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Abstract: Continuous exploration of the ocean has made underwater image processing an important
research field, and plenty of CNN (convolutional neural network)-based underwater image enhance-
ment methods have emerged over time. However, the feature-learning ability of existing CNN-based
underwater image enhancement is limited. The networks were designed to be complicated or embed
other algorithms for better results, which cannot simultaneously meet the requirements of suitable
underwater image enhancement effects and real-time performance. Although the composite back-
bone network (CBNet) was introduced in underwater image enhancement, we proposed OECBNet
(optimal underwater image-enhancing composite backbone network) to obtain a better enhancement
effect and shorten the running time. Herein, a comprehensive study of different composite architec-
tures in an underwater image enhancement network was carried out by comparing the number of
backbones, connection strategies, pruning strategies for composite backbones, and auxiliary losses.
Then, a CBNet with optimal performance was obtained. Finally, cross-sectional research of the
obtained network with the state-of-the-art underwater enhancement network was performed. The
experiments showed that our optimized composite backbone network achieved better-enhanced
images than those of existing CNN-based methods.

Keywords: underwater image enhancement; deep learning; composite backbone; composite architectures

1. Introduction

Exploration of the ocean world has attracted more attention in recent years [1]. As a
vital part of image processing for revealing and recognition underwater scenes, underwater
image enhancement plays an import role in marine resources and marine military fields [2].
Unfortunately, because of differences in illumination conditions in the complicated under-
water environments, the captured images are usually of low quality, with characteristics
such as having inauthentic color, blurring, and noise, making the enhancement of such
images difficult [3]. In order to accomplish this challenging task, many algorithms have
been introduced.

In the early stages, the technical breakthroughs in image enhancement often relied on
hardware performances [4]. However, advances in image enhancement not only abated
the equipment costs but also indicated being more beneficial for accommodating compli-
cated underwater environments. Researchers used mathematical and statistical analyses
to modify the channel values of underwater images to obtain images with high visual
quality [5]. Sometimes the enhancement effect for underwater images was regarded as an
optics problem, and the corresponding algorithms were established on physical models,
such as the dark channel prior (DCP) mechanism [6] and the Retinex model [7]. Some
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researchers regard underwater image enhancement as a bionic problem [8]. More recently,
deep learning gradually became the main underwater image enhancement technology due
to its strong modeling ability and efficient inference. Many studies have shown that neural
networks obtained enhanced images with higher quality compared to images enhanced
by traditional methods [9]. The convolutional neural network (CNN) [10] and genera-
tive adversarial network (GAN) [11] were proposed for enhancing underwater images.
However, these algorithms are unsuitable because they consume time and space, making
them inapplicable.

CBNet shows better performance [12] compared to single-chain networks and provides
a broad space for improvement in the network architecture [13]. So herein, CBNet was
introduced in the enhancement of underwater images. In order to minimize time and space
consumption and meet the actual requirement of marine engineering, CNN models without
other embedded algorithms were established. To explore the architectural features of CBNet,
comprehensive enhancement research using it in different variants was carried out. An
Optimal underwater image Enhancement Composite Backbone Network (OECBNet) was
finally obtained, which we compared with several state-of-the-art CNN-based methods.
Both full-reference indexes and non-reference indexes indicate that the enhancement results
of our proposed network are better than recent state-of-the-art CNN-based underwater
image enhancement methods. Our proposed network also performs well in real-time image
enhancement, with one 350 × 350 underwater image taking only 2.3 × 10−3 s to enhance.

The strategy of our research is as follows: Section 1 is the introduction to our research.
Section 2 describes the related work, including underwater image enhancement methods,
underwater image datasets, and CNN backbone networks. Section 3 describes some
architectural details of our backbone network. Section 4 makes a comprehensive exploration
of the architectural features of CBNet, and the optimal underwater image-enhancing
composite backbone network is obtained from this section. Section 5 evaluates our network
performance according to cross-sectional research with other methods. Section 6 makes
a conclusion of this paper. Contributions in this paper are summarized as shown in the
following three points:

• We introduced a composite backbone into CNN-based underwater image enhance-
ment. The composite backbone networks consist of several uniform end-to-end CNN
backbones in specific connection strategies. Composite backbone networks were
applied throughout the enhancement networks;

• We conducted a comprehensive study about underwater image enhancement using
CBNet in different variants by first investigating the impact of backbone number on the
enhancement results. Then, the different connection strategies between backbones and
some corresponding pruning strategies were introduced in our research. Moreover,
the experiments were conducted in auxiliary losses;

• We proposed an optimal underwater image-enhancing composite backbone net-
work. The optimized composite backbone network consists of two backbones in
full-connected composition (FCC), and two stages are pruned in the lead backbone.
The network accurately expresses objects as well as background colors and is well
adapted to the engineering field.

2. Related Work
2.1. Deep Learning-Based Underwater Image Enhancement

Underwater image enhancement methods based on deep learning are classified into
five classes according to their network architecture [14]. One idea for constructing im-
age enhancement networks is inspired by semantic segmentation, such as U-Net [15].
Yan et al. [16] proposed a cascaded U-Net for image restoration and achieved enhanced
results with less training and inference costs. Moreover, Liu et al. [17] proposed a GAN
with an encoder–decoder-based generator, which enabled multi-scale feature extraction
and fusion. Other kinds of widely used networks are constructed with multiple branches.
Xue et al. [18] enhanced images by predicting the coarse result, veil map, and compensation
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map according to a multi-branch network. Li et al. [19] introduced white balance (WB),
gamma correction (GC), and histogram equalization (HE)-enhanced images in multiple-
branch enhancement and conducted a gated fusion. Similarly, Wu et al. [20] proposed
a GAN for enhancement and introduced WB, HE, and DCP enhanced images for multi-
branch training in the generator. Wang et al. [21] introduced HSV color space for image
adjustment; on this basis, Chen et al. [22] conducted an enhancement fusion of RGB, HSV,
and Lab color spaces. Some enhancement methods embedded several units for better
feature learning in the networks. Li et al. [9] constructed an E-unit for underwater en-
hancement, and Chen et al. [23] applied the E-unit in a multi-branch network. Further,
depth maps or transmission maps are integrated into some networks [24]. However, to
implement these networks, special hardware such as deep cameras are required. Based
on the excellent performance of GAN, many researchers tend to upgrade their methods
by improving the GAN-based algorithm [25] by incorporating multiple generators [26] or
multiple discriminators [27] to enhance underwater images.

