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Abstract: Natural image matting is an essential technique for image processing that enables various
applications, such as image synthesis, video editing, and target tracking. However, the existing image
matting methods may fail to produce satisfactory results when computing resources are limited.
Sampling-based methods can reduce the dimensionality of the decision space and, therefore, reduce
computational resources by employing different sampling strategies. While these approaches reduce
computational consumption, they may miss an optimal pixel pair when the number of available
high-quality pixel pairs is limited. To address this shortcoming, we propose a novel multi-criterion
sampling strategy that avoids missing high-quality pixel pairs by incorporating multi-range pixel
pair sampling and a high-quality sample selection method. This strategy is employed to develop a
multi-criterion matting algorithm via Gaussian process, which searches for the optimal pixel pair by
using the Gaussian process fitting model instead of solving the original pixel pair objective function.
The experimental results demonstrate that our proposed algorithm outperformed other methods,
even with 1% computing resources, and achieved alpha matte results comparable to those yielded by
the state-of-the-art optimization algorithms.

Keywords: computing resources; Gaussian process fitting model; multi-criterion sampling strategy;
high-quality pixel pairs; alpha matte

1. Introduction

Image matting is a crucial image processing technique with extensive applications in
image synthesis [1,2], video editing [3,4], live broadcasting [5,6], and film special effects [7,8].
In image matting, alpha mattes can accurately extract foreground objects and merge them
with new backgrounds to render new scenes [9,10]. The concept of the alpha matte was
first proposed by Thomas in 1984 [11], whereby an alpha matte estimation model was
constructed by introducing the alpha channel. Mathematically, the color value Ip, including
the RGB, of a pixel p can be linearly represented by the foreground color Fp and the
background color Bp in the original image, as shown in Equation (1):

Ip = αpFp + (1− αp)Bp (1)

where αp is the alpha matte of the foreground object at pixel p, and αp ∈ [0, 1]. Specifically,
αp takes 1 when p belongs to the foreground, it is assigned a value of 0 when p belongs to the
background, and assigned a specific value in the range (0,1) when p is a semi-transparent
pixel of which the color is a mixture of a foreground pixel color and a background pixel
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color. As both Fp and Bp are three-dimensional unknown vectors and αp is an unknown
scalar, Equation (1) is an ill-defined problem. In order to accurately determine the value
of α, Rhemann et al. [12] introduced a trimap, which divides the image into three non-
overlapping regions, denoted as the known foreground, known background, and unknown
regions, to impose additional constraints on the image matting problem, as shown in
Figure 1 (where F is the foreground region with α = 1, B is the background region with
α = 0, and U is the unknown region with α in the range (0, 1)).
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Pixel pair optimization-based matting methods are a class of competitive image mat-
ting approaches that offer significant advantages in terms of parallelization [13]. These
methods are particularly effective in processing an error-marked trimap [14] or a foreground
that is spatially disconnected [15–17]. Essentially, the natural image matting problem is
transformed into a pixel pair optimization problem, as shown in Equation (2).

min f (xp)

s.t.xi = (x(F)
i , x(B)

i )
T

p ∈ U, x(F)
i ∈ F, x(B)

i ∈ B

(2)

where f (xp) is the pixel pair evaluation function of unknown pixel p; U, F, and B are the
pixel sets of the unknown, known foreground, and known background regions, respectively;
xp is the pixel pair decision vector of pixel p; xF

i and xB
i represent pixels in the known

foreground and background regions, respectively. Once the foreground and background
colors are obtained by solving the pixel pair optimization problem, the alpha value of the
pixel p can be estimated via the following expression:

α̂p =
(Ip − Bp)(Fp − Bp)

‖Fp − Bp‖2 (3)

where ‖ ∗ ‖2 denotes the Euclidean norm of vector ∗.
Pixel pair optimization-based matting methods can be further divided into sampling-

based methods and evolutionary optimization-based matting methods. Sampling-based
methods [18,19] to evaluate the alpha value of the unknown region by collecting the known
foreground and background pixels as candidate samples, which narrows the search range
through different sampling strategies. For example, Liang et al. [20] proposed a surrogate
model based on natural image matting that effectively reduces computational resource
consumption by building on top of random sampling. However, this approach also faces
the issue of the potential loss of optimal pixel pairs due to the random sampling strategy.
The main drawback of these sampling-based methods stems from the significant likelihood
of high-quality pixel pair loss, resulting in unsatisfactory alpha mattes. To avoid this
issue, He et al. [21] proposed a global sampling method that employs all pixel pairs as
candidate samples to avoid the loss of high-quality pixel pairs. However, this approach
also results in increased computational resource consumption. Then, the evolutionary
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optimization-based [22,23] methods were proposed, which can effectively mitigate the
drawback of high-quality pixel pair loss in sampling-based methods and improve the
quality of alpha mattes. For instance, Liang et al. [24] used the evolutionary algorithm
instead of the pixel pair sampling process and proposed a multi-objective evolutionary
algorithm based on multi-criteria decomposition. This algorithm utilizes all available
computing resources by adjusting the number of iterations of the evolutionary algorithm
and theoretically eliminates the risk of missing real samples. On the other hand, to address
the problem of computing resource consumption, Liang et al. [25] developed a multi-scale
evolutionary pixel pair optimization framework, which transforms the large-scale pixel-
pair optimization problem into multiple sub-optimization problems of different scales by
using an image pyramid. Although evolutionary optimization-based methods utilizing
various evolutionary algorithms have improved the accuracy of the alpha matte, it may
require thousands of iterations to find the optimal solution. Limited computing resources
may restrict the applicability of this method and also compromise the quality of alpha
mattes. In summary, neither the sampling-based method nor the existing evolutionary
optimization-based method can provide satisfactory alpha mattes under limited computing
resources. Regarding image matting tasks, there has been less discussion on matting under
limited computing resources.

