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Abstract: Breast cancer is one of the most common cancers in women, with an estimated 287,850 new
cases identified in 2022. There were 43,250 female deaths attributed to this malignancy. The high death
rate associated with this type of cancer can be reduced with early detection. Nonetheless, a skilled
professional is always necessary to manually diagnose this malignancy from mammography images.
Many researchers have proposed several approaches based on artificial intelligence. However, they
still face several obstacles, such as overlapping cancerous and noncancerous regions, extracting
irrelevant features, and inadequate training models. In this paper, we developed a novel computa-
tionally automated biological mechanism for categorizing breast cancer. Using a new optimization
approach based on the Advanced Al-Biruni Earth Radius (ABER) optimization algorithm, a boosting
to the classification of breast cancer cases is realized. The stages of the proposed framework include
data augmentation, feature extraction using AlexNet based on transfer learning, and optimized
classification using a convolutional neural network (CNN). Using transfer learning and optimized
CNN for classification improved the accuracy when the results are compared to recent approaches.
Two publicly available datasets are utilized to evaluate the proposed framework, and the average
classification accuracy is 97.95%. To ensure the statistical significance and difference between the
proposed methodology, additional tests are conducted, such as analysis of variance (ANOVA) and
Wilcoxon, in addition to evaluating various statistical analysis metrics. The results of these tests
emphasized the effectiveness and statistical difference of the proposed methodology compared to
current methods.

Keywords: biological mechanism; cancer detection; Al-Biruni Earth radius optimization algorithm;
machine learning
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1. Introduction

Cancer is a global health problem. Among female cancers, breast cancer is by far the
most common [1]. However, 42 percent of NHS trusts say they cannot assign individuals
because they do not have enough staff, with many citing a lack of breast cancer specialists.
It is the fundamental reason breast cancer has a dismal survival rate worldwide [2]. Breast
cancer specialists are in limited supply, which will delay diagnosis, increase resistance to
effective screening and treatment, and create inequalities in access to care [3]. The goal of
developing methods for detecting breast cancer was to identify anomalies and classify the
disease more accurately. This practice aids in detecting breast cancer [4]. Death rates can be
reduced with early detection using screening mammography; however, this is challenging
due to the small size of potential nodules concerning the entire breast [5]. Breast cancer has
a higher chance of being cured (about 90%) than other cancer types. Cancer patients often
go undiagnosed until they experience severe symptoms [6]. The patients’ ages affect the
mortality and incidence rates of breast cancer. Breast cancer was typically diagnosed in
patients aged 62 between 2010 and 2014 [7].

With an estimated 90,000 new cases annually and a reported 40,000 deaths due to the
disease, Pakistan has Asia’s highest breast cancer mortality rate [8,9]. Survival rates for
certain cancers vary depending on their detection stages [10]. Those who are predicted to
live beyond a certain point after receiving a diagnosis and continue to function normally
are included in the survival rate. Mammography is the most reliable technology for
identifying breast cancer due to its capabilities and inexpensive cost to satisfy medical
requirements. The study of mammograms is the major approach doctors use to make a
diagnosis. However, it can be affected by bias and fatigue. Mammography, unfortunately,
has a relatively low detection rate. Depending on the kind of the lesion, the breast density,
and the patient’s age, it can yield a false-negative result rate of anywhere from 5% to
30% [11]. Mammography uses low-dose radiography because it allows us to see the
breast’s internal structure.

To diagnose breast cancer, machine learning algorithms are trained to look for specific
patterns and associations in data that are linked to the biological mechanisms through
which cancer develops. The aberrant multiplication and proliferation of breast cells are
central to the basic mechanisms behind breast cancer, which can have multiple underlying
causes, including heredity, lifestyle, and the external environment. These processes can
lead to the development of breast abnormalities such as lumps, masses, or cysts, which can
be discovered using mammography, ultrasound, or magnetic resonance imaging. These
imaging data can be fed into a machine-learning algorithm and trained to look for abnor-
malities or patterns that are indicative of breast cancer. For breast cancer, machine learning
algorithms can be trained to recognize telltale signs such as masses and microcalcifica-
tions [12,13]. Imaging data, patient history, and molecular biomarkers are just some data
sources that can be analyzed with machine learning algorithms to enhance breast cancer
detection. Machine-learning algorithms can improve the accuracy and timeliness of breast
cancer diagnostics by merging data from numerous sources to detect tiny changes in breast
tissue that may indicate the presence of cancer. Breast cancer risk factors include genet-
ics, lifestyle choices, and other factors; these can all be modeled using machine learning
algorithms to create prediction models of an individual’s likelihood of developing breast
cancer. These models can be used to inform screening and preventative strategies, which
in turn can help lower breast cancer rates. To a large extent, the biological mechanisms of
cancer development are intertwined with breast cancer detection using machine learning,
as these algorithms are trained to recognize patterns and abnormalities in breast tissue that
are linked to the development of cancer [14–16].

CNN recently demonstrated promising performance in detecting and categorizing
tumors in medical images. Deep learning models’ performance is typically proportional to
the size of the datasets used for training. In contrast to the deep learning-based strategies,
the traditional methods performed poorly on complex nature datasets. Deep learning
employs the concept of CNN to perform breast cancer classification [17–19]. Convolutional,
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pooling, activation, and fully linked layers are some types of layers (hidden layers) seen in
a CNN model. Softmax is the classifier used in the final layer of a convolutional neural net-
work model. The use of deep learning enables automated artificial intelligence approaches
in medical imaging. Researchers have introduced several deep learning-based architectures
to detect and categorize infectious diseases. While several deep learning methods have
been established to aid in the classification and diagnosis of breast cancer, researchers
have encountered obstacles such as imbalanced datasets, noisy imaging data, and the
downsampling of critical features [20]. The team zeroed in on the problem of teaching deep
models through transfer learning. One use of transfer learning is to apply a model that
has already been trained to a new problem or scenario [21,22]. While hyperparameters
such as learning rate, mini-batch size, and others have been used successfully in training,
setting their values by hand is tedious and error-prone when dealing with breast cancer.
The authors of described an improved hyperparameter-based deep-learning system for
breast cancer classification [23]. Extraction of deep features from the fully connected layer
followed training; nevertheless, it was shown through analysis that numerous features
were redundant, which negatively impacted breast cancer classification [23]. An improved
method of classifying breast cancer using deep learning was recently presented by the
authors of [24]. The authors of [25] proposed dialectical feature selection to improve breast
cancer classification; however, these methods run into the issue of stopping after the ideal
values have been retrieved.