2.2. Underwater Dataset

The dataset is a sensitive part when it comes to deep learning. Researchers use dif-
ferent equipment to try and collect images in a variety of marine environments. Liu et al.
proposed a real-world underwater image enhancement dataset (RUIE) [28] with a large
number of diverse light-scattering images and rich detection targets. Karen et al. created an
underwater object tracking dataset (UOT100) [29] that includes 104 underwater videos for
object detection. However, the lack of reference images was always a challenge for these
datasets to achieve enhancement. To solve the problem, Anwar conducted research on
underwater image synthesis and proposed a method for simulating different underwater
scenes [9], which can be applied as full-reference enhancement result evaluations. While
retaining the real underwater environment, Li et al. proposed an underwater image en-
hancement benchmark (UIEB) dataset [19] consisting of a reference subset and a challenging
subset. The reference dataset included 890 underwater images as well as corresponding
reference images, which partially solved the challenge of the lack of reference images and
promoted innovations in underwater image enhancement methods.

2.3. Backbone Network

The backbone network plays a significant part in CNN models. Earlier networks were
often designed to be as deep as possible [30] and connections as dense as possible [31],
but their performance generally degenerated with increasing depth. To improve their
quality, researchers added branches in different scales into the backbone networks. ResNet,
ResNeXt, and Res2Net were proposed in succession [32]. In addition, Liang et al. proposed
a recurrent convolutional neural network (RCNN) [33] which recurrently connected each
convolution layer, and the contextual information was efficiently integrated. Meanwhile,
Zhang et al. [34] proposed a lightweight backbone network called MobileNet, which
greatly reduced the time complexity of the backbone network. In order to expand the
sensory field of each pixel, many backbone networks embed multi-scale architectures [35],
especially feature pyramid blocks [36]. Another inspiration was from U-Net [15], which
introduced downsampling and upsampling in backbone networks [37]. Liu et al. proposed
a composite backbone network (CBNet) [12], which brought a breakthrough in object
detection. Thereafter, they continued to explore the architecture of CBNet and proposed a
general framework with novel connection strategies (CBNetV2) [13]. CBNet has now been
widely applied to counter the challenges of object detection and semantic segmentation [38].
Zhao et al. improved adjacent higher-level composition in CBNet, achieving the detection
and recognition of images in low-quality underwater videos, which brought CBNet into
underwater vision [39]. CBNet has been proven to be excellent for feature extraction and is
gradually being applied in underwater image enhancement.
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3. Backbone Network Details
3.1. Global Architecture

The global architecture of CBNet in general is shown in Figure 1. K identical backbones
in parallel and the Backbone i are compositely connected with backbones from Backbone 1
to Backbone i − 1. Output images from the lead backbone are sent to output layers, and
output images are obtained from the output convolution block. In addition, each stage
obtains images of the same height and weight as input images for pixel-level enhancement.
The channel numbers of output images from the stages are constantly the same.
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Figure 1. General architecture of CBNet for image enhancement.

3.2. Backbone Architecture

The backbone architecture of our proposed network is as shown in Figure 2, which
skillfully ensures that output images are the same height and weight as input images
without the shape of input images getting limited. The backbone is empirically constructed
with two previous stages, three middle stages, and one last stage in series. Each stage
contains a convolutional layer followed by a batch norm layer and a ReLU layer. During
the previous stages, the convolutional layers are operated with a 7 × 7 convolution kernel
and padding = 3, and the large convolution kernels expand the receptive field for each
pixel, thus improving the global image enhancement effect. During the middle stages, the
convolutional layers are operated with a 5 × 5 convolution kernel and padding = 2, and
the introduction of more middle layers for convolution processing improves the learning
ability of the network. During the last stages, the convolutional layers are operated with
a 3 × 3 convolution kernel and padding = 1, and last stages are placed before output to
accurately enhance the pixelwise detail.
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3.3. Output Convolution Block

Output blocks play an important role in CNN-based underwater image enhancement
for information fusion and channel values’ normalization. However, the importance of
output blocks was generally ignored in previous underwater image enhancement networks.
Our proposed output convolution block incorporated a 3 × 3 convolutional layer with
padding = 1, followed by a Sigmoid layer instead of the traditional ReLU layer. Application
of the Sigmoid layer ensures that the pixel channel values of output images lie within the
standard range of [0, 1].

4. Research on CBNet-Based Underwater Image Enhancement

In this section, we explore the architectural features of CBNet. First, we introduce
some experiment details. In Section 4.2, we analyze the impact of backbone number
on underwater image enhancement. In Section 4.3, we evaluate the underwater image
enhancement performance of different variants. In Section 4.4, we implement pruning
strategies in some variants. In Section 4.5, we construct auxiliary losses for partial special
variants. Finally, we make a summary of composite backbone architecture and choose a
network as the optimal composite backbone network for subsequent comparison.

4.1. Implementation Details

We applied the UIEB dataset [22] to our study. To construct a training set, we randomly
chose 800 underwater images as well as their corresponding reference images from a
reference subset. Other images in the UIEB dataset were treated as test images. All
images were preprocessed by stretching to 350 × 350, and training set images were cut into
320 × 320 at random. Our loss function was a weighted sum of L1 loss and SSIM loss
as follows:

L(IP, IR) = ωl1 Ll1(IP, IR) + ωSSIMLSSIM(IP, IR) (1)

where ωl1 and ωSSIM are weight parameters used to balance two loss components. Weight
parameters are selected as ωl1 = 2, ωSSIM = 1. The two loss components Ll1 and LSSIM are
calculated as follows:

Ll1(IP, IR) =
1

CIR H IRW IR ∑
∣∣∣tIP(i)− tIR(i)

∣∣∣ (2)

LSSIM(IP, IR) = 1− 1
CIR H IRW IR ∑

2µIP(i)µIR(i) + C1

µ2
IP
(i) + µ2

IR
(i) + C1

×
2σIP IR(i) + C2

σ2
IP
(i) + σ2

IR
(i) + C2

(3)

where IP represents the predicted image and IR represents the reference image. tIP(i) and
tIR(i) are the corresponding channel values in a certain pixel i. µIP(i) and µIR(i) are average
channel values of a 112 square interval with center i. σIP

(i) and σIR
(i) represent corre-

sponding standard deviations. σIP IR(i) corresponds to the covariance, while parameters
C1 = 0.02 and C2 = 0.03 are selected to stabilize the SSIM function. C, H, and W mean
channels, height, and weight, respectively.