These limitations have motivated the present study, in which we designed a multi-
criterion sampling strategy (MCSS) to ensure that high-quality pixel pairs are sampled.
Furthermore, to reduce the consumption of computing resources, the multi-criterion mat-
ting algorithm via Gaussian process (GP-MCMatting) is proposed, which can provide a
satisfactory alpha matte even when computing resources are limited. The contributions of
the work presented in this paper are threefold:

• By combining different features in a multi-criteria sampling strategy (MCSS), the
problem of missing high-quality pixel pairs is alleviated;

• This paper changes the traditional matting method, which only relies on one eval-
uation function, and combines multiple evaluation functions to comprehensively
evaluate pixel pairs to select high-quality pixel pairs, avoiding the limitation of a
single evaluation function;

• In order to ensure that the matting problem can be solved even with limited computing
resources, a new perspective was adopted. This paper proposes a new GP-MCMatting
algorithm, in which we use the Gaussian process fitting model (GPFM) instead of
the objective function to search for the optimal pixel pair. By using this algorithm,
effective and accurate matching can be achieved with only 1% of computing resources.

Next, a description of the algorithm proposed in this article is presented. The article
consists of three sections: Section 2 covers related work, Section 3 outlines the problem, and
Section 4 introduces the GP-MCMatting algorithm, which includes the MCSS in Section 4.1
and the Gaussian process fitting model in Section 4.2.1. The related work in this field is
presented first.

2. Related Work

Recently, the field of image matting has experienced significant advancements, as
reflected by numerous publications that can be broadly categorized into those related to
sampling-based methods and those related to evolutionary optimization-based methods.
In the brief literature review provided below, we focus on the work most closely related to
this article.

Sampling-based methods: Sampling-based methods take the sample pixel pairs of the
known regions as the candidate sample and select the optimal foreground/background
pixel pair through the evaluation function to solve the alpha matte. For example, to
avoid the loss of real samples, Feng et al. [26] clustered foreground/background regions
and selected representative pixels in each class as candidate samples. Inspired by image
inpainting, Tang et al. [19] combined sampling with deep learning methods and used
the image inpainting network to select foreground/background pixel pairs as candidate



Biomimetics 2023, 8, 301 4 of 18

samples to evaluate the alpha mattes of unknown regions. As a part of their research,
Huang et al. [27] designed a discrete multi-objective optimization algorithm based on pixel-
level sampling. They, thus, effectively solved the problems of incomplete sampling space
and optimal sample loss in the super-pixel sampling method and ensured the accuracy
of the alpha matte. The strategy adopted by Cao et al. [28] was rooted in the patch-based
image matting method, as these authors used a patch-based adaptive matting algorithm
for high-resolution images and videos. As shown in their work, the algorithm extends the
adaptive framework to video matting and reduces the consumption of computer resources.
In short, in sampling-based methods, different sampling strategies [29–31] are utilized to
select the sample pixel pairs, which reduces the scale of the decision space as well as the
computational resource consumption. However, when there are few high-quality pixel
pairs in the input image, the sampling-based methods may not identify the optimal pixel
pair, resulting in an unsatisfactory alpha matte extraction accuracy.

Evolutionary optimization-based methods: Most evolutionary optimization-based
methods [32] are based on the assumption that adjacent pixels have similar alpha values.
For example, Liang et al. [33] modeled the image matting problem as a combinatorial
optimization problem in which foreground and background pixel pairs are assumed to
be known. These authors designed a heuristic optimization algorithm based on an adap-
tive convergence speed controller, which alleviated the problem of premature algorithm
convergence when solving for the optimal pixel pair. In their work, Feng et al. [34] fo-
cused on addressing the large-scale problem of high-definition images and proposed a
competitive swarm optimization algorithm based on group collaboration to realize the
group collaborative solution of large-scale combinatorial optimization problems. These
authors demonstrated that, compared to the sampling-based method, the evolutionary
optimization-based method could effectively improve the alpha matte estimation accuracy.
However, when this method is adopted, more than 5× 103 pixel pairs need to be evaluated
for each unknown pixel to ensure that high-quality pixel pairs are captured. Therefore,
when the computing resources are limited, it is difficult to attain an adequate alpha value.
In summary, when computing resources are limited, it is difficult to obtain a desired mat-
ting result with the existing evolutionary optimization-based and learning-based matting
methods. Therefore, in this work, we propose a sampling-based multi-criterion sampling
strategy (MCSS) to avoid the loss of high-quality pixel pairs. In addition, to achieve ad-
equate matting with limited computing resources, we propose a novel algorithm—the
multi-criterion matting algorithm via Gaussian process (GP-MCMatting)—incorporating
the MCSS. The GP-MCMatting algorithm uses the Gaussian process fitting model (GPFM)
instead of the original objective function to search for the optimal pixel pair, which effec-
tively achieves matting under limited computing resources while ensuring the desired
matting accuracy.

