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Abstract: The method of micro-arc oxidation has been utilized to synthesize a protective biocompati-
ble coating for a bioresorbable orthopedic Mg implant. This paper presents the results of compre-
hensive research of micro-arc coatings based on diatomite—a biogenic material consisting of shells
of diatom microalgae. The main focus of this study was the functionalization of diatomite-based
micro-arc coatings by incorporating particles of titania (TiO2) into them. Various properties of the
resulting coatings were examined and evaluated. XRD analysis revealed the formation of a new
magnesium orthosilicate phase—forsterite (Mg2SiO4). It was established that the corrosion current
density of the coatings decreased by 1–2 orders of magnitude after the inclusion of TiO2 particles,
depending on the coating process voltage. The adhesion strength of the coatings increased following
the particle incorporation. The processes of dissolution of both coated and uncoated samples in a
sodium chloride solution were studied. The in vitro cell viability was assessed, which showed that
the coatings significantly reduced the cytotoxicity of Mg samples.

Keywords: orthopedic implants; magnesium alloy; micro-arc coating; diatomite; TiO2; in vitro
biocompatibility; corrosion resistance; adhesive strength

1. Introduction

In recent years, a lot of scientific research has aimed to develop new materials and
designs for the creation and improvement of bone implants [1,2]. Much attention is
paid to ensuring mechanical strength, fatigue durability of the implant, and reducing its
weight [3,4]. Magnesium and its alloys have become increasingly popular in the field
of medical materials science. In particular, magnesium can be used as a material for the
fabrication of bioresorbable orthopedic implants. This is feasible due to its low specific
gravity (≈1.74 g/cm3), high biocompatibility, and elastic modulus close to that of human
cortical bone (≈40–45 GPa) [4–10]. Such a modulus of elasticity virtually eliminates the risk
of the stress-shielding effect, which can lead to undesirable consequences in the form of
the onset of osteopenia at the implant site [11–13]. According to Wolff’s law, the bone in a
healthy human or animal adapts to the stresses to which they are subjected [14]. If the load
on the bone decreases, the bone becomes less dense and weaker due to the lack of incentive
needed to continue remodeling. Therefore, magnesium is a very promising material in this
respect.

However, magnesium also has certain disadvantages associated with its excessive sus-
ceptibility to corrosive media, as well as the active release of hydrogen at the site of contact
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between the implant and the surrounding tissues [15–18]. To address these challenges, this
paper proposes modifying the implant surface with a protective, biologically active coating
based on natural diatomite functionalized with titanium dioxide particles.

To synthesize the coatings, the micro-arc oxidation (MAO, also known as plasma
electrolytic oxidation or PEO) method was implemented. This method is characterized by
coating a valve metal substrate submerged in a bath of electrolytes. Under the influence of
a strong electric field, numerous plasma micro-arc discharges are formed on the surface
of the substrate, contributing to intensive electrochemical interaction of the electrolyte
components with the substrate material, and consequently, the formation of a protective
oxide coating [19,20]. This coating acts as a two-way solution. On the one hand, it protects
the magnesium implant from being dissolved too quickly by creating a barrier between it
and the aggressive environment [21–24]. On the other hand, it enables and facilitates the
osseointegration process between the implant and the bone tissue [25–29].

The most widely used coatings in the field of micro-arc coating research are the
ones synthesized in electrolytes based on phosphates, silicates, and, aluminates, although
these are a little less common [30–37]. Aluminate-based electrolytes are typically used to
produce wear-resistant MAO coatings due to the dominant formation of MgAl2O4 as a very
solid phase. Phosphate- and silicate-based electrolytes are commonly used to synthesize
coatings with improved corrosion resistance, which is due to the high corrosion resistance
of Mg2SiO4 and Mg3(PO4)2, respectively. [38]. Such coatings can be further functionalized
by the addition of insoluble particles to the composition of an electrolyte. These can include
various pharmaceutical products, carbides, nitrides, oxides, etc. [39–47]. Altering the
concentration and/or proportions of these particles makes it possible to control and tailor
the structure and various properties of the resulting coatings.