We applied ADAM optimizer for network training and initialized the learning rate as
1 × 10−3 and decreased it by 1 × 10−5 in each epoch. We extracted the trained network
models after 100 epochs, which means it takes nearly two hours to train each model. Pytorch
as well as Anaconda were jointly used with Nvidia GTX 3080 GPU for programming.

We used the rest of the 90 pairs of images from the UIEB reference subset for network
evaluation, and three classical full-reference indications, namely: mean square error (MSE),
peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM), were adopted. A
lower MSE or higher PSNR score indicated that the pixel values of the predicted results
were closer to references. A higher SSIM indicated that the predicted result was more
similar to the reference. However, these indications could only evaluate images from a
single channel. To make evaluation results more rigorous, we conducted evaluations from
both gray-scale images and RGB images as follows:
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ERGB(I, I) = (E(IR, I′R) + E(IG, I′G) + E(IB, I′B))/3 (4)

Egray(I, I′) = E(RGB2 gray(I), RGB2 gray(I′)) (5)

where E represents evaluation functions of indications such as MSE, PSNR, or SSIM. I is the
enhanced image while IR, IG, and IB are corresponding maps in R, G, and B channels; I′ is
the reference image while I′R, I′G, and I′B are corresponding maps in R, G, and B channels.

4.2. Backbone Number Analysis

CBNet was a combination of K backbones with the same architecture. We define the
backbones as Bone 1, Bone 2, Bone 3, . . . , Bone K. For any defined backbone,
if k = 1, 2, . . . , K − 1, Bone k is considered an auxiliary backbone; if k = K, Bone k is
the lead backbone. Generally, there are two approaches for information fusion between
backbones, that is, residual fusion and concat fusion. Concat fusion is to amalgamate
several images with the same shape in the specified dimension, and the channel number of
the output image is the sum of input image channel numbers. Residual fusion is a simple
image subtraction. The traditional same-level composition (SLC), as shown in Figure 4a, is
applied in backbone number analysis; thus, the lth stage transformation of concat-fused
information and residual-fused information are shown respectively:

xl
k = Fl

C(Cat(xl−1
1 + xl−1

2 + · · ·+ xl−1
k )), 2 ≤ l ≤ 7, 2 ≤ k ≤ K (6)

xl
k = Fl

R(xl−1
k − xl−1

k−1), 2 ≤ l ≤ 7, 2 ≤ k ≤ K (7)

where Cat represents the concat fusion of images. Fl
C is the combinational function of

concat-fused information in the lth stage, Fl
R is the combinational function of residual-fused

information in the lth stage, while xl
k is the output image from the lth stage in the kth

backbone. When l = 7, F7
C and F7

R indicate the combinational function of the output block,
while x7

k indicates the output-enhanced image.
We conducted analyses of underwater image enhancement from networks with differ-

ent backbone numbers. The output channel number from each stage was set as 24 to meet
the internal memory demand. Underwater image enhancement analyses were conducted,
as shown in Figure 3, details of analyses from different backbone number as shown in
Table S1. According to SSIM evaluations in Figure 3a, networks with concat fusion obtained
the best SSIM score when K = 3, and networks with residual fusion obtained the best SSIM
score when K = 2. According to MSE evaluations in Figure 3b, as the number of backbones
increased, MSEgray indicators increased significantly, while MSERGB from concat fusion
networks obtained a weak downward trend. In our case, networks with concat fusion
obtained better MSE scores than networks with residual fusion. The advantage of networks
with concat fusion became evident according to RSNR evaluation in Figure 3c, and the
best PSNR scores were obtained when K = 3. According to Figure 3d, the average runtime
of concat fusion networks increased linearly with the number of backbones. Compared
with concat fusion networks, the runtime of residual fusion networks decreased to some
extent. According to the above results, increasing the number of backbones can increase the
amount of information and thus increase the possibility of obtaining high-quality results.
However, with the increase in information, the time complexity will increase, and the
interference information will increase, too. What is more, the introduction of too-deep
network enhancement will gradually distort output images. Thus, excessively increasing
the auxiliary backbone is often counterproductive. Suitable backbone architectures would
appear when K = 2 or 3.
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4.3. Connection Strategy Analysis

The analysis in Section 4.2 showed that concat fusion networks achieve relatively
suitable underwater image enhancement results when K = 2 or 3. To minimize the time
and space complexity, we employed CBNet with two concat-fused backbones for further
exploration. To further explore the CBNet architecture, we constructed several variants
of CBNet in different connection strategies besides the traditional SLC (Figure 4). Details
of different composite strategies are explained in Sections 4.3.1–4.3.5. The output channel
number from each stage was set as 32.
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4.3.1. Adjacent Higher-Level Composition (AHLC)

To obtain stable image enhancement results, higher-level features can be taken to
enhance the lower-level features. In the AHLC variant shown in Figure 4b, output infor-
mation of the adjacent higher-level stage from the auxiliary backbone was sent to the lead
backbone. The lth stage transformation of AHLC is shown in Equation (8):

xl
2 = Fl

C(Cat(xl
1, xl−1

2 )), 1 ≤ l ≤ 6 (8)

where l = 1, x0
k indicates input image.
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4.3.2. Adjacent Lower-Level Composition (ALLC)

Another line for stabilizing image enhancement results is to take lower-level features
to enhance the higher-level features, which is just opposite to AHLC. As shown in Figure 4c,
ALLC sent the adjacent lower-level stage output information to the lead backbone. The lth
stage transformation of ALLC is shown in Equation (9):

xl
2 = Fl

C(Cat(xl−2
1 , xl−1

2 )), 2 ≤ l ≤ 7 (9)

4.3.3. Dense Same-Level Composition (DSLC)

As shown in Figure 4d, the output information of each stage from the lead backbone
was fused with the output information of non-lower-level stages from the auxiliary back-
bone and sent to the next stage. The architecture of DSLC is similar to that of DenseNet [33].
The lth stage transformation of DSLC is as shown in Equation (10):

xl
2 = Fl

C(Cat(xl−1
1 , xl

1, · · · , x6
1, xl−1

2 )), 2 ≤ l ≤ 7 (10)

4.3.4. Dense Higher-Level Composition (DHLC)

As shown in Figure 4e, the output information of higher-level stages was sent to the
lead backbone. The lth stage transformation of DHLC is as shown in Equation (11):

xl
2 = Fl

C(Cat(xl
1, xl+1

1 , · · · , x6
1, xl−1

2 )), 1 ≤ l ≤ 6 (11)

4.3.5. Full-Connected Composition (FCC)

To connect the auxiliary backbone to the leading backbone as compactly as possible,
each auxiliary stage backbone output information was sent to all lead backbone stages, as
shown in Figure 4f. The lth stage transformation of FCC is as shown in Equation (12):

xl
2 = Fl

C(Cat(x1
1, x2

1, · · · , x6
1, xl−1

2 )), 1 ≤ l ≤ 7 (12)

We then evaluated underwater image enhancement results from networks with dif-
ferent composite strategies described above. The output channel number from each stage
was set as 32. Evaluations of the enhanced underwater images from different connection
strategies are shown in Table 1, details as shown in Table S2.