Due to its many benefits over alternative modalities, the mammogram has become
the preferred modality for screening for breast cancer [26]. First, mammography has been
the subject of much research and is useful in identifying breast cancer at an early stage.
When used with a clinical breast exam, it can detect small cancers or microcalcifications
that the naked eye could miss. Successful treatment results can be improved by prompt
action made possible by this early identification. Second, mammograms produce highly
detailed pictures of breast tissue, letting radiologists see any irregularities very plainly.
This screening method is safe and well-accepted because of the low-dose X-rays used
in mammography. As a bonus, mammography can even spot breast cancer in people
with thick breast tissue. Breasts often have dense tissue, which might obscure cancers
on conventional imaging techniques such as ultrasonography. Mammography is useful
for screening women with a wide variety of breast densities because it can successfully
penetrate thick tissue. The widespread accessibility and well-established infrastructure
of mammography are additional benefits. Most medical facilities, clinics, and screening
centers can access mammography equipment. Because of this, many women will be
able to get screened regularly, which will help with identification and treatment early
on. Compared to other screening methods, mammography also has a low cost. It strikes
a good compromise between price and accuracy in establishing a diagnosis, making it
a viable option for widespread breast cancer screening programs. Mammography has
been widely adopted as the standard screening method for breast cancer because of its
efficacy in detecting cancer at an early stage, its high-resolution imaging capabilities, its
ability to identify tumors even in thick breast tissue, its widespread availability, and cost-
effectiveness. These benefits work together to make breast cancer treatment more effective
and decrease patient mortality [27].

1.1. Main Contributions of This Work

In this paper, we proposed a new framework that uses deep learning to aggregate
the best possible features from both the original and upgraded mammography images.
The following is a list of the main contributions achieved throughout this work:

• Employing transfer learning for feature extraction using the pretrained AlexNet
deep network.

• Developing a new optimization algorithm based on improving the behavior of the
Al-Biruni Earth Radius (BER) optimization algorithm. The new algorithm is referred
to as Advanced BER (ABER).
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• Optimizing the structure and training parameters of the classification CNN for boost-
ing its performance.

• Two datasets are employed to prove the effectiveness and generalization of the pro-
posed approach.

• Studying the statistical difference of the proposed methodology using ANOVA and
Wilcoxon signed ranks tests.

• Applying statistical analysis to show the stability of the proposed methodology in
classifying breast cancer cases.

The main motivation for using the BER optimization algorithm is its efficiency in
exploring the search space for the best solution. On the other hand, the motivation for using
AlexNet is that its performance is better than the other deep networks, such as GoogleNet
and VGG. Therefore AlexNet is adopted for feature extraction. In addition, CNN is used
for the classification of breast cancer. The BER optimization algorithm is used to optimize
its parameters to achieve the best performance of the CNN.

1.2. The Structure of This Work

The structure of this work proceeds as follows. The literature review is presented in
Section 2. The details of the proposed methodology are presented and discussed in Section 3.
The achieved results of the conducted experiments and comparisons are then discussed in
Section 4. Finally, the conclusions are future perspectives are presented in Section 5.

2. Literature Review

Around 1.7 million women were diagnosed with cancer in 2012. Breast cancer is the
most frequent type of cancer worldwide. Risk factors for breast cancer include age, family
history, and previous health problems [4]. Women account for the lion’s share of cancer
deaths; annually, an estimated 2.1 million people are diagnosed with breast cancer. Recent
research estimates that 627 thousand women lost their lives to cancer in 2018, accounting
for fifteen percent of all cancer deaths in women [5]. It is usual practice to use a deep
learning-based model for breast cancer diagnosis and classification when using computer
visualization. Clinicians face difficulties in making a cancer diagnosis from mammography
scans due to the complexity of early breast cancer and the fading of images. That is why it
is so important to enhance a doctor’s detection efficiency with the help of deep learning
algorithms used in the CAD system [28–31].

To categorize breast cancer, the authors of [4] proposed a convolutional neural net-
work (CNN) based framework for analyzing mammography images. In the beginning,
preprocessing was carried out so the mammography images could be seen. Then, the deep
learning model that was used to extract the features was trained using the preprocessed
images. Softmax, a CNN classifier, was then used to categorize the last layer’s retrieved fea-
tures. The preferred model enhanced the introduced framework’s classification accuracy of
mammography images. Accuracy values of 0.8585 and 0.8271 for the proposed framework
demonstrate its superiority to those of the state-of-the-art alternatives. The authors of [32]
revealed early results for utilizing transfer learning to identify breast abnormalities likely to
progress to cancer. After testing numerous deep learning models, they settled on ResNet50
and MobileNet as the best options. Both models achieved the highest accuracy levels
(78.4% and 74.3%, respectively). They used several preprocessing methods to enhance the
accuracy of the categorization further. Last but not least, in [33], researchers introduced a
novel hybrid processing approach that combines principle component analysis (PCA) and
logistic regression (LR).

Using a multi-view screening image-processing architecture, the authors of [34] were
able to improve diagnostic results. First-order local entropy, a texture-based technique,
segmented the tumor patches. Malignancy indicators such as radius and area were derived
using the feature extraction findings. Results from applying this strategy indicated that the
CC and MLO views were 88% and 80% accurate at detecting breast cancer, respectively.
The framework described by the authors in [35] centered on transferable knowledge.
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Several augmentation methods are employed to increase the total number of mammograms
without overfitting and produce accurate findings. Using the enormous mammography
images dataset, the authors of [36] proposed a method. A segmentation module is then used
to identify breast cancer abnormalities in an image that is properly improved. The Breast
Imaging and Reporting and Data System dataset comprised five groups and achieved 92%
precision.

Tumor identification with thresholding and CNN methods were the primary focus of
the previous research, along with information fusion, hyperparameter value selection by
hand, data enhancement, and manual hyperparameter tuning. However, they failed to take
key measures that could have increased precision. These processes consist of improving the
contrast and then optimizing the retrieved features. The SGD and ADAM optimizers are
frequently used to fine-tune the weights of a deep model. A feature optimization method
is implemented following the feature extraction stage to combat computational complexity,
overfitting, and poor accuracy. Table 1 presents a summary of the related works. This
table presented the related works in terms of the presented methodology, the advances,
disadvantages, and overall performance. As shown in this table, the low accuracy of most
methods represents the research gap addressed through the methodology proposed in
this work.

Table 1. Summary of related works.