Another promising direction is the use of materials of biogenic origin to increase the
osteoinductive/osteoconductive properties of bone-contact implantable devices, which
contributes to their further osseointegration. In previous studies, we developed coatings
for a magnesium alloy based on natural diatomite [48], a sedimentary rock of biogenic
origin consisting of skeletons of diatom algae. The mineralogical composition of diatomite
is mainly represented by amorphous hydrated silica SiO2·nH2O. Diatomite powder was
introduced into the composition of the electrolyte to form micro-arc coatings. The obtained
coatings were characterized by excellent biocompatibility and high corrosion resistance.
However, the mechanical properties of these coatings were not outstanding.

In this work, an electrolyte based on biogenic diatomite was used as the base elec-
trolyte. The distinction of this work is the modification of a diatomite-based coating with
titanium oxide particles added to the base electrolyte in the form of a dispersed phase.
Analysis of the scientific literature on this topic shows that the addition of titanium dioxide
particles changes the structure and properties of micro-arc coatings, increasing their ad-
hesive strength, corrosion resistance, wear resistance, and antibacterial properties [49–54].
Ergo, the addition of TiO2 particles is a promising direction in the field of the functional-
ization of micro-arc coatings. The novelty of this work lies in the fact that completely new
composite coatings based on biogenic diatomite with the addition of TiO2 particles charac-
terized by high biocompatibility, adhesive strength, and excellent corrosion resistance were
developed.

The main objective of this study is to investigate the effect of adding refractory titanium
oxide particles on the structure and various properties of protective, biologically active
micro-arc coatings for bioresorbable orthopedic magnesium implants.

2. Materials and Methods

As a substrate material, high-purity magnesium alloy (Mg alloy) MA2-1hp (AZ31 alloy
equivalent) (VILS, Moscow, Russia) was chosen. Its chemical composition is as follows
(wt.%):

• 94.12 Mg;
• 4.05 Al;
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• 1.1 Zn;
• 0.6 Mn
• >0.1 other elements combined.

The alloy has a Young’s modulus of 42 GPa and a density of 1.790 kg/m3, based on the
manufacturer’s tests. Model samples for the coating deposition were cut from a solid piece
of magnesium alloy by the method of electric discharge machining. After that, the samples
were ground with 600-grit abrasive sandpaper (Hermes Schleifmittel GmbH, Germany) to
achieve surface roughness Ra of 0.5–0.6 µm. Following this, the samples were deep-cleaned
using an ultrasonic cleaner (Elmasonic S, Elma, Germany) filled with distilled water and
ethanol sequentially for 30 min each. After this preparation, samples with a smooth surface
were obtained. When examining uncoated samples with an optical or electron microscope,
distinctive scratches were observed on their surface, which remained after the mechanical
impact of the abrasive material.

The electrolyte for the coating deposition included NaOH, Na2SiO3, and NaF dissolved
in distilled water and dispersed phases of diatomite (SiO2·nH2O) and titania (TiO2). The
diffractogram of TiO2 powder is shown in Figure 1. The diffractogram of diatomite powder
was provided previously in [48].
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Figure 1. X–ray diffraction pattern of the initial TiO2 powder.

The coatings were synthesized via the method of micro-arc oxidation. For the coat-
ing deposition process, the anodic potentiostatic mode was implemented with a pulse
frequency and duration of 50 Hz and 100 µs, respectively. The coatings were deposited
for 5 min at four different pulsed voltages: 350, 400, 450, and 500 V. To carry out the
experiment, “Micro-Arc 3.0” equipment was used, which consisted of a direct current (DC)
power supply, a water-cooled electrolyte bath, and counter electrodes. The monitoring of
the parameters during the MAO process was carried out with the help of the equipment’s
built-in software. A magnetic mixer stirred the electrolyte continuously during the process
to agitate the solution and prevent particle aggregation. After MAO treatment, samples
with a uniformly distributed coating layer were obtained.