Table 1. Enhancement results evaluation for different connection strategies.

Method SSIMRGB SSIMgray MSERGB MSEgray PSNRRGB PSNRgray

SLC 0.9025 0.9323 172.95 390.66 27.224 24.374
AHLC 0.9017 0.9314 164.52 358.08 27.322 24.523
ALLC 0.9045 0.9344 170.36 369.54 26.983 24.107
DSLC 0.9059 0.9350 164.38 371.45 27.201 24.201
DHLC 0.9024 0.9318 163.32 362.24 27.370 24.445
FCC 0.9080 0.9375 173.81 384.59 27.026 24.047

According to the evaluations, FCC achieved the best scores in SSIM indications, DHLC
achieved the best scores in MSE and PSNR indications, and AHLC achieved the best scores
in MSEgray and PSNRgray. The results revealed that FCC obtained enhancement images
almost similar to reference images, DHLC obtained enhancement images closely resembling
reference images, while AHLC obtained enhancement images closer to reference images
from gray-scale than other connection strategies.

Further, Table 2 shows the runtime comparison among networks with different con-
nection strategies. According to the results, due to the reduction in the connection between
the lead backbone and the auxiliary backbone, ALLC completed underwater image en-
hancement within the shortest runtime (2.55 × 10−3 s per image on average). Meanwhile,
DHLC constructed pretty complex connections between the lead backbone and the auxil-
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iary backbone, thus completing underwater image enhancement in the longest runtime.
Notably, FCC constructed similar concat connections before each stage, which simplified
the network procedure; thus, FCC also enhanced images relatively fast, with an average
runtime of only 2.59 × 10−3 s.

Table 2. Runtime comparison for networks with different connection strategies.

Method Average Runtime/s

SLC 0.00261
AHLC 0.04381
ALLC 0.00255
DSLC 0.13251
DHLC 0.13596
FCC 0.00259

4.4. Pruning Strategy Analysis

To reduce the excessive connection between network backbones, we simplified the
architecture of CBNet to some extent by pruning. Pruning strategies were applied in CBNet
when K = 2. As shown in Figure 5, pi represents pruning i stages from the lead backbone;
two backbones share the first i stages. The i+1th stage transformation is as shown in
Equation (13):

xi+1
2 = Fi+1

C (Cat(Cat(x1), xi
1)), 0 ≤ i ≤ 6 (13)

where Cat(x1) represents the connection from the auxiliary backbone to the lead backbone.
When i = 0, the network is not pruned; when i = 6, the network is a single backbone network.
According to Section 4.3, enhancement results from FCC and DHLC achieved excellent
scores, and both FCC and DHLC variants were applied for subsequent studies.
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We conducted analyses of underwater image enhancement from networks with dif-
ferent pruning strategies, as shown in Figure 6, details of analyses from different pruning
strategies as shown in Table S3. According to the SSIM evaluation in Figure 6a, FCC
obtained better SSIM scores than DHLC. Both FCC and DHLC obtained the best enhance-
ment result when pruning two stages. Moreover, FCC(p2) achieved SSIMgray = 0.9409
and SSIMRGB = 0.9119, which is a breakthrough in full-reference underwater image en-
hancement. According to the MSE evaluation in Figure 6b, the best MSE scores for FCC
and DHLC were also obtained when pruning two stages, with MSE scores for FCC be-
ing slightly lower than those for DHLC. According to Figure 6c, the best PSNR scores
for DHLC were obtained in p2. On the contrary, the best PSNR scores for FCC were ob-
tained in p3 and p4, respectively. According to a runtime evaluation in Figure 6d, the
runtime of FCC had an inverse relationship with pruning stages, with runtime decreasing
smoothly with an increase in pruning stages. The runtime of FCC remained in the range of
1.4 × 10−3~2.6 × 10−3 s. The runtime of DHLC from p0 to p3 was excessively long, and
there was a sudden decline in runtime between p3 and p4. In conclusion, FCC(p2) obtained
the best underwater image enhancement results, and DHLC(p2)-enhanced results obtained
the best PSNR scores. These architectures were applied in subsequent studies.
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4.5. Auxiliary Loss Analysis

Considering the special architecture of AHLC and DHLC, output information of the
lead backbone’s last stage was directly transmitted to Output Conv Block. As a result,
the input information of Output Conv Block had the same channel number as the output
information of the auxiliary backbones. Thus, auxiliary losses could be introduced in the
above variants, and information from the auxiliary backbones was sent to the Output Conv
Block, generating an auxiliary image. The auxiliary losses were computed as shown in
Equation (14):

L(Ik
aux, IR) = ωl1 Ll1(Ik

aux, IR) + ωSSIMLSSIM(Ik
aux, IR) (14)

where Ik
aux represents the auxiliary image from the kth backbone, k = 1, 2, . . . , k − 1. The

total loss was constructed as a weighted sum of the main loss as well as auxiliary losses, as
shown in Equation (15):

Ltotal = L(IP, IR) +
K−1

∑
k=1

λkL(Ik
aux, IR) (15)

where λk is weight for auxiliary loss from Ik
aux.

We introduced auxiliary losses in AHLC, DHLC as well as DHLC(p2) according to
Sections 4.3 and 4.4. The architecture is shown in Figure 7. Moreover, we put two auxiliary
strategies into the experiment; one is the full-auxiliary strategy (written down as f-a), where
loss weight is selected as a constant that λ1 = 0.3, and the other is the semi-auxiliary strategy
(written down as s-a) where during first 50 epochs, λ1 = 0.3 and λ1 = 0 later on.
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We evaluated semi-auxiliary and full-auxiliary strategies underwater image enhance-
ment results, then compared them with enhancement results without auxiliary losses.
Evaluations of underwater image enhancement results are shown in Figures 8–10, details
as shown in Table S4.
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According to SSIM evaluation (Figure 8) and MSE evaluation (Figure 9), AHLC ob-
tained the best scores in the semi-auxiliary strategy (MSERGB = 161.22), which is also a
breakthrough in MSE evaluation. For DHLC, the full-auxiliary strategy and the method
without auxiliary losses obtained better results than the semi-auxiliary strategy. DHLC(p2)
obtained the best scores without auxiliary losses. However, according to Figure 10, auxiliary
strategies did not perform well in RSNR. As auxiliary losses are abandoned during network
testing, the introduction of auxiliary losses does not affect the network runtime.