3. Problem Description

The authors of the existing sampling-based matting methods have utilized different
strategies to select samples from the known regions (the foreground region F and the
background region B in Figure 1b) to obtain candidate samples for pixels in the unknown
region (the unknown region U in Figure 1b), thereby evaluating the alpha matte of the
unknown region. One such sampling method is shown in Figure 2.

In the image above, I represents an RGB image, and F, B, U correspond to the known
foreground, background, and unknown regions in the trimap respectively. S is the decision
space composed of foreground and background samples, which is denoted by SF × SB.
Finally, the evaluation function is used to determine the fitness value of each pixel pair, and
the pixel pair with the best fitness is selected as the optimal pixel pair xopt, based on the
criteria shown in Equation (4):

min f (x) = (xF
i , xB

i )
s.t. x ∈ U, (xF

i , xB
i ) ∈ S

S = SF × SB

(4)
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where f (∗) is the evaluation function of the foreground/background pixel pair, x denotes
the unknown pixel in the unknown region, (xF

• , xB
• ) represents the decision variable corre-

sponding to the pixels in the known foreground and background regions, and SF × SB is
the Cartesian product of the foreground and background sample sets.
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As the dimensions of the candidate sample obtained by sampling are smaller than
those of the original decision space, sampling-based methods reduce the consumption
of computing resources to a certain extent. However, when the number of high-quality
pixel pairs in natural images is small (as shown in Figure 3), this strategy is prone to losing
high-quality pixel pairs, resulting in an unsatisfactory matting quality.
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As shown in Figure 3, depicting GT16 from the alpha matting dataset (with an
800 × 536 size), for the flag of the unknown region to be solved, there are fewer than
500 high-quality pixels confined to a smaller region. Thus, the probability of high-quality
pixels being sampled is 0.0034. The sampling strategy proposed in this work that can be
adopted to overcome this issue is described below.

4. Multi-Criterion Matting Algorithm via Gaussian Process

In this section, we introduce the GP-MCMatting algorithm, which mainly consists of
two stages: (1) the multi-criteria sampling strategy (MCSS); (2) the Gaussian process fitting
model (GPFM).
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4.1. Multi-Criterion Sampling Strategy

This subsection details the multi-criterion sampling strategy (MCSS), which consists
of (1) multi-range pixel pair sampling and (2) high-quality sample selection.

4.1.1. Multi-Range Pixel Pair Sampling

Sampling-based methods rely on local or global sampling strategies to sample pixel
pairs, whereby the former approaches the risk of missing high-quality pixel pairs. In order
to compensate for this shortcoming, when the latter strategy is adopted, all foreground and
background pixel pairs are treated as the sample set to ensure that the optimal solution
is found. While this avoids the loss of real samples, it also increases the consumption
of computing resources. In this work, we mitigate the aforementioned shortcomings by
assuming that there is an optimal pixel pair region in the input image, due to which high-
quality pixel pairs can be identified by sampling this region. Guided by this assumption,
we designed a multi-range pixel pair sampling method based on the color and spatial
position of pixels. In multi-range pixel pair sampling, the color similarity score between
the pixels can be reformulated as follows:

Dc = ‖Ip − IU
i ‖2, Ip ∈ F ∪ B (5)

where ‖ ∗ ‖2 denotes the Euclidean norm of vector ∗, F∪ B denotes the set of known regions,
Ip is the color value of the known pixel p, and IU

i is the color value of the unknown pixel i.
In image matting, the spatial positions of pixels can reflect their structural features,

which may help in the differentiation of the pixels. For this purpose, the similarity between
the unknown region and the known boundary pixels, as well as the similarity between the
unknown region and the long-range known regions (as shown in Figure 4), are calculated
using the expressions shown below:

Ds = ‖Ip,in − IU
i,in
‖

2
, Ip,in ∈ Fin ∪ Bin (6)

Db = ‖Ib
p,in − IU

i,in
‖

2
, Ib

p,in ∈ Fin ∪ Bin (7)

where Ds denotes the spatial position distance between the unknown pixels and the long-
range known pixels; Db represents the spatial distance between the pixels in the unknown
region and the pixels in the known boundaries; Ib

p,in represents the coordinate index values
of the pixels in the known boundaries, Ip,in denotes the coordinate index value of pixels
in the long-range known region; IU

i,in denotes the coordinate index value of the unknown
pixel, and Fin ∪ Bin is the coordinate space of the known regions.