Ref. Methodology Advantage Disadvantage Performance

[37] Modified VGG
(MVGG)

Reduce the false positive and false negative rates
and the efficiency of mammography analysis is im-
proved

The dataset is not detailed
and of small size

94.3%

[38] Faster R-CNN High performance in terms of higher sensitivity
and lower false positive rate and high efficiently

Could not detect whether
the mass lesions are benign
or malignant

N/A

[39] Pretrained Incep-
tionV3 Classifier

High performance in detecting the mass lesions Long time to detect whether
the mass lesions are benign
or malignant

96%

[40] BC-DROID The ability to classify the images at very low error
rates

Complex model 95%

[41] GAN based data aug-
mentation

Increases samples and assists with class balancing Low accuracy 75%

[42] YOLO Accuracy is high Needs a large of dataset 95.5%
[43] CNNI-BCC Accurate in detecting and classifying breast cancer

lesion
Time complexity is high 90.71%

[44] BDR-CNN-GCN Effective for data augmentation and accurate detec-
tion of malignant breast masses

Time complexity is high 96.10%

3. Proposed Methodology

The proposed framework for mammogram-based breast cancer classification is pre-
sented in this section. The steps of the proposed methodology are shown in Figure 1. This
figure starts with adopting the breast cancer dataset, followed by data augmentation to
enhance these datasets. The next step is feature extraction, in which pre-trained models
are employed to realize this step. The pre-trained models include AlexNet, GoogleNet,
and VGG. The features extracted from the pre-trained model are then fed to the proposed
optimization algorithm to optimize a custom convolutional neural network (CNN) parame-
ter. The proposed optimization algorithm is based on an improved Al-Biruni Earth Radius
(BER) optimization algorithm which is denoted by advanced BER (ABER). After optimizing
the parameters of the CNN, it is used to classify the test images of the given datasets.
The classification results are finally analyzed using several evaluation criteria and statistical
methods. The next sections present more details about these steps.
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Figure 1. The stages of the proposed methodology.

3.1. Dataset

The Digital Database for Screening Mammography (DDSM) dataset employed in this
research can be accessed at [45]. Dataset-1 denotes this dataset throughout this text. It
provides a large database of mammograms, both normal and abnormal. A suggested
optimal convolutional neural network (CNN) for classification uses this dataset for training
and testing. CNN is a robust deep-learning model developed especially for analyzing
and interpreting visual input, making it excellent for mammography classification applica-
tions. Accurate categorization of mammograms may be accomplished using this dataset
in conjunction with the suggested optimized CNN. The breast pictures are sent into a
deep learning network, which then learns complex patterns and characteristics to identify
anomalies such as masses, calcifications, and architectural deformities. By applying the
suggested optimization strategies to the CNN design, we may boost its performance in
terms of overfitting reduction, generalization, and classification precision. Researchers
can use this dataset to test how well the improved CNN works. They can use a smaller
sample of the data for model training and then verify its accuracy using a larger test set.
Together, the proposed optimized CNN and the DDSM mammography dataset provide
a robust system for the classification of mammograms. The enhanced CNN, which uses
deep learning techniques with the dataset, can improve the accuracy and efficiency with
which mammograms are classified, hence facilitating the early identification and diagnosis
of breast problems. The number of images in this dataset is 1696 images including benign
and malignant cases.

An additional dataset is considered to emphasize the effectiveness of the proposed
methodology. This dataset is publicly available on Kaggle [46] and is denoted by Dataset-2
throughout this text. The dataset available at the provided link is a collection of mam-
mograms and breast cancer images. It is a valuable resource for training and evaluating
a proposed optimized convolutional neural network (CNN) for classification purposes.
By leveraging this dataset, the proposed optimized CNN can be trained to classify breast
cancer images and mammograms accurately. Utilizing this dataset in conjunction with
the optimized CNN can improve the efficiency and accuracy of a breast cancer diagnosis
significantly. The deep learning model can learn intricate patterns and features from the
images, enabling it to distinguish between malignant and benign cases. The proposed
optimization techniques applied to the CNN architecture can enhance its performance by
reducing overfitting, improving generalization, and increasing the overall accuracy of the
classification. With this dataset, researchers can thoroughly evaluate the performance of
the optimized CNN. The dataset’s diverse range of images and associated metadata allow
for a comprehensive evaluation of the proposed optimized CNN across various patient
demographics and imaging techniques. The dataset provided, and the proposed optimized
CNN presents a promising approach for classifying mammograms and breast cancer im-
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ages. By harnessing the power of deep learning and leveraging this dataset, the optimized
CNN can contribute to accurate and efficient breast cancer diagnosis, and thus improves
patient outcomes and better healthcare practices. The number of images in this dataset is
1356 images including benign and malignant cases.

3.2. Data Augmentation

Typical machine learning methods, such as those for recognizing shapes, points, colors,
and others, benefit from the limited number of image datasets available for training [47,48].
More datasets are constantly needed for developing deep learning models. Overfitting
problems are mitigated, and the deep learning model’s robustness is improved through
data augmentation, which also increases the size of the dataset. We undertook data
augmentation since the publicly accessible datasets for breast cancer are insufficient by
rotating each image four times at (0 degrees), (90 degrees), (180 degrees), and (270 degrees),
and then flipping the resulting four images from left to right, a total of eight additional
shots were generated for each recognized patch. Algorithm 1 presents the steps of the
data augmentation process employed in this work to increase the number of images in
the dataset. Table 2 presents the number of images in the dataset before and after data
augmentation. Samples of the augmentation results are shown in Figure 2.

Algorithm 1 : The steps of data augmentation

1: while i = 1 to target augmentation percentage do
2: Step 1: Input image
3: Step 2: Flip right to left
4: Save image from step 2
5: Step 3: Flip-up to down
6: Save image from step 3
7: Step 4: Image rotation to 90
8: Save image from step 4
9: end while

Table 2. The datasets information along with the number of images before and after data augmentation.

Dataset Classes Before
Augmentation

After
Augmentation

Dataset-1 2 (Benign and Malignant) 1696 6784
Dataset-2 2 (Benign and Malignant) 1356 5424

Figure 2. The operations used in the data augmentation process.

3.3. Feature Extraction

During the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012),
a new CNN architecture called AlexNet was proposed in [49]. AlexNet is an effective
and simple CNN architecture composed of several cascading stages, including fully con-
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nected layers, rectified linear unit (ReLU) layers, pooling layers, and convolution layers.
Specifically, AlexNet consists of five convolutional layers, three of which are followed by a
pooling layer and three fully connected layers. AlexNet uses several pragmatic strategies
contributing to its impressive performance, including the dropout regularization technique
and ReLU non-linearity layer. The optimization of AlexNet architecture using the stochas-
tic gradient descent (SGD) algorithm is based on back-propagation to optimize the cost
function when the convolutional kernels are extracted. The convolutional layers generally
apply sliding convolutional kernels to the input feature maps to produce convolved feature
maps. The pooling layers aggregate information within a given neighborhood window by
performing either a max pooling or an average pooling operation on the convolved feature
maps. The ReLU function acts as a half-wave rectifier function, reducing training time
and preventing overfitting. Dropout can be seen as a regularization method that randomly
sets several hidden neurons or input neurons to zero during training. On the other hand,
the dropout regularization technique is commonly used in the fully connected layers of
AlexNet architecture to reduce overfitting. Figure 3 shows the steps of the proposed feature
extraction method.