4.6. Summary

According to the comprehensive analyses above, various network architectures and
optimization strategies of CBNet have achieved significant effects in underwater image en-
hancement. Among them, FCC with two pruned stages (FCC(p2)), DHLC with two pruned
stages (DHLC(p2)), and AHLC with the semi-auxiliary strategy (AHLC(s-a)) obtained excel-
lent image enhancement results. We conducted a comparison among the three networks, as
shown in Table 3, where FCC(p2) obtained the best scores in SSIM evaluations, DHLC(p2)
obtained the best scores in PSNR evaluations, and AHLC(s-a) obtained the best scores in
MSERGB. Considering FCC(p2) can obtain effective underwater image enhancement in the
shortest time, hence meeting the demand of real-time performance, FCC(p2) was selected
as the optimal underwater image-enhancing composite backbone network (OECBNet).

Table 3. Comparison of evaluation results for three excellent networks.

Method SSIMRGB SSIMgray MSERGB MSEgray PSNRRGB PSNRgray Runtime

FCC(p2) 0.911 0.941 162.4 349.3 27.09 24.32 0.0023
DHLC(p2) 0.904 0.933 162.6 345.9 27.38 24.72 0.0514
AHLC(s-a) 0.905 0.935 161.2 347.7 27.23 24.44 0.0438

5. Cross-Sectional Research

To verify the performance of our proposed OECBNet, we compared OECBNet with
several state-of-the-art CNN-based methods, including UWCNN [9], Water-Net [19],
UIEC2-Net [21], IW-Net [23], and MC-CBNet [22]. Besides the 90 pairs of images from
the UIEB reference subset, 60 images from the UIEB challenge subset were applied to the
analysis. Both full-reference comparison and non-reference comparison were applied in
the cross-sectional study. We applied two indicators in the non-reference comparison, one
being underwater color image quality evaluation (UCIQE) [40], which consists of color
density σc, saturation µs, and contrast conl, as shown in Equation (16),

UCIQE = 0.4680σc + 0.2745conl + 0.2576µs, (16)
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and the other being underwater image quality measure (UIQM) [41], which is a combination
of three sub-indicators: underwater image colorfulness measurement (UICM), underwater
image sharpness measurement (UISM), and underwater image contrast measurement
(UIConM). The expression is shown in Equation (17):

UIQM = 0.0282UICM + 0.2953UISM + 3.5753UIConM (17)

5.1. Reference Subset Evaluation

First, we tested our network as well as state-of-the-art CNN-based methods in the
reference subset, and some underwater image enhancement results are shown in Figure 11.
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As they are affected by natural illumination and differences in water quality, under-
water images bear different features. In shallow water, the color features of images are
reserved greatly due to the relatively high illumination. As the light gradually spreads into
the deep underwater, the red, green, and blue spectra disappear in succession; hence, many
underwater images tend to have cool tones, such as green and blue. On the other hand,
images from the water–sediment interphase tend to be yellowish-brown, while images
from low-illumination areas appear dim. According to the subjective comparison shown
in Figure 11, it is visible that our proposed OECBNet obtained images the closest to refer-
ence images from high illumination, low illumination, and greenish or blueish underwater
images and obtained clearer images from yellowish underwater images even than reference
images. This indicated that OECBNet effectively eliminated the blue and green color bias in
underwater images, reduced the effect of sediment on underwater images, and accurately
expressed the color of objects and the environment. In addition, our proposed method
retained detailed features of the underwater images and enhanced them to appear brighter
and clearer.

A full-reference comparison of OECBNet as well as state-of-the-art CNN-based meth-
ods is shown in Table 4. OECBNet obtained the best scores in SSIM and MSE evaluations
but did not achieve the best PSNR scores, indicating that images obtained from OECBNet
still bear great deviations in some pixels.
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Table 4. Full-reference comparison of enhancement results in reference subset.

Method SSIMRGB SSIMgray MSERGB MSEgray PSNRRGB PSNRgray

UWCNN 0.8443 0.8799 496.32 1191.6 22.550 19.470
Water-Net 0.8840 0.9188 380.14 874.80 23.738 20.946
UIEC2Net 0.9034 0.9336 168.35 368.49 27.039 24.238

IW-Net 0.9062 0.9348 223.10 473.09 27.098 24.496
MC-CBNet 0.9048 0.9349 168.11 385.16 27.375 24.553
OECBNet 0.9112 0.9409 162.40 349.29 27.091 24.322

A non-reference comparison of OECBNet and the state-of-the-art CNN-based methods
is shown in Table 5. OECBNet obtained the best scores in UCIQE, UIQM, UICM, and UISM
and had better scores than reference images in UCIQE, UIQM, UISM, and UIConM, which
verified the excellent performance of our proposed network.

Table 5. Non-reference comparison of enhancement results in reference subset.

Method UCIQE UIQM UICM UISM UIConM

Raw 0.4525 1.9821 4.9778 3.5095 0.2252
UWCNN 0.4416 2.5893 4.0856 4.6135 0.3109
Water-Net 0.5341 2.5043 5.4714 4.5885 0.2783
UIEC2Net 0.5288 2.6618 6.5597 4.8831 0.2895

IW-Net 0.5559 2.5874 6.8383 4.7999 0.2733
MC-CBNet 0.5520 2.6580 6.9278 4.8821 0.2856
OECBNet 0.5612 2.7178 7.1059 5.0357 0.2882
Reference 0.5595 2.5024 7.5522 4.6337 0.2576

The runtime analysis is shown in Table 6. Our proposed network had an obvious
real-time advantage compared with most underwater image enhancement networks and
achieved underwater image enhancement much swifter than state-of-the-art CNN-based
methods, except for UWCNN. It can be seen that the optimization of the architecture has
achieved an obvious effect on time complexity and effectively solved the problem of the
runaway growth of the time complexity caused by the complex network.

Table 6. Runtime analysis of enhancement results.