Let the color distance set between the unknown pixels and the known pixels be
given by Dc =

{
Dc

1, Dc
2, . . . , Dc

m
}

, whereas the spatial distance between the unknown
pixels and the long-range known region pixels is given by Ds =

{
Ds

1, Ds
2, . . . , Ds

m
}

, and
the spatial distance between the unknown pixels and the pixels in the known bound-
aries is Db =

{
Db

1, Db
2, . . . , Db

m

}
. For a more intuitive view of the pixel distance scores,

these three sets are rearranged in ascending order, i.e., Dc
(·) =

{
Dc
(1), Dc

(2), . . . , Dc
(m)

}
,

Ds
(·) =

{
Ds
(1), Ds

(2), . . . , Ds
(m)

}
, and Db

(·) =
{

Db
(1), Db

(2), . . . , Db
(m)

}
. According to the sam-

ple sets of three different distances, the color is first used as the main collection feature,
after which the pixels with similar colors and close distances in the set are considered
as the first type of candidate samples. Then, the sampling process is described by the
following expressions:

Xc =

{
Xc ∪ Sc

k, Sc
k <

d∗max(Sc)
|Sc |

∅ , other
, k = 1, 2, . . . ,≤ |Sc| (8)
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Sc =

{
Sc ∪

{
Ds
(j)

}
∪
{

Db
(j)

}
, i f Dc

(j) < ε

∅ , other
, j = 1, 2, . . . ,

∣∣∣Dc
(·)

∣∣∣ (9)

where Xc is a sample set with similar colors and close distances, whereas Sc is a set of pixels
with a color similar to the unknown pixels, ε denotes the threshold of the color distance,
and d∗max(Sc)

|Sc | represents the proportion of pixels with a small color distance and coordinate
space distance in the Sc set, where d denotes the number of samples.
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Figure 4. Spatial distance between pixels.

Furthermore, according to the obtained multi-range sets, the coordinate space is the
main acquisition feature, and the pixels in the same set characterized by a close spatial
distance and similar color are considered as the second candidate sample type. This
sampling method is described by the following equations:

Xs =

{
Xs ∪ Ss

k, Ss
k <

d∗max(Ss)
|Ss |

∅ , other
, k = 1, 2, . . . ,≤ |Ss| (10)

Ss =

{
Ss ∪

{
Dc
(j)

}
, i f Ds

(j) < d
∅ , other

, j = 1, 2, . . . ,
∣∣∣Dc

(·)

∣∣∣ (11)

where Xs is a sample set with a close spatial distance and similar colors, and Ss represents a
set of similar pixel distances. Thus, when sampling based on different primary features, the
sample sets Xc and Xs are formed, allowing the final candidate sample X to be obtained as
their union, i.e., X = Xc × Xs which is the Cartesian product of Xc and Xs.

4.1.2. High-Quality Sample Selection

As explained in the preceding section, multi-range pixel pair sampling yields the
candidate sample set X = Xc × Xs. In cases with a large number of candidate samples that
need to be considered for obtaining high-quality pixel pairs, the high-quality sample selec-
tion method proposed here can be adopted, which is combined with the multi-range pixel
pair sampling method to form the MCSS. In the process of pixel pair evaluation, a single
evaluation function is usually used to evaluate the optimal pixel pair. However, this may
compromise the ability to determine the fitness value of a given pixel pair [34]. Therefore,
we propose a novel approach that combines multiple evaluation functions to select high-
quality pixel pairs as candidate samples. Specifically, we employ color difference evaluation
fc(x), fuzzy evaluation f f (x), and fuzzy multi-criterion evaluation fm(x) as joint evaluation
indices for sample assessment. Let fi denote the fitness value after averaging the three
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evaluation functions of pixel x. Accordingly, the fitness value corresponding to the elements
in candidate sample X is F =

{
f1, f2, . . . , f|X|

}
, where fi = 1/3∑ ( fc(x) + f f (x) + fm(x)).

Reordering F in ascending order yields F(·) =
{

f(1), f(2), . . . , f(|X|)
}

. Then, according to the
fitness value obtained by the joint evaluation function, the high-quality pixel pairs can be
selected using the expression below:

Ω f =

{
Ω f ∪ fi, i f min fi(x) + 1 > fi(x), i = 1, 2, . . . , |F|, fi ∈ F
∅ , other

Ω f → Ω (12)

where Ω f represents the set of fitness values of the high-quality pixel pairs; Ω is the pixel
information corresponding to the fitness values of high-quality pixel pairs; and threshold
min( fi(x))+ 1 is implemented to exclude excessively high values of the evaluation function.
After obtaining high-quality pixel pairs according to Equations (12) and (13), the number of
high-quality pixel pair samples is far smaller than the number of pixels in the decision space.
As shown in Algorithm 1, the aforementioned approaches are combined to yield the MCSS.

Algorithm 1: Multi-criterion sampling strategy

Input: image and trimap.
1. //For information on image pixel.
2. F ∪ B = Known pixel information by trimap.
3. for i = 1 to |F ∪ B| do
4. //multi-range pixel-pairs sampling.

5.
{

Dc, Ds, Db
}
= By Equations (5)–(7).

6.
{

Dc
(·), Ds

(·), Db
(·)

}
= Sort the sets in ascending order.

7. while Dc
i,(·) < ε do

8. Xc = By Equations (8) and (9).
9. end while
10. while Ds

(·) < d do
11. Xs = By Equations (10) and (11).
12. end while
13. X = Xc × Xs

14. end for
15. //High-quality sample selection.

