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Abstract: This paper proposes a novel WOA-based robust control scheme with two kinds of propa-
gation latencies and external disturbance implemented in Software-Defined Wireless Networks 
(SDWNs) to maximize overall throughput and enhance the stability of the global network. Firstly, 
an adjustment model developed using the Additive-Increase Multiplicative-Decrease (AIMD) ad-
justment scheme with propagation latency in device-to-device paths and a closed-loop congestion 
control model with propagation latency in device–controller pairs are proposed, and the effect of 
channel competition from neighboring forwarding devices is analyzed. Subsequently, a robust con-
gestion control model with two kinds of propagation latencies and external disturbance is estab-
lished. Then, a new WOA-based scheduling strategy that considers each individual whale as a 
specific scheduling plan to allocate appropriate sending rates at the source side is presented 
to maximize the global network throughput. Afterward, the sufficient conditions are derived using 
Lyapunov–Krasovskii functionals and formulated using Linear Matrix Inequalities (LMIs). Finally, 
a numerical simulation is conducted to verify the effectiveness of this proposed scheme. 

Keywords: AIMD adjustment scheme; Lyapunov–Krasovskii functionals; robust congestion  
control scheme; SDWN; two kinds of propagation latencies and external disturbance; WOA  
algorithm 
 

1. Introduction 
With the rapid development of large-scale network deployments, traditional wireless 

networks, such as Wi-Fi or cellular networks, have adopted a distributed architecture, 
where network intelligence is embedded in each access point or base station. This makes 
it difficult to manage and configure a network as a whole, especially in large-scale deploy-
ments. Software-Defined Networking (SDN) is an architectural approach that separates 
the control plane and data plane in network devices, thereby enabling centralized control 
and management of the network through a programmable software controller [1–5]. Soft-
ware-Defined Wireless Networking (SDWN) is a concept that extends the principles of 
SDNs to wireless communication networks, which apply these principles to wireless net-
works, enabling greater flexibility, scalability, and control over wireless infrastructure. 

In SDWNs, similar to SDN, the control plane is separated from the data plane [1–8]. 
The control plane consists of a centralized software controller that manages and orches-
trates the network resources, makes decisions about network policies and configurations,  
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and dynamically controls the behavior of the wireless network infrastructure. The 
data plane comprises the wireless access points or base stations that handle the transmis-
sion and reception of data. The control plane of each forwarding device can only operate 
correctly when connected to SDWN-centralized controllers [1–9]. 

With the continuous expansion of the scale of networks and user populations, an ex-
cessive number of network services may cause network congestion in SDWNs [10,11], 
which has provoked research into effectively controlling network congestion and stabiliz-
ing networks [12,13]. Congestion control is a crucial technology used in wireless networks 
to manage and prevent network congestion, employing congestion control mechanisms 
to regulate the sending rate when there is a high demand for wireless network resources 
that exceeds the available capacity. Congestion control technologies play a vital role in 
maintaining the stability, efficiency, and performance of wireless networks, thus ensuring 
that wireless network resources are utilized optimally. Stability congestion control, which 
is intended to maximize the throughput and enhance the stability of global networks, has 
drawn widespread attention and research interest [14,15]. Propagation latency and exter-
nal disturbance are often considered to constitute two critical factors that affect global 
network stability. Propagation latency may lead to additional network costs and unrelia-
bility [16], while the variability of external disturbance based on the relevant wireless char-
acteristics leads to abrupt structural variations [17]. Even if a wireless network is stable 
via stability congestion control, the global network may become unstable again because 
of these two factors and may not be able to maintain long-term stability. 

Therefore, it is essential to restabilize SDWNs’ network parameters with optimal val-
ues to maintain long-term stability. Robust control, which maintains a global network un-
der long-term control with propagation latency and external disturbance, is likely a solu-
tion with which to tackle this re-stabilization problem. Thus, robust congestion control is 
defined as a robust control scheme acting on network congestion in order to enable higher 
network efficiency and lower network congestion. 

Some existing solutions favor the adoption of traditional network control methods to 
analyze the congestion control problem in SDWNs. A traditional network control system 
is modeled using stochastic network-induced latency [18], in which the analytical study 
of network stability has been implemented to solve network-induced latency and design 
feedback control algorithms. In the SDWN architecture, a global network controller is re-
sponsible for the rate management of each OpenFlow device [1,2,19–23]. In the separation 
of the control and data planes, control plane unification is implemented for different kinds 
of networks, including wired Internet Protocol (IP) networks [5,6,8,20,23], Wavelength-
Division Multiplexings (WDMs) [24], and wireless networks [25–27]. In recently pub-
lished works, the AIMD adjustment scheme has been further optimized using Lyapunov–
Krasovskii functionals for network congestion control in SDWNs [28,29]. In terms of the 
congestion control framework, the Additive-Increase Multiplicative-Decrease (AIMD) ad-
justment scheme is used to tackle network congestion control problems through the exe-
cution of proper source adjustments in SDWNs [30–32]. In terms of robust control algo-
rithms, various forwarding information control algorithms have been proposed through 
analyses of SDWN-centralized controllers with respect to improving network robustness 
and reacting to failures [2,23,33–35]. In [36–38], robust congestion control schemes have 
been proposed in order to achieve maximal network throughput in device-to-device paths 
by using Lyapunov–Krasovskii functionals. In terms of meta-heuristic optimization al-
gorithms, several meta-heuristic optimization algorithms, such as the Social Spider 
Optimization (SSO) algorithm [39], Bat Algorithm [40], and Particle Swarm Optimi-
zation (PSO) algorithm [41], have been utilized in wireless networks to greatly re-
duce the number of network data required to solve the network congestion problem 
[42]. In this paper, we use the Whale Optimization Algorithm (WOA) to more effec-
tively achieve optimization objectives using a new global scheduling strategy for 
solving the network congestion problem. The WOA algorithm, which simulates the 
foraging behavior of humpback whales, was first proposed in [43]. It is often used 
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to find the optimal solution for global optimization problems in various fields, 
among which those covered in reviews include engineering, clustering, classification, 
robot paths, image processing, networks, task scheduling, and other engineering ap-
plications [44–48]. 

However, these solutions are limited by the following aspects. 
(i) The control laws are separated from the centralized controllers but integrated into 

the forwarding devices in the form of flow tables; 
(ii) An SDWN architecture with two kinds of propagation latency is seldom considered 

for robust congestion control; 
(iii) The traditional theories are not compatible with the robust congestion control theory 

pertaining to SDWNs. 
The major contributions of this paper are summarized as follows: 
(i) First, we provide a novel sending rate adjustment model with propagation latency 

in device-to-device paths as the fundamental model in the forwarding layer. Then, we 
establish a closed-loop congestion control model with propagation latency in device–con-
troller pairs as a supplementary model. The propagation latency strengthens the veracity 
of the stability analysis, and its influence is considered in both device-to-device paths and 
device–controller pairs from a global perspective. Moreover, we consider channel compe-
tition near the forwarding devices in order to more effectively design the congestion con-
trol model based on the broadcasting nature of the wireless medium. 

(ii) We design a new, weighted, fair scheduling strategy to pre-set the control objec-
tive of the stability congestion control scheme in order to solve the global robust conges-
tion problems faced by SDWNs, which is utilized to calculate the optimized values of net-
work parameters. Moreover, external disturbance is also considered for robust congestion 
control. To eliminate external disturbance from the global network system, the stability 
congestion control model had to be converted into a robust congestion control model; 
consequently, the optimized status was maintained via the transformation of two closed-
loop congestion control models into a normal robust 𝐻∞ control model. 

(iii) An interdisciplinary effort is made to construct a robust congestion control 
scheme by combining stability analysis theory and congestion control principles in 
SDWNs. Exploiting the applicability of Lyapunov–Krasovskii functionals in stability anal-
ysis, this paper constructs novel optimized Lyapunov–Krasovskii functionals acting on 
the robust 𝐻∞ control model to achieve the desired global robust control system for solv-
ing network congestion. 

(iv) We design experiments on both the variations of error states and the energy tra-
jectories for a robust 𝐻∞control scheme implemented in the SDWN, including the AIMD 
adjustment scheme and the information-forwarding and control algorithm acting as 
benchmark algorithms. To evaluate the control performance, ablation experiments were 
conducted, which demonstrated the superiority of our proposed robust control scheme 
over the AIMD adjustment scheme and the information-forwarding and control algorithm 
with respect to maximizing the global SDWN throughput to maintain long-term stability 
with two kinds of propagation latencies and external disturbance. 

In SDWNs, the forwarding devices first record their congestion state information and 
explicitly advertise it to the centralized controllers. The centralized controllers provide 
some control policies and send control instructions to the forwarding devices. Next, the 
forwarding devices follow these control instructions and make proper adjustments to the 
sending rates at the source-side. Previous works, such as [36–38], studied the robust con-
gestion control scheme with propagation latency in device–controller pairs, while this pa-
per defines the propagation latency in both device–controller pairs and device-to-device 
paths as an upper bound of latency. Thus, two closed-loop congestion control models are 
established for the further research of the robust congestion control scheme. In our study, 
the AIMD adjustment scheme is still initially adopted to analyze network congestion with 
propagation latency in device–controller pairs, and two basic congestion control models 
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are established. Next, a novel WOA-based scheduling strategy that considers each indi-
vidual whale as a specific scheduling plan to allocate appropriate sending rates at 
the source side is proposed in the SDWN-centralized controllers to make proper adjust-
ments in each forwarding device. Then, a novel robust congestion control model is pro-
posed through the use of Lyapunov–Krasovskii functionals [49,50], and a theorem is pro-
posed to determine the sufficient conditions for the robust control. These sufficient condi-
tions are expressed as Linear Matrix Inequalities (LMIs). Finally, numerical instances are 
provided to demonstrate the effectiveness of our proposed scheme, which is able to more 
realistically analyze robust congestion control schemes under the influence of propagation 
latencies and external disturbance, over traditional schemes and those from previous 
works. 