Method Average Runtime/s

UWCNN 0.00143
Water-Net 0.23477
UIEC2Net 0.11010

IW-Net 0.31910
MC-CBNet 0.37713
OECBNet 0.00230

5.2. Challenging Subset Evaluation

To further verify the excellent image enhancement capability of our network, we tested
our network against the state-of-the-art CNN-based methods using a challenging subset
from the UIEB dataset. The results are shown in Figure 12.
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MC-CBNet 0.5520 2.6580 6.9278 4.8821 0.2856 
OECBNet 0.5612 2.7178 7.1059 5.0357 0.2882 
Reference 0.5595 2.5024 7.5522 4.6337 0.2576 

The runtime analysis is shown in Table 6. Our proposed network had an obvious 
real-time advantage compared with most underwater image enhancement networks and 
achieved underwater image enhancement much swifter than state-of-the-art CNN-based 
methods, except for UWCNN. It can be seen that the optimization of the architecture has 
achieved an obvious effect on time complexity and effectively solved the problem of the 
runaway growth of the time complexity caused by the complex network. 

Table 6. Runtime analysis of enhancement results. 

Method Average Runtime/s 
UWCNN 0.00143 

Water-Net 0.23477 
UIEC2Net 0.11010 

IW-Net 0.31910 
MC-CBNet 0.37713 
OECBNet 0.00230 

5.2. Challenging Subset Evaluation 
To further verify the excellent image enhancement capability of our network, we 

tested our network against the state-of-the-art CNN-based methods using a challenging 
subset from the UIEB dataset. The results are shown in Figure 12. 
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UIEC2-Net. (e) Results from IW-Net. (f) Results from MC-CBNet. (g) Results from the proposed 
OECBNet. 

Figure 12. Subjective comparison of underwater image enhancement results using a challenging sub-
set. (a) Raw images. (b) Results from UWCNN. (c) Results from Water-Net. (d) Results from UIEC2-
Net. (e) Results from IW-Net. (f) Results from MC-CBNet. (g) Results from the proposed OECBNet.

Our proposed method eliminated color cast and obtained more realistic images than
other strategies. For underwater images from low-visibility environments, OECBNet clearly
restored the underwater scene. According to the challenge subset, the texture structures of
the images are relatively simple, and the visibility is relatively low. It is relatively harder
to see differences among the enhanced images from different algorithms on the macro
level. Although there were no significant differences among IW-Net (e), MC-CBNet (f), and
OECBNet (g) enhanced results, our proposed OECBNet achieved better color control in
detail, which can be clearly represented by quantitative evaluation.

Due to the lack of reference images in the challenging subset, we applied non-reference
indicators to quantitatively evaluate the enhanced underwater images. The comparison
of OECBNet with state-of-the-art CNN-based methods is shown in Table 7. OECBNet-
enhanced images obtained the best scores in UCIQE, UIQM, UICM, and UISM, hence
achieving the best underwater image enhancement results.

Table 7. Quantitative evaluation of enhancement results in the challenging subset.

Method UCIQE UIQM UICM UISM UIConM

Raw 0.3907 1.6933 3.1112 2.4060 0.2504
UWCNN 0.3877 2.1985 2.5470 3.3318 0.3196
Water-Net 0.5132 2.1455 4.4568 3.2896 0.2932
UIEC2Net 0.5056 2.3049 4.7146 3.7595 0.2970

IW-Net 0.5369 2.2320 4.7800 3.4878 0.2985
MC-CBNet 0.5302 2.2942 5.0663 3.7356 0.2932
OECBNet 0.5503 2.3240 5.3689 3.7981 0.2940

6. Conclusions

In this paper, we applied a composite backbone network (CBNet) in underwater
image enhancement by first constructing the global architecture of the proposed CBNet
as well as backbone details, then conducting comprehensive research on the architecture
of CBNet. Since the backbone is an important part of CBNet, we analyzed the impact
of backbone number for CBNet-based underwater image enhancement, then compared
the performances of different connection strategies in CBNet, which includes same-level
composition (SLC), adjacent higher-level composition (AHLC), adjacent lower-level com-
position (ALLC), dense same-level composition (DSLC), dense higher-level composition
(DHLC), and full-connected composition (FCC). Due to the suitable performance of DHLC
and FCC, both of them were selected for pruning strategy analysis. In addition, the aux-
iliary loss was also applied in CBNet research. To summarize, we selected a network
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with the best enhancement results as the optimal underwater image-enhancing composite
backbone network (OECBNet) for subsequent research. According to the cross-sectional
research conducted, the images obtained by our proposed network accurately expressed the
colors of objects as well as the colors of corresponding environments while retaining fine
feature details. According to quantitative analyses, our proposed network obtained better
scores than state-of-the-art CNN-based methods in both full-reference indications and
non-reference indications. In addition, our proposed network also performed well in real-
time image enhancement and achieved a record 2.3 × 10−3 s per image. We postulate that
CBNet, with more than three backbones and multiple connection strategies, might achieve
better performance in underwater image enhancement and recommend further research
into these architectures. We expect that our proposed underwater image enhancement
network will be applied in ROV for taking underwater videos and underwater detection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomimetics8030275/s1, Table S1: Analyses from different backbone
number; Table S2: Analyses from different connection strategies; Table S3: Analyses from different
pruning strategies; Table S4: Auxiliary loss analysis.

Author Contributions: Conceptualization, Y.C., Z.W. and Y.B.; Methodology, Y.C.; Software, Y.C.
and Z.W.; Validation, Y.C.; Formal analysis, Y.C.; Resources, L.K. and W.K.; Data curation, Y.B.
and Z.W.; Writing—original draft, Y.C.; Writing—review and editing; Visualization, Y.C., Y.B. and
Z.W.; Supervision, W.K., L.K., Q.L. and D.L.; Project administration, W.K., L.K., Q.L. and D.L.;
Funding acquisition, L.K., Q.L. and D.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by: (1) the Project of Guangdong Education Bureau, which involves
the graduate training of government, university, and enterprise by the Southern University of
Science and Technology—Leju (Shenzhen) Robotic Corporation (no. Y01331833); (2) the public
welfare technology research project of the Zhejiang Provinces Science Foundation in China (The
effect model construction and 3D visualization of auricular point pivot regulation of brain neural (no.
LGF20F020009)); and (3) the key R&D Program of Zhejiang Province focusing on the research and
application development of medical nursing care robot and elderly care service system of internet
hospitals. (Research on intelligent service technology and equipment of health and elderly care
support the research and application development of medical nursing care robot and elderly care
service system of internet hospitals (no. 2020C03107).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available due to it being only available to teams
interested in collaboration.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Cong, Y.; Fan, B.; Hou, D.; Fan, H.; Liu, K.; Luo, J. Novel event analysis for human-machine collaborative underwater exploration.