16. F(·) =
{

f(1), f(2), . . . , f(|X|)
}
= By Equation (12).

17. if stop criterion is not met then
18. Ω = Ω ∪ {xi} //xi is the corresponding sample pixel of fi.
19. end if
Output: high-quality pixel pairs set Ω.

Specifically, to ensure that high-quality pixel pairs are not missing, in Lines 1–2, the
foreground and background pixel information is gathered according to the input image,
while in Lines 3–14, the candidate sample set X is output after excessive range sampling,
and in Lines 15–19, the final high-quality sample set Ω is obtained according to the high-
quality selection method.

4.2. Multi-Criterion Matting Algorithm via Gaussian Process

In this subsection, we introduce the multi-criterion matting algorithm via Gaussian
process (GP-MCMatting) proposed in this work, which enables image matting even when
computing resources are limited while ensuring the required accuracy of the image matting.

4.2.1. Gaussian Process Fitting Model

The objective function of the natural image matting problem is typically complex due
to the simultaneous consideration of the similarity between pixels in the foreground and
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background regions, as well as the similarity among pixels. Traditional objective functions
usually require nonlinear optimization algorithms for solving, which demands intensive
computational resources and time [25]. When computing resources are limited, it may be
challenging to directly use traditional objective function-based methods. Accordingly, we
assume that approximating the evaluation of the objective function by fitting the parameters
of Gaussian processes (GPs) [20] can improve the accuracy of alpha matte. Therefore, the
GPFM can be represented as follows:

minH(xi,in)→ min f (x)
s.t.min f (x)

x = (xF
i , xB

i ), xi,in = (xF
i,in, xB

i,in)

xF
i , xF

i,in ∈ F; xB
i , xB

i,in ∈ B

(13)

where H(xi,in) is the Gaussian process fitting model (GPFM). Because there are many
redundant solution space regions in the coordinate space, in the proposed algorithm, the
image index number space is used to construct the distribution of the objective function.
Moreover, to avoid crossing the boundary when searching for the optimal solution, the
GPFM is constructed in the index value space.

The GP is an infinite set of random variable distributions, where the joint distribution
function of each finite subset is subject to Gaussian distribution [35,36]. Therefore, the GP is
completely determined by the mean function and the covariance kernel function between
any two random variables [37,38]. In this work, the optimization of the GPFM model
is achieved by approximating the optimal solution of the pixel pair objective function,
essentially by estimating the undetermined parameters in the GPFM and then using the
evaluated parameters to obtain the optimal solution [20]. Let θ and θ̂ denote the parameter
vector and the estimated parameter vector of the kernel function in the GPFM, respectively.
Then, the likelihood function is used to estimate the kernel function parameters in the
Gaussian process fitting model. Mathematically, the expression can be described as follows:

θ̂ = L(θ| f (x), xi,in ) = argmin
θ

log P( f (x), xi,in|θ ) (14)

Therefore, according to Equation (15), the GPFM of the pixel pair evaluation function
can be obtained via the following expressions:

minH = H(xi,in
∣∣θ̂ ) (15)

Then, the index position of the optimal pixel pair can be evaluated by fitting the GPFM
in Equation (16), allowing us to solve for the optimal pixel pair.

4.2.2. Multi-Criterion Matting Algorithm via Gaussian Process

Natural image matting is a large-scale problem, for which extensive computing re-
sources are needed to solve the original objective function directly. Therefore, to achieve
matting with limited computing resources, we propose a novel matting algorithm named
the multi-criterion matting algorithm via Gaussian process (GP-MCMatting), which in-
cludes (1) the multi-criterion sampling strategy (MCSS) and (2) the Gaussian process fitting
model (GPFM). The former is mainly used to select high-quality sample pixel pairs from
a large number of decision variables. The latter mainly uses the GPFM to approximate
the original objective function of natural images based on the MCSS, thereby reducing the
consumption of computational resources. For constructing the GPFM basis, we define Θ as
a penalty function of the GPFM:

Θ(Ω, γ(k)) = H(Ω)− γ(k)∑ log f (Ω) (16)
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where γ(k) is the penalty factors that decrease sequentially and lim
k→+∞

γ(k) = 0, Ω is the set

of high-quality pixel pair samples.
Once the GPFM is constructed, it is utilized to approximate the original objective

function for a given pixel pair, allowing the optimal pixel pair to be obtained by solving
the extreme points of the model via the high-quality pixel pair set Ω. In this work, the
optimal solution of GPFM is obtained based on the ideas behind the interior-point algo-
rithm (IPA) [39]. Within the solving process, the optimal solution xmin of the GPFM is
approximately equivalent to the optimal solution xbest of the objective function. In addition,
we find that the optimal pixel pair is usually located in the Xloc of the known region closest
to the unknown pixels. Therefore, selecting the closest pixel pair in the local foreground
region and the background region as the initial IPA population often yields a viable solu-
tion. When this assumption does not hold, the IPA algorithm can also find the optimal
foreground/background pixel pairs by solving the GPFM, because the algorithm is applied
to the entire search space, thus theoretically avoiding the loss of the optimal pixel pair. The
solving process of GP-MCMatting is shown in Algorithm 2.