The surface morphology and the elemental composition of the resulting coatings
were studied using a LEO EVO 50 scanning electron microscope (Zeiss, Jena, Germany),
equipped with an INCA x-act EDX spectrometer (Oxford Instruments, Abingdon, UK).

Changes in the phase composition of the coatings depending on the deposition voltage
were investigated via an X-ray diffractometer (DRON–7, Burevestnik, St. Petersburg,
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Russia) with the following parameters: CoKα radiation; 35 kV voltage; 22 mA tube current;
and 2θ angle range of 10◦ to 90◦ with 0.02◦ scanning step.

The adhesion strength of the coatings was assessed using a Revetest RST scratch tester
(CSM Instruments SA, Peseux, Switzerland) equipped with a diamond indenter 200 µm in
radius. The indenter scratched the surface of the sample, moving at a speed of 1 mm/min,
while the load increased linearly. The length of the scratch was 5 mm. The peak indentation
force was 40 N, and the loading rate was 3.9 N/min.

Corrosion resistance of the coatings in comparison with uncoated Mg alloy was
determined using the “P-40X” electrochemical workstation (Electrochemical Instruments,
Russia). A 0.9% NaCl solution was used as the electrolyte in a three-electrode cell, where
a graphite rod served as a counter electrode and an Ag/AgCl electrode was used as a
reference electrode. The exposed sample surface area equaled 1 cm2. The scan rate at which
the potentiodynamic polarization curves were obtained equaled 2 mV/s. The electrode
potential ranged from −1.9 V to +1.9 V. The temperature of the electrolyte was maintained
at 37 ◦C to simulate the conditions under which a coated implant would function in a
human body.

The method of immersion was used to determine the biodegradation rate of both the
coated and uncoated Mg alloy specimens. The samples were placed in containers with 0.9%
NaCl physiological saline solution and immersed at 37 ◦C in compliance with ISO 10993-5.
The volume of the electrolyte was at least 1 mL per 1 cm2 of the sample surface and covered
the sample completely. To obtain reliable results, the electrolyte was prepared under aseptic
conditions. The experiment was conducted over the course of 11 days. The number of
parallel experiments was not less than 3. Mass loss of the samples during dissolution was
monitored on a daily basis. The following formula (1) was used to calculate the mass loss
of the specimens:

∆m =
m0 − mi

m0
·100% (1)

where m0 is the sample mass before dissolution, mg, and mi is the sample mass after
dissolution, mg.

The condition of the coatings at certain stages of the experiment was visually assessed
via a MET 1MT optical microscope (Altami, Russia).

The biocompatibility of samples was examined in vitro using the MTT assay after di-
rect contact of the cells with the testing material. The NIH/3T3 cell line was purchased from
the State Research Center of Virology and Biotechnology “VECTOR” (Novosibirsk, Russia).
The cells were seeded in a flask with DMEM (Lonza, Switzerland) with 10% fetal bovine
serum (HyClone, Marlborough, MA, USA) and 5% penicillin/streptomycin-glutamine
(HyClone, Marlborough, MA, USA) and incubated at 37 ◦C in a 5% CO2. After the 24 h
incubation period, the attached cells were trypsinizated for 3–5 min and centrifuged at
1400 rpm for 5 min. The cell culture was seeded into 24-well culture plates (total volume of
2 mL) at 70,000 cells per well. Test samples were placed in each well. Cells were incubated
for 24 h at 37 ◦C in 5% CO2. Cells that were incubated in the medium without the sample
present were used as controls.