Pattern Recognit. 2019, 96, 106967. [CrossRef]
2. Zhou, Y.; Li, B.; Wang, J.; Rocco, E.; Meng, Q. Discovering unknowns: Context-enhanced anomaly detection for curiosity-driven

autonomous underwater exploration. Pattern Recognit. 2022, 131, 108860. [CrossRef]
3. Zhang, W.; Zhuang, P.; Sun, H.-H.; Li, G.; Kwong, S.; Li, C. Underwater Image Enhancement via Minimal Color Loss and Locally

Adaptive Contrast Enhancement. IEEE Trans. Image Process. 2022, 31, 3997–4010. [CrossRef] [PubMed]
4. Li, W.; Hu, W.; Dong, T.; Qu, J. Depth Image Enhancement Algorithm Based on RGB Image Fusion. In Proceedings of the 2018

11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 8–9 December 2018; Volume
2, pp. 111–114. [CrossRef]

5. Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color Balance and Fusion for Underwater Image Enhancement. IEEE
Trans. Image Process. 2018, 27, 379–393. [CrossRef]

6. Peng, Y.-T.; Cao, K.; Cosman, P.C. Generalization of the Dark Channel Prior for Single Image Restoration. IEEE Trans. Image
Process. 2018, 27, 2856–2868. [CrossRef]

https://www.mdpi.com/article/10.3390/biomimetics8030275/s1
https://www.mdpi.com/article/10.3390/biomimetics8030275/s1
https://doi.org/10.1016/j.patcog.2019.106967
https://doi.org/10.1016/j.patcog.2022.108860
https://doi.org/10.1109/TIP.2022.3177129
https://www.ncbi.nlm.nih.gov/pubmed/35657839
https://doi.org/10.1109/ISCID.2018.10126
https://doi.org/10.1109/TIP.2017.2759252
https://doi.org/10.1109/TIP.2018.2813092


Biomimetics 2023, 8, 275 17 of 18

7. Lv, X.; Sun, Y.; Zhang, J.; Jiang, F.; Zhang, S. Low-light image enhancement via deep Retinex decomposition and bilateral learning.
Signal Process. Image Commun. 2021, 99, 116466. [CrossRef]

8. Gao, S.-B.; Zhang, M.; Zhao, Q.; Zhanga, X.-S.; Li, Y.-J. Underwater Image Enhancement Using Adaptive Retinal Mechanisms.
IEEE Trans. Image Process. 2019, 28, 5580–5595. [CrossRef]

9. Li, C.; Anwar, S.; Porikli, F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit.
2020, 98, 107038. [CrossRef]

10. Li, C.; Guo, C.; Chen, C.L. Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation. IEEE Trans. Pattern
Anal. Mach. Intell. 2022, 44, 4225–4238. [CrossRef]

11. Guo, Y.; Li, H.; Zhuang, P. Underwater Image Enhancement Using a Multiscale Dense Generative Adversarial Network. IEEE J.
Ocean. Eng. 2020, 45, 862–870. [CrossRef]

12. Liu, Y.; Wang, Y.; Wang, S.; Liang, T.; Zhao, Q.; Tang, Z.; Ling, H. CBNet: A Novel Composite Backbone Network Architecture for
Object Detection. Proc Conf AAAI Artif Intell 2020, 34, 11653–11660. [CrossRef]

13. Liang, T.; Chu, X.; Liu, Y.; Wang, Y.; Tang, Z.; Chu, W.; Chen, J.; Ling, H. CBNet: A Composite Backbone Network Architecture for
Object Detection. IEEE Trans. Image Process. 2022, 31, 6893–6906. [CrossRef]

14. Anwar, S.; Li, C. Diving deeper into underwater image enhancement: A survey. Signal Process. Image Commun. 2020, 89, 115978.
[CrossRef]

15. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.
[CrossRef]

16. Yan, L.; Zhao, M.; Liu, S.; Shi, S.; Chen, J. Cascaded transformer U-net for image restoration. Signal Process. 2023, 206, 108902.
[CrossRef]

17. Liu, X.; Gao, Z.; Chen, B.M. MLFcGAN: Multilevel Feature Fusion-Based Conditional GAN for Underwater Image Color
Correction. IEEE Geosci. Remote. Sens. Lett. 2020, 17, 1488–1492. [CrossRef]

18. Xue, X.; Li, Z.; Ma, L.; Jia, Q.; Liu, R.; Fan, X. Investigating intrinsic degradation factors by multi-branch aggregation for real-world
underwater image enhancement. Pattern Recognit. 2023, 133, 109041. [CrossRef]

19. Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An Underwater Image Enhancement Benchmark Dataset and
Beyond. IEEE Trans. Image Process. 2020, 29, 4376–4389. [CrossRef] [PubMed]

20. Wu, J.; Liu, X.; Lu, Q.; Lin, Z.; Qin, N.; Shi, Q. FW-GAN: Underwater image enhancement using generative adversarial network
with multi-scale fusion. Signal Process. Image Commun. 2022, 109, 116855. [CrossRef]

21. Wang, Y.; Guo, J.; Gao, H.; Yue, H. UIECˆ2-Net: CNN-based underwater image enhancement using two color space. Signal Process.
Image Commun. 2021, 96, 116250. [CrossRef]

22. Chen, Y.; Ke, W.; Kou, L.; Li, Q.; Lu, D.; Bai, Y.; Wang, Z. Multiple Channel Adjustment based on Composite Backbone Network
for Underwater Image Enhancement. Int. J. Bio Inspired Comput. 2023; to be published.