The following are also discussed in the remaining sections of this paper. Section 2 
presents a brief overview of related works. In Section 3, an analytical network model, 
which was developed by implementing an AIMD adjustment scheme, is established to 
adjust the sending rate at the source side, and a WOA-based scheduling strategy that con-
siders each individual whale as a specific scheduling plan to allocate appropriate 
sending rates at the source side is presented to address the error states of the sending 
rate. Section 4 proposes a robust congestion control problem formulation, and some pre-
liminaries are introduced. Section 5 addresses network congestion control by using Lya-
punov–Krasovskii functionals and calculates sufficient conditions. Section 6 reports the 
results of a numerical network simulation to demonstrate the effectiveness of our pro-
posed robust congestion control scheme, and comparisons with other congestion control 
approaches applied in SDWNs are also provided. Section 7 presents the conclusions and 
directions for future work. 

2. Related Works and Problem Motivation 
2.1. Related Works 

SDN is a network paradigm separating the control and data planes of a network. The 
OpenFlow protocol was first introduced at Stanford University in 2008 [1]. Since then, 
SDN controllers and the OpenFlow protocol have been advanced to improve network per-
formance [2–6]. SDWN has applications in various domains, including enterprise net-
works, campus environments, public Wi-Fi facilitation, Internet of Things (IoT) networks, 
and 5G cellular networks. By leveraging the principles of SDN, SDWN offers a more flex-
ible, manageable, and scalable approach to wireless network management, thereby pav-
ing the way for innovation and improved performance in wireless communications [5–9]. 

To solve the network congestion problem experienced by SDWNs, the traditional ro-
bust control methods rely on either an AIMD adjustment scheme or an information-for-
warding and control algorithm. 

2.1.1. AIMD Adjustment Scheme 
As a traditional form of network control, the AIMD adjustment scheme is often em-

ployed at the source side. It has been researched for decades, and many reliable robust 
control solutions have been proposed for SDWNs. By utilizing improved AIMD adjust-
ment schemes and queue congestion management, the author of [30] proposed an SDN-
based Explicit-Deadline-Aware Transmission Control Protocol (TCP) mechanism for 
cloud data center networks. In [31], the authors adopted the AIMD adjustment scheme 
and introduced an Additive-Decrease Multiplicative-Increase (ADMI) approach to pre-
serve bandwidth. The author of [30] proposed a load balancer application using an AIMD 
adjustment scheme based on various features of SDN and OpenFlow. In recently pub-
lished works, Lyapunov–Krasovskii functionals were utilized, along with the AIMD ad-
justment scheme, for network congestion control in SDNs. In [28], the authors modeled a 
multi-objective minimization allocation scheme of energy and delay using traditional Lya-
punov–Krasovskii functionals. The authors of [29] proposed a queueing model and solved 
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a problem regarding long-term network utility maximization using traditional Lya-
punov–Krasovskii functionals. However, the key limitation of these approaches is that 
congestion control was implemented at the source side, which does not allow for the 
achievement of network robustness with a global view of SDWN. 

2.1.2. Information-Forwarding and Control Algorithm 
The SDWN architecture provides logically centralized controllers for receiving up-

dates and implementing control policies. Most of the current reliable robust control solu-
tions are information-forwarding and control algorithms. In [2], Vissicchio and Cittadini 
introduced an operational sequences computation algorithm to compute operational se-
quences that preserves the correctness of forwarding and policies to ensure the robustness 
of SDN updates. During the update, this algorithm robustly implements unpredictable 
factors, such as delayed message delivery and processing. In [23], the authors proposed a 
distributed OpenFlow-based routing protocol to improve network robustness, reaction to 
failures, and controller scalability. This protocol can provide robustness for topological 
failures and rapidly reduce the path stretch. The authors of [31] presented a congestion-
aware and robust, reliable multicast method for small groups in data centers that can dy-
namically bypass congested and failing links and then achieve high efficiency and robust-
ness. In [34], the author analyzed the requirements of a secure, robust, and resilient con-
troller for providing security improvements. The authors of [35] proposed a fault-prone, 
concurrent control scheme for robust policy implementation in distributed SDNs. The au-
thors of [36–38] proposed robust congestion control schemes for achieving maximal net-
work throughput by considering the propagation latency in device-to-device paths. 

However, propagation latency, especially in device–controller pairs, must be further 
considered and discussed as a key factor for robust congestion control in SDWNs. Simul-
taneously, external disturbance needs to be analyzed as the other key factor. Moreover, 
previous approaches to addressing network congestion implemented the robust control 
of partial networks instead of considering a global view of SDWN. 

Despite the abundant literature on SDWNs, both approaches are limited in terms of 
implementing global robust congestion control in the presence of propagation latency and 
external disturbance. 

2.2. Motivation 
Due to an SDWN’s characteristics, its wireless environment is susceptible to network 

congestion due to its limited available spectrum and bandwidth, shared medium, and 
varying channel conditions. SDWNs have finite bandwidth, in which network congestion 
can significantly impact data rates and throughput. By effectively controlling network 
congestion in SDWNs, bandwidth utilization can be optimized by allocating the network 
resources reasonably in order to facilitate the fair sharing of available bandwidth between 
all the devices. Moreover, the network congestion in SDWNs may lead to wasteful re-
transmissions and inefficient utilization of all network resources. By mitigating congestion 
in SDWNs, our method can reduce unnecessary retransmissions and improve overall re-
source efficiency, thereby enhancing network sustainability. 

Therefore, this paper focuses on solving the re-stabilization problem pertaining to a 
typical SDWN architecture with two kinds of propagation latency and external disturb-
ance via the robust congestion control scheme, aiming to maximize global network 
throughput and re-stabilize network parameters at their optimal values. This can better 
address the network congestion problem in SDWNs, which is essential to ensure the net-
work’s optimal performance and reliability. By leveraging an SDWN’s centralized control 
and dynamic management capabilities, network congestion can be proactively managed, 
and network resources can be reasonably allocated to enhance the efficiency and effective-
ness of SDWN operations. 

(i) To maximize the global SDWN throughput, this paper presents a novel WOA-
based scheduling strategy that considers each individual whale as a specific 
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scheduling plan in order to pre-set the network parameters at optimal values. The send-
ing rate at the source side, constituting a key network parameter, is the target of the robust 
congestion control scheme for network congestion control. 

(ii) To re-stabilize the network parameters at their optimal values, the differences be-
tween the current and optimized states are first assigned to the error states. Next, the ro-
bust congestion control problem with propagation latency and external disturbance is 
viewed as a robust control problem. Finally, the robust control problem based on the error 
states is addressed by referencing Lyapunov–Krasovskii functionals. 

3. Model and Analysis 
A typical SDWN architecture with two kinds of propagation latency is presented in 

Figure 1. Two kinds of propagation latency exist in SDWN: (1) propagation latency in the 
device-to-device path, and (2) propagation latency in device–controller pairs, which di-
vides the entirety of SDWN into two closed-loop networks for analyzing network conges-
tion. SDWN-centralized controllers consist of a series of controllers with distributed de-
signs for enhancing network reliability, scalability, and resiliency [35]. The OpenFlow-
based forwarding devices at the source side advertise their state information to the cen-
tralized controllers via a wireless channel and properly adjust their sending rates via the 
AIMD adjustment scheme after receiving the control instructions from the centralized 
controllers. These control instructions are provided to process individual network ser-
vices by means of the WOA-based scheduling strategy. In order to maintain the network 
parameters’ long-term stability in the SDWN, this paper focuses on maximizing the global 
SDWN throughput and stabilizing global network parameters at their optimal values un-
der the robust congestion control scheme with two kinds of propagation latency and ex-
ternal disturbance. Thus, a new WOA-based scheduling strategy that considers each in-
dividual whale as a specific scheduling plan to allocate appropriate sending rates at 
the source side is adopted to optimize global network performance by properly arrang-
ing the network parameters. There is an optimized stable state constituting a key network 
parameter in each forwarding device for the robust congestion control scheme. 

The analysis of these two closed-loop congestion control systems is classified into 
four parts in the subsections below. 

 
Figure 1. A typical SDWN architecture with two kinds of propagation latency and external disturb-
ance. 

3.1. A Sending Rate Adjustment Model with Propagation Latency in Device-to-Device Paths 
First, in order to analyze the sending rate adjustment at the source side, the following 

assumptions and definitions are proposed. 
Assumption 1. There exist infinite flows at the source side that await transmission. 
Definition 1. There exists an ideal queue length 𝑥∗ that has been verified as being capable 
of achieving the best performance with respect to the sending rate arrangement after mul-
tiple experiments. 
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Assumption 2. Define two queue lengths in any forwarding device, where one is the cur-
rent queue length 𝑥  and the other is the ideal queue length 𝑥∗. At the source side, the 
variation in the sending rate is represented as the difference of the queue length �̄� , �̄� =𝑥 − 𝑥∗ . If the difference value �̄� > 0 , the sending rate additively increases; otherwise, 
when �̄� < 0, the sending rate multiplicatively decreases. The magnitude of the difference 
value positively correlates with the level of rate variation at the source side. An AIMD 
adjustment scheme is implemented in every forwarding device based on the difference 
value �̄� . 
Assumption 3. The neighboring forwarding devices record their congestion state infor-
mation and periodically send them to the SDWN-centralized controllers. Then, the cen-
tralized controllers optimize some control laws via the congestion state information and 
send them to the source-forwarding device according to the control instructions. We as-
sume the existence of a local Congestion State (CS) value that is incorporated into the con-
trol instruction. This feedback control instruction shows the CS reflected in the current 
condition of the neighboring links in the whole round-trip. The CS is either non-positive 
(�̄� > 0, i.e., no congestion occurred) or positive (�̄� < 0, i.e., congestion occurred). 