The viability of the cells after exposure was analyzed using the MTT assay [48]. In
line with typical procedure, 200 µL of MTT [3-(4, 5-dimetheylthiazol-2)-2, 5 diphenyl
tetrazolium bromide] solution was added to each well. The plates were incubated for
4 h at 37 ◦C in 5% CO2. Then, the MTT-containing medium was removed, and the cells
were treated by adding 100 µL DMSO (HyClone, Marlborough, MA, USA) to dissolve the
formazan crystal. In the final step, the optical density (OD) of the solution was recorded at
a 570 nm wavelength using a microplate reader Thermo Scientific Multiskan FC (Thermo
Fisher Scientific, Waltham, MA, USA). The measured OD value was used to calculate the
relative cell viability (%) according to Equation (2):

Cell viability (%) = OD (test sample)/OD (control) × 100 (2)
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Each experiment was carried out in duplicate. All statistical analyses were performed
using the statistical software package STATISTICA 10.0. The normal distribution of the
results was checked by the Kolmogorov–Smirnov test. The significance of differences in
the mean values between groups was analyzed using the Mann–Whitney test. Differences
were considered significant at p < 0.05.

3. Results and Discussion
3.1. Coating Thickness and Roughness

Figure 2 displays the thickness and roughness of the coatings in relation to the MAO
process voltage. The thickness of deposited coatings increases exponentially, which corre-
lates well with our previous studies related to diatomite-based coatings [48,55]. The surface
roughness ranges from 2.5 to 5.0 µm, with a sharp increase at 450 V. This is due to the
more intense course of the micro-arc oxidation process at higher voltages, which leads to
a greater number of micro-arc plasma discharges on the substrate surface. This, in turn,
leads to the merging of many small micro-discharges into one large electric arc, leading to
more active intumescence of the surface and, accordingly, to the formation of a rougher
topography.
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Figure 2. Graphs of roughness (left axis, blue line) and thickness (right axis, red line) versus the MAO
process voltage.

3.2. Morphology and Pore Structure

Visual analysis of the SEM micrographs of the coatings obtained at different process
voltages was carried out (Figure 3). It was revealed that the coatings have a large number
of variously shaped pores, ranging in size from 100 nm to 12 µm (Figure 3a,b,e,f). We
can observe the fragments of lithified diatomeae shells both on the surface and within
the bigger pores. Some of the fragments were partially melted into the matrix of the
coating, thus giving it an ordered reticulated pore structure. Unmelted particles of both
diatomite and titania are also present in substantial amounts on the surface of the coating.
It is worth noting, however, that the number of unmelted particles decreases with the
increase in the deposition process voltage. This can be explained by a larger quantity of
more powerful micro-arc discharges being generated during the MAO process at higher
voltages, which leads to a more active disintegration and fusion of the oxide particles into
the coating matrix.



Biomimetics 2023, 8, 280 6 of 17

Biomimetics 2023, 8, x FOR PEER REVIEW 6 of 18 
 

 

In addition, Figure 3c,d,g,h presents the micrographs of cross-sections of the coat-
ings. The analysis of the microphotographs leads to the conclusion that the coatings have 
an internal porous structure, including pores of different types and sizes. The coatings 
deposited at MAO voltages of 350 and 400 V contain large pores, up to 5 µm in diameter, 
indicating single high-intensity micro-arc discharges (Figure 3c,d). Groups of small pores 
less than 1 µm in size are scattered around them, resulting from cascades of micro-arc 
discharges. As the voltage of the MAO process increases to 450–500 V, the thickness of the 
coatings increases significantly, but the nature of the internal pore structure does not 
change; both large and small pores, evenly distributed throughout the coating thickness, 
are present in the coatings (Figure 3g,h). The pores are mostly enclosed, but in some cases 
channeled pores resulting from a powerful breakdown of the coating are observed (Figure 
3g). In addition, the presence of TiO2 particles can be observed in the cross-sections of the 
coatings. 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3. SEM micrographs of the surfaces and cross-sections of TiO2-doped diatomite coatings
synthesized at different process voltages: (a,c) 350 V; (b,d) 400 V; (e,g) 450 V; (f,h) 500 V. Mag.: 500×,
5000× for (a,b,e,f); 2000× for (c,d); 1000x for (g,h).