23. Chen, Y.; Li, H.; Yuan, Q.; Wang, Z.; Hu, C.; Ke, W. Underwater Image Enhancement based on Improved Water-Net. In
Proceedings of the 2022 IEEE International Conference on Cyborg and Bionic Systems (CBS), Wuhan, China, 24–26 March 2023;
pp. 450–454. [CrossRef]

24. Hambarde, P.; Murala, S.; Dhall, A. UW-GAN: Single-Image Depth Estimation and Image Enhancement for Underwater Images.
IEEE Trans. Instrum. Meas. 2021, 70, 5018412. [CrossRef]

25. Lin, P.; Wang, Y.; Wang, G.; Yan, X.; Jiang, G.; Fu, X. Conditional generative adversarial network with dual-branch progressive
generator for underwater image enhancement. Signal Process. Image Commun. 2022, 108, 116805. [CrossRef]

26. Lu, J.; Li, N.; Zhang, S.; Yu, Z.; Zheng, H.; Zheng, B. Multi-scale adversarial network for underwater image restoration. Opt. Laser
Technol. 2019, 110, 105–113. [CrossRef]

27. Chen, R.; Cai, Z.; Cao, W. MFFN: An Underwater Sensing Scene Image Enhancement Method Based on Multiscale Feature Fusion
Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4205612. [CrossRef]

28. Liu, R.; Fan, X.; Zhu, M.; Hou, M.; Luo, Z. Real-World Underwater Enhancement: Challenges, Benchmarks, and Solutions Under
Natural Light. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 4861–4875. [CrossRef]

29. Panetta, K.; Kezebou, L.; Oludare, V.; Agaian, S. Comprehensive Underwater Object Tracking Benchmark Dataset and Underwater
Image Enhancement With GAN. IEEE J. Ocean. Eng. 2022, 47, 59–75. [CrossRef]

30. Li, S.; Song, W.; Qin, H.; Hao, A. Deep variance network: An iterative, improved CNN framework for unbalanced training
datasets. Pattern Recognit. 2018, 81, 294–308. [CrossRef]

31. Li, G.; Zhang, M.; Li, J.; Lv, F.; Tong, G. Efficient densely connected convolutional neural networks. Pattern Recognit. 2021,
109, 107610. [CrossRef]

32. Gao, S.-H.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-H.; Torr, P.H. Res2Net: A New Multi-Scale Backbone Architecture.
IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 652–662. [CrossRef]

33. Liang, M.; Hu, X. Recurrent convolutional neural network for object recognition. In Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [CrossRef]

34. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShufflfleNet: An extremely effificient convolutional neural network for mobile devices. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 6848–6856. [CrossRef]

https://doi.org/10.1016/j.image.2021.116466
https://doi.org/10.1109/TIP.2019.2919947
https://doi.org/10.1016/j.patcog.2019.107038
https://doi.org/10.1109/TITS.2020.3042973
https://doi.org/10.1109/JOE.2019.2911447
https://doi.org/10.1609/aaai.v34i07.6834
https://doi.org/10.1109/TIP.2022.3216771
https://doi.org/10.1016/j.image.2020.115978
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.sigpro.2022.108902
https://doi.org/10.1109/LGRS.2019.2950056
https://doi.org/10.1016/j.patcog.2022.109041
https://doi.org/10.1109/TIP.2019.2955241
https://www.ncbi.nlm.nih.gov/pubmed/31796402
https://doi.org/10.1016/j.image.2022.116855
https://doi.org/10.1016/j.image.2021.116250
https://doi.org/10.1109/CBS55922.2023.10115390
https://doi.org/10.1109/TIM.2021.3120130
https://doi.org/10.1016/j.image.2022.116805
https://doi.org/10.1016/j.optlastec.2018.05.048
https://doi.org/10.1109/TGRS.2021.3134762
https://doi.org/10.1109/TCSVT.2019.2963772
https://doi.org/10.1109/JOE.2021.3086907
https://doi.org/10.1016/j.patcog.2018.03.035
https://doi.org/10.1016/j.patcog.2020.107610
https://doi.org/10.1109/TPAMI.2019.2938758
https://doi.org/10.1109/cvpr.2015.7298958
https://doi.org/10.1109/CVPR.2018.00716


Biomimetics 2023, 8, 275 18 of 18

35. Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; Sun, J. DetNet: Design Backbone for Object Detection. In European Conference on
Computer Vision; Springer: Berlin/Heidelberg, Germany, 2018; pp. 339–354. [CrossRef]

36. Fang, L.; Jiang, Y.; Yan, Y.; Yue, J.; Deng, Y. Hyperspectral Image Instance Segmentation Using Spectral–Spatial Feature Pyramid
Network. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5502613. [CrossRef]

37. Zhang, J.; Wang, Y.; Wang, H.; Wu, J.; Li, Y. CNN Cloud Detection Algorithm Based on Channel and Spatial Attention and
Probabilistic Upsampling for Remote Sensing Image. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5404613. [CrossRef]

38. Yi, S.; Liu, X.; Li, J.; Chen, L. UAVformer: A Composite Transformer Network for Urban Scene Segmentation of UAV Images.
Pattern Recognit. 2023, 133, 109019. [CrossRef]

39. Zhao, Z.; Liu, Y.; Sun, X.; Liu, J.; Yang, X.; Zhou, C. Composited FishNet: Fish Detection and Species Recognition from Low-Quality
Underwater Videos. IEEE Trans. Image Process. 2021, 30, 4719–4734. [CrossRef] [PubMed]

40. Yang, M.; Sowmya, A. An Underwater Color Image Quality Evaluation Metric. IEEE Trans. Image Process. 2015, 24, 6062–6071.
[CrossRef] [PubMed]

41. Panetta, K.; Gao, C.; Agaian, S. Human-Visual-System-Inspired Underwater Image Quality Measures. IEEE J. Ocean. Eng. 2016,
41, 541–551. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-030-01240-3_21
https://doi.org/10.1109/TGRS.2023.3240481
https://doi.org/10.1109/TGRS.2021.3105424
https://doi.org/10.1016/j.patcog.2022.109019
https://doi.org/10.1109/TIP.2021.3074738
https://www.ncbi.nlm.nih.gov/pubmed/33905330
https://doi.org/10.1109/TIP.2015.2491020
https://www.ncbi.nlm.nih.gov/pubmed/26513783
https://doi.org/10.1109/JOE.2015.2469915

	Introduction 
	Related Work 
	Deep Learning-Based Underwater Image Enhancement 
	Underwater Dataset 
	Backbone Network 

	Backbone Network Details 
	Global Architecture 
	Backbone Architecture 
	Output Convolution Block 

	Research on CBNet-Based Underwater Image Enhancement 
	Implementation Details 
	Backbone Number Analysis 
	Connection Strategy Analysis 
	Adjacent Higher-Level Composition (AHLC) 
	Adjacent Lower-Level Composition (ALLC) 
	Dense Same-Level Composition (DSLC) 
	Dense Higher-Level Composition (DHLC) 
	Full-Connected Composition (FCC) 

	Pruning Strategy Analysis 
	Auxiliary Loss Analysis 
	Summary 

	Cross-Sectional Research 
	Reference Subset Evaluation 
	Challenging Subset Evaluation 

	Conclusions 
	References