Figure 2 presents an example of the data transmission process with propagation la-
tency in device-to-device paths in the SDWN, which can be modeled as a closed-loop con-
gestion control system. By incorporating the CS feedback from the centralized controllers 
and using the AIMD adjustment scheme to tackle the congestion control problems, the 
AIMD parameters are analyzed, and the basic network congestion model is established as 
a linear continuous closed-loop congestion control system. 

 
Figure 2. Data transmission process with propagation latency in device-to-device paths when uti-
lizing the AIMD adjustment scheme in SDWNs. 

In the SDWN, the neighboring forwarding devices shift their congestion state infor-
mation to the centralized controllers, in which the global network traffic state messages 
are concentrated. After an essential analysis, the centralized controllers optimize their con-
trol laws and make proper adjustments to every sending rate at the source side. If network 
congestion has occurred in the neighboring forwarding devices, said devices feed control 
instructions (CS > 0) back to the source forwarding devices within fixed time intervals to 
communicate the adjustments of the sending rates; when a state of non-congestion occurs 
in the neighboring forwarding devices, they feed control instructions (CS < 0) back. 

At the source side, suppose that the CS occurs at the moment 𝑡, 𝑡 ≥ 0, for which the 
time-varying sending rate is denoted as 𝑟(𝑡 ). 𝜏 (𝑡) and 𝜏 (𝑡) denote process latency and 
forward channel propagation latency, respectively. Using the AIMD adjustment scheme, 
this section considers the fixed constant weight 𝐴   as indicating an additive-increase 
and 𝐷  as indicating a multiplicative-decrease, respectively. At the source side, if the CS is 
non-positive, the sending rate increases by weight 𝐴 ; otherwise, CS is positive, and the 
sending rate decreases by weight 𝐷 . Thus, the behavioral equation can be expressed as 
follows: 
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𝑟(𝑡 ) = 𝑟(𝑡 ) − {𝐴 [1 − 𝜂(𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥∗)]−𝐷 𝑟(𝑡)[𝜂(𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥∗)]},   

Then, we obtain 𝑟(𝑡 ) − 𝑟(𝑡 )𝑡 − 𝑡 = − 1𝑡 − 𝑡 {𝐴 [1 − 𝜂(𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥∗)]−𝐷 𝑟(𝑡)[𝜂(𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥∗)]}= −𝐵 𝑟(𝑡 − 𝜏(𝑡)){𝐴 [1 − 𝜂(𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥∗)]−𝐷 𝑟(𝑡)[𝜂(𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥∗)]},   

where 𝐵  is defined as a fixed constant weight, 𝐵 𝑟 𝑡 − 𝜏(𝑡) = . 𝜂 is the sensitivity 
degree of the adjustment, 𝜂(𝑥 − 𝑥∗) denotes the probability parameter, 𝑥 (𝑡) represents 
instantaneous queue length, and 𝑡 is the current moment. 

Let 𝑎 = 𝐴 𝐵 , 𝑏 = 𝐷 𝐵 , and suppose 𝑟 = 𝑐, 𝑥 = 𝑥∗ in an equilibrium state; thus, the 
following is yielded: 𝑟(𝑡) = (−𝑎𝑐𝜂 − 𝑏𝑐 𝜂)(𝑥 (𝑡 − 𝜏 (𝑡))) − 𝑏𝑐( 𝑎𝑎 + 𝑏𝑐 𝑟(𝑡)),𝑥 (𝑡) = 𝑟(𝑡 − 𝜏 (𝑡)).  (1)

Eliminating 𝑥 (𝑡) from (1) yields the second-order differential equation 𝑟(𝑡) + 𝜅𝑟(𝑡) + 𝜗𝑟(𝑡 − 𝜏 (𝑡)) = 0, (2)

where 𝜅 = , 𝜗 = 𝑐𝜂(𝑎 + 𝑏𝑐)  are the parameters of this second-order system, and 𝜏 (𝑡) = 𝜏 (𝑡) + 𝜏 (𝑡)  denotes the round-trip of propagation latency from the source 
forwarding device to the destination. Note that the second-order dynamic Equation 
(2) can be rewritten in a matrix form, as follows. 𝑟(𝑡) = 0 10 −𝜅 𝑟(𝑡) + 0 0−𝜗 0 𝑟(𝑡 − 𝜏 (𝑡)). (3)

Note that 𝐴 = 0 10 −𝜅 , 𝐴 = 0 0−𝜗 0   are the weights of the network parameters. 
Thus, Equation (3) can be converted into 𝑟(𝑡) = 𝐴𝑟(𝑡) + 𝐴 𝑟(𝑡 − 𝜏 (𝑡)). (4)

In this section, Equation (4), as the state variable equation, represents a closed-loop 
congestion control system, which utilizes an AIMD adjustment scheme at the source side 
after receiving state feedback. Obviously, the congestion control system shown in Figure 
2 can be modeled using Equation (4). Solving Equation (4) yields the solution to the con-
gestion control problem. 

3.2. A Closed-loop Congestion Control Model with Propagation Latency in Device–Controller 
Pairs 

As shown in Figure 3, the propagation latency from a forwarding device to the cen-
tralized controllers (DC) and that from the centralized controllers to a forwarding device 
(CD) are defined as 𝜏 (𝑡) and 𝜏 (𝑡), respectively. Assume that the centralized controllers 
can monitor 𝜏 (𝑡) and that the forwarding devices can receive the CS from the centralized 
controllers with 𝜏 (𝑡). Let 𝜏 (𝑡) = 𝜏 (𝑡) + 𝜏 (𝑡), which is termed propagation latency in 
device–controller pairs. 
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Figure 3. Data transmission process with propagation latency in device–controller pairs in SDWNs. 

When a flow joins the SDWN or is generated in an OpenFlow forwarding device, it 
is first placed in a queue, in which is waits to be processed and sent. When a communica-
tion channel is free, the centralized controllers establish a device-to-device path after re-
ceiving all communications from the whole network. Then, they design a control policy 
and sends the control instructions to adjust the sending rate at the source side. The whole 
process is described as follows. 

First, the flow entry in the source forwarding device sends a complete or partial copy 
of the sending rate 𝑟(𝑡) to the centralized controllers (a packet-in message). Next, the cen-
tralized controllers calculate the state of the forwarding device by means of the packet-in 
message, classify the global state information, and create a control policy to stabilize the 
sending rate. The control policy is utilized to re-stabilize the sending rate via control in-
structions �̄�(𝑡). Then, the controllers adjust the weighted matrix (matrix 𝐵 , 𝐵 ∈ ℝ

× ) ac-
cordingly, where 𝐵  represents the completion of the flow (which generates the packet-in 
message) associated with the control instructions. 

Therefore, the SDWN architecture with propagation latency in device–controller 
pairs can be modeled as 𝑟(𝑡) = 𝐴𝑟(𝑡) + 𝐵 �̄�(𝑡), (5)

where 𝐴 is the matrix of the network parameters. 
Let the control instruction 𝑢(𝑡) = 𝐾𝑟(𝑡), 𝐾 ∈ ℝ

×  is denote control strength, and the 
control instruction be represented as �̄�(𝑡) = 𝐾𝑟(𝑡 − 𝑡 ),   𝑡 ∈ [𝑡 , 𝑡 ),  where �̄�(𝑡)  is the 
control input in the forwarding device, and 𝑡  is the sample time at moment k . Rewrite 𝑟(𝑡)  as 𝑟(𝑡 ) = 𝑟(𝑡 − (𝑡 − 𝑡 )) = 𝑟(𝑡 − 𝜏 (𝑡)),  𝑡 ∈ [𝑡 , 𝑡 ),  where 𝜏 (𝑡) = 𝜏 (𝑡) + 𝜏 (𝑡) 
denotes the entirety of propagation latency in the device–controller pairs. 

Substitute 𝑟(𝑡 − 𝜏 (𝑡)) into Equation (5); consequently, the SDWN architecture with 
propagation latency in device–controller pairs becomes a linear closed-loop congestion 
control system. 𝑟(𝑡) = 𝐴𝑟(𝑡) + 𝐵 �̄�(𝑡) = 𝐴𝑟(𝑡) + 𝐵 𝐾𝑟(𝑡 − 𝜏 (𝑡)),𝑡 ∈ [𝑡 , 𝑡 ).  (6)

3.3. Effect of Channel Competition from Neighboring Forwarding Devices 
The problem of wireless channel competition is a critical issue impacting the sending 

rate adjustment at the source side in the SDWN. The centralized controllers contain infor-
mation on global topology. Due to the broadcasting nature of the wireless medium, the 
forwarding devices cannot use and occupy the same wireless channel at the same mo-
ment. The other forwarding devices around the source forwarding device may contain 
data that can be transmitted simultaneously. Thus, every forwarding device needs to com-
pete for the shared channel in order to send data, as shown in Figure 4. Optimizing the 
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sending rates of the different source forwarding devices is essential in a period of channel 
competition. By centralizing control in the SDWN, the effect of coupling connection is 
reflected in the control instructions received from the centralized controllers. All network 
information is aggregated, and the control laws are designed in the centralized controllers 
to control network congestion. 

 
Figure 4. Channel competition between neighboring forwarding devices in SDWNs. 