In addition, Figure 3c,d,g,h presents the micrographs of cross-sections of the coatings.
The analysis of the microphotographs leads to the conclusion that the coatings have an in-
ternal porous structure, including pores of different types and sizes. The coatings deposited
at MAO voltages of 350 and 400 V contain large pores, up to 5 µm in diameter, indicating
single high-intensity micro-arc discharges (Figure 3c,d). Groups of small pores less than
1 µm in size are scattered around them, resulting from cascades of micro-arc discharges.
As the voltage of the MAO process increases to 450–500 V, the thickness of the coatings
increases significantly, but the nature of the internal pore structure does not change; both
large and small pores, evenly distributed throughout the coating thickness, are present in
the coatings (Figure 3g,h). The pores are mostly enclosed, but in some cases channeled
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pores resulting from a powerful breakdown of the coating are observed (Figure 3g). In
addition, the presence of TiO2 particles can be observed in the cross-sections of the coatings.

3.3. Elemental Composition

To characterize the chemical composition of the synthesized coatings, the method
of energy-dispersive X-ray microanalysis was used. Figure 4 shows the maps of element
distribution, as well as the sum spectrum of the elements present in the coating. High
localized concentrations of Ti and Si were detected via element mapping, correlating to
titania and diatomite particles, respectively. Table 1 displays the amount of each element
(in at. %) in relation to the coating deposition voltage. It can be concluded that the amount
of most elements remains approximately the same regardless of the process voltage. The
exceptions are silicon and titanium, the amount of which decreases as the MAO voltage
increases. This can be partially attributed to fewer particles of both diatomite and titania
remaining unmelted on the coatings surface at higher MAO voltages, as can be seen in
Figure 3.
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Figure 4. Energy-dispersive X-ray analysis of the TiO2-incorporated diatomite coating formed at
500 V: SEM image, sum spectrum, and element mapping.

Table 1. Chemical composition of the coatings, at. %.

Element 350 V 400 V 450 V 500 V

O Kα 58.7 ± 2.5 62.2 + 1.7 60.7 ± 1.7 61.3 ± 0.6
F Kα 4.1 ± 0.9 3.9 ± 1.3 5.2 ± 0.8 4.72 ± 0.5

Na Kα 1.4 ± 0.4 1.8 ± 0.2 2.1 ± 0.6 2.1 ± 0.3
Mg Kα 14.8 ± 1.8 12.9 ± 1.3 14.3 ± 2.6 14.49 ± 0.6
Al Kα 0.9 ± 0.1 0.8 ± 0.0 0.8 ± 0.1 0.84 ± 0.0
Si Kα 17.2 ± 1.2 15.6 ± 0.4 14.7 ± 0.6 14.8 ± 0.2
Ti Kα 2.9 ± 0.2 2.6 ± 0.7 2.2 ± 0.6 1.82 ± 0.2

EDX analysis of the element distribution in the cross-section of the coating (Figure 5)
showed that the elements O and Si are evenly distributed throughout the coating thickness,
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while Mg and F are mainly concentrated closer to the substrate in the transition layer. Na
concentration, on the contrary, is higher in the surface layer. In addition, isolated local
Ti accumulations are observed, confirming the presence of TiO2 particles in the coating
volume.
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Figure 5. Energy-dispersive X-ray analysis of the cross-sections of TiO2-incorporated diatomite
coating formed at 450 V: SEM image, sum spectrum, and element mapping.

The chemical composition of the cross-sections of the coatings formed at different
voltages of the MAO process (Table 2) is almost identical to the composition of the surface
of these coatings presented in Table 1. In the cross-sections of the coatings applied at
voltages of 350–400 V, a higher content of F is noted, but with an increase in voltage, its
amount decreases. There is also a decrease in Mg concentration when the process voltage
increases to 450–500 V.