Figure 3. The process of extracting features from the breast cancer images dataset.

The transfer technique and the pre-training procedure [50,51] allow the parameters of
a Neural network to be imported from natural imaging datasets. This was partly possible
because remote sensing imagery and natural imaging datasets are similar and comparable
in terms of their respective categories. Well-trained network parameters are critical for
launching the subsequent classification framework, and it makes sense that these param-
eters may be obtained by training an AlexNet architecture on massive and complicated
ImageNet datasets. Therefore, the AlexNet architecture’s capability to categorize HSR
sceneries from remote sensing data is improved using the pre-training method. For the first
time, the AlexNet architecture’s easy and comprehensive representation ability can be uti-
lized in HSR remote sensing imaging scene categorization due to the pre-training approach.

f (x) = max(x, 0) (1)

3.4. Features Classification

Recently, the most effective neural networks for image processing and classification are
convolutional neural networks (CNNs). Feedforward neural network (FFN) models, such
as CNNs, allow the signal to propagate in a single direction inside the network without



Biomimetics 2023, 8, 270 9 of 24

returning to the input node. Since CNN preserves the spatial correlations after filtering the
input images, it is one of the best machine-learning (ML) techniques used in medical image
analysis. The medical analytic community places a premium on these connections. This
section presents a high-level overview of the components that make up CNNs. As may be
seen in Figure 4, CNN is made up of several different layers. These are the levels:

3.4.1. Convolutional Layer

Convolution is a procedure that consists of two steps in image analysis. The first
step is to enter the pixel values of the features extracted from AlexNet. The second
activity is represented by a numeric array called a kernel (or filter). The dot product
of the two operations gives the result. The kernel is then moved to the position in the
image indicated by the stride length. By iterating the computation until the entire image is
covered, a feature map (or activation map) is produced. This map indicates the locations at
which the kernel is sufficiently motivated to “see” a feature, such as a straight line, a dot,
or a curved edge. For instance, when fed an image of a face, a CNN’s kernels would first
identify the image’s underlying low-level features, such as its borders and lines. Low-
level features, such as the shape of a person’s ear, eye, or nose, are gathered to produce
incrementally better features in the successive layers of a CNN, with the resulting feature
maps serving as inputs to the next layer. Convolution relies on sparse connections, weights
(parameter) sharing and invariant (equivariant) representation efficient computational
machine learning. In contrast to other neural networks, in which all of the neurons in a
given layer’s outputs are connected to the inputs of the next layer’s neurons, CNN uses
sparse connections, meaning that only a subset of the outputs from each layer is passed
along to the next. By gradually learning the important features and drastically reducing
the estimated number of weights, the algorithm’s performance improves as the kernel’s
covered area per stride (local reception field) diminishes [52]. A CNN can save on memory
space by having each kernel’s predefined weights cross over to other parts of the entire
image. Unlike in partially connected networks, when weights are used repeatedly between
layers, they are only used once in completely linked networks. The quality of the invariant
representation improves due to weight sharing, which means that identical translations
of the input lead to identical translations of the feature map. The adopted structure of the
CNN is shown in Figure 4.

Figure 4. The typical structure of the convolutional neural network used in image classification.

3.4.2. ReLU Layer

This trigger layer makes the input zero if it is less than one. The Rectified Linear Unit
(ReLU) layer speeds up training, reduces computational complexity, and aids in avoiding
the vanishing gradient problem. The mathematical expression for this is: f (x) = max(0, x).
x stands for the data coming into the neuron. Parametric ReLU, randomized ReLU, leaky
ReLU, tanh, and the sigmoid functions are all examples of additional triggered functions.

3.4.3. Pooling Layer

The pooling layer’s primary purpose is to reduce the image’s dimensions (in horizontal
and vertical planes, but not in-depth) and the parameters used to create it. It comes after



Biomimetics 2023, 8, 270 10 of 24

the convolutional layer but before the ReLU layer. Average and maximum pooling are the
two most used methods. The difference between max pooling and average pooling is that
the former takes the maximum value of the input within a kernel and discards the others,
while the latter takes the average.

3.4.4. Fully Connected Layer

As the last component of the CNN architecture, the fully connected layer ensures that
every neuron below it is linked to every neuron in the layer above it. One or more may
be used, just as with pooling, ReLU, and convolutional layers, depending on the desired
level of feature abstraction. Classification probabilities are computed based on the layer’s
output before it (whether pooling, ReLU, or convolutional). To put it another way, the fully
connected layer analyzes the most strongly activated features that can assign the image to a
certain category. If the features were significantly distinguishable from the preceding layer,
the CNN might be beneficial for predicting the presence of cancer cells. The CNN may be
trained to discover meaningful structures in previously trained images using the standard
neural network training methods of stochastic gradient descent and backpropagation.

3.4.5. Network Hyperparameters

The network structure hyperparameters are listed in Table 3. These parameters de-
termine the structure of the adopted CNN used in feature classification. In addition,
the network trained hyperparameters are listed in Table 4. These parameters are trained
and optimized using the proposed optimization algorithm. The optimization process results
are the best set of parameters that determine the structure of the CNN in addition to the
best values of the training hyperparameters used to achieve the best classification accuracy.

Table 3. Network structure hyperparameters.

Hyperparameter Abbreviation Range

Number of Filters 1 Filters_1 [16, 32, 64, 96]
Kernel Size 1 Ksize_1 [3, 4, 5]
Number of Filters 2 Filters_2 [48, 64, 96, 128]
Kernel Size 2 Ksize_2 [3, 4, 5]
Number of Filters 3 Filter_3 [64, 96, 128]
Kernel Size 3 Ksize_3 [3, 4, 5]
Fully connected full_hidden1 [60, 100, 125]
Activation activation [relu, lrelu, elu]

Table 4. Network training hyperparameters.

Hyperparameter Potential Values

Learning rate [0.001, 0.003, 0.01, 0.03]
learning rates [0.001, 0.003, 0.01, 0.03]
Batch Size [0.001, 0.003, 0.01, 0.03]
Dropout [0.2, 0.3, 0.4, 0.5, 0.6]

3.5. The Advanced Al-Biruni Earth Radius Optimization Algorithm

To achieve a better balance between exploitation and exploration, this algorithm parti-
tions the population into subgroups and dynamically adjusts the size of each subgroup.
Step one involves creating two groups, one for explorers and one for exploiters. The pro-
portion of the population engaged in exploration is 70%, while that engaged in exploitation
is 30%. The exploitation task’s population share is set at 30% of the total population and
then gradually increased to 70% over the optimization iterations to increase the fitness
values of individuals in each group. However, the initial number of individuals assigned
to the exploration group is set at 70%, and via a series of iterations, this number is reduced
to 30%. The overall fitness of humans can be vastly enhanced by this method. Further-
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more, the elitism technique is used by holding on to the process’s leading answer if no
better solution is found; this ensures that the optimization process for the population will
converge. Suppose a solution’s fitness does not increase much after three iterations in the
BER optimization procedure. In that case, the solution may have reached a local optimum,
in which case another exploring individual can be formed using the mutation operation.