Figure 4 shows an instance of channel competition in the SDWN. When there are data 
that have been sent from the forwarding device A to the forwarding device B, A provides 
updated information to the centralized controllers. At this moment, forwarding device C 
communicates with forwarding device D, occupying the wireless channel. Thus, forward-
ing device A receives the control instructions and must wait until the wireless channel is 
free. Meanwhile, when forwarding device E coupled with forwarding device F also have 
data to transmit, they must also compete with forwarding device A. The centralized con-
trollers require all information and make proper adjustments of the control laws of the 
different forwarding devices, which feed this information back to the forwarding devices 
via the control instructions. 
Assumption 4. The coupled forwarding devices are defined as the reciprocal channel ef-
fect in SDWNs. The whole network is diffusively coupled, and all network information is 
sent to the centralized controllers. Define L = (l ) ×   as the Laplace coupling matrix, 
whose diagonal elements are considered to correspond to  𝑙 = −𝛴 , 𝑙 , 𝑙 ≥ 0. This 
represents the network topology of the global SDWN. If there is a connection between 
forwarding device 𝑖  and 𝑗  (i.e., 𝑖  and 𝑗  are neighbors), 𝑙 = 𝑙 = 1 ; otherwise, 𝑙 = 𝑙 =0 (𝑖 ≠ 𝑗). The row sum of L is zero. The whole SDWN is connected, and matrix L is irre-
ducible. 

Based on the Laplace coupling matrix 𝐿 in Assumption 4, the control policies 𝑢 (𝑡) in 
the forwarding device 𝑖 that represent the topology relationship between all neighbor for-
warding devices can be described as follows 𝑢 (𝑡) = 𝐾{𝛴 𝑙 [𝐺𝑟 (𝑡) + 𝐺 𝑟 (𝑡 − 𝜏 (𝑡))]}, (7)

where appropriate dimensions 𝐺, 𝐺  denote the coupling weights of the proper adjust-
ments. The information on global network topology and wireless channel competition 
with propagation latency in the device-to-device path 𝜏 (𝑡) is used to update the infor-
mation sent to the centralized controllers. Then, the centralized controllers send the con-
trol instructions to the forwarding device at the source side based on analyzing the global 
network topology and wireless channel competition with a global view. 

Therefore, all control instructions in the centralized controllers are expressed by 
Equation (7) to implement stable congestion control in the SDWN, which consists of to-
pology information and the influence of the other forwarding devices with propagation 
latency in device-to-device paths. 
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Now, when the forwarding device at the source side receives the control instructions 
from the centralized controllers, the propagation latency in the device–controller pairs 𝜏 (𝑡) must be considered. This means that the forwarding device makes an adjustment in 
latency 𝜏 (𝑡)  behind the centralized controllers sending the control instructions. Addi-
tionally, considering the presence of external disturbance, this closed-loop congestion 
control model can be converted into a robust control model. In addition, by combining 
Equation (4) with (6) as a data transmission process model and considering the global 
topology expressed by Equation (7), the linear closed-loop SDWN architecture incorpo-
rating the external disturbance can be described as follows 𝑟 (𝑡) = 𝐴𝑟 (𝑡) + 𝐴 𝑟 (𝑡 − 𝜏 (𝑡)) + 𝐵 𝑢 (𝑡) + 𝐵 𝑤(𝑡),𝑢 (𝑡) = 𝐾{𝑟(𝑡 − 𝜏 (𝑡)) + 𝛴 𝑙 [𝐺𝑟 (𝑡) + 𝐺 𝑟 (𝑡 − 𝜏 (𝑡))]}, (8)

where 𝐴 is the weight of the network parameters, and 𝐵  is the weight of the external dis-
turbance. Let 𝐴𝑟 (𝑡) = 𝐴𝑟 (𝑡) + 𝐴𝑟 (𝑡) and 𝑢 (𝑡) = 𝑢 (𝑡) + �̄�(𝑡). 

Therefore, the congestion control system with two kinds of propagation latencies is 
converted into a robust congestion control model, which can be modeled by Equation (8). 

3.4. A WOA-Based Scheduling Strategy Designed to Maximize Global SDWN Throughput 
This section describes a WOA-based scheduling strategy designed to maximize 

global SDWN throughput, which can be non-preemptively pre-set to determine the net-
work parameters of each forwarding device stabilization process. 

3.4.1. Whale Optimization Algorithm 
First, the WOA algorithm, used as a preliminary strategy, is briefly introduced as 

follows. The WOA is a meta-heuristic optimization algorithm that simulates the foraging 
behavior of humpback whales, including their encircling of prey, bubble-net attacking 
strategies, and prey detection behavior [37–40]. 

Encircling Prey 
Humpback whales have the capacity to identify the location of prey and hem them 

in. Owing to the optimal position designed such that it is not a priori, this paper assumes 
that the current best candidate solution is the location of prey. Each whale tries to update 
their position with respect to approaching to the prey. This foraging behavior can be mod-
eled as follows. �⃗� = 𝐶 ∙ |𝑋∗⃗(𝑘) − �⃗�(𝑘)|, �⃗�(𝑘 + 1) = 𝑋∗⃗(𝑘) − 𝐴 ∙ �⃗�,  

where 𝑘 indicates the 𝑘th iteration, 𝐴 and 𝐶 are coefficient vectors, the position vector of 
prey 𝑋∗ signifies the best solution, 𝑋∗⃗ is the position vector, | | presents the absolute value, 
and ∙  represents Hadamard’s product of vectors. In addition, 𝑋∗⃗  should be updated in 
each iteration if there is a better solution. 

The vectors 𝐴 and 𝐶 are described as follows. 𝐴 = 2�⃗� ∙ 𝑟, 𝐶 = 2𝑟, 
where 𝑟 ∈ [0, 1] is a random vector, and �⃗� ∈ [0, 2] is convergence vector from 2 to 0 
with the iterations. 𝑎 = (2 − 2𝑘/𝐾 ),  

where 𝐾  is the maximum number of the iterations. 
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Bubble-Net Attacking 
Figure 5 presents an image of the humpback whale’s hunting strategy, in which it 

prefers to attack its prey close to the surface. It swims down, generates bubbles in a spiral 
shape around its prey, and then dives up toward the surface to consume them. 

 
Figure 5. A typical SDWN scenario for the numerical simulation. 

While engaging in this foraging behavior, the whale generates distinctive bubbles 
arranged in a circle, including a coral loop, a lobtail, and a capture loop. 

The WOA can be divided into two approaches: 
1. Shrinking Encircling Mechanism 

By analyzing the value of �⃗�, our study can mathematically model the foraging 
behavior of a humpback whale. 
2. Spiral Updating Position 

By calculating the distance between the current position of the whale and the location 
of its prey, this approach mathematically simulates the whale’s foraging behavior, which 
can be expressed as follows. �⃗�(𝑘 + 1) = 𝐷⃗ ∙ 𝑒 ∙ cos(2𝜋𝑙) + 𝑋∗⃗(𝑘), 
where �⃗� = |𝑋∗⃗(𝑘) − �⃗�(𝑘)| represents the distance of the 𝑖th whale to its prey; 𝑏, as a con-
stant, indicates the shape of the logarithmic spiral; and 𝑙 ∈ [0,1] is a random number. It 
has been reported that the whale swims around the prey within a shrinking circle and 
along a spiral-shaped path simultaneously. 

Then, we assume that both the shrinking encircling mechanism and the spiral updat-
ing position can be selected with a probability of 50%  to optimize the position of the 
whale. 

Therefore, the bubble-net attacking method can be modelled as follows �⃗�(𝑘 + 1) = 𝑋∗⃗(𝑘) − 𝐴 ∙ �⃗� 𝑖𝑓 𝑝 < 0.5,𝐷⃗ ∙ 𝑒 ∙ cos(2𝜋𝑙) + 𝑋∗⃗(𝑘) 𝑖𝑓 𝑝 ≥ 0.5, 
where 𝑝 ∈ [0,1] is a random value. 

Search for Prey 
As discussed in the above-mentioned analysis, the variation of the vector 𝐴 is 

considered to be a critical parameter with respect to the random search for prey 
according to the position of each whale. Consequently, the whale should be forced 
to move far away from a reference position if |𝐴| > 1. The position of the whale is 
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updated according to a randomly selected whale rather than the best solution, for 
which a global search is performed. The model is described as follows. �⃗� = 𝐶 ∙ |�⃗� (𝑘) − �⃗�(𝑘)|, �⃗�(𝑘 + 1) = �⃗� (𝑘) − 𝐴 ∙ �⃗�, 
where �⃗� (𝑘) is a random position vector of a whale, which is selected from the 
current population. 

3.4.2. The details of the WOA-Based Scheduling Strategy 
The centralized controllers are considered to constitute a criterion device, in which a 

scheduling problem must be pre-set in order to solve the network congestion problem. 
Hence, each individual whale is considered to represent a specific scheduling plan in or-
der to allocate appropriate sending rates at the source side based on the control instruc-
tions from the centralized controllers. After multiple iterations, the optimal individual 
whale output is selected as the best scheduling scheme according to an evaluation of the 
effectiveness of each scheduling scheme. 

Ideally, the sending rate in each forwarding device remains stable and needs to be 
optimized under congestion control in order to maximize the global SDWN throughput 
with limited wireless network resources. 

The specific steps of the WOA-based scheduling strategy are as follows. 
Step 1. Represent the number of whales as 𝑁 for defining all specific scheduling plans 

and consider a set of 𝑛 forwarding devices 𝑓 , 𝑓 , ⋯ , 𝑓  that has a maximum processing ca-
pacity of 𝐶 , 𝑖 = 1,2, ⋯ , 𝑛. Suppose that only 𝑛 levels of the sending rate exist at the source 
side with a weight 𝑤 , 𝑖 = 1,2, ⋯ , 𝑛. 

Step 2. Configurate a set of 𝑚 data flows 𝑃 (𝑡), 𝑗 = 1,2, ⋯ , 𝑚 waiting to be processed 
at the moment 𝑡. All of them must be processed and then transmitted to the destination. 

Step 3. Suppose that 0 < 𝐶 ≤ ⋯ ≤ 𝐶 < +∞ and ignore the process latency of the for-
warding devices to simplify the optimized scheduling model. 

Step 4. Process each data flow 𝑃  using a series of forwarding devices (not all forward-
ing devices). Thus, define the processing data flow 𝑃  of these forwarding devices as 𝑢 ∈{𝑓 , ⋯ , 𝑓 }, for which the maximum process capability is 𝐶 , 𝑖, 𝑗 = 1,2, ⋯ , 𝑛, respectively. 