Table 2. Chemical composition of the coatings (cross-section), at. %.

Element 350 V 400 V 450 V 500 V

O Kα 57.2 ± 1.5 59.8 ± 0.4 62.4 ± 1.3 61.6 ± 2.5
F Kα 8.0 ± 0.8 5.6 ± 1.0 4.1 ± 0.9 3.8 ± 0.7

Na Kα 0.5 ± 0.08 1.0 ± 0.1 2.9 ± 0.8 3.0 ± 0.7
Mg Kα 14.5 ± 1.6 14.6 ± 1.0 9.7 ± 0.8 11.0 ± 3.6
Al Kα 0.4 ± 0.2 0.7 ± 0.1 0.6 ± 0.1 0.6 ± 0.0
Si Kα 17.5 ± 0.1 16.7 ± 0.5 18.5 ± 1.2 17.8 ± 2.1
Ti Kα 1.7 ± 0.3 1.4 ± 0.6 1.5 ± 0.3 2.0 ± 1.0

X-ray Diffraction Analysis

Figure 6 showcases the X-ray diffraction patterns for the TiO2-augmented diatomite
coatings formed at four different process voltages. The formation of a new predominant
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phase is detected in all four coatings, namely forsterite (Mg2SiO4) (ICDD #34-0189), which
is a magnesium orthosilicate from the olivine group of minerals. We can also see the
reflexes correlating to both magnesium (ICDD #35-0821) and its oxide, namely periclase
(ICDD #45-0946). The incorporation of TiO2 particles into the coating results in a few
peaks corresponding to rutile (ICDD #21-1276), which is the most common natural form of
titanium dioxide.
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Figure 6. X-ray diffraction patterns of the coatings formed at 350, 400, 450, 500 V.

3.4. Mechanical Properties
Scratch Testing

The results of the study of the mechanical properties of TiO2-augmented diatomite
coatings, performed by scratch testing, showed that they have very high adhesion strength.
Figure 7 shows the optical images of the coatings, applied at different voltages of the
MAO process, after scratch testing. On scratches, it is possible to distinguish the zone of
destruction of the coating at the moment of penetration of the indenter to the substrate—
this is a solid light zone at the end of the scratch. But for the coatings applied at 500 V, this
zone is practically absent, which indicates the highest adhesion strength of these coatings.
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The determination of the critical load at failure confirmed these results. A diagram of
the critical load versus voltage at which the coating was formed is shown in Figure 8a. The
figure shows that the critical load values for coatings applied at 350–450 V are approximately
the same, ranging from 24.0–25.4 N. However, the coating applied at 500 V is characterized
by the highest critical load value of 35.2 N. The results obtained in previous studies show
that diatomite-based coatings without TiO2 particles have much lower adhesion strength.
The maximum critical load did not exceed 10 N [48].
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Because the thickness of the coatings increases exponentially with an increase in the
stress of the MAO process, we assume that the adhesive strength of the coatings depends
on their thickness.

Figure 8b shows a correlation graph of the dependence of the critical load on the
thickness of the coatings, indicating that this dependence has an exponential character,
which confirms our assumption.

3.5. Electrochemical Properties

One of the main objectives of this study was to improve the corrosion properties
of diatomite-based coatings by incorporating titanium oxide particles into them. This is
especially relevant for aggressive media, particularly the liquid component of the phys-
iological medium of the human body. Figure 9 shows the potentiodynamic polarization
curves for both pure Mg alloy samples and samples with coatings applied at different
voltages. The values of polarization resistance and corrosion current density of the coat-
ings varied in the ranges from 1.65 × 106 to 1.41 × 108 Ω cm2 and from 4.01 × 10−8 to
3.30 × 10−10 A cm–2, respectively, versus MAO process voltages (Table 3). Comparison
with the literature data [56,57] shows that calcium-phosphate coatings obtained by the PEO
method on magnesium alloys are characterized by lower values of polarization resistance
in the range of 4.24–11.27 kΩ cm−2, and higher values of corrosion current density are
characterized by the range of 1.25 × 10−6–8.54 × 10−6 A cm−2. This indicates that these
coatings are inferior in corrosion resistance to diatomite-based coatings with TiO2 particles
as presented in this paper.
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Figure 9. Potentiodynamic polarization (PDP) curves of the studied samples.