For each iteration, the ABER selects the optimal option to implement, guaranteeing a
high standard of results. The elitism approach improves the effectiveness of algorithms,
but it can lead to early convergence in multimodal functions. The ABER’s mutation
process and ensuing search around members of the exploration group provide exceptional
exploration capabilities. Due to its robust exploratory capacities, the ABER can delay the
onset of convergence. In Algorithm 2, the ABER pseudo-code is displayed. To begin, we
feed the ABER some information by specifying the number of iterations, the size of the
population, and the mutation rate. The ABER then divides the participants into two groups:
the exploration group and the exploitation group. During iterations of the search for the
optimal solution, the ABER algorithm dynamically adjusts the size of each group. Each
team uses a different method to carry out its duties. With each iteration, the ABER shuffles
the order of the solutions to increase diversity and exploration. A solution may belong
to the exploration group in one iteration, but it may be part of the exploitation group in
the next. Using the ABER’s elitist approach, the leader is less likely to be removed as the
process iterates. The steps of the proposed ABER algorithm are presented in Algorithm 2.

Algorithm 2 : The proposed ABER optimization algorithm

1: Initialize BER population Pi(i = 1, 2, ..., d), max iterations Maxiter, population size d,
fitness function Fn, initial iteration t = 1, intermediates variables z, r1, r2, r3.

2: Calculate fitness function Fn for each Pi
3: Find best solution as P∗
4: while t ≤ Maxiter do
5: for each solution in the exploration group do
6: Update r = h cos(x)

1−cos(x)
7: Calculate D = r1(P(t)− 1)
8: Update P(t + 1) = P(t)+D(2r2 − 1)
9: end for

10: for each solution in the exploitation group do
11: Calculate D = r3(L(t)− P(t))
12: Update P(t + 1) = (r1 ∗ P1(t)+ z ∗ r2 ∗ (P2(t)− P3(t))+ (1− z) ∗ r3 ∗ (P∗(t)− P1(t))
13: Calculate k = 1+ 2∗t2

Maxiter
2

14: Investigate area around best solution as
P′(t + 1) = r1(P∗(t)+ k)

15: Compare P(t + 1) and P′(t + 1) to select the best solution P∗(t + 1)
16: if no change occured to the best fitness for last two iterations then
17: Mutate solution as P(t + 1) = k + P1(t)+P2(t)+P3(t)

ezk

18: end if
19: end for
20: Update fitness Fn for each position P
21: end while
22: Return P∗(t)

4. Experimental Results

In this part, we provide and discuss the results of the proposed architecture for breast
cancer classification. Two datasets have been adopted in the conducted experiments,
and the achieved results are compared to the other techniques [53–57]. In addition, a cross-
validation value of five folds and a training/testing split of 70:30 are applied to improve the
achieved accuracy. On the other hand, the proposed optimization approach is compared
to different recent approaches, including genetic algorithm (GA) [58], whale optimization
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algorithm (WOA) [59], particle swarm optimization (PSO) [60], grey wolf optimization
(GWO) [61] and the standard Al-Biruni Earth radius (BER) [62]. The parameters of the CNN
are optimized using the suggested state-of-the-art BER method. There are many iterations
performed to arrive at the final findings, including (i) testing the adopted datasets based on
the extracted deep features using other models and (ii) testing the adopted datasets using
the extracted deep features and the optimized CNN. All tests are performed on a 16 GB
RAM, 8 GB graphics card, MATLAB 2022a-powered desktop computer.

4.1. Evaluation Criteria

Table 5 compares the performance metrics used to evaluate the results of the proposed
approach. Among these are Negative Predictive Value (NPV), F-score, Precision, Sensitivity,
Accuracy, and Specificity. The classification efficiency of the proposed improved CNN is
measured using these criteria. The table’s abbreviations for “false negative”, “false positive”,
“true negative”, and “true positive” are “FN”, “FP”, “TN”, and “TP”, respectively.

Table 5. The adopted evaluation metrics.

Metric Value

Specificity TN
TN+FP (2)

Sensitivity TP
TP+FN (3)

Accuracy TP+TN
TP+TN+FP+FN (4)

Precision TP
TP+FP (5)

NPV TN
TN+FN (6)

F-score TP
TP+0.5(FP+FN) (7)

4.2. Configuration Parameters

Due to the random initialization of the individuals in the first population, we ran
30 iterations of the optimization algorithms in all the conducted tests. There were 500 itera-
tions in each run. The population is one of the inputs to the algorithm. In this study, that
number is 30 individuals. Table 6 details the proposed algorithm’s default settings for its
initial parameters.

Table 6. The configuration parameters used for the proposed ABER algorithm.

Parameter Value

Number of runs 30
Iterations count 500
Population size 30
K (decreases from 2 to 0) 1
Exploration percentage 70%
Mutation probability 0.5
Random variables [0, 1]

4.3. Feature Extraction Results

The evaluation of the extracted features using transfer learning is presented in Table 7.
Starting with accuracy, this table is a commonly used metric that measures the overall
correctness of the model’s predictions. In this case, all three models achieved accuracy
values greater than 0.81, indicating that they can make correct predictions for most cases.
However, it is important to note that accuracy can sometimes be misleading if the dataset
is imbalanced, i.e., if one class is much more prevalent. Moving on to sensitivity and
specificity, these measures are particularly relevant for binary classification problems
such as breast cancer classification. Specificity measures the proportion of true negatives
that are correctly identified, while Sensitivity measures the proportion of true positives
the model correctly identifies. In this case, the sensitivity values for the models ranged
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from 0.427 to 0.440, indicating that they can identify true positive cases with comparable
performance. The specificity values ranged from 0.925 to 0.949, indicating that the models
can correctly identify true negative cases with varying degrees of success. It is important to
note that sensitivity and specificity can be affected by the choice of the decision threshold,
and different thresholds may result in different performance levels. The Precision and
NPV are also relevant evaluation metrics for binary classification problems, as they provide
information on the prevalence of false positives and false negatives, respectively. The NPV
measures the proportion of positive cases incorrectly classified as negative, whereas the
Precision measures the proportion of negative cases incorrectly classified as positive. In this
case, the Precision ranged from 0.658 to 0.669, indicating that the models have relatively
low rates of false positive predictions. The NPV ranged from 0.846 to 0.889, indicating that
the models have somewhat higher rates of false negatives. Finally, the F-score is a measure
that combines both precision and recall into a single value. It provides a valuable summary
of the model’s overall performance in correctly identifying positive and negative cases.
In this case, the F-score values ranged from 0.521 to 0.529, indicating that the models have
similar precision and recall, but their ability to balance the two can vary. These evaluation
metrics provide a comprehensive view of the performance of the evaluated models for
breast cancer classification. By considering multiple metrics, it is possible to gain a more
nuanced understanding of the strengths and weaknesses of each model, and to make more
informed decisions about which model to use for a particular task. As presented in Table 7,
it can be shown that the performance of the AlexNet pre-trained model is superior to
the other models for both Dataset-1 and Dataset-2 and, thus, this model is adopted for
feature extraction.