Step 5. To maximize the global throughput, the optimized whale with an appropriate 
ideal rate of each forwarding device is denoted as 𝑆 (𝑡),  𝑖 = 1,  2, ⋯ ,  𝑛 . Define 𝑆(𝑡) ={𝑆 (𝑡), 𝑆 (𝑡), ⋯ , 𝑆 (𝑡)}. 

Therefore, the optimization problem can be described as follows. 𝑚𝑎𝑥, ( ) 𝑆 (𝑡)
𝑠. 𝑡. 𝑆 = 𝐶 ≤ 𝐶 ,0 ≤ 𝐶 ≤ 𝑚𝑖𝑛{𝐶 } = 𝐶 ,𝑆 (𝑡)𝑊 = ⋯ = 𝑆 (𝑡)𝑤 = ⋯ = 𝑆 (𝑡)𝑤 ,𝐶 = 𝑃 (𝑡),𝑆 (𝑡), 𝑃 (𝑡), 𝐶 ≥ 0.

 (9)

The optimized whale with an appropriate ideal rate 𝑆 (𝑡) of forwarding devices can 
be set under the above-mentioned constraints before data transmission in Equation (9). 
Initially, the optimized problem of maximizing the global SDWN throughput can be eas-
ily solved, and an uncomplicated allocated weighted proportion is defined as an ideal, 
optimized pre-set state by calculating each 𝑆 (𝑡). Therefore, the WOA-based scheduling 
strategy has been presented to pre-set the goal of the stability congestion control scheme. 
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Based on the above-mentioned analysis, the stability congestion control model can 
be established. Then, external disturbance is incorporated to convert the stability conges-
tion control model into a robust congestion control model in order to develop our global 
robust congestion control algorithm. 
Remark. In this section, our study utilizes the WOA algorithm to implement the weighted 
fair scheduling strategy, which provides the control target of maximizing the global 
SDWN throughput for stability congestion control. The WOA algorithm can obtain solu-
tions of required precision due to its low computational complexity and time consump-
tion. Furthermore, a WOA algorithm that must be pre-set only provides the goal of the 
robust congestion control before executing the robust congestion control algorithm, which 
means that the WOA algorithm cannot be used in discussion regarding robust 𝐻∞ control 
performance. 

4. Problem Formulation of Robust Congestion Control 
This section proposes a continuous, robust congestion control scheme with two kinds 

of propagation latencies in the SDWN. Its specific steps are as follows. 
Step 1. The AIMD adjustment scheme is analyzed based on the congestion control 

system with propagation latency in device-to-device paths, and the values 𝜅 and 𝜗 are cal-
culated after receiving the CS at the source side. 

Step 2. A closed-loop congestion control model with propagation latency in device–
controller pairs is proposed, and the data transmission process model is analyzed to pro-
vide decisions regarding control instructions in the centralized controllers. 

Step 3. The effect of channel competition between neighboring forwarding devices is 
analyzed. Based on the global network topology and considering the effect of channel 
competition, all control instructions in the centralized controllers are expressed to stabilize 
congestion control. 

Step 4. The WOA-based scheduling strategy is analyzed to calculate each optimized 
parameter value 𝑆 (𝑡), and the target of the congestion control stability procedure is pro-
posed in order to maximize the global SDWN throughput. 

Step 5. Based on the first four steps, the stability congestion control model is estab-
lished. Then, external disturbance is accounted for to convert the stability congestion con-
trol model into a robust congestion control model. 

Step 6. A novel, robust 𝐻∞ control model is proposed to solve the robust congestion 
control model, thereby necessitating the determination of a robustness condition. 

At the current stage, this paper focuses on establishing the robust 𝐻∞ control model 
and determining its robustness condition, which are introduced in the following two sub-
sections. 

4.1. Sending Rates at Source Side Approaching the Ideal Optimized Rates 
Our study first considers the sending rates at the source side approaching the ideal 

optimized rates for establishing the robust 𝐻∞  control model. By means of optimized 
scheduling, the data flows are assigned for maximizing the throughput of global SDWN 
under the aforementioned satisfactory conditions. Then, the problem becomes keeping 
the optimization model network stable in the SDWN, which maintains an allocated 
weighted proportion at the source side according to the ideal optimized state 𝑆(𝑡). If the 
global SDWN achieves robustness, it is stable at the maximal network throughput influ-
enced by propagation latencies and external disturbance. Therefore, when 𝑆(𝑡) is calcu-
lated and achieved, the sending rate of each forwarding device needs to approach its 
value. 

It is preferred to keep the ideal optimized state 𝑆(𝑡) stable under robust congestion 
control. The sending rate of each forwarding device needs to be unified as follows: 𝑟 (𝑡) →𝑆 (𝑡), 𝑟 (𝑡) → 𝑆 (𝑡), ⋯ , 𝑟 (𝑡) → 𝑆 (𝑡)(𝑟 (𝑡) → 𝑆 (𝑡), which means 𝑙𝑖𝑚→ ||𝑟 (𝑡) → 𝑆 (𝑡)|| = 0). 
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To unify the sending rates at the source side, the variable 𝑥(𝑡) = {[𝑟 (𝑡) −𝑆 (𝑡)] , [𝑟 (𝑡) − 𝑆 (𝑡)] , ⋯ , [𝑟 (𝑡) − 𝑆 (𝑡)] } is defined as the error state. Thus, the robust 
congestion control system (modeled by Equation (8)) can be converted into a global error 
system of the robust congestion control, which is described below: 𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐴 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵 𝐾{𝑥(𝑡 − 𝜏 (𝑡))+𝛴 𝑙 [𝐺𝑥 (𝑡) + 𝐺 𝑥 (𝑡 − 𝜏 (𝑡))]}).  

4.2. Robust H∞ Control Model 
Our study also considers the linear closed-loop SDWN with two kinds of propaga-

tion latency and external disturbance as the robust 𝐻∞control model, which is described 
as follows. 

⎩⎨
⎧𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐴 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵 𝑢 (𝑡) + 𝐵 𝑤(𝑡)𝑢 (𝑡) = 𝐾{𝑥(𝑡 − 𝜏 (𝑡)) + 𝛴 𝑙 [𝐺𝑥 (𝑡) + 𝐺 𝑥 (𝑡 − 𝜏 (𝑡))]}𝑧(𝑡) = 𝐼𝑥(𝑡)𝑥(𝑡) = 𝜙(𝑡),  (10)

where 𝑥 (𝑡) ∈ ℝ  is the error state denoting the state of the difference between the real-
time state and the ideal optimized pre-set state; 𝑢 (𝑡) ∈ ℝ  represents the control instruc-
tion in the centralized controllers; 𝑧(𝑡) is the controlled output, which can reflect the en-
ergy trajectory; 𝑤(𝑡) is the external disturbance with a covariance matrix equal to 𝑤 and 
expectation equal to zero; and 𝜏 (𝑡), 𝑖 = 1,2 as the continuous time satisfies 0 ≤ 𝜏 ≤ ℎ , 𝜇 , ≤ 𝜏(𝑡) ≤ 𝜇 , 
where 𝜇 , 𝜇 , and ℎ , 𝑖 = 1,2 are constants. 

At this stage, definitions required for the analysis of the robust 𝐻∞ control model are 
provided as follows. 
Definition 2. There exists a description of the energy relation between the controlled out-
put 𝑧(𝑡) and the external disturbance output 𝑤(𝑡). By considering the real SDWN, the en-
ergy relationship of these two outputs is believed to be {𝑧 ( 𝑡)𝑧(𝑡) −𝛾 𝑤 (𝑡)𝑤(𝑡)}𝑑𝑡, ||𝑇 (𝑧)|| < 𝛾, where 𝛾 is a prescribed positive scalar. This shows that 
the energy of the external disturbance has been absorbed after being controlled, which 
implies that robust 𝐻∞control has been achieved. 
Lemma 1 (Kronecker product): Let ⊗ denote the notation of Kronecker product. Accord-
ingly, the following properties are satisfied in appropriate dimensions: 

(i) (𝛼𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝛼𝐵), 
(ii) (𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶, 
(iii) (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷). 

Lemma 2 [51]: For any matrix 𝑅 > 0 and a vector function 𝑥: [𝛼, 𝛽] → ℝ , if the integrals 
concerned are well defined, the following inequality holds: 𝑥 (𝑠)𝑑𝑠 𝑅 𝑥 (𝑠)𝑑𝑠 ≤ (𝛽 − 𝛼) 𝑥 (𝑠)𝑅𝑥(𝑠)𝑑𝑠. 
Lemma 3 [52]: For any matrices 𝑅 ∈ ℝ × ,  𝑌 ∈ ℝ ×  , and 𝑋 ∈ ℝ ×   with 𝑋 𝑌∗ 𝑅 ≥ 0 , 
and a vector function 𝑥: [𝛼, 𝛽] → ℝ , if the integrals concerned are well defined, then the 
following inequality holds: − 𝑥 (𝑠)𝑅𝑥(𝑠) ≤ 𝜗 [𝐻𝑒{𝑌𝛱} + (𝛽 − 𝛼)𝑋]𝜗, 
Lemma 4 [53]: For any matrix 𝑅 > 0 and a differentiable signal 𝑥 in [𝛼, 𝛽] → ℝ , the fol-
lowing inequality holds: − 𝑥 (𝑠)𝑅𝑥(𝑠)𝑑𝑠 ≤ 𝜛 𝛺𝜛/(𝛽 − 𝛼), 



Biomimetics 2023, 8, 249 16 of 28 
 

 

where 

𝛺 = −4𝑅 −2𝑅 6𝑅∗ −4𝑅 6𝑅∗ ∗ −12𝑅 , 
𝜛 = [𝑥 (𝛽) 𝑥 (𝛼)  𝑥 (𝑠)𝑑𝑠/(𝛽 − 𝛼)]. 

