.; Fan, Q.; Huang, D. New imbalanced bearing fault diagnosis method based on Samplecharacteristic Oversampling TechniquE (SCOTE) and multi-class LS-SVM. *Appl. Soft Comput.* **2021**, *101*, 107043. [CrossRef]
- 5. Shi, J.; Zhang, G.; Sha, J. Jointly pricing and ordering for a multi-product multi-constraint newsvendor problem with supplier quantity discounts. *Appl. Math. Model.* **2011**, *35*, 3001–3011. [CrossRef]
- 6. Wu, Y.; Fu, Z.; Liu, X.; Bing, Y. A hybrid stock market prediction model based on GNG and reinforcement learning. *Expert Syst. Appl.* **2023**, *228*, 120474. [CrossRef]
- Sadollah, A.; Choi, Y.; Kim, J.H. Metaheuristic optimization algorithms for approximate solutions to ordinary differential equations. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 792–798.
- 8. Mahdavi, S.; Shiri, M.E.; Rahnamayan, S. Metaheuristics in large-scale global continues optimization: A survey. *Inf. Sci.* 2015, 295, 407–428. [CrossRef]
- 9. Yang, X.-S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104. [CrossRef]
- 10. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. *Future Gener. Comput. Syst.* **2019**, *97*, 849–872. [CrossRef]
- 11. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. *Adv. Eng. Softw.* **2017**, *114*, 163–191. [CrossRef]
- 12. Chou, J.-S.; Nguyen, N.-M. FBI inspired meta-optimization. Appl. Soft Comput. 2020, 93, 106339. [CrossRef]
- 13. Askari, Q.; Younas, I.; Saeed, M. Political Optimizer: A novel socio-inspired meta-heuristic for global optimization. *Knowl.-Based* Syst. 2020, 195, 105709. [CrossRef]
- 14. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
- 15. Abedinpourshotorban, H.; Mariyam Shamsuddin, S.; Beheshti, Z.; Jawawi, D.N.A. Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. *Swarm Evol. Comput.* **2016**, *26*, 8–22. [CrossRef]
- 16. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
- 17. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE ICNN'95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
- 18. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
- 19. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
- 20. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
- Fan, Q.; Huang, H.; Li, Y.; Han, Z.; Hu, Y.; Huang, D. Beetle antenna strategy based grey wolf optimization. *Expert Syst. Appl.* 2021, 165, 113882. [CrossRef]
- Ma, C.; Huang, H.; Fan, Q.; Wei, J.; Du, Y.; Gao, W. Grey wolf optimizer based on Aquila exploration method. *Expert Syst. Appl.* 2022, 205, 117629. [CrossRef]
- 23. Yuan, P.; Zhang, T.; Yao, L.; Lu, Y.; Zhuang, W. A Hybrid Golden Jackal Optimization and Golden Sine Algorithm with Dynamic Lens-Imaging Learning for Global Optimization Problems. *Appl. Sci.* **2022**, *12*, 9709. [CrossRef]
- 24. Yao, L.; Yuan, P.; Tsai, C.-Y.; Zhang, T.; Lu, Y.; Ding, S. ESO: An enhanced snake optimizer for real-world engineering problems. *Expert Syst. Appl.* **2023**, 230, 120594. [CrossRef]
- 25. Abualigah, L.; Elaziz, M.A.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. *Expert Syst. Appl.* **2022**, *191*, 116158. [CrossRef]
- 26. Ervural, B.; Hakli, H. A binary reptile search algorithm based on transfer functions with a new stochastic repair method for 0–1 knapsack problems. *Comput. Ind. Eng.* **2023**, *178*, 109080. [CrossRef]
- 27. Emam, M.M.; Houssein, E.H.; Ghoniem, R.M. A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images. *Comput. Biol. Med.* **2023**, *152*, 106404. [CrossRef] [PubMed]
- 28. Xiong, J.; Peng, T.; Tao, Z.; Zhang, C.; Song, S.; Nazir, M.S. A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction. *Energy* **2023**, *266*, 126419. [CrossRef]
- Elkholy, M.; Elymany, M.; Yona, A.; Senjyu, T.; Takahashi, H.; Lotfy, M.E. Experimental validation of an AI-embedded FPGA-based Real-Time smart energy management system using Multi-Objective Reptile search algorithm and gorilla troops optimizer. *Energy Convers.* 2023, 282, 116860. [CrossRef]
- 30. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. *Comput. Ind. Eng.* **2021**, *158*, 107408. [CrossRef]

- Dehghani, M.; Hubálovský, Š.; Trojovský, P. Northern goshawk optimization: A new swarm-based algorithm for solving optimization problems. *IEEE Access* 2021, 9, 162059–162080. [CrossRef]
- 32. Bansal, S. Performance comparison of five metaheuristic nature-inspired algorithms to find near-OGRs for WDM systems. *Artif. Intell. Rev.* **2020**, *53*, 5589–5635. [CrossRef]
- 33. Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. *Expert Syst. Appl.* **2022**, *198*, 116924. [CrossRef]
- 34. Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. *Knowl.-Based Syst.* **2022**, 242, 108320. [CrossRef]
- 35. Ziyu, T.; Dingxue, Z. A modified particle swarm optimization with an adaptive acceleration coefficients. In Proceedings of the 2009 Asia-Pacific Conference on Information Processing, Shenzhen, China, 18–19 July 2009; pp. 330–332.
- Komathi, C.; Umamaheswari, M. Design of gray wolf optimizer algorithm-based fractional order PI controller for power factor correction in SMPS applications. *IEEE Trans. Power Electron.* 2019, 35, 2100–2118. [CrossRef]
- 37. Fan, Q.; Huang, H.; Chen, Q.; Yao, L.; Yang, K.; Huang, D. A modified self-adaptive marine predators algorithm: Framework and engineering applications. *Eng. Comput.* **2021**, *38*, 3269–3294. [CrossRef]
- Abualigah, L.; Almotairi, K.H.; Al-qaness, M.A.A.; Ewees, A.A.; Yousri, D.; Elaziz, M.A.; Nadimi-Shahraki, M.H. Efficient text document clustering approach using multi-search Arithmetic Optimization Algorithm. *Knowl.-Based Syst.* 2022, 248, 108833. [CrossRef]
- 39. Rosner, B.; Glynn, R.J.; Ting Lee, M.L. Incorporation of clustering effects for the Wilcoxon rank sum test: A large-sample approach. *Biometrics* **2003**, *59*, 1089–1098. [CrossRef]
- 40. Yang, X.-S.; Huyck, C.R.; Karamanoğlu, M.; Khan, N. True global optimality of the pressure vessel design problem: A benchmark for bio-inspired optimisation algorithms. *Int. J. Bio-Inspired Comput.* **2014**, *5*, 329–335. [CrossRef]
- Braik, M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. *Expert Syst. Appl.* 2021, 174, 114685. [CrossRef]
- 42. Ravindran, A.R.; Ragsdell, K.M.; Reklaitis, G.V. Engineering Optimization: Methods and Applications; Wiley: Hoboken, NJ, USA, 1983.
- 43. Bayzidi, H.; Talatahari, S.; Saraee, M.; Lamarche, C.-P. Social Network Search for Solving Engineering Optimization Problems. *Comput. Intell. Neurosci.* **2021**, 2021, 8548639. [CrossRef]
- 44. Coello Coello, C.A. Use of a self-adaptive penalty approach for engineering optimization problems. *Comput. Ind.* **2000**, *41*, 113–127. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.