Table 7. Evaluating the results of deep networks used in feature extraction.

Dataset-1 Accuracy Sensitivity Specificity Precision NPV F-Score

VGG-Net 0.818 0.439 0.925 0.658 0.846 0.526
GoogLeNet 0.835 0.440 0.934 0.663 0.861 0.529
AlexNet 0.867 0.427 0.949 0.669 0.889 0.521

Dataset-2 Accuracy Sensitivity Specificity Precision NPV F-Score

VGG-Net 0.843 0.930 0.750 0.800 0.909 0.860
GoogLeNet 0.849 0.933 0.756 0.808 0.912 0.866
AlexNet 0.860 0.938 0.778 0.818 0.921 0.874

4.4. Classification Results

Breast cancer classification results using the proposed ABER-CNN compared to the
baseline CNN and the optimized CNN using different optimization algorithms are pre-
sented in Table 8. The reported results are accuracy scores for five other convolutional
neural network (CNN) models: WOA-CNN, GA-CNN, PSO-CNN, GWO-CNN, BER-CNN,
and ABER-CNN, that were trained and tested for breast cancer classification. These models
were trained using different optimization algorithms, and the reported accuracy scores
ranged from 0.914 to 0.962. Among the five evaluated models, the ABER-CNN model
achieved the highest accuracy score of 0.962, which suggests that it performed the best in
classifying breast cancer.
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Table 8. Evaluation of the results achieved by the proposed ABER-CNN compared to the baseline
CNN and optimized CNN using different optimization algorithms.

Dataset-1 Accuracy Sensitivity Specificity Precision NPV F-Score

CNN 0.892 0.965 0.375 0.917 0.600 0.940
WOA-CNN 0.914 0.970 0.643 0.929 0.818 0.949
GA-CNN 0.920 0.970 0.750 0.929 0.882 0.949
PSO-CNN 0.924 0.970 0.800 0.929 0.909 0.949
GWO-CNN 0.931 0.972 0.833 0.933 0.926 0.952
BER-CNN 0.943 0.968 0.917 0.923 0.965 0.945
ABER-CNN 0.962 0.971 0.945 0.968 0.951 0.969

Dataset-2 Accuracy Sensitivity Specificity Precision NPV F-Score

CNN 0.912 0.970 0.833 0.889 0.952 0.928
WOA-CNN 0.939 0.976 0.878 0.930 0.956 0.952
GA-CNN 0.942 0.976 0.887 0.932 0.959 0.953
PSO-CNN 0.952 0.982 0.904 0.943 0.969 0.962
GWO-CNN 0.956 0.984 0.907 0.948 0.970 0.966
BER-CNN 0.970 0.988 0.932 0.968 0.973 0.978
ABER-CNN 0.994 0.993 0.994 0.995 0.992 0.994

The other models achieved accuracy scores ranging from 0.914 to 0.943. It is important
to note that accuracy is only one evaluation metric, and other metrics such as sensitivity,
specificity, and F-score may be necessary to evaluate the models’ performance fully. Ad-
ditionally, further information about the dataset and the specific task would be necessary
to fully interpret and contextualize these results. These results suggest that the proposed
ABER-CNN model is a promising approach for breast cancer classification, achieving a
high accuracy score of 0.962. Similarly, the performance of the proposed approach in terms
of Dataset-2 is also presented in Table 8. The results presented in this table confirm the
effectiveness and superiority of the proposed approach in breast cancer classification tasks
when tested on the adopted datasets. On the other hand, Figure 5 shows the confusion
matrix for the results of the proposed ABER-CNN approach applied to Dataset-1 and
Dataset-2. From these matrices, it can be noted that the classification of the breast cancer
cases is accurate using the proposed approach, which proves its effectiveness in this domain
of medical diagnosis.

(a) (b)

Figure 5. The confusion matrix of the classification results of breast cancer cases using the proposed
ABER-CNN applied to the adopted datasets (Dataset-1 and Dataset-2). (a) Confusion matrix for
Dataset-1. (b) Confusion matrix for Dataset-2.
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The accuracy plot and accuracy histogram plot are valuable tools used to compare the
performance of several models in classifying breast cancer cases as shown in Figures 6–9 for
Dataset-1 and Dataset-2. In this context, the models evaluated include CNN, WOA-CNN,
GA-CNN, PSO-CNN, GWO-CNN, BER-CNN, and ABER-CNN, where ABER represents
the advanced Al-Biruni Earth radius optimization algorithm, and the proposed approach
is ABER-CNN. The accuracy plot visually presents the accuracy scores of each model,
allowing for a direct comparison of their performance. It typically displays the accuracy
rates on the y-axis and the different models on the x-axis. This plot enables researchers
to assess which model consistently achieves higher accuracy rates in classifying breast
cancer cases.

Figure 6. The accuracy of the classification results using the proposed approach compared to other
approaches applied to Dataset-1. The colors refer to the corresponding algorithms located on the
y-axis.

Figure 7. The accuracy of the classification results using the proposed approach compared to other
approaches applied to Dataset-2. The colors refer to the corresponding algorithms located on the
y-axis.
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Figure 8. The accuracy histogram of the classification results using the proposed approach compared
to other approaches applied to Dataset-1.

Figure 9. The accuracy histogram of the classification results using the proposed approach compared
to other approaches applied to Dataset-2.