Lemma 5 [54]: Let 𝑥be a differentiable function: [𝛼, 𝛽] → ℝ . For symmetric matrices 𝑅 ∈ℝ ×  and 𝑍 , 𝑍 ∈ ℝ × , and any matrices 𝑍 ∈ ℝ ×  and 𝑁 , 𝑁 ∈ ℝ ×  satisfying 

𝛹 = 𝑍 𝑍 𝑁∗ 𝑍 𝑁∗ ∗ 𝑅 ≥ 0, 
the following inequality holds: − 𝑠 (𝑡)𝑅𝑥(𝑠)𝑑𝑠 ≤ 𝜛 𝛺𝜛, 
where 𝛺 = (𝛽 − 𝛼)(𝑍 + 𝑍 /3) + 𝐻𝑒{𝑁 𝛱 + 𝑁 𝛱 },𝛱 = �̄� − �̄� , 𝛱 = 2�̄� − �̄� − �̄� ,�̄� = [𝐼 0 0],  �̄� = [0 𝐼 0], �̄� = [0 0 𝐼],   

and 𝜛 is similarly defined in Lemma 4. 

5. Criterion and Robustness Condition of Robust 𝑯∞ Control Model in the SDWN 
In this section, a new criterion of a robust 𝐻∞control model in the SDWN is proposed 

to determine a robustness condition using matrix-based integral inequality. The criterion 
is first established based on the LMI control toolbox. We provide the following definition: 𝐴 = 𝐼 ⊗ 𝐴, 𝐴 = 𝐼 ⊗ 𝐴 , 𝐵 = 𝐼 ⊗ 𝐵 , 𝐵 = 𝐼 ⊗ 𝐵 ,𝐺 = 𝐺 ⊗ 𝐿, 𝐺 = 𝐺 ⊗ 𝐿.  

According to the Kronecker product, the second-order system can be rewritten 
as a new, robust 𝐻∞ control model. 

⎩⎨
⎧𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐴 𝑥(𝑡 − 𝜏 (𝑡)) + 𝑢(𝑡) + 𝐵𝑤(𝑡)𝑢(𝑡) = 𝐾{𝐵 𝑥(𝑡 − 𝜏 (𝑡)) + 𝐺𝑥(𝑡) + 𝐺 𝑥(𝑡 − 𝜏 (𝑡))}𝑧(𝑡) = 𝐼 𝑥(𝑡)𝑥(𝑡) = 𝜙(𝑡).  (11)

The following nomenclature for vectors and matrices simplifies the representa-
tion: 
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𝜂 (𝑡) = [𝜂    𝑥( ) (𝑠)𝑑𝑠   𝑥( ) (𝑠)𝑑𝑠] ,𝜂 (𝑡) = [𝑥 (𝑡)  𝑥 (𝑡)] ,𝜂 (𝑡) = [𝑥 (𝑡)  𝑥 (𝑡 − 𝜏 (𝑡))  𝑥 (𝑡 − ℎ )  𝑥 (𝑡 − 𝜏 (𝑡))  𝑥 (𝑡 − ℎ )] ,𝜂 (𝑡) = [𝑥 (𝑡)  𝑥 (𝑡 − 𝜏 (𝑡))  𝑥 (𝑡 − ℎ )  𝑥 (𝑡 − 𝜏 (𝑡))  𝑥 (𝑡 − ℎ )] ,𝜂 (𝑡) = [ 𝑥( ) (𝑠)𝑑𝑠/𝜏 (𝑡)   𝑥( ) (𝑠)𝑑𝑠/(ℎ − 𝜏 (𝑡))] ,
𝜂 (𝑡) = [ 𝑥( ) (𝑠)𝑑𝑠/𝜏 (𝑡)   𝑥( ) (𝑠)𝑑𝑠/(ℎ − 𝜏 (𝑡))] ,𝜉(𝑡) = [𝜂 (𝑡)  𝜂 (𝑡)  𝜂 (𝑡)  𝜂 (𝑡)] ,𝜉(𝑡) = [𝜉 (𝑡)  𝑤 (𝑡)] ,𝑒     = [0 ×( )   𝐼   0 ×( ) ],   𝑖 = 1,2, ⋯ ,15.

 

Theorem 1 For given scalars ℎ , ℎ > 0 and 𝜇 < 𝑑 (𝑡) < 𝜇 < 1, 𝜇 < 𝑑 (𝑡) < 𝜇 < 1, 
the global error system is robust under robust congestion control if there exist appropriate 
dimension matrices 𝑃 > 0, 𝑄 ≥ 0 and 𝑅 > 0, 𝑖 = 1,2, appropriate dimension symmetrical 
matrices 𝑋( ), 𝑋( ), 𝑋( ), 𝑋( ), 𝑖 = 1,2,  and any matrices 𝑋( ), 𝑋( ), 𝑁( ), 𝑁( ), 𝑁( ), 𝑁( ), 𝑖 = 1,2 , 
thus allowing the following conditions in (12) to (13) to hold: 
  𝛯 < 0, (12)

𝛹( ) = 𝑋( ) 𝑋( ) 𝑁( )∗ 𝑋( ) 𝑁( )∗ ∗ 𝑅 ≥ 0, 𝛹( ) = 𝑋( ) 𝑋( ) 𝑁( )∗ 𝑋( ) 𝑁( )∗ ∗ 𝑅 ≥ 0, 
𝛹( ) = 𝑋( ) 𝑋( ) 𝑁( )∗ 𝑋( ) 𝑁( )∗ ∗ 𝑅 ≥ 0, 𝛹( ) = 𝑋( ) 𝑋( ) 𝑁( )∗ 𝑋( ) 𝑁( )∗ ∗ 𝑅 ≥ 0, (13)

where 𝛯 = 𝐻𝑒{𝛱 𝑃𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱+𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 } − (1 − 𝜏(𝑡))𝛱 (𝑄 − 𝑄 )𝛱 − 𝛱 𝑄 𝛱+ ℎ 𝑒 𝑅 𝑒 − 𝛾 𝑒 + 𝜏 (𝑡)𝛱 𝑋( ) + 𝑋( )3 𝛱
+ ℎ − 𝜏 (𝑡) 𝛱 𝑋( ) + 𝑋( )3 𝛱 + 𝜏 (𝑡)𝛱 𝑋( ) + 𝑋( )3 𝛱
+ ℎ − 𝜏 (𝑡) 𝛱 𝑋( ) + 𝑋( )3 𝛱 + 𝛱 𝑃𝛱 + 𝛱 𝑃𝛱+𝛱 𝑃𝛱 + 𝛱 𝑄 𝛱 + 𝛱 𝛱 + 𝑒 𝑒

 

and 
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𝛱 = [𝑒   𝑒   𝑒   𝑒   𝑒   𝜏 (𝑡)𝑒   (ℎ − 𝜏 (𝑡))𝑒 ] ,𝛱 = [𝑒  𝑒  𝑒  𝑒  𝑒  𝑒 − (1 − 𝜏(𝑡))𝑒  (1 − 𝜏(𝑡))𝑒 − 𝑒 ] ,𝛱 = [𝑒   𝑒 ] ,𝛱 = [𝑒   𝑒 ] ,𝛱 = [𝑒   𝑒 ] ,𝛱 = [𝑒   𝑒   𝑒 ] ,𝛱 = [𝑒   𝑒   𝑒 ] ,𝛱 = [𝑒   𝑒   𝑒 ] ,𝛱 = [𝑒   𝑒   𝑒 ] ,𝛱 = 𝑒 − 𝑒 ,𝛱 = 2𝑒 − 𝑒 − 𝑒 ,𝛱 = 𝑒 − 𝑒 ,𝛱 = 2𝑒 − 𝑒 − 𝑒 ,𝛱 = 𝑒 − 𝑒 ,𝛱 = 2𝑒 − 𝑒 − 𝑒 ,𝛱 = 𝑒 − 𝑒 ,𝛱 = 2𝑒 − 𝑒 − 𝑒 ,𝛱 = [(𝐴 + 𝐺)𝑒  𝑒  𝑒  𝑒  𝑒  𝑒 − (1 − 𝜏(𝑡))𝑒  (1 − 𝜏(𝑡))𝑒 − 𝑒 ] ,𝛱 = [(𝐴 + 𝐺 )𝑒  𝑒  𝑒  𝑒  𝑒  𝑒 − (1 − 𝜏(𝑡))𝑒  (1 − 𝜏(𝑡))𝑒𝛱 = [𝐾𝐵 𝑒  𝑒  𝑒  𝑒  𝑒  𝑒 − (1 − 𝜏(𝑡))𝑒  (1 − 𝜏(𝑡))𝑒 − 𝑒 ] ,𝛱 = [𝐵𝑒  𝑒  𝑒  𝑒  𝑒  𝑒 − (1 − 𝜏(𝑡))𝑒  (1 − 𝜏(𝑡))𝑒 − 𝑒 ] ,𝛱 = [𝑒   𝑒 ] .

 

Proof: Consider the following Lyapunov–Krasovskii functionals acting on this closed-
loop robust 𝐻∞ control model: 𝑉(𝑡) = 𝜂 (𝑡)𝑃𝜂 (𝑡) + 𝑥( ) (𝑠)𝑄 𝑥(𝑠)𝑑𝑠 + 𝑥( ) (𝑠)𝑄 𝑥(𝑠)𝑑𝑠

+ 𝑥 (𝑠)𝑅 𝑥(𝑠)𝑑𝑠𝑑𝜃.  