Table 3. Electrochemical parameters of the Mg alloy and coated samples.

Sample Diatomite + TiO2
Ec, V Ic, A cm−2 Rp, Ω cm2

Mg alloy −1.43 2.25 × 10−6 1.61 × 104

350 V −0.46 3.30 × 10−10 1.22 × 108

400 V −0.02 4.01 × 10−8 1.65 × 106

450 V −0.52 4.01 × 10−10 1.41 × 108

500 V −0.36 1.32 × 10−8 4.21 × 106

It can be seen that the coatings deposited at 350 and 450 V are the most resistant
to corrosion. The values of polarization resistance Rp for these samples amounted to
1.22 × 108 A·cm−2 and 1.41 × 108 A·cm−2, respectively.

A comparative analysis of the corrosion resistance of diatomite coatings before [48]
and after the addition of titanium dioxide particles showed that the addition of particles
increases the polarization resistance of coatings by 2–3 orders of magnitude, depending
on the coating deposition voltage. The corrosion current density in this case decreases
by 1 to 2 orders of magnitude. Overall, the corrosion current density of TiO2-doped
samples decreases by 2–4 orders of magnitude compared to uncoated Mg alloy samples,
and the polarization resistance, respectively, increases by 2–4 orders of magnitude. The
experimental data are given in Table 3.

3.6. Bioresorption Study

The processes of dissolution of both coated and uncoated alloy samples were studied
for 11 days while kept in a 0.9% NaCl solution (Figure 10). Studies have shown that
when a Mg alloy is dissolved, three periods can be distinguished. During the first period,
i.e., during the first 4 days, the dissolution rate of the alloy is lower than the dissolution
rate of samples with coatings. After 4 days, the dissolution rate increases sharply and
exceeds the dissolution rate of the coated samples. After 8 days, the dissolution rate slightly
decreases again. As described in previous studies, the dissolution rate of the Mg alloy
directly depends on two processes: the first is the dissolution of alloy components, while
the second is the process of reverse precipitation of dissolution products (magnesium
hydroxide Mg(OH)2) on the alloy surface. If the first process prevails, the dissolution rate
increases, but if the second process prevails, the alloy dissolves more slowly.
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Figure 10. Graph of the samples’ mass loss depending on the time of immersion in the 0.9% NaCl
solution.

The rate of dissolution of coatings of all types is constant and linear. After 6 days of
dissolution, the mass loss of the coated samples becomes less than that of the Mg alloy.
The intensity of the dissolution of the coating does not depend on the voltage of the MAO
process at which the coating is applied.

The optical images of the samples before dissolution and after 4, 8, and 11 days
of dissolution were also analyzed (Figure 11). On the surface of the pure Mg alloy, the
precipitation of dissolution products is observed after 4 days of incubation in the 0.9% NaCl
solution. The amount of dissolution products on the surface of the Mg alloy increases with
the increase in the duration of incubation. Similar patterns were observed and described in
previous studies [48,55].

As the optical images show, the dissolution of the coatings occurs in the area of surface
structure defects (pores, cracks). An increase in the diameter and depth of the pores can be
noted. But the morphology of the coatings surface does not change significantly, which
indicates the resistance of this type of coatings to dissolution in the biological environment.
This phenomenon is explained by the presence of insoluble compounds, such as magnesium
silicate (forsterite) and oxides of magnesium and titanium, in the coatings.