Specifically, let ε represent the distance between the GPFM and the objective function
that needs to be approximated, and τ is smaller than a specified small value. ∂Θ

∂xγ(k)
is the

partial derivative, where c is a randomly generated attenuation factor, and γ(k) is a penalty
coefficient greater than 0. Ω is a set of high-quality pixel pairs obtained by Algorithm 1.
In Algorithm 2, the required parameters are first initialized, and Lines 5–10 are used to
construct GPFM. Lines 12–22 are the process of solving the optimal solution of the GPFM.
The algorithm stops iterating when the optimal solution of the GPFM is approximately
equivalent to the optimal solution of the objective function.

Algorithm 2: Multi-criteria matting algorithm via Gaussian process.

Input: image and trimap.
1. //Initialize parameters ε,τ.
2. xloc = Xloc(x).
3.γ(k) = a random number greater than 0.
4. c = a random number between [0, 1].
5.for i = 1 to |U| do
6. //Gaussian process fitting model construction.
7. Ω = According to the Algorithm 1.
8. ( f (x), xi,in) = Ω.
9. H = H(Lp(θ

∣∣ f (x), xi,in )), xi,in ∈ Ω.
10. //Optimal pixel pair estimation.
11. xmin = minH(xloc).
12. while ε > τ do
13. xγ(k)

= ∂Θ
∂xγ(k)

= 0.

14. xinit = xγ(k)
.

15. ε = ‖xγ(k) − xinit‖.
16. γ(k) = γ(k−1) · c.
17. if γ(k) ≤ 0. then
18. γ(k) = a random number greater than 0.
19.c = a random number between [0, 1].
20. end if
21. end while
22. end for
23. xbest = xγ(k)

Output: xbest.
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5. Experiments and Results

In this section, three sets of experiments are described, which were performed to verify
the effectiveness of the high-quality pixel pair selection strategy and the effectiveness of
the algorithm.

5.1. Experimental Setup

In the experiments, the alpha matting dataset presented by Rhemann et al. [9] (which
contains 35 images, 27 of which are training images and 8 are testing images) was used as
the benchmark dataset. All experiments were implemented in MATLAB, and we set up
three groups of experiments, as outlined below.

• This experiment was mainly performed to verify that the MCSS can effectively avoid
the loss of high-quality pixel pairs, thus improving the matting performance.

• In this experiment, a comparative analysis was conducted between GP-MCMatting and
the state-of-the-art evolutionary optimization-based algorithms, such as the pyramid
matting framework (PMF) [25], adaptive convergence speed controller based on
particle swarm optimization (PSOACSC) [33], and the multi-objective evolutionary
algorithm based on multi-criteria decomposition (MOEAMCD) [24], based on 1%,
2%, 5%, 10%, 20%, and 100% computing resources. The matting performance of the
proposed algorithm under limited computing resources was verified.

• This experiment was conducted to compare the GP-MCMatting performance with the
aforementioned algorithms based on the availability of only 1% computing resources
to verify its superiority.

In order to ensure the comparability of the experimental results based on different
algorithms and to facilitate statistical analysis of their performance, the mean square error
(MSE) and absolute value error (SAD) were adopted as the evaluation indices. In the
sections that follow, the results and analyses of each group of experiments are presented.

5.2. Effectiveness of Multi-Criterion Sampling Strategy

In the MCSS, the spatial coordinates and color features of the pixels were sampled
by solving Equations (8) and (9). Using Equation (9), pixels whose color distance was less
than ε were considered candidate samples. In order to determine the optimal value of ε,
we calculated the matting results under different distances. Figure 5 shows the sum of the
MSE values of the 27 alpha matting training sets based on 1% computing resources and
the different values of ε. The results show that when the color distance parameter ε was
assigned the value of 10 (the red corresponds to the dashed line), the total MSE based on
all 27 images was the smallest with a value of 0.789, i.e., the alpha matte accuracy was the
highest. Therefore, the color distance parameter ε was set to 10 in the MCSS.

Additionally, to verify the effectiveness of the high-quality sample selection method
in the MCSS, a comparative analysis of the matting quality obtained by selecting different
evaluation functions was performed, and the findings are shown in Table 1. The compar-
isons were based on the sum of the MSE and SAD of the 27 images solved by different
evaluation functions. By referring to Table 1, we can see that on the basis of the MSE and
SAD evaluation metrics, the MCSS outperformed the method based on a single evalua-
tion function. Therefore, the experimental results show that the combination of multiple
evaluation functions to select high-quality pixel pairs was significantly better than a single
evaluation function to select pixel pairs, which fully verifies the effectiveness of the MCSS.
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Table 1. Comparison of the matting results yielded by different evaluation functions.