The derivative of 𝑉(𝑡) is 
 𝑉(𝑡) = 𝜉 (𝑡){𝐻𝑒𝛱 𝑃𝛱 + 𝛱 𝑄 𝛱 − (1 − 𝜏(𝑡))𝛱 (𝑄 − 𝑄 )𝛱−𝛱 𝑄 𝛱 + ℎ 𝑒 𝑅 𝑒 }𝜉(𝑡) − 𝑥 (𝑠)𝑅 𝑥(𝑠)𝑑𝑠

= 𝜉 (𝑡)𝛯 𝜉(𝑡) − 𝑥 (𝑠)𝑅 𝑥(𝑠)𝑑𝑠.  

Since 𝛹( ) ≥ 0,  𝑖, 𝑗 = 1,2 in Lemma 5, the following is yielded: 
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− 𝑥 (𝑠)𝑅 𝑥(𝑠)𝑑𝑠
= − 𝑥( ) (𝑠)𝑅 𝑥(𝑠)𝑑𝑠 − 𝑥( ) (𝑠)𝑅 𝑥(𝑠)𝑑𝑠

− 𝑥( ) (𝑠)𝑅 𝑥(𝑠)𝑑𝑠 − 𝑥( ) (𝑠)𝑅 𝑥(𝑠)𝑑𝑠≤ 𝜉 (𝑡){𝜏 (𝑡)𝛱 (𝑋( ) + 𝑋( )/3)𝛱 + (ℎ − 𝜏 (𝑡))𝛱 (𝑋( ) + 𝑋( )/3)𝛱+𝜏 (𝑡)𝛱 (𝑋( ) + 𝑋( )/3)𝛱 + (ℎ − 𝜏 (𝑡))𝛱 (𝑋( ) + 𝑋( )/3)𝛱+𝐻𝑒{𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱+𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 }}𝜉(𝑡)

 

Thus, the continuous linear closed-loop congestion control system (10) is con-
sidered, and the derivative of 𝑉(𝑡) is V(t) = ξ(t)Ξξ(t) + γ w (t)w(t) = ξ (t){Ξ + Π Π }ξ(t), 
where 𝛯 = 𝐻𝑒{𝛱 𝑃𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱+𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 + 𝛱 𝑁( )𝛱 }+𝛱 𝑃𝛱 + 𝛱 𝑃𝛱 + 𝛱 𝑃𝛱 + 𝛱 𝑄 𝛱 − (1 − 𝜏(𝑡))𝛱 (𝑄 − 𝑄 )𝛱−𝛱 𝑄 𝛱 + ℎ 𝑒 𝑅 𝑒 − 𝛾 𝑒 + 𝜏 (𝑡)𝛱 (𝑋( ) + 𝑋( )/3)𝛱

+(ℎ − 𝜏 (𝑡))𝛱 (𝑋( ) + 𝑋( )/3)𝛱 + 𝜏 (𝑡)𝛱 (𝑋( ) + 𝑋( )/3)𝛱+(ℎ − 𝜏 (𝑡))𝛱 (𝑋( ) + 𝑋( )/3)𝛱 .
 

The following 𝐻∞ performance index 𝐽 is considered: 𝐽 = {𝑧 ( 𝑡)𝑧(𝑡) − 𝛾 𝑤 (𝑡)𝑤(𝑡)}𝑑𝑡, ||𝑇 (𝑧)|| < 𝛾, 
where 𝛾 is a prescribed positive scalar. 𝐻∞  performance index 𝐽  displays the energy relationship between the con-
trolled output and the external interference. 𝐽 < 0 indicates that the energy of exter-
nal interference has been expended under the control law and that robust control 
has been achieved. 

Consider 𝑤(𝑡) ≠ 0, where the following relation bas been obtained: 𝑉(𝑡) + 𝑧 (𝑡)𝑧(𝑡) − 𝛾 𝑤 (𝑡)𝑤(𝑡) ≤ 𝜉 (𝑡){𝛯 + 𝛱 𝛱 + 𝑒 𝑒 }𝜉(𝑡) = 𝜉 (𝑡)𝛯𝜉(𝑡).

Following from inequalities (12) and (13) and the Schur Complement Lemma, 
we obtain 𝑉(𝑡) + 𝑧 (𝑡)𝑧(𝑡) − 𝛾 𝑤 (𝑡)𝑤(𝑡) < 0.  

Sum 𝑡 from 0 to ∞ so that {𝑧 ( 𝑡)𝑧(𝑡) − 𝛾 𝑤 (𝑡)𝑤(𝑡)}𝑑𝑡 < 𝑉(0) − 𝑉(∞). 
With the zero initial condition 𝑉(0) = 0, we obtain {𝑧 ( 𝑡)𝑧(𝑡) − 𝛾 𝑤 (𝑡)𝑤(𝑡)}𝑑𝑡 < 0. 
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Based on the Lyapunov–Krasovskii theory, the continuous linear delay closed-loop 
system with external interference can achieve robust control 𝐽 < 0  with a desirable 𝐻∞performance index ||𝑇 (𝑧)|| < 𝛾 according to (12) and (13). 

Thus, the proof is complete. 

6. Simulation 
In Section 6, a numerical network simulation is conducted to illustrate the effective-

ness of our proposed robust congestion control scheme in the SDWN scenario and the 
robustness conditions given in Theorem 1. Furthermore, a comparison with the AIMD 
adjustment scheme and the scheme incorporating information-forwarding and the control 
algorithm is given to demonstrate the superiority of our proposed robust congestion con-
trol scheme over the other congestion control approaches that are applied in SDWNs to 
maximize global SDWN throughput and thus maintain long-term stability with two kinds 
of propagation latency and external disturbance. 

6.1. Scenario Establishment 
An SDWN scenario is established for the numerical simulation (as shown in Figure 

6), which consists of a group of SDWN-centralized controllers and four forwarding de-
vices. Each forwarding device is connected to one another and the centralized controllers 
by a wireless channel. In the wireless channel, the influence of propagation latency and 
external disturbance is present in every device-to-device path and device–controller pair. 
Thus, the forwarding devices first record their CS information and periodically broadcast 
it to the centralized controllers. Next, the centralized controllers yield control policies for 
robust congestion control and send control instructions to the four forwarding devices. 
Finally, the four forwarding devices follow these control instructions and make proper 
adjustments to the sending rates at the source side in order to achieve the desired global 
robust control for network congestion in the SDWN. 

 
Figure 6. A typical SDWN scenario for the numerical simulation. 

6.2. Parameter Description 
Now, to analyze Theorem 1 (inequations (12) and (13)), the parameters in Equation 

(11) are considered as follows. 𝑘 = 1.55,  𝜗 = 16.5, 𝐴 = 0 10 −𝑘 , 𝐴 = 0 0−𝜗 0 , 
and 𝐵 = (2.2,1.4,3.6,2.8,1.2,2.4,0.6,1.8) . The inner coupling matrices are defined as 𝐺 = 𝑑𝑖𝑎𝑔{3,2}, 𝐺 = 𝑑𝑖𝑎𝑔{3,5}, and the coupling matrix 𝐿 is as follows 



Biomimetics 2023, 8, 249 21 of 28 
 

 

𝑘 = 1.55,  𝜗 = 16.5, 𝐴 = 0 10 −𝑘 , 𝐴 = 0 0−𝜗 0 , 
and 𝐵 = (2.2,1.4,3.6,2.8,1.2,2.4,0.6,1.8) . Define the inner coupling matrices as 𝐺 =𝑑𝑖𝑎𝑔{3,2}, 𝐺 = 𝑑𝑖𝑎𝑔{3,5}, and the coupling matrix 𝐿 is as follows. 

𝐿 = −3 1 1 11 −2 1 01 1 −3 11 0 1 −2 . 

A robust congestion control scheme in SDWN is researched in this paper. In addition, 
recall that an essential precondition for solving the re-stabilization problem is determined 
by global asymptotic stability. As a necessary condition for global asymptotic stability, 𝑥(𝑡) indicates that the error state satisfies 𝑙𝑖𝑚→  𝑥(𝑡) = 0. Therefore, we consider a stability 
congestion control pattern with zero initial conditions to correspond to 𝑥(𝑡) =(0 0 0 0 0 0 0 0) . 

A four-dimensional matrix is proposed to describe four forwarding devices under 
robust 𝐻∞control in the SDWN. There exists a feasible solution to LMIs (inequations (12) 
and (13)) according to Theorem 1. Now, suppose the control strength 𝐾 =𝑑𝑖𝑎𝑔{2.5,1.2,1.8,1.6,2,2.5,2.2,5} and the control instruction 𝐵 = 1 20.3 2 . 

To render the simulation tractable, the external disturbance output is denoted as fol-
lows: 𝑤(𝑡) = 1 0 ≤ 𝑡 ≤ 1,0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

which is a function with limited energy and duration. 

6.3. Simulation Results 
We conducted experiments on both the variations in the error states and the energy 

trajectories in the robust 𝐻∞control scheme in the SDWN. The experiments included the 
AIMD adjustment scheme and the information-forwarding and control algorithm as the 
benchmark algorithms. 

Now, short descriptions of all the benchmark algorithms under the condition of The-
orem 1 are given as follows. 

Short descriptions of all the benchmark algorithms 

- AIMD adjustment scheme [28,29]: This is a traditional network control scheme, 
which is often used at the source side without considering both the propagation la-
tency in device–controller pairs and channel competition in order to achieve network 
robustness with a global view of the SDWN. 

- Information forwarding and control algorithm [36–38]: The previous algorithm that 
addresses network congestion implements the robust control of partial networks in-
stead of control incorporating a global view of the SDWN, which is often used for 
robust congestion control without considering the propagation latency in device–
controller pairs. 
The definitions of both the variation in the error state and energy trajectory are given 

as follows. 
Definition 3. Variation in error state: The variation in error state is defined as the trajec-
tory of the current state approaching the ideal state in SDWNs, which is believed to be 
close to 0 when the second-order system is under robust congestion control. Moreover, 
due to the characteristics of the second-order system, each variation in the error state is 
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described by two trajectories that should converge at 0, i.e., the error equals 0 over a period 
of time. 
Definition 4. Energy trajectory: Energy trajectory is defined as the trajectory of the energy 
output, which is utilized to describe the energy trajectories of the controlled output 𝑧(𝑡) 
and the external disturbance 𝑤(𝑡). As 𝐽 < 0, a necessary condition for the achievement of 
robust 𝐻∞ congestion control is that the energy of the external disturbance must not have 
been absorbed after being controlled, and its corollary is that the controlled output 𝑧(𝑡) is 
lower than the external disturbance output 𝑤(𝑡) after being controlled. 