Similarly, the accuracy histogram plot provides a distribution of accuracy scores for
each model. It offers a more detailed view of the performance by illustrating the frequency
of accuracy scores within specific ranges. This plot allows for comparing the overall
accuracy and the accuracy distribution across different models. By analyzing these plots, it
becomes evident that the proposed optimized model, ABER-CNN, outperforms the other
models in classifying breast cancer cases. Its accuracy scores consistently exceed those
of CNN, WOA-CNN, GA-CNN, PSO-CNN, GWO-CNN, and BER-CNN. The superior
performance of ABER-CNN suggests that the advanced Al-Biruni Earth radius optimization
algorithm effectively enhances the CNN architecture for breast cancer classification. This
finding highlights the potential of the ABER-CNN model for more accurate and reliable
breast cancer diagnosis, paving the way for improved patient outcomes and healthcare
practices in the field. Additional experiment is performed to study the area under the curve
(AUC) for the results achieved by the proposed approach when applied to Dataset-1. The
results of this experiments are presented in Appendix A.
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4.5. Statistical Analysis Results

The statistical analysis results are presented in Table 9 for Dataset-1 and Dataset-2.
In this table, the results show the performance of different models in terms of various
evaluation metrics. The models evaluated include CNN, WOA-CNN, GA-CNN, PSO-
CNN, GWO-CNN, BER-CNN, and ABER-CNN. The evaluation metrics reported have
the minimum value, 25th percentile, median, 75th percentile, maximum value, range,
mean, standard deviation, standard error of the mean, and sum. Looking at the minimum
and maximum values, we can see that the ABER-CNN model performed the best, with a
maximum value of 0.982 and a minimum value of 0.962. The range of values also varied
among the models, with the BER-CNN model having the smallest range of 0.012 and
the CNN model having the largest range of 0.028. In terms of the mean and median
values, we can see that the ABER-CNN model performed the best, with a mean value of
0.965 and a median value of 0.962. The models’ performances can be compared using the
various evaluation metrics provided in the table. The standard deviation values show us
that the CNN, WOA-CNN, GA-CNN, PSO-CNN, and ABER-CNN models had similar
levels of variability in their results, with standard deviation values ranging from 0.007 to
0.004. The GWO-CNN and BER-CNN models had lower levels of variability with standard
deviation values of 0.003. These results suggest that the ABER-CNN model performed the
best among the models evaluated.

Table 9. The results of the statistical analysis performing on the results achieved by the proposed
approach compared to other approaches.

Dataset-1 CNN WOA-CNN GA-CNN PSO-CNN GWO-CNN BER-CNN ABER-CNN

Number of values 10 10 10 10 10 10 10
Range 0.028 0.023 0.020 0.019 0.010 0.012 0.020
Minimum 0.882 0.911 0.920 0.921 0.931 0.941 0.962
75% Percentile 0.899 0.919 0.922 0.926 0.933 0.944 0.964
25% Percentile 0.892 0.914 0.920 0.924 0.931 0.943 0.962
Median 0.892 0.914 0.920 0.924 0.931 0.943 0.962
Maximum 0.910 0.934 0.940 0.940 0.941 0.953 0.982
Mean 0.895 0.917 0.923 0.926 0.933 0.944 0.965
Std. Error of Mean 0.002 0.002 0.002 0.002 0.001 0.001 0.002
Std. Deviation 0.007 0.007 0.007 0.006 0.004 0.003 0.007
Sum 8.946 9.167 9.225 9.263 9.331 9.439 9.645

Dataset-2 CNN WOA-CNN GA-CNN PSO-CNN GWO-CNN BER-CNN ABER-CNN

Number of values 10 10 10 10 10 10 10
Range 0.015 0.026 0.018 0.019 0.017 0.029 0.004
Minimum 0.910 0.918 0.934 0.944 0.947 0.961 0.991
75% Percentile 0.915 0.939 0.943 0.952 0.956 0.971 0.993
25% Percentile 0.912 0.939 0.941 0.952 0.954 0.970 0.993
Median 0.912 0.939 0.942 0.952 0.956 0.970 0.993
Maximum 0.925 0.944 0.952 0.963 0.964 0.990 0.995
Mean 0.914 0.938 0.942 0.952 0.955 0.971 0.993
Std. Error of Mean 0.002 0.002 0.002 0.001 0.001 0.002 0.000
Std. Deviation 0.005 0.007 0.005 0.005 0.004 0.007 0.001
Sum 9.144 9.376 9.422 9.524 9.55 9.711 9.932

4.6. Analysis-of-Variance (ANOVA) Test Results

The ANOVA table shown in Table 10 displays the findings of a statistical analysis of
variance performed on Dataset-1 and Dataset-2. Total, Treatment, and Residual comprise its
three sections. The degrees of freedom (DF), mean square (MS), F-ratio (F), and p-value for
the analysis of variance between treatment groups (models) are displayed in the Treatment
section. The treatment has a DF of 6 and MS of 0.00481 (SS: 0.029). There is statistical
evidence that the treatment (several models) affects the response variable, as the F-ratio
with 6 and 63 degrees of freedom is 131.4, and the p-value is less than 0.0001 (evaluation
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metrics). Unaccounted-for differences between groups of patients are reflected in the
Residual term. It has a DF of 63, an MS of 0.00003661, and an SS of 0.002. Residual is
omitted because they do not qualify for either the F-ratio or the p-value. Since the Total
reflects the full range of variability in the data, it displays Total SS, Total DF, and no MS,
F-ratio, or p-value. The data set has a total of 0.031 SS and 69 DF. In conclusion, the variance
table analysis displays the statistical test findings to determine if the intervention (several
models) significantly affects the dependent variable. Based on the metrics utilized for
comparison, the outcomes highlight a clear performance gap between the various models.

Table 10. The ANOVA test outcomes for the comparison models and the proposed approach.

Dataset-1 SS DF MS F (DFn, DFd) p-Value

Treatment 0.029 6 0.005 F (6, 63) = 131.4 p < 0.0001
Residual 0.002 63 0.00003661
Total 0.031 69

Dataset-2 SS DF MS F (DFn, DFd) p-Value

Treatment 0.038 6 0.006 F (6, 63) = 229.1 p < 0.0001
Residual 0.002 63 0.00002753
Total 0.040 69

The results of the plots shown in Figures 10 and 11 used to visualize the output of
the ANOVA test further validate the effectiveness of the proposed ABER-CNN model
in breast cancer classification. Firstly, the QQ plot demonstrates that the residuals of the
ABER-CNN model align closely with the expected normal distribution. This indicates that
the assumptions of normality are met, enhancing the reliability of the model’s predictions.
Additionally, the Homoscedasticity plot reveals a consistent spread of residuals across
different independent variable levels, confirming the homoscedasticity assumption. This
suggests that the ABER-CNN model performs consistently well across various conditions
or groups, further strengthening its robustness in breast cancer classification. The Residual
plot showcases minimal patterns or systematic deviations, indicating that the ABER-CNN
model effectively captures the underlying linear relationships. The absence of non-linear
patterns implies that the model is well-suited for breast cancer classification tasks, as it
accurately captures the complexities present in the data.