Color Difference
Evaluation Function

Multi-Objective
Evaluation Function

Fuzzy Evaluation
Function

Multi-Criteria
Sampling Strategy

MSE 0.0299 0.0297 0.0293 0.0292
SAD 7.2699 7.1731 7.1628 7.0999

5.3. Algorithm Evaluation and Comparison under the Conditions Characterized by Limited
Computing Resources

In this subsection, GP-MCMatting is compared with the state-of-the-art evolutionary
optimization-based algorithms to verify the matting performance of the proposed algorithm
when computing resources are limited. As most algorithms require 5000 iterations per
pixel [24,25,33], this was adopted as the benchmark, and 1%, 2%, 5%, 10%, 20%, and 100%
availability of computing resources were considered in 5000 different scenarios to compare
the matting performance of the studied algorithms. For the fairness of comparison, the
MSE and SAD were used as the evaluation indicators to compare the alpha matte accuracy
of the different algorithms. The results in Table 2 represent the sum of the MSE and SAD
of different algorithms when applied to the training sets contained in the alpha matting
dataset under different computing-resource conditions.

According to the results reported in Table 2, in terms of the SAD value, the matting
performance of the proposed algorithm under limited and sufficient computing resources
was superior to those associated with the PMF, MOEAMCD, and PSOACSC algorithms.
According to the MSE evaluation index, the matting effect of the proposed GP-MCMatting
algorithm was better than that of the algorithms used in the comparison only when 1%,
2%, and 5% of the computing resources were considered. Nonetheless, the GP-MCMatting
algorithm was still superior to the PMF and PSOACSC in the scenarios based on 10%, 20%,
and 100% computing resource availability. When both the SAD and MSE were considered,
however, the proposed GP-MCMatting algorithm not only achieved competitive matting
effects under limited computing resources, but also achieved good results even when
computing resources were sufficient. Thus, the proposed algorithm based on the MCSS
effectively realized the matting results irrespective of the computing resource availability.

In order to further analyze the effectiveness of GP-MCMatting under limited com-
puting resources, the MSE results of different algorithms were compared based on their
application on 27 images in the alpha matting dataset and the availability of 1%
computing resources.
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Table 2. The SAD and MSE values for the GP-MCMatting and the state-of-the-art evolutionary
optimization-based algorithms based on their application to 27 images at 1%, 2%, 10%, 20%, and 100%
computer power and 5000 evaluations. Bold Arabic numerals indicate the index with the highest
ranking.

Computing
Resources

SAD

1% 2% 5% 10% 20% 100%

PSOACSC [33] 604.425 604.267 604.418 604.137 603.950 602.987
MOEAMCD [24] 243.965 243.346 242.741 242.179 243.028 242.741

PMF [25] 349.160 321.151 294.067 272.818 253.481 228.433
Ours 191.697 187.752 202.500 214.409 216.114 210.910

Computing
resources

MSE

1% 2% 5% 10% 20% 100%

PSOACSC [33] 5.061 5.063 5.063 5.062 5.056 5.039
MOEAMCD [24] 1.127 1.121 1.113 1.116 1.118 1.113

PMF [25] 2.231 1.910 1.689 1.430 1.257 1.028
Ours 0.789 0.826 1.029 1.151 1.163 1.171

5.4. Comparison to the State-of-the-Art Methods

In order to demonstrate the effectiveness of the proposed GP-MCMatting algorithm
and compare its performance to the state-of-the-art algorithms when computing resources
are limited, the MSE values obtained by applying different matting algorithms to the
27 training sets under 1% computing resources are shown in Table 3.

Table 3. The MSE values of GP-MCMatting and the state-of-the-art evolutionary optimization-based
methods based on their application on 27 images under 1% computing resources. Bold Arabic
numerals indicate the index with the highest ranking.

Algorithms GT01 GT02 GT03 GT04 GT05 GT06 GT07 GT08 GT09

Ours 3.33 ×
10−3

6.40 ×
10−3

9.68 ×
10−3

1.23 ×
10−2

1.49 ×
10−2

1.49 ×
10−2

7.89 ×
10−3

3.93 ×
10−2

1.29 ×
10−2

PSOACSC [33] 6.65 ×
10−2

2.13 ×
10−1

5.35 ×
10−2

1.01 ×
10−1

1.62 ×
10−1

2.24 ×
10−1

9.11 ×
10−2

1.26 ×
10−1

1.57 ×
10−1

MOEAMCD [24] 7.49 ×
10−3

1.53 ×
10−2

1.19 ×
10−2

2.15 ×
10−2

2.53 ×
10−2

2.71 ×
10−2

1.08 ×
10−2

4.40 ×
10−2

1.11 ×
10−2

PMF [25] 1.74 ×
10−2

1.23 ×
10−1

1.45 ×
10−2

3.28 ×
10−2

4.78 ×
10−2

4.45 ×
10−2

2.84 ×
10−2

5.71 ×
10−2

2.16 ×
10−2

Algorithms GT10 GT11 GT12 GT13 GT14 GT15 GT16 GT17 GT18

Ours 2.32 ×
10−2

3.21 ×
10−2

1.00 ×
10−2

1.23 ×
10−2

7.81 ×
10−3

5.04 ×
10−2

7.64 ×
10−2

1.22 ×
10−2

7.50 ×
10−3

PSOACSC [33] 2.22 ×
10−1

3.02 ×
10−1

4.61 ×
10−2

2.08 ×
10−1

1.55 ×
10−1

1.79 ×
10−1

3.62 ×
10−1

1.41 ×
10−1

2.04 ×
10−1

MOEAMCD [24] 2.77 ×
10−2

3.93 ×
10−2

1.47 ×
10−2

2.29 ×
10−2

2.61 ×
10−2

4.02 ×
10−2

1.87 ×
10−1

1.59 ×
10−2

1.66 ×
10−2

PMF [25] 6.36 ×
10−2

7.65 ×
10−2

1.84 ×
10−2

6.66 ×
10−2

5.37 ×
10−2

9.36 ×
10−2

3.43 ×
10−1

3.01 ×
10−2

6.15 ×
10−2

Algorithms GT19 GT20 GT21 GT22 GT23 GT24 GT25 GT26 GT27

Ours 8.82 ×
10−3

7.56 ×
10−3

1.57 ×
10−2

7.15 ×
10−3

7.35 ×
10−3

9.84 ×
10−2

1.51 ×
10−1

5.95 ×
10−2

8.06 ×
10−2

PSOACSC [33] 2.27 ×
10−1

7.33 ×
10−2

1.90 ×
10−1

1.19 ×
10−1

1.58 ×
10−1

3.54 ×
10−1

2.99 ×
10−1

2.56 ×
10−1

3.71 ×
10−1

MOEAMCD [24] 5.13 ×
10−2

1.21 ×
10−2

4.73 ×
10−2

1.38 ×
10−2

1.81 ×
10−2

6.88 ×
10−2

1.67 ×
10−1

6.94 ×
10−2

1.15 ×
10−1

PMF [25] 9.99 ×
10−2

1.34 ×
10−2

9.56 ×
10−2

2.61 ×
10−2

2.32 ×
10−2

1.05 ×
10−1

2.88 ×
10−1

1.64 ×
10−1

2.22 ×
10−1
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According to the results reported in Table 3, GP-MCMatting outperformed the PMF,
PAOACSC, and MOEAMCD algorithms in 24 of the 27 cases (with the exception of the
GT24, and GT15 images). The reasons behind its suboptimal performance in these two
cases are analyzed in detail in Section 5.5.

To further verify the matting effect of the proposed algorithm, the results yielded
by the GP-MCMatting algorithm on the training set and test set are depicted in Figure 6.
It is evident that GP-MCMatting effectively evaluated the object containing hair in the
foreground target in the image (the visualization results in rows 1, 2, 3, 4, and 6). Conversely,
according to the comprehensive visualization results and the MSE accuracy results, the
matting effect of the compared algorithms under the limited computing resources was not
satisfactory, and there were large unknown areas that could not be evaluated. Based on the
analysis of the experimental results shown in Table 3 and the images included in Figure 6,
it is evident that the algorithm proposed in this work avoided the loss of the optimal pixel
pair by selecting high-quality pixel pairs, thus improving the extraction accuracy of the
alpha matte. In addition, under limited computing resources, satisfactory matting was
realized by approximately solving the GPFM, which reflects the superiority of the proposed
GP-MCMatting.
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5.5. Limitations of the GP-MCMatting Algorithm

The comparison and analysis of the experimental results in Section 5.4 fully reflect the
superiority of the proposed algorithm under conditions characterized by limited computing
resources. However, the results reported in Table 3 in Section 5.4 show that the extraction
accuracy of the GP-MCMatting algorithm was low when applied to the GT15 and GT24
images, and there were failures in the acquisition of high-quality pixel pairs, as shown in
Figure 7.
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The results depicted in Figure 7 reveal that the color information of the foreground and
background pixels in the annotated region was relatively similar, as depicted by the green
box in the images. Although the pixels in this region met the color sampling requirements
due to their minor color differences, the spatially close distribution of these pixels impeded
the search for the optimal pixel pair during the evaluation of the kernel function parameters
of the Gaussian process field model (GPFM) using pixel spatial distribution. Consequently,
in complex images that exhibit similar foreground and background characteristics, GPFM
approximations cannot replace the original evaluation function when solving for the
optimal pixel pairs. This fundamental limitation constrains the practical implementation of
the GP-MCMatting algorithm in such scenarios.

6. Conclusions

In this paper, we present a multi-criterion sampling matting algorithm via Gaussian
process (GP-MCMatting) that effectively solves the matting problem with limited comput-
ing resources. To overcome the challenge of losing the optimal pixel pair, which occurs in
sampling-based methods, an MCSS was designed based on multi-range pixel pair sampling
and high-quality sample selection. Additionally, to address the challenge of matting under
limited computing resources, the GP-MCMatting algorithm searches for the optimal pixel
pair using an approximation of the GPFM instead of the original evaluation function. This
technique avoids the protracted calculations required by the original evaluation function
while still ensuring accurate matting. The experimental results demonstrate that the GP-
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MCMatting algorithm achieved similar results under sufficient computing resources and
was superior when 1%, 2%, and 5% of computing resources were available.

However, when images with similar foreground and background color information
were input, the GP-MCMatting algorithm failed to achieve satisfactory results. Therefore,
to address the inherent limitations of the algorithm, future research will focus on exploring
the color variation characteristics of adjacent pixels in images, taking into account the
spatial continuity and correlation between pixels. This approach aims to solve the challenge
of accurately extracting the alpha matte in images with extremely similar foreground and
background color information, where the alpha matte is difficult to extract.
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