According to Theorem 1, there exists a feasible solution to LMIs from Inequality (12) 
to Inequality (13). The variation in the error state 𝑥 (𝑡), 𝑖 = 1,2,3,4 with two trajectories is 
displayed in Figure 7, each of which, as second-order systems, has two trajectories to dis-
play its variations. Notably, all the sending rates at the source side are initially stable, and 
the value of all the error states is initially zero due to the global asymptotic stability of the 
SDWN. Next, when the external disturbance appears at the initial moment, jitter occurs, 
and all error states become unstable. This indicates that all the source forwarding devices 
adopted the robust congestion control scheme to carry out the sending rate adjustments 
for re-stabilization under the presence of two kinds of propagation latency and external 
disturbance. Then, the error states converge after a finite length of time. This indicates that 
the error state 𝑥(𝑡) is under robust congestion control and that the whole wireless network 
has achieved global SDWN robustness. 

 
Figure 7. Variation in error state 𝑥 (𝑡), 𝑖 = 1,2,3,4 with two trajectories to represent its variation with 
two kinds of propagation latencies and external disturbance. 

Figure 8 displays the energy relation between the controlled output 𝑧(𝑡) and the ex-
ternal disturbance output 𝑤(𝑡). It is notable that the energy trajectory 𝑧(𝑡) is lower than 𝑤(𝑡), which means that the energy of the external disturbance has been restrained under 
the robust congestion control scheme. Thus, the effectiveness of our proposed robust con-
gestion control scheme has been validated. 

 
Figure 8. Energy trajectories of the controlled output and the external disturbance under the global 
robust congestion control scheme. 

To better reflect the control performance by making simulation-based comparisons 
with other schemes, including the AIMD adjustment scheme and the information-
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forwarding and control algorithm, important design elements of the robust 𝐻∞ control 
scheme are ablated to verify the efficiency and robustness of the conditions we determined 
to be sufficient for achieving global SDWN robustness. The detailed results of the experi-
ments on the robust 𝐻∞ control scheme are exhibited in Figures 9–14 and listed in Tables 
1 and 2. Table 1 shows the results of the convex optimization after the achievement of 
global SDWN robustness, in which the iteration number is 60 and the consumption time 
is 0.0004972 s. It is clear that the convex optimization that implements the weighted fair 
scheduling strategy for stability congestion control is simple and presents low computa-
tional complexity and short time consumption, which satisfies the analysis of Remark. 
Table 2 shows the results of the robust 𝐻∞ control schemes, which include our proposed 
robust congestion control scheme, the AIMD adjustment scheme, and the information-
forwarding and control algorithm. Short discussions comparing the robust H∞  control 
schemes with the AIMD adjustment scheme and the information-forwarding and control 
algorithm are presented in the following subsections. 

 
Figure 9. Variation in error state 𝑥 (𝑡), 𝑖 = 1,2,3,4 with two trajectories when utilizing the AIMD ad-
justment scheme. 

 
Figure 10. Energy trajectories of the controlled output 𝑧(𝑡) and the external disturbance 𝑤(𝑡) when 
utilizing the AIMD adjustment scheme. 

 
Figure 11. Variation in error state 𝑥 (𝑡), 𝑖 = 1,2,3,4  with two trajectories when utilizing the infor-
mation-forwarding and control algorithm. 
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Figure 12. Energy trajectories of the controlled output 𝑧(𝑡) and the external disturbance 𝑤(𝑡) when 
utilizing the information-forwarding and control algorithm. 

 
Figure 13. Variation comparison of error states 𝑥 (𝑡) between the information-forwarding and con-
trol algorithm and our proposed scheme. 

 
Figure 14. Comparison of energy trajectories between the controlled output 𝑧(𝑡) for the information-
forwarding and control algorithm, that of our proposed scheme, and external disturbance 𝑤(𝑡). 

Table 1. The results for the WOA algorithm. 

 WOA Algorithm 
Iteration number 60 

Consumption time (sec) 0.0004972 
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Table 2. The results for the robust 𝐻∞ control schemes. 

Schemes Characteristics Convergence 
Energy Tra-

jectories 
Our proposed robust 

congestion control 
scheme 

Two kinds of propagation la-
tency and channel competition 

Convergence 𝐽 < 0 

AIMD adjustment 
scheme 

Propagation latency in device-to-
device paths 

Non-conver-
gence 

𝐽 > 0 

Information-forwarding 
and 

control algorithm 

Propagation latency in device-to-
device paths 

and channel competition 

Non-conver-
gence 

𝐽 > 0 

6.3.1. Comparison with AIMD Adjustment Scheme 
The error states and energy trajectories corresponding to the traditional AIMD ad-

justment scheme are shown in Figures 9 and 10, respectively. Obviously, the variations in 
the error state 𝑥 (𝑡), 𝑖 = 1,2,3,4 with two trajectories diverge at 1.2 s in Figure 9. This find-
ing shows that it is impossible for the sending rates of the forwarding devices at the source 
side to approach the ideal, optimized state. In Figure 10, it is obvious that the energy tra-
jectory 𝑧(𝑡) is higher than 𝑤(𝑡), i.e., it is impossible for the external disturbance to be re-
strained under network congestion control. Due to the lack of global information from the 
SDWN-centralized controllers, the traditional AIMD adjustment scheme cannot satisfy 
the robustness condition given in Theorem 1. 

Upon comparing the traditional AIMD adjustment scheme with our proposed 
scheme, it can be clearly seen that it is impossible for the sending rates of the forwarding 
devices at the source side to maintain long-term stability via the traditional AIMD adjust-
ment scheme. This means that the sending rates at the source side diverge from the ideal, 
optimized states as time passes, which are also incapable of satisfying the demands of 
global SDWN throughput maximization. 

Therefore, this paper demonstrates the superiority of our proposed scheme over the 
traditional AIMD adjustment scheme in terms of maximizing global SDWN throughput 
for maintaining long-term stability with two kinds of propagation latencies and external 
disturbance. 

6.3.2. Comparison with Information-Forwarding and Control Algorithm 
In terms of the information-forwarding and control algorithm, to solve the network 

congestion problem, existing works such as [2,34–36] emphasize the robust control of par-
tial networks instead of employing a global view of SDWN. This may result in the wireless 
network failing to achieve global SDWN robustness when the propagation latencies in 
device–controller pairs are not considered. This paper presents the superiority of our ro-
bust congestion control scheme, with two kinds of propagation latency and external dis-
turbance, over the other information-forwarding and control algorithms. 

As shown in Figure 11, the variations in error state 𝑥 (𝑡), 𝑖 = 1,2,3,4 with two trajec-
tories can indicate network robustness by utilizing the information-forwarding and con-
trol algorithm. Clearly, the variations in error state 𝑥 (𝑡), 𝑖 = 1,2  correspond to conver-
gence at 1.5 s, while the variations in 𝑥 (𝑡), 𝑖 = 3,4 correspond to continuous oscillation 
(non-convergence). This finding reveals that the information-forwarding and control al-
gorithm for network congestion is suitable for the robust control of partial networks but 
not for global robust congestion control. Figure 12 shows that the energy trajectory 𝑧(𝑡) is 
notably higher than 𝑤(𝑡), which signifies that it is impossible to constrain external dis-
turbance under the network congestion control scheme. 

We compared the information-forwarding and control algorithm with our proposed 
scheme, as shown in Figures 13 and 14. Figure 13 shows the variations in 𝑥 (𝑡) in the case 
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of our proposed scheme and those in the information-forwarding and control algorithm. 
Obviously, the variations in 𝑥 (𝑡) are under robust control in our proposed scheme, while 
they are outside of robust control in the information-forwarding and control algorithm. 
Similarly, in Figure 14, the energy trajectory 𝑧(𝑡) in our proposed scheme is also under 
robust control, while that in the information-forwarding and control algorithm is still out-
side of robust control. 

Therefore, our proposed scheme has been proven to provide more favorable results 
than the information-forwarding and control algorithm in terms of maximizing the global 
SDWN throughput for maintaining long-term stability with two kinds of propagation la-
tency and external disturbance. 

7. Conclusions 
In this paper, we have proposed a novel WOA-based robust control scheme, which 

has been dubbed robust congestion control scheme, with two kinds of propagation latency 
and external disturbance in SDWNs that has been designed to solve the long-term stabili-
zation problem. First, the sending rate adjustment model was proposed by using the 
AIMD adjustment scheme with propagation latency in device-to-device paths and the 
closed-loop congestion control model with propagation latency in device–controller pairs, 
and the effect of channel competition between neighboring forwarding devices has been 
analyzed. Next, a robust congestion control model with two kinds of propagation latency 
and external disturbance was established. Then, an efficient WOA-based scheduling strat-
egy was presented in order maximize global network throughput. Afterward, the suffi-
cient conditions were derived using Lyapunov–Krasovskii functionals and formulated by 
LMIs. Finally, after comparing the traditional AIMD adjustment scheme with an existing 
information-forwarding and control algorithm, we conducted numerical network simula-
tions to demonstrate the effectiveness of our robust congestion control scheme. This 
scheme could also be utilized to analyze other efficient robust control methods in SDWNs. 
For future research, more applicable control algorithms modeled in SDWNs could be dis-
cussed in order to improve reliability and scalability. Simultaneously, more efficient SDN 
scheduling strategies could be further studied and improved. 
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