3.7. In Vitro Cytotoxicity

Cell viability was assessed using the MTT assay and quantified according to Equation (2).
Compared to the control, coating 400 V and coating 500 V-treated cells showed no statis-
tically significant decrease in viability; cell viabilities were about 94% and 98% of that of
the control, respectively (Figure 12). At the same time, the Mg alloy-treated NIH/3T3 cells
showed decreased viability, and the cell viability was approximately 43% (high toxicity).
Based on these results, it is safe to say that the coatings significantly reduce the toxicity of
the samples.
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Figure 12. Results of in vitro NIH/3T3 cell viability measured by an MTT assay after 24 h culturing
with negative control (DMEM), as well as with Mg alloy (positive toxic control), or samples coated at
400 V and 500 V.
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4. Conclusions

The coatings considered in this article are suitable for use as a biocompatible and
bioactive protectant for magnesium-based bioresorbable orthopedic implants. The micro-
arc oxidation method was used to synthesize coatings based on diatomite with the addition
of titanium dioxide particles. A range of 350 to 500 V was chosen as the optimal voltage
range of the MAO process. Depending on the MAO voltage, the thickness of the coating
varied from approximately 30 to 140 µm, and the roughness values lay within a 2.5–5.0 µm
range.

The resulting coatings were studied using a number of research methods, including
scanning electron microscopy (SEM), energy-dispersive X-ray microanalysis (EDX), X-ray
diffraction analysis (XRD), scratch testing, potentiodynamic polarization testing, in vitro
immersion method, and in vitro MTT assay.

It has been found that the morphology of the coatings is comprised of a large number
of pores of various shapes and sizes, fragments of lithified diatomeae shells, and unmelted
particles of both diatomite and TiO2. Some diatom algae fragments were partially fused
into the coating matrix, giving it a reticulated pore structure. The X-ray diffraction analysis
revealed the formation of a new prevalent phase—forsterite (Mg2SiO4). Peaks correspond-
ing to magnesium and periclase (MgO), as well as rutile (TiO2), were also observed in
the diffraction patterns of the resulting coatings. The coatings demonstrated very high
adhesion strength (critical load equaled to 24–35 N) compared to diatomite-based coatings
without the addition of TiO2 particles (critical load <10 N). Diatomite-based coatings, the
composition of which included TiO2 particles, had 2–3 orders of magnitude greater polariza-
tion resistance than coatings without the addition of titanium dioxide particles. The in vitro
immersion method was implemented to study the dissolution rate of both the coated and
uncoated samples, which showed that the dissolution rate of all coated samples, regardless
of the deposition voltage, has a linear character. The mass loss rate of the uncoated Mg alloy
samples exceeds that of the coated samples after 4 days of immersion and amounts to more
than 6% at the end of the experiment. NIH/3T3 mouse fibroblasts were used to assess the
in vitro cytotoxicity of the coatings, i.e., cell viability, during direct contact with the coating.
The number of viable cells after direct contact with the coatings was 94–98%, which is not
a statistically significant difference from the control samples. Meanwhile, the number of
viable cells in contact with pure magnesium alloy was only 43%. Thus, modification of the
surface of magnesium alloy samples by means of micro-arc coatings based on diatomite
with TiO2 particles yielded an increase in their cytocompatibility by more than two-fold.

A comparative analysis of the properties of the coatings deposited at different stresses
of the MAO process was carried out, and it was concluded that the coatings formed at 350
and 450 V are the most promising for practical application in terms of the set of optimal
properties. These coatings are characterized not only by sufficient thickness and roughness
and high adhesive strength, but also by the highest corrosion resistance, exceeding that in
the works of other authors [56,57]. They had the highest values of polarization resistance at
1.22 × 108 Ω cm2 and 1.41 × 108 Ω cm2, respectively, and the lowest values of corrosion
current density at 3.3 × 10−10 A cm–2 and 4.0 × 10−10 A cm−2, respectively.
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