Figure 10. The plots visualizing the results of the ANOVA test based on Dataset-1. The blue dots
refer to the samples included in the ANOVA test.
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Figure 11. The plots visualizing the results of the ANOVA test based on Dataset-2. The blue dots
refer to the samples included in the ANOVA test.

Furthermore, the Heatmap highlights the significance levels or p-values resulting from
the ANOVA test. The heatmap reveals that the ABER-CNN model exhibits significantly
higher accuracy rates than other models, such as CNN, WOA-CNN, GA-CNN, PSO-CNN,
GWO-CNN, and BER-CNN. The color-coded representation indicates the superiority of the
ABER-CNN model in classifying breast cancer cases, further supporting its effectiveness
and demonstrating its potential for improved patient outcomes and healthcare practices in
breast cancer diagnosis.

The results of the QQ plot, Homoscedasticity plot, Residual plot, and Heatmap col-
lectively confirm the effectiveness of the proposed ABER-CNN model in breast cancer
classification. These plots provide strong evidence of the model’s accuracy, adherence to
assumptions, and robust performance, solidifying its potential as a valuable tool in the
early detection and diagnosis of breast cancer.

4.7. Wilcoxon Signed-Rank Test Results

The Wilcoxon signed-rank test presented in Table 11 is a non-parametric statistical
method for comparing three or more samples with common features. In this context, the test
is used to evaluate the relative merits of seven distinct models for a binary classification
task: CNN, WOA-CNN, GA-CNN, PSO-CNN, GWO-CNN, BER-CNN, and ABER-CNN.
In this test, the median of the observed performance gaps between the models is compared
to the theoretical median, which is zero. The findings show that all seven models performed
significantly differently from the theoretical median (p-value 0.05). Actual median values
vary from 0.892 to 0.962, demonstrating various model performances. If we add up all
the ranks that represent disparities in absolute value between the observed values and the
hypothesized median, we obtain W, the sum of signed ranks. Adding up the ranks of the
positive differences yields the total of positive ranks, whereas adding up the ranks of the
negative differences yields the sum of negative ranks.
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Table 11. The Wilcoxon signed-rank test outcomes for the comparison models and the proposed
approach.

Dataset-1 CNN WOA-CNN GA-CNN PSO-CNN GWO-CNN BER-CNN ABER-CNN

Actual median 0.892 0.914 0.920 0.924 0.931 0.943 0.962
Theoretical median 0 0 0 0 0 0 0
Number of values 10 10 10 10 10 10 10
Sum of +ve ranks 55 55 55 55 55 55 55
Sum of −ve ranks 0 0 0 0 0 0 0
Sum of signed ranks 55 55 55 55 55 55 55
Discrepancy 0.892 0.914 0.920 0.924 0.931 0.943 0.962
p-value 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Dataset-2 CNN WOA-CNN GA-CNN PSO-CNN GWO-CNN BER-CNN ABER-CNN

Actual median 0.9123 0.9389 0.9416 0.952 0.9556 0.9695 0.9932
Theoretical median 0 0 0 0 0 0 0
Number of values 10 10 10 10 10 10 10
Sum of +ve ranks 55 55 55 55 55 55 55
Sum of −ve ranks 0 0 0 0 0 0 0
Sum of signed ranks (W) 55 55 55 55 55 55 55
Discrepancy 0.9123 0.9389 0.9416 0.952 0.9556 0.9695 0.9932
p-value 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Because the p-values are derived from the true probability distribution of the test
statistic, the Wilcoxon signed-rank test is considered an exact test. The p-values are exactly
0.002, which is a very small probability. The Wilcoxon signed-rank test verifies that there
are substantive differences in the effectiveness of the various models. It does not, however,
specify how large these disparities are. The deviation numbers reveal the true median
values of the performance discrepancies, with ABER-CNN doing better than CNN by a
wide margin. One important thing to keep in mind about the Wilcoxon signed-rank test
is that it is a one-tailed test, which means that it can only tell you if the models perform
considerably better or worse than the theoretical median. It is not a test for directional
variations in performance.

5. Conclusions and Future Work

In this study, we presented an automated approach for classifying breast cancer cases.
Researchers have developed a novel optimization method using the ABER optimization
algorithm to improve breast cancer case classification. The proposed system consists
of three phases: data augmentation, feature extraction with AlexNet based on transfer
learning, and CNN optimization for classification. The proposed approach is evaluated
using the two publicly datasets, with an average classification accuracy of 97.95% being
attained. Further tests, including ANOVA and Wilcoxon tests and the evaluation of various
statistical analysis metrics, are performed to ensure the statistical significance and difference
between the proposed approach. The tests validated the suggested methodology’s efficiency
and statistical differentiation compared to contemporary approaches. Applying transfer
learning and optimized CNN for classification increased classification accuracy when
comparing the achieved findings to those of current techniques. The potential limitation of
the proposed approach is the complexity of the proposed optimization algorithm, which
can be improved by utilizing more flexible nature-inspired algorithms to improve the
proposed approach’s overall exploration and exploitation capacities. On the other hand,
the future perspectives include evaluating the proposed approach using additional larger
datasets and comparing the proposed methodology with more recent approaches.
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Appendix A

The Area under the ROC curve, shown in Figure A1, is a common metric used to
evaluate the performance of binary classifiers, such as a CNN model in this case, when
applied to Dataset-1. It measures the ability of the model to correctly classify positive and
negative cases across all possible classification thresholds. The results show that the AUC
score of the model is 1, which indicates perfect discrimination between the two classes
(controls and patients). As presented in Table A1, the standard error of the AUC is 0, which
means that the estimate of the AUC is very precise. The 95% confidence interval also
confirms that the true AUC value is within the range of 1.000 to 1.000, further supporting
the conclusion of perfect classification performance.

Figure A1. The area under the ROC curve for the results achieved by the proposed approach applied
to Dataset-1.

The p-value is 0.0002, less than the commonly used threshold of 0.05, indicating
that the observed AUC is significantly different from a random classifier. The data used
for the analysis consists of 10 controls (ABER-CNN) and 10 patients (BER-CNN). There
were no missing controls or patients in the dataset. These results suggest that the CNN

https://www.kaggle.com/datasets/skooch/ddsm-mammography
https://dx.doi.org/10.21227/9f0p-qx37
https://dx.doi.org/10.21227/9f0p-qx37
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model performs excellently discriminating between controls and patients, with perfect
classification performance according to the AUC metric.

Table A1. Analysis of the area under the ROC curve.

Metric Value

Std. Error 0
Area 1

Controls (ABER-CNN) 10
Patients (BER-CNN) 10

Missing Patients 0
Missing Controls 0

p-value 0.0002
95% confidence interval 1.000 to 1